1
|
Xia Y, Zhao J, Saeed M, Hussain N, Chen X, Guo Z, Yong Y, Chen H. Molecular Modification Strategies of Nitrilase for Its Potential Application in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15106-15121. [PMID: 38949086 DOI: 10.1021/acs.jafc.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.
Collapse
Affiliation(s)
- Yutong Xia
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Jia Zhao
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
- Department of Poultry Science, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Nazar Hussain
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Xihua Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Zhongjian Guo
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
2
|
Aguirre-Sampieri S, Casañal A, Emsley P, Garza-Ramos G. Cryo-EM structure of bacterial nitrilase reveals insight into oligomerization, substrate recognition, and catalysis. J Struct Biol 2024; 216:108093. [PMID: 38615726 PMCID: PMC7616060 DOI: 10.1016/j.jsb.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Many enzymes can self-assemble into higher-order structures with helical symmetry. A particularly noteworthy example is that of nitrilases, enzymes in which oligomerization of dimers into spiral homo-oligomers is a requirement for their enzymatic function. Nitrilases are widespread in nature where they catalyze the hydrolysis of nitriles into the corresponding carboxylic acid and ammonia. Here, we present the Cryo-EM structure, at 3 Å resolution, of a C-terminal truncate nitrilase from Rhodococcus sp. V51B that assembles in helical filaments. The model comprises a complete turn of the helical arrangement with a substrate-intermediate bound to the catalytic cysteine. The structure was solved having added the substrate to the protein. The length and stability of filaments was made more substantial in the presence of the aromatic substrate, benzonitrile, but not for aliphatic nitriles or dinitriles. The overall structure maintains the topology of the nitrilase family, and the filament is formed by the association of dimers in a chain-like mechanism that stabilizes the spiral. The active site is completely buried inside each monomer, while the substrate binding pocket was observed within the oligomerization interfaces. The present structure is in a closed configuration, judging by the position of the lid, suggesting that the intermediate is one of the covalent adducts. The proximity of the active site to the dimerization and oligomerization interfaces, allows the dimer to sense structural changes once the benzonitrile was bound, and translated to the rest of the filament, stabilizing the helical structure.
Collapse
Affiliation(s)
- Sergio Aguirre-Sampieri
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito Escolar S/N, Ciudad Universitaria, CDMX, Mexico
| | - Ana Casañal
- Human Technopole, Palazzo Italia, Viale Rita Levi‑Montalcini, 1, 20157 Milan, Italy
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Structural Studies Division, Francis Crick Avenue, CB2 0QH Cambridge, England
| | - Georgina Garza-Ramos
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito Escolar S/N, Ciudad Universitaria, CDMX, Mexico.
| |
Collapse
|
3
|
Cederfelt D, Badgujar D, Au Musse A, Lohkamp B, Danielson UH, Dobritzsch D. The Allosteric Regulation of Β-Ureidopropionase Depends on Fine-Tuned Stability of Active-Site Loops and Subunit Interfaces. Biomolecules 2023; 13:1763. [PMID: 38136634 PMCID: PMC10741476 DOI: 10.3390/biom13121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The activity of β-ureidopropionase, which catalyses the last step in the degradation of uracil, thymine, and analogous antimetabolites, is cooperatively regulated by the substrate and product of the reaction. This involves shifts in the equilibrium of the oligomeric states of the enzyme, but how these are achieved and result in changes in enzyme catalytic competence has yet to be determined. Here, the regulation of human β-ureidopropionase was further explored via site-directed mutagenesis, inhibition studies, and cryo-electron microscopy. The active-site residue E207, as well as H173 and H307 located at the dimer-dimer interface, are shown to play crucial roles in enzyme activation. Dimer association to larger assemblies requires closure of active-site loops, which positions the catalytically crucial E207 stably in the active site. H173 and H307 likely respond to ligand-induced changes in their environment with changes in their protonation states, which fine-tunes the active-site loop stability and the strength of dimer-dimer interfaces and explains the previously observed pH influence on the oligomer equilibrium. The correlation between substrate analogue structure and effect on enzyme assembly suggests that the ability to favourably interact with F205 may distinguish activators from inhibitors. The cryo-EM structure of human β-ureidopropionase assembly obtained at low pH provides first insights into the architecture of its activated state. and validates our current model of the allosteric regulation mechanism. Closed entrance loop conformations and dimer-dimer interfaces are highly conserved between human and fruit fly enzymes.
Collapse
Affiliation(s)
- Daniela Cederfelt
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
| | - Dilip Badgujar
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
- Department of Cell and Molecular Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ayan Au Musse
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
- School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - U. Helena Danielson
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
| | - Doreen Dobritzsch
- Department of Chemistry—BMC, Uppsala University, 751 23 Uppsala, Sweden; (D.C.); (D.B.); (U.H.D.)
| |
Collapse
|
4
|
Paloyan A, Sargsyan A, Karapetyan MD, Hambardzumyan A, Kocharov S, Panosyan H, Dyukova K, Kinosyan M, Krueger A, Piergentili C, Stanley WA, Djoko KY, Baslé A, Marles‐Wright J, Antranikian G. Structural and biochemical characterisation of the N-carbamoyl-β-alanine amidohydrolase from Rhizobium radiobacter MDC 8606. FEBS J 2023; 290:5566-5580. [PMID: 37634202 PMCID: PMC10952681 DOI: 10.1111/febs.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
N-carbamoyl-β-alanine amidohydrolase (CβAA) constitutes one of the most important groups of industrially relevant enzymes used in the production of optically pure amino acids and derivatives. In this study, a CβAA-encoding gene from Rhizobium radiobacter strain MDC 8606 was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme (RrCβAA) showed a specific activity of 14 U·mg-1 using N-carbamoyl-β-alanine as a substrate with an optimum activity at 55 °C and pH 8.0. In this work, we report also the first prokaryotic CβAA structure at a resolution of 2.0 Å. A discontinuous catalytic domain and a dimerisation domain attached through a flexible hinge region at the domain interface have been revealed. We identify key ligand binding residues, including a conserved glutamic acid (Glu131), histidine (H385) and arginine (Arg291). Our results allowed us to explain the preference of the enzyme for linear carbamoyl substrates, as large and branched carbamoyl substrates cannot fit in the active site of the enzyme. This work envisages the use of RrCβAA from R. radiobacter MDC 8606 for the industrial production of L-α-, L-β- and L-γ-amino acids. The structural analysis provides new insights on enzyme-substrate interaction, which shed light on engineering of CβAAs for high catalytic activity and broad substrate specificity.
Collapse
Affiliation(s)
- Ani Paloyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
| | - Armen Sargsyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
| | | | | | - Sergei Kocharov
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry SNPO of NAS RAYerevanArmenia
| | - Henry Panosyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry SNPO of NAS RAYerevanArmenia
| | - Karine Dyukova
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
| | - Marina Kinosyan
- Scientific and Production Center “Armbiotechnology” of NAS RAYerevanArmenia
| | - Anna Krueger
- Authority for the Environment, Climate, Energy and Agriculture in HamburgHamburgGermany
| | - Cecilia Piergentili
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Will A. Stanley
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | | | - Arnaud Baslé
- Newcastle University Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jon Marles‐Wright
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
- Newcastle University Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
5
|
Dobritzsch D, Meijer J, Meinsma R, Maurer D, Monavari AA, Gummesson A, Reims A, Cayuela JA, Kuklina N, Benoist JF, Perrin L, Assmann B, Hoffmann GF, Bierau J, Kaindl AM, van Kuilenburg ABP. β-Ureidopropionase deficiency due to novel and rare UPB1 mutations affecting pre-mRNA splicing and protein structural integrity and catalytic activity. Mol Genet Metab 2022; 136:177-185. [PMID: 35151535 DOI: 10.1016/j.ymgme.2022.01.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/04/2023]
Abstract
β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyses the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, ammonia and CO2. To date, only a limited number of genetically confirmed patients with a complete β-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 10 newly identified β-ureidopropionase deficient individuals. Patients presented mainly with neurological abnormalities and markedly elevated levels of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid in urine. Analysis of UPB1, encoding β-ureidopropionase, showed 5 novel missense variants and two novel splice-site variants. Functional expression of the UPB1 variants in mammalian cells showed that recombinant ß-ureidopropionase carrying the p.Ala120Ser, p.Thr129Met, p.Ser300Leu and p.Asn345Ile variant yielded no or significantly decreased β-ureidopropionase activity. Analysis of the crystal structure of human ß-ureidopropionase indicated that the point mutations affect substrate binding or prevent the proper subunit association to larger oligomers and thus a fully functional β-ureidopropionase. A minigene approach showed that the intronic variants c.[364 + 6 T > G] and c.[916 + 1_916 + 2dup] led to skipping of exon 3 and 8, respectively, in the process of UPB1 pre-mRNA splicing. The c.[899C > T] (p.Ser300Leu) variant was identified in two unrelated Swedish β-ureidopropionase patients, indicating that β-ureidopropionase deficiency may be more common than anticipated.
Collapse
Affiliation(s)
- Doreen Dobritzsch
- Uppsala University, Department of Chemistry-BMC, Biomedical Center, Uppsala, Sweden
| | - Judith Meijer
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Rutger Meinsma
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Ardeshir A Monavari
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Temple Street, Dublin, Ireland
| | - Anders Gummesson
- Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Annika Reims
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Jorge A Cayuela
- Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Natalia Kuklina
- Drammen Hospital, Pediatric Department/Habilitation Center, Vestre Viken HF, Drammen, Norway
| | - Jean-François Benoist
- Hôpital Universitaire Robert Debré, Service de Biochimie Hormonologie, Paris, France
| | - Laurence Perrin
- Hôpital Universitaire Robert Debré, Service de Biochimie Hormonologie, Paris, France
| | - Birgit Assmann
- University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Jörgen Bierau
- Maastricht University Medical Centre, Department of Clinical Genetics, Maastricht, the Netherlands; Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Center for Chronically Sick Children, Institute for Cell and Neurobiology, Berlin, Germany
| | - André B P van Kuilenburg
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Kumari P, Poddar R. Computational modeling for mutational analysis of nitrilase enzyme towards enhancement of binding empathy. J Biomol Struct Dyn 2020; 39:2289-2301. [PMID: 32216606 DOI: 10.1080/07391102.2020.1747546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nitrilase enzyme (a green catalyst) is an industrially important enzyme which hydrolyses various nitrile compounds (containing -CN functional group) into amides and corresponding carboxylic acids. The current study explored the binding affinity and a method to enhance the catalysis activity of the enzyme using computational approaches. Four mutants were generated using sequential site-directed mutagenesis aiming that an increase in hydrogen bonds that will further increase binding efficiency towards the ligand. Molecular dynamics simulation was rigorously performed to check the stability of those mutants followed by docking to verify its interaction with the ligand. Various statistical dynamics analyses were performed to validate the structure. All the studies predict that built mutants are stable. Mutants 2 and 3 showed a better affinity towards acrylamide by forming the highest number of hydrogen bonds implying better catalysis. The binding affinity values of the Mutant 2 and Mutant 3 with acrylamide are -7.44 kcal/mol and -7.17 kcal/mol, respectively. This study may prove useful for the industry to develop efficient nitrilase enzymes with improved catalytic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priya Kumari
- Department of Bioengineering, Birla Institute of Technology-Mesra, Ranchi, JH, India
| | - Raju Poddar
- Department of Bioengineering, Birla Institute of Technology-Mesra, Ranchi, JH, India
| |
Collapse
|
7
|
Chuenchor W, Doukov TI, Chang KT, Resto M, Yun CS, Gerratana B. Different ways to transport ammonia in human and Mycobacterium tuberculosis NAD + synthetases. Nat Commun 2020; 11:16. [PMID: 31911602 PMCID: PMC6946656 DOI: 10.1038/s41467-019-13845-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
NAD+ synthetase is an essential enzyme of de novo and recycling pathways of NAD+ biosynthesis in Mycobacterium tuberculosis but not in humans. This bifunctional enzyme couples the NAD+ synthetase and glutaminase activities through an ammonia tunnel but free ammonia is also a substrate. Here we show that the Homo sapiens NAD+ synthetase (hsNadE) lacks substrate specificity for glutamine over ammonia and displays a modest activation of the glutaminase domain compared to tbNadE. We report the crystal structures of hsNadE and NAD+ synthetase from M. tuberculosis (tbNadE) with synthetase intermediate analogues. Based on the observed exclusive arrangements of the domains and of the intra- or inter-subunit tunnels we propose a model for the inter-domain communication mechanism for the regulation of glutamine-dependent activity and NH3 transport. The structural and mechanistic comparison herein reported between hsNadE and tbNadE provides also a starting point for future efforts in the development of anti-TB drugs.
Collapse
Affiliation(s)
- Watchalee Chuenchor
- Departments of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tzanko I Doukov
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, 94025, USA
| | - Kai-Ti Chang
- Departments of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Melissa Resto
- Departments of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Chang-Soo Yun
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Barbara Gerratana
- Departments of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Martínez-Rodríguez S, Conejero-Muriel M, Gavira JA. A novel cysteine carbamoyl-switch is responsible for the inhibition of formamidase, a nitrilase superfamily member. Arch Biochem Biophys 2019; 662:151-159. [PMID: 30528776 DOI: 10.1016/j.abb.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022]
Abstract
Formamidases (EC 3.5.1.49) and amidases (EC 3.5.1.4) are paralogous cysteine-dependent enzymes which catalyze the conversion of amide substrates to ammonia and the corresponding carboxylic acid. Both enzymes have been suggested as an alternative pathway for ammonia production during urea shortage. Urea was proved key in the transcriptional regulation of formamidases/amidases, connecting urea level to amide metabolism. In addition, different amidases have also been shown to be inhibited by urea, pointing to urea-regulation at the enzymatic level. Although amidases have been widely studied due to its biotechnological application in the hydrolysis of aliphatic amides, up to date, only two formamidases have been extensively characterized, belonging to Helicobacter pylori (HpyAmiF) and Bacillus cereus (BceAmiF). In this work, we report the first structure of an acyl-intermediate of BceAmiF. We also report the inhibition of BceAmiF by urea, together with mass spectrometry studies confirming the S-carbamoylation of BceAmiF after urea treatment. X-ray studies of urea-soaked BceAmiF crystals showed short- and long-range rearrangements affecting oligomerization interfaces. Since cysteine-based switches are known to occur in the regulation of different metabolic and signaling pathways, our results suggest a novel S-carbamoylation-switch for the regulation of BceAmiF. This finding could relate to previous observations of unexplained modifications in the catalytic cysteine of different nitrilase superfamily members and therefore extending this regulation mechanism to the whole nitrilase superfamily.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada (Campus de Melilla), 52071, Melilla, Spain; Laboratorio de Estudios Cristalográficos, CSIC-UGR, 18100, Granada, Spain.
| | | | | |
Collapse
|
9
|
Woodward JD, Trompetter I, Sewell BT, Piotrowski M. Substrate specificity of plant nitrilase complexes is affected by their helical twist. Commun Biol 2018; 1:186. [PMID: 30417123 PMCID: PMC6214922 DOI: 10.1038/s42003-018-0186-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023] Open
Abstract
Nitrilases are oligomeric, helix-forming enzymes from plants, fungi and bacteria that are involved in the metabolism of various natural and artificial nitriles. These biotechnologically important enzymes are often specific for certain substrates, but directed attempts at modifying their substrate specificities by exchanging binding pocket residues have been largely unsuccessful. Thus, the basis for their selectivity is still unknown. Here we show, based on work with two highly similar nitrilases from the plant Capsella rubella, that modifying nitrilase helical twist, either by exchanging an interface residue or by imposing a different twist, without altering any binding pocket residues, changes substrate preference. We reveal that helical twist and substrate size correlate and when binding pocket residues are exchanged between two nitrilases that show the same twist but different specificities, their specificities change. Based on these findings we propose that helical twist influences the overall size of the binding pocket.
Collapse
Affiliation(s)
- Jeremy D Woodward
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Inga Trompetter
- Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - B Trevor Sewell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Markus Piotrowski
- Department of Molecular Genetics and Physiology of Plants, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
10
|
Crystal structure and pH-dependent allosteric regulation of human β-ureidopropionase, an enzyme involved in anticancer drug metabolism. Biochem J 2018; 475:2395-2416. [PMID: 29976570 DOI: 10.1042/bcj20180222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
β-Ureidopropionase (βUP) catalyzes the third step of the reductive pyrimidine catabolic pathway responsible for breakdown of uracil-, thymine- and pyrimidine-based antimetabolites such as 5-fluorouracil. Nitrilase-like βUPs use a tetrad of conserved residues (Cys233, Lys196, Glu119 and Glu207) for catalysis and occur in a variety of oligomeric states. Positive co-operativity toward the substrate N-carbamoyl-β-alanine and an oligomerization-dependent mechanism of substrate activation and product inhibition have been reported for the enzymes from some species but not others. Here, the activity of recombinant human βUP is shown to be similarly regulated by substrate and product, but in a pH-dependent manner. Existing as a homodimer at pH 9, the enzyme increasingly associates to form octamers and larger oligomers with decreasing pH. Only at physiological pH is the enzyme responsive to effector binding, with N-carbamoyl-β-alanine causing association to more active higher molecular mass species, and β-alanine dissociation to inactive dimers. The parallel between the pH and ligand-induced effects suggests that protonation state changes play a crucial role in the allosteric regulation mechanism. Disruption of dimer-dimer interfaces by site-directed mutagenesis generated dimeric, inactive enzyme variants. The crystal structure of the T299C variant refined to 2.08 Å resolution revealed high structural conservation between human and fruit fly βUP, and supports the hypothesis that enzyme activation by oligomer assembly involves ordering of loop regions forming the entrance to the active site at the dimer-dimer interface, effectively positioning the catalytically important Glu207 in the active site.
Collapse
|
11
|
Park JM, Trevor Sewell B, Benedik MJ. Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 2017; 101:3029-3042. [PMID: 28265723 DOI: 10.1007/s00253-017-8204-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
The cyanide-degrading nitrilases are of notable interest for their potential to remediate cyanide contaminated waste streams, especially as generated in the gold mining, pharmaceutical, and electroplating industries. This review provides a brief overview of cyanide remediation in general but with a particular focus on the cyanide-degrading nitrilases. These are of special interest as the hydrolysis reaction does not require secondary substrates or cofactors, making these enzymes particularly good candidates for industrial remediation processes. The genetic approaches that have been used to date for engineering improved enzymes are described; however, recent structural insights provide a promising new approach.
Collapse
Affiliation(s)
- Jason M Park
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - B Trevor Sewell
- Structural Biology Research Unit, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA.
| |
Collapse
|
12
|
Structural basis for dual specificity of yeast N-terminal amidase in the N-end rule pathway. Proc Natl Acad Sci U S A 2016; 113:12438-12443. [PMID: 27791147 DOI: 10.1073/pnas.1612620113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first step of the hierarchically organized Arg/N-end rule pathway of protein degradation is deamidation of the N-terminal glutamine and asparagine residues of substrate proteins to glutamate and aspartate, respectively. These reactions are catalyzed by the N-terminal amidase (Nt-amidase) Nta1 in fungi such as Saccharomyces cerevisiae, and by the glutamine-specific Ntaq1 and asparagine-specific Ntan1 Nt-amidases in mammals. To investigate the dual specificity of yeast Nta1 (yNta1) and the importance of second-position residues in Asn/Gln-bearing N-terminal degradation signals (N-degrons), we determined crystal structures of yNta1 in the apo state and in complex with various N-degron peptides. Both an Asn-peptide and a Gln-peptide fit well into the hollow active site pocket of yNta1, with the catalytic triad located deeper inside the active site. Specific hydrogen bonds stabilize interactions between N-degron peptides and hydrophobic peripheral regions of the active site pocket. Key determinants for substrate recognition were identified and thereafter confirmed by using structure-based mutagenesis. We also measured affinities between yNta1 (wild-type and its mutants) and specific peptides, and determined KM and kcat for peptides of each type. Together, these results elucidate, in structural and mechanistic detail, specific deamidation mechanisms in the first step of the N-end rule pathway.
Collapse
|
13
|
Park JM, Mulelu A, Sewell BT, Benedik MJ. Probing an Interfacial Surface in the Cyanide Dihydratase from Bacillus pumilus, A Spiral Forming Nitrilase. Front Microbiol 2016; 6:1479. [PMID: 26779137 PMCID: PMC4700190 DOI: 10.3389/fmicb.2015.01479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/08/2015] [Indexed: 11/13/2022] Open
Abstract
Nitrilases are of significant interest both due to their potential for industrial production of valuable products as well as degradation of hazardous nitrile-containing wastes. All known functional members of the nitrilase superfamily have an underlying dimer structure. The true nitrilases expand upon this basic dimer and form large spiral or helical homo-oligomers. The formation of this larger structure is linked to both the activity and substrate specificity of these nitrilases. The sequences of the spiral nitrilases differ from the non-spiral forming homologs by the presence of two insertion regions. Homology modeling suggests that these regions are responsible for associating the nitrilase dimers into the oligomer. Here we used cysteine scanning across these two regions, in the spiral forming nitrilase cyanide dihydratase from Bacillus pumilus (CynD), to identify residues altering the oligomeric state or activity of the nitrilase. Several mutations were found to cause changes to the size of the oligomer as well as reduction in activity. Additionally one mutation, R67C, caused a partial defect in oligomerization with the accumulation of smaller oligomer variants. These results support the hypothesis that these insertion regions contribute to the unique quaternary structure of the spiral microbial nitrilases.
Collapse
Affiliation(s)
- Jason M Park
- Department of Biology, Texas A&M University, College Station TX, USA
| | - Andani Mulelu
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - B Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station TX, USA
| |
Collapse
|
14
|
Sekula B, Ruszkowski M, Malinska M, Dauter Z. Structural Investigations of N-carbamoylputrescine Amidohydrolase from Medicago truncatula: Insights into the Ultimate Step of Putrescine Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:350. [PMID: 27066023 PMCID: PMC4812014 DOI: 10.3389/fpls.2016.00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/07/2016] [Indexed: 05/17/2023]
Abstract
Putrescine, 1,4-diaminobutane, is an intermediate in the biosynthesis of more complexed polyamines, spermidine and spermine. Unlike other eukaryotes, plants have evolved a multistep pathway for putrescine biosynthesis that utilizes arginine. In the final reaction, N-carbamoylputrescine is hydrolyzed to putrescine by N-carbamoylputrescine amidohydrolase (CPA, EC 3.5.1.53). During the hydrolysis, consecutive nucleophilic attacks on the substrate by Cys158 and water lead to formation of putrescine and two by-products, ammonia and carbon dioxide. CPA from the model legume plant, Medicago truncatula (MtCPA), was investigated in this work. Four crystal structures were determined: the wild-type MtCPA in complex with the reaction intermediate, N-(dihydroxymethyl)putrescine as well as with cadaverine, which is a longer analog of putrescine; and also structures of MtCPA-C158S mutant unliganded and with putrescine. MtCPA assembles into octamers, which resemble an incomplete left-handed helical twist. The active site of MtCPA is funnel-like shaped, and its entrance is walled with a contribution of the neighboring protein subunits. Deep inside the catalytic cavity, Glu48, Lys121, and Cys158 form the catalytic triad. In this studies, we have highlighted the key residues, highly conserved among the plant kingdom, responsible for the activity and selectivity of MtCPA toward N-carbamoylputrescine. Moreover, since, according to previous reports, a close MtCPA relative from Arabidopsis thaliana, along with several other nitrilase-like proteins, are subjected to allosteric regulation by substrates, we have used the structural information to indicate a putative secondary binding site. Based on the docking experiment, we postulate that this site is adjacent to the entrance to the catalytic pocket.
Collapse
Affiliation(s)
- Bartosz Sekula
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of TechnologyLodz, Poland
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
- *Correspondence: Milosz Ruszkowski,
| | - Maura Malinska
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
- Faculty of Chemistry, University of WarsawWarsaw, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, ArgonneIL, USA
| |
Collapse
|
15
|
|
16
|
Crum M, Park J, Sewell B, Benedik M. C-terminal hybrid mutant of Bacillus pumilus
cyanide dihydratase dramatically enhances thermal stability and pH tolerance by reinforcing oligomerization. J Appl Microbiol 2015; 118:881-9. [DOI: 10.1111/jam.12754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 01/27/2023]
Affiliation(s)
- M.A. Crum
- Department of Biology; Texas A&M University; College Station TX USA
| | - J.M. Park
- Department of Biology; Texas A&M University; College Station TX USA
| | - B.T. Sewell
- Structural Biology Research Unit; Division of Medical Biochemistry; Institute of Infectious Disease and Molecular Medicine; University of Cape Town; Cape Town South Africa
| | - M.J. Benedik
- Department of Biology; Texas A&M University; College Station TX USA
| |
Collapse
|
17
|
Crum MAN, Park JM, Mulelu AE, Sewell BT, Benedik MJ. Probing C-terminal interactions of the Pseudomonas stutzeri cyanide-degrading CynD protein. Appl Microbiol Biotechnol 2014; 99:3093-102. [PMID: 25549622 DOI: 10.1007/s00253-014-6335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/10/2014] [Accepted: 12/14/2014] [Indexed: 12/01/2022]
Abstract
The cyanide dihydratases from Bacillus pumilus and Pseudomonas stutzeri share high amino acid sequence similarity throughout except for their highly divergent C-termini. However, deletion or exchange of the C-termini had different effects upon each enzyme. Here we extended previous studies and investigated how the C-terminus affects the activity and stability of three nitrilases, the cyanide dihydratases from B. pumilus (CynDpum) and P. stutzeri (CynDstut) and the cyanide hydratase from Neurospora crassa. Enzymes in which the C-terminal residues were deleted decreased in both activity and thermostability with increasing deletion lengths. However, CynDstut was more sensitive to such truncation than the other two enzymes. A domain of the P. stutzeri CynDstut C-terminus not found in the other enzymes, 306GERDST311, was shown to be necessary for functionality and explains the inactivity of the previously described CynDstut-pum hybrid. This suggests that the B. pumilus C-terminus, which lacks this motif, may have specific interactions elsewhere in the protein, preventing it from acting in trans on a heterologous CynD protein. We identify the dimerization interface A-surface region 195-206 (A2) from CynDpum as this interaction site. However, this A2 region did not rescue activity in C-terminally truncated CynDstutΔ302 or enhance the activity of full-length CynDstut and therefore does not act as a general stability motif.
Collapse
Affiliation(s)
- Mary Abou-Nader Crum
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | | | | | | | | |
Collapse
|
18
|
Nakajima Y, Meijer J, Dobritzsch D, Ito T, Meinsma R, Abeling NGGM, Roelofsen J, Zoetekouw L, Watanabe Y, Tashiro K, Lee T, Takeshima Y, Mitsubuchi H, Yoneyama A, Ohta K, Eto K, Saito K, Kuhara T, van Kuilenburg ABP. Clinical, biochemical and molecular analysis of 13 Japanese patients with β-ureidopropionase deficiency demonstrates high prevalence of the c.977G > A (p.R326Q) mutation [corrected]. J Inherit Metab Dis 2014; 37:801-12. [PMID: 24526388 PMCID: PMC4158181 DOI: 10.1007/s10545-014-9682-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 11/13/2022]
Abstract
β-ureidopropionase (βUP) deficiency is an autosomal recessive disease characterized by N-carbamyl-β-amino aciduria. To date, only 16 genetically confirmed patients with βUP deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 13 Japanese βUP deficient patients. In this group of patients, three novel missense mutations (p.G31S, p.E271K, and p.I286T) and a recently described mutation (p.R326Q) were identified. The p.R326Q mutation was detected in all 13 patients with eight patients being homozygous for this mutation. Screening for the p.R326Q mutation in 110 Japanese individuals showed an allele frequency of 0.9 %. Transient expression of mutant βUP enzymes in HEK293 cells showed that the p.E271K and p.R326Q mutations cause profound decreases in activity (≤ 1.3 %). Conversely, βUP enzymes containing the p.G31S and p.I286T mutations possess residual activities of 50 and 70 %, respectively, suggesting we cannot exclude the presence of additional mutations in the non-coding region of the UPB1 gene. Analysis of a human βUP homology model revealed that the effects of the mutations (p.G31S, p.E271K, and p.R326Q) on enzyme activity are most likely linked to improper oligomer assembly. Highly variable phenotypes ranging from neurological involvement (including convulsions and autism) to asymptomatic, were observed in diagnosed patients. High prevalence of p.R326Q in the normal Japanese population indicates that βUP deficiency is not as rare as generally considered and screening for βUP deficiency should be included in diagnosis of patients with unexplained neurological abnormalities.
Collapse
Affiliation(s)
- Yoko Nakajima
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Contribution of the β-ureidopropionase (UPB1) gene alterations to the development of fluoropyrimidine-related toxicity. Pharmacol Rep 2012; 64:1234-42. [DOI: 10.1016/s1734-1140(12)70919-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 05/11/2012] [Indexed: 11/18/2022]
|
20
|
Borycz J, Borycz JA, Edwards TN, Boulianne GL, Meinertzhagen IA. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. ACTA ACUST UNITED AC 2012; 215:1399-411. [PMID: 22442379 DOI: 10.1242/jeb.060699] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly's entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina's marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine.
Collapse
Affiliation(s)
- Janusz Borycz
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada, B3H 4J1
| | | | | | | | | |
Collapse
|
21
|
van Kuilenburg ABP, Dobritzsch D, Meijer J, Krumpel M, Selim LA, Rashed MS, Assmann B, Meinsma R, Lohkamp B, Ito T, Abeling NGGM, Saito K, Eto K, Smitka M, Engvall M, Zhang C, Xu W, Zoetekouw L, Hennekam RCM. ß-ureidopropionase deficiency: phenotype, genotype and protein structural consequences in 16 patients. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1096-108. [PMID: 22525402 DOI: 10.1016/j.bbadis.2012.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 12/26/2022]
Abstract
ß-ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyzes the conversion of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid to ß-alanine and ß-aminoisobutyric acid, ammonia and CO(2). To date, only five genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 11 newly identified ß-ureidopropionase deficient patients as well as the analysis of the mutations in a three-dimensional framework. Patients presented mainly with neurological abnormalities (intellectual disabilities, seizures, abnormal tonus regulation, microcephaly, and malformations on neuro-imaging) and markedly elevated levels of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid in urine and plasma. Analysis of UPB1, encoding ß-ureidopropionase, showed 6 novel missense mutations and one novel splice-site mutation. Heterologous expression of the 6 mutant enzymes in Escherichia coli showed that all mutations yielded mutant ß-ureidopropionase proteins with significantly decreased activity. Analysis of a homology model of human ß-ureidopropionase generated using the crystal structure of the enzyme from Drosophila melanogaster indicated that the point mutations p.G235R, p.R236W and p.S264R lead to amino acid exchanges in the active site and therefore affect substrate binding and catalysis. The mutations L13S, R326Q and T359M resulted most likely in folding defects and oligomer assembly impairment. Two mutations were identified in several unrelated ß-ureidopropionase patients, indicating that ß-ureidopropionase deficiency may be more common than anticipated.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Academic Medical Center, Emma Children's Hospital, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baum S, Williamson DS, Sewell T, Stolz A. Conversion of sterically demanding α,α-disubstituted phenylacetonitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol 2012; 78:48-57. [PMID: 22020513 PMCID: PMC3255610 DOI: 10.1128/aem.05570-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/12/2011] [Indexed: 11/20/2022] Open
Abstract
The nitrilase from Pseudomonas fluorescens EBC191 converted 2-methyl-2-phenylpropionitrile, which contains a quaternary carbon atom in the α-position toward the nitrile group, and also similar sterically demanding substrates, such as 2-hydroxy-2-phenylpropionitrile (acetophenone cyanohydrin) or 2-acetyloxy-2-methylphenylacetonitrile. 2-Methyl-2-phenylpropionitrile was hydrolyzed to almost stoichiometric amounts of the corresponding acid. Acetophenone cyanohydrin was transformed to the corresponding acid (atrolactate) and amide (atrolactamide) at a ratio of about 3.4:1. The (R)-acid and the (S)-amide were formed preferentially from acetophenone cyanohydrin. A homology model of the nitrilase suggested that steric hindrance with amino acid residue Tyr54 could impair the binding or conversion of sterically demanding substrates. Therefore, several enzyme variants that carried mutations in the respective residues were generated and subsequently analyzed for the substrate specificity and enantioselectivity of the reactions. Enzyme variants that demonstrated increased relative activities for the conversion of acetophenone cyanohydrin were identified. The chiral analysis of these reactions demonstrated peculiar reaction kinetics, which suggested that the enzyme variants converted the nonpreferred (S)-enantiomer of acetophenone cyanohydrin with a higher reaction rate than that of the (preferred) (R)-enantiomer. Recombinant whole-cell catalysts that simultaneously produced the nitrilase from P. fluorescens EBC191 and a plant-derived (S)-oxynitrilase from cassava (Manihot esculenta) converted acetophenone plus cyanide at pH 4.5 to (S)-atrolactate and (S)-atrolactamide. These recombinant cells are promising catalysts for the synthesis of stable chiral quaternary carbon centers from ketones.
Collapse
Affiliation(s)
- Stefanie Baum
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Dael S. Williamson
- Electron Microscope Unit, University of Cape Town, Rondebosch, South Africa
| | - Trevor Sewell
- Electron Microscope Unit, University of Cape Town, Rondebosch, South Africa
| | - Andreas Stolz
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
23
|
Biochemical and mutational studies of the Bacillus cereus CECT 5050T formamidase support the existence of a C-E-E-K tetrad in several members of the nitrilase superfamily. Appl Environ Microbiol 2011; 77:5761-9. [PMID: 21705545 DOI: 10.1128/aem.00312-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Formamidases (EC 3.5.1.49) are poorly characterized proteins. In spite of this scarce knowledge, ammonia has been described as playing a central role in the pathogenesis of human pathogens such as Helicobacter pylori, for which formamidase has been shown to participate in the nitrogen metabolic pathway. Sequence analysis has revealed that at least two different groups of formamidases are classified as EC 3.5.1.49: on the one hand, the derivatives of the FmdA-AmdA superfamily, which are the best studied to date, and on the other hand, the derivatives of Helicobacter pylori AmiF. Here we present the cloning, purification, and characterization of a recombinant formamidase from Bacillus cereus CECT 5050T (BceAmiF), the second member of the AmiF subfamily to be characterized, showing new features of the enzyme further supporting its relationship with aliphatic amidases. We also present homology modeling-based mutational studies confirming the importance of the Glu140 and Tyr191 residues in the enzymatic activities of the AmiF family. Moreover, we can conclude that a second glutamate residue is critical in several members of the nitrilase superfamily, meaning that what has consistently been identified as a C-E-K triad is in fact a C-E-E-K tetrad.
Collapse
|
24
|
Kaplan O, Bezouška K, Plíhal O, Ettrich R, Kulik N, Vaněk O, Kavan D, Benada O, Malandra A, Sveda O, Veselá AB, Rinágelová A, Slámová K, Cantarella M, Felsberg J, Dušková J, Dohnálek J, Kotik M, Křen V, Martínková L. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10. BMC Biotechnol 2011; 11:2. [PMID: 21210990 PMCID: PMC3023689 DOI: 10.1186/1472-6750-11-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 01/06/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Nitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult. RESULTS A nitrilase gene was amplified by PCR from the cDNA library of Aspergillus niger K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in Escherichia coli BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzyme's native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val327 - Asn₃₅₆) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp₂₉₈-Val₃₁₃ peptide was shortened to Asp₂₉₈-Arg₃₁₀ in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution. CONCLUSIONS The nitrilase from Aspergillus niger K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in Aspergillus and Penicillium genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by in vitro protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.
Collapse
Affiliation(s)
- Ondřej Kaplan
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Janowitz T, Ajonina I, Perbandt M, Woltersdorf C, Hertel P, Liebau E, Gigengack U. The 3-ureidopropionase of Caenorhabditis elegans, an enzyme involved in pyrimidine degradation. FEBS J 2010; 277:4100-9. [PMID: 20840592 DOI: 10.1111/j.1742-4658.2010.07805.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyrimidines are important metabolites in all cells. Levels of cellular pyrimidines are controlled by multiple mechanisms, with one of these comprising the reductive degradation pathway. In the model invertebrate Caenorhabditis elegans, two of the three enzymes of reductive pyrimidine degradation have previously been characterized. The enzyme catalysing the final step of pyrimidine breakdown, 3-ureidopropionase (β-alanine synthase), had only been identified based on homology. We therefore cloned and functionally expressed the 3-ureidopropionase of C. elegans as hexahistidine fusion protein. The purified recombinant enzyme readily converted the two pyrimidine degradation products: 3-ureidopropionate and 2-methyl-3-ureidopropionate. The enzyme showed a broad pH optimum between pH 7.0 and 8.0. Activity was highest at approximately 40 °C, although the half-life of activity was only 65 s at that temperature. The enzyme showed clear Michaelis-Menten kinetics, with a K(m) of 147 ± 26 μM and a V(max) of 1.1 ± 0.1 U·mg protein(-1). The quaternary structure of the recombinant enzyme was shown to correspond to a dodecamer by 'blue native' gel electrophoresis and gel filtration. The organ specific and subcellular localization of the enzyme was determined using a translational fusion to green fluorescent protein and high expression was observed in striated muscle cells. With the characterization of the 3-ureidopropionase, the reductive pyrimidine degradation pathway in C. elegans has been functionally characterized.
Collapse
Affiliation(s)
- Tim Janowitz
- Institut für Zoophysiologie, Westfälische Wilhelms-Universität, Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Williamson DS, Dent KC, Weber BW, Varsani A, Frederick J, Thuku RN, Cameron RA, van Heerden JH, Cowan DA, Sewell BT. Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8. Appl Microbiol Biotechnol 2010; 88:143-53. [PMID: 20607233 DOI: 10.1007/s00253-010-2734-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 11/29/2022]
Abstract
Geobacillus pallidus RAPc8 (NRRL: B-59396) is a moderately thermophilic gram-positive bacterium, originally isolated from Australian lake sediment. The G. pallidus RAPc8 gene encoding an inducible nitrilase was located and cloned using degenerate primers coding for well-conserved nitrilase sequences, coupled with inverse PCR. The nitrilase open reading frame was cloned into an expression plasmid and the expressed recombinant enzyme purified and characterized. The protein had a monomer molecular weight of 35,790 Da, and the purified functional enzyme had an apparent molecular weight of approximately 600 kDa by size exclusion chromatography. Similar to several plant nitrilases and some bacterial nitrilases, the recombinant G. pallidus RAPc8 enzyme produced both acid and amide products from nitrile substrates. The ratios of acid to amide produced from the substrates we tested are significantly different to those reported for other enzymes, and this has implications for our understanding of the mechanism of the nitrilases which may assist with rational design of these enzymes. Electron microscopy and image classification showed complexes having crescent-like, "c-shaped", circular and "figure-8" shapes. Protein models suggested that the various complexes were composed of 6, 8, 10 and 20 subunits, respectively.
Collapse
Affiliation(s)
- Dael S Williamson
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Carbamoylases: characteristics and applications in biotechnological processes. Appl Microbiol Biotechnol 2009; 85:441-58. [DOI: 10.1007/s00253-009-2250-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 11/26/2022]
|
28
|
Krasnikov BF, Chien CH, Nostramo R, Pinto JT, Nieves E, Callaway M, Sun J, Huebner K, Cooper AJL. Identification of the putative tumor suppressor Nit2 as omega-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. Biochimie 2009; 91:1072-80. [PMID: 19595734 PMCID: PMC2745200 DOI: 10.1016/j.biochi.2009.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
The present report identifies the enzymatic substrates of a member of the mammalian nitrilase-like (Nit) family. Nit2, which is widely distributed in nature, has been suggested to be a tumor suppressor protein. The protein was assumed to be an amidase based on sequence homology to other amidases and on the presence of a putative amidase-like active site. This assumption was recently confirmed by the publication of the crystal structure of mouse Nit2. However, the in vivo substrates were not previously identified. Here we report that rat liver Nit2 is omega-amidodicarboxylate amidohydrolase (E.C. 3.5.1.3; abbreviated omega-amidase), a ubiquitously expressed enzyme that catalyzes a variety of amidase, transamidase, esterase and transesterification reactions. The in vivo amidase substrates are alpha-ketoglutaramate and alpha-ketosuccinamate, generated by transamination of glutamine and asparagine, respectively. Glutamine transaminases serve to salvage a number of alpha-keto acids generated through non-specific transamination reactions (particularly those of the essential amino acids). Asparagine transamination appears to be useful in mitochondrial metabolism and in photorespiration. Glutamine transaminases play a particularly important role in transaminating alpha-keto-gamma-methiolbutyrate, a key component of the methionine salvage pathway. Some evidence suggests that excess alpha-ketoglutaramate may be neurotoxic. Moreover, alpha-ketosuccinamate is unstable and is readily converted to a number of hetero-aromatic compounds that may be toxic. Thus, an important role of omega-amidase is to remove potentially toxic intermediates by converting alpha-ketoglutaramate and alpha-ketosuccinamate to biologically useful alpha-ketoglutarate and oxaloacetate, respectively. Despite its importance in nitrogen and sulfur metabolism, the biochemical significance of omega-amidase has been largely overlooked. Our report may provide clues regarding the nature of the biological amidase substrate(s) of Nit1 (another member of the Nit family), which is a well-established tumor suppressor protein), and emphasizes a) the crucial role of Nit2 in nitrogen and sulfur metabolism, and b) the possible link of Nit2 to cancer biology.
Collapse
Affiliation(s)
- Boris F. Krasnikov
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Chin-Hsiang Chien
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Regina Nostramo
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Edward Nieves
- Laboratory for Macromolecular Analysis & Proteomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Myrasol Callaway
- Laboratory for Macromolecular Analysis & Proteomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jin Sun
- Comprehensive Cancer Center and Department of Molecular Virology, Immunology, and Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kay Huebner
- Comprehensive Cancer Center and Department of Molecular Virology, Immunology, and Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
29
|
Thuku R, Brady D, Benedik M, Sewell B. Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 2009; 106:703-27. [DOI: 10.1111/j.1365-2672.2008.03941.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Dent KC, Weber BW, Benedik MJ, Sewell BT. The cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat. Appl Microbiol Biotechnol 2009; 82:271-8. [DOI: 10.1007/s00253-008-1735-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
31
|
Barglow KT, Saikatendu KS, Bracey MH, Huey R, Morris GM, Olson AJ, Stevens RC, Cravatt BF. Functional proteomic and structural insights into molecular recognition in the nitrilase family enzymes. Biochemistry 2008; 47:13514-23. [PMID: 19053248 PMCID: PMC2665915 DOI: 10.1021/bi801786y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitrilases are a large and diverse family of nonpeptidic C-N hydrolases. The mammalian genome encodes eight nitrilase enzymes, several of which remain poorly characterized. Prominent among these are nitrilase-1 (Nit1) and nitrilase-2 (Nit2), which, despite having been shown to exert effects on cell growth and possibly serving as tumor suppressor genes, are without known substrates or selective inhibitors. In previous studies, we identified several nitrilases, including Nit1 and Nit2, as targets for dipeptide-chloroacetamide activity-based proteomics probes. Here, we have used these probes, in combination with high-resolution crystallography and molecular modeling, to systematically map the active site of Nit2 and identify residues involved in molecular recognition. We report the 1.4 A crystal structure of mouse Nit2 and use this structure to identify residues that discriminate probe labeling between the Nit1 and Nit2 enzymes. Interestingly, some of these residues are conserved across all vertebrate Nit2 enzymes and, conversely, not found in any vertebrate Nit1 enzymes, suggesting that they are key discriminators of molecular recognition between these otherwise highly homologous enzymes. Our findings thus point to a limited set of active site residues that establish distinct patterns of molecular recognition among nitrilases and provide chemical probes to selectively perturb the function of these enzymes in biological systems.
Collapse
Affiliation(s)
- Katherine T. Barglow
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
| | - Kumar S. Saikatendu
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
| | - Michael H. Bracey
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
| | - Ruth Huey
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
| | - Garrett M. Morris
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
| | - Arthur J. Olson
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
| | - Raymond C. Stevens
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037
| |
Collapse
|
32
|
Piotrowski M. Primary or secondary? Versatile nitrilases in plant metabolism. PHYTOCHEMISTRY 2008; 69:2655-67. [PMID: 18842274 DOI: 10.1016/j.phytochem.2008.08.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 08/26/2008] [Indexed: 05/08/2023]
Abstract
The potential of plant nitrilases to convert indole-3-acetonitrile into the plant growth hormone indole-3-acetic acid has earned them the interim title of "key enzyme in auxin biosynthesis". Although not widely recognized, this view has changed considerably in the last few years. Recent work on plant nitrilases has shown them to be involved in the process of cyanide detoxification, in the catabolism of cyanogenic glycosides and presumably in the catabolism of glucosinolates. All plants possess at least one nitrilase that is homologous to the nitrilase 4 isoform of Arabidopsis thaliana. The general function of these nitrilases lies in the process of cyanide detoxification, in which they convert the intermediate detoxification product beta-cyanoalanine into asparagine, aspartic acid and ammonia. Cyanide is a metabolic by-product in biosynthesis of the plant hormone ethylene, but it may also be released from cyanogenic glycosides, which are present in a large number of plants. In Sorghum bicolor, an additional nitrilase isoform has been identified, which can directly use a catabolic intermediate of the cyanogenic glycoside dhurrin, thus enabling the plant to metabolize its cyanogenic glycoside without releasing cyanide. In the Brassicaceae, a family of nitrilases has evolved, the members of which are able to hydrolyze catabolic products of glucosinolates, the predominant secondary metabolites of these plants. Thus, the general theme of nitrilase function in plants is detoxification and nitrogen recycling, since the valuable nitrogen of the nitrile group is recovered in the useful metabolites asparagine or ammonia. Taken together, a picture emerges in which plant nitrilases have versatile functions in plant metabolism, whereas their importance for auxin biosynthesis seems to be minor.
Collapse
Affiliation(s)
- Markus Piotrowski
- Department of Plant Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.
| |
Collapse
|