1
|
Lynch DM, Forrester B, Webb T, Ciulli A. Unravelling the druggability and immunological roles of the SOCS-family proteins. Front Immunol 2024; 15:1449397. [PMID: 39676878 PMCID: PMC11638205 DOI: 10.3389/fimmu.2024.1449397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
The Suppressor of Cytokine Signalling (SOCS) protein family play a critical role in cytokine signalling and regulation of the JAK/STAT pathway with functional consequences to the immune response. Members of this family are implicated in multiple different signalling cascades that drive autoimmune diseases and cancer, through their binding to phosphotyrosine modified proteins as well as ubiquitination activity as part of Cullin5 RING E3 ligases. Here we review the SOCS family members CISH and SOCS1-SOCS7, with a focus on their complex role in immunity. The interactome and signalling network of this protein family is discussed, and the intricate mechanisms through which SOCS proteins alter and manage the immune system are assessed. We offer structural insights into how SOCS proteins engage their interacting partners and native substrates at the protein-protein interaction level. We describe how this knowledge has enabled drug discovery efforts on SOCS proteins to date and propose strategies for therapeutic intervention using small molecules, either via direct inhibition or leveraging their E3 ligase activity for targeted protein degradation.
Collapse
Affiliation(s)
| | | | | | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
2
|
Wang Y, Wu S, Song Z, Yang Y, Li Y, Li J. Unveiling the pathological functions of SOCS in colorectal cancer: Current concepts and future perspectives. Pathol Res Pract 2024; 262:155564. [PMID: 39216322 DOI: 10.1016/j.prp.2024.155564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, marked by increasing incidence and mortality rates in recent years. The pathogenesis of CRC is complex, involving chronic inflammation of the intestinal mucosa, heightened immunoinflammatory responses, and resistance to apoptosis. The suppressor of cytokine signaling (SOCS) family, comprised of key negative regulators within cytokine signaling pathways, plays a crucial role in cell proliferation, growth, and metabolic regulation. Deficiencies in various SOCS proteins can trigger the activation of the Janus kinase (JAK) and signal transducers and activators of transcription (STAT) pathways, following the binding of cytokines and growth factors to their receptors. Mounting evidence indicates that SOCS proteins are integral to the development and progression of CRC, positioning them as promising targets for novel anticancer therapies. This review delves into the structure, function, and molecular mechanisms of SOCS family members, examining their roles in cell proliferation, apoptosis, migration, epithelial-mesenchymal transition (EMT), and immune modulation. Additionally, it explores their potential impact on the regulation of CRC immunotherapy, offering new insights and perspectives that may inform the development of innovative therapeutic strategies for CRC.
Collapse
Affiliation(s)
- YuHan Wang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Sha Wu
- Department of Anorectal, Nanchuan Hospital of Traditional Chinese Medicine, Nanchuan, Chongqing, 408400, China
| | - ZhiHui Song
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Yang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - YaLing Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Jun Li
- Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Xue Y, Wang R, Yao T, Fang Q, Chen J, Liu X, Han Q, Wang X. Genome-wide identification and characterization of large yellow croaker (Larimichthys crocea) suppressors of cytokine signaling (SOCS) in immune response to Pseudomonas plecoglossicida infection and acute hypoxia stress. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109669. [PMID: 38849106 DOI: 10.1016/j.fsi.2024.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The suppressor of cytokine signaling (SOCS) gene family is a group of genes involved in the negative regulation of cytokine signal transduction. The members of this family play a crucial role in regulating immune and inflammatory processes. However, comprehensive investigations of these genes have not yet been conducted in the economically significant fish large yellow croaker (Larimichthys crocea). In this study, a total of 13 SOCS genes (LcSOCS1a, LcSOCS1b, LcSOCS2, LcSOCS3a, LcSOCS3b, LcSOCS4, LcSOCS5a, LcSOCS5b, LcSOCS6, LcSOCS7a, LcSOCS7b, LcCISHa and LcCISHb) were identified and analyzed in L. crocea. The phylogenetic tree revealed a high conservation of SOCS genes in evolution, and the gene structure and motif analysis indicated a high similarity in the structure of LcSOCSs in the same subfamily. In addition, the expression patterns of LcSOCSs showed that LcSOCS1b was significantly down-regulated in all time under acute hypoxia stress, but it was markedly up-regulated throughout the entire process after P. plecoglossicida infection, revealing its different immune effects to two stresses. Besides, LcSOCS2a, LcSOCS6 and LcSOCS7a only participated in acute hypoxic stress, while LcSOCS5a was more sensitive to P. plecoglossicida infection. In summary, these results indicated that SOCS genes were involved in stress responses to both biological and non-biological stimuli, setting the foundation for deeper study on the functions of SOCS genes.
Collapse
Affiliation(s)
- Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Qian Fang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
4
|
Doggett K, Keating N, Dehkhoda F, Bidgood GM, Meza Guzman LG, Leong E, Kueh A, Nicola NA, Kershaw NJ, Babon JJ, Alexander WS, Nicholson SE. The SOCS1 KIR and SH2 domain are both required for suppression of cytokine signaling in vivo. Cytokine 2023; 165:156167. [PMID: 36934508 DOI: 10.1016/j.cyto.2023.156167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
Suppressor Of Cytokine Signaling (SOCS) 1 is a critical negative regulator of cytokine signaling and required to protect against an excessive inflammatory response. Genetic deletion of Socs1 results in unrestrained cytokine signaling and neonatal lethality, characterised by an inflammatory immune infiltrate in multiple organs. Overexpression and structural studies have suggested that the SOCS1 kinase inhibitory region (KIR) and Src homology 2 (SH2) domain are important for interaction with and inhibition of the receptor-associated JAK1, JAK2 and TYK2 tyrosine kinases, which initiate downstream signaling. To investigate the role of the KIR and SH2 domain in SOCS1 function, we independently mutated key conserved residues in each domain and analysed the impact on cytokine signaling, and the in vivo impact on SOCS1 function. Mutation of the SOCS1-KIR or SH2 domain had no impact on the integrity of the SOCS box complex, however, mutation within the phosphotyrosine binding pocket of the SOCS1-SH2 domain specifically disrupted SOCS1 interaction with phosphorylated JAK1. In contrast, mutation of the KIR did not affect the interaction with JAK1, but did prevent SOCS1 inhibition of JAK1 autophosphorylation. In human and mouse cell lines, both mutants impacted the ability of SOCS1 to restrain cytokine signaling, and crucially, Socs1-R105A and Socs1-F59A mice displayed a neonatal lethality and excessive inflammatory phenotype similar to Socs1-null mice. This study defines a critical and non-redundant role for both the KIR and SH2 domain in endogenous SOCS1 function.
Collapse
Affiliation(s)
- Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
5
|
Bonchuk A, Balagurov K, Georgiev P. BTB domains: A structural view of evolution, multimerization, and protein-protein interactions. Bioessays 2023; 45:e2200179. [PMID: 36449605 DOI: 10.1002/bies.202200179] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Broad-complex, Tramtrack, and Bric-à-brac/poxvirus and zinc finger (BTB/POZ) is a conserved domain found in many eukaryotic proteins with diverse cellular functions. Recent studies revealed its importance in multiple developmental processes as well as in the onset and progression of oncological diseases. Most BTB domains can form multimers and selectively interact with non-BTB proteins. Structural studies of BTB domains delineated the presence of different interfaces involved in various interactions mediated by BTBs and provided a basis for the specific inhibition of distinct protein-interaction interfaces. BTB domains originated early in eukaryotic evolution and progressively adapted their structural elements to perform distinct functions. In this review, we summarize and discuss the structural principles of protein-protein interactions mediated by BTB domains based on the recently published structural data and advances in protein modeling. We propose an update to the structure-based classification of BTB domain families and discuss their evolutionary interconnections.
Collapse
Affiliation(s)
- Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Balagurov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Liu W, Wang X. Research Advances on Suppressor of Cytokine Signaling 3 (SOCS3) in Animal Carbohydrate and Lipid Metabolism Processes. Pak J Biol Sci 2022; 25:1100-1108. [PMID: 36978278 DOI: 10.3923/pjbs.2022.1100.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The SOCS3 proteins played important roles in regulating the energy metabolism processes. They are crucial intracellular inhibitors related to animal obesity, immunity and inflammation. This makes SOCS3 genes very important in animal genetics and breeding. The research was conducted to investigate and explore the recent advance in the present studies on SOCS3 in animal energy and lipid metabolism processes. All the references were carefully retrieved from the PubMed database by searching key words "suppressor of cytokine signaling (SOCS)", "SOCS3", "animal carbohydrate metabolism", "animal lipid metabolism", "animal energy metabolism", "insulin resistance", "leptin", "obesity", "SOCS*" and "AMPK". All the related references retrieved were initially screened and fully reviewed for manual inspection. This effort intends to get a quick understanding and make insights into the mechanisms of Suppressor of Cytokine Signaling 3 (SOCS3) and their molecular interactions with the other cellular proteins. In this review, it was found that SOCS3 proteins could regulate cytokine receptors' signal transduction mainly through the JAK/STAT and GH/IGF-I and mTOR-STAT3-SOCS3 signaling pathways, whereas the genetic mutations or knockouts of SOCS3 genes had significant effects on animal energy metabolism. The review summarized all the relevant research reports on SOCS3 in the animal carbohydrate and lipid metabolism processes, which can provide practical reference for the genetic breeding of high-quality domestic animal breeds. It is also of great significance to further research on the genetic regulation mechanism of SOCS3 genes affecting energy metabolism and the well development of the animal breeding system.
Collapse
|
7
|
Douglas K, Logan SM, Storey KB. Status of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in liver and skin of the freeze tolerant wood frog. Cryobiology 2022; 108:27-33. [PMID: 36100073 DOI: 10.1016/j.cryobiol.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/21/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
Abstract
The wood frog (Rana sylvatica) has adapted full-body freezing and thawing as a means of sub-zero winter survival and early-breeding in ephemeral pools. One such protective process implicated recently in freeze-thaw tolerance is that of anti-apoptotic signaling, which has been proposed to play a cytoprotective role by modulating stress-induced death signals. This study employed the use of immunoblotting to examine response of a potent cell cycle and apoptosis regulator, known as the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, to freezing and thawing in the liver and skin of the wood frog. This pathway demonstrably exhibits factor- and tissue-specific changes between non-frozen, 24 h-frozen, and 8 h-thawed conditions. There were few changes in JAK-STAT proteins in frozen frogs, but protective changes were observed upon thaw: Elevated levels of pJAK3 and nuclear localization of pSTAT3 and pSTAT5 suggested an increase in anti-apoptotic signaling after thaw. By contrast, both STAT1 and STAT3 signaling appeared to increase in frozen skin, suggesting frogs use homeostatic regulation of apoptotic- and anti-apoptotic signals, in an antagonistic and compensatory manner. As such, these findings support that JAK-STAT pathway signaling modulation is a plausible adaptation that contributes to fast and reversible manipulation of anti-apoptotic signals, thus assisting in freeze survival of the wood frog.
Collapse
Affiliation(s)
- Kurtis Douglas
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Samantha M Logan
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
8
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
9
|
Warmack RA, Pang EZ, Peluso E, Lowenson JD, Ong JY, Torres JZ, Clarke SG. Human Protein-l-isoaspartate O-Methyltransferase Domain-Containing Protein 1 (PCMTD1) Associates with Cullin-RING Ligase Proteins. Biochemistry 2022; 61:879-894. [PMID: 35486881 PMCID: PMC9875861 DOI: 10.1021/acs.biochem.2c00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The spontaneous l-isoaspartate protein modification has been observed to negatively affect protein function. However, this modification can be reversed in many proteins in reactions initiated by the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (PCMT1). It has been hypothesized that an additional mechanism exists in which l-isoaspartate-damaged proteins are recognized and proteolytically degraded. Herein, we describe the protein-l-isoaspartate O-methyltransferase domain-containing protein 1 (PCMTD1) as a putative E3 ubiquitin ligase substrate adaptor protein. The N-terminal domain of PCMTD1 contains l-isoaspartate and S-adenosylmethionine (AdoMet) binding motifs similar to those in PCMT1. This protein also has a C-terminal domain containing suppressor of cytokine signaling (SOCS) box ubiquitin ligase recruitment motifs found in substrate receptor proteins of the Cullin-RING E3 ubiquitin ligases. We demonstrate specific PCMTD1 binding to the canonical methyltransferase cofactor S-adenosylmethionine (AdoMet). Strikingly, while PCMTD1 is able to bind AdoMet, it does not demonstrate any l-isoaspartyl methyltransferase activity under the conditions tested here. However, this protein is able to associate with the Cullin-RING proteins Elongins B and C and Cul5 in vitro and in human cells. The previously uncharacterized PCMTD1 protein may therefore provide an alternate maintenance pathway for modified proteins in mammalian cells by acting as an E3 ubiquitin ligase adaptor protein.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Eric Z Pang
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Esther Peluso
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan D Lowenson
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Joseph Y Ong
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Yao S, Keizer DW, Babon JJ, Separovic F. NMR measurement of biomolecular translational and rotational motion for evaluating changes of protein oligomeric state in solution. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:193-204. [PMID: 35380220 PMCID: PMC9034988 DOI: 10.1007/s00249-022-01598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/15/2022]
Abstract
Defining protein oligomeric state and/or its changes in solution is of significant interest for many biophysical studies carried out in vitro, especially when the nature of the oligomeric state is crucial in the subsequent interpretation of experimental results and their biological relevance. Nuclear magnetic resonance (NMR) is a well-established methodology for the characterization of protein structure, dynamics, and interactions at the atomic level. As a spectroscopic method, NMR also provides a compelling means for probing both molecular translational and rotational motion, two predominant measures of effective molecular size in solution, under identical conditions as employed for structural, dynamic and interaction studies. Protein translational diffusion is readily measurable by pulse gradient spin echo (PGSE) NMR, whereas its rotational correlation time, or rotational diffusion tensor when its 3D structure is known, can also be quantified from NMR relaxation parameters, such as 15N relaxation parameters of backbone amides which are frequently employed for probing residue-specific protein backbone dynamics. In this article, we present an introductory overview to the NMR measurement of bimolecular translational and rotational motion for assessing changes of protein oligomeric state in aqueous solution, via translational diffusion coefficients measured by PGSE NMR and rotational correlation times derived from composite 15N relaxation parameters of backbone amides, without need for the protein structure being available.
Collapse
Affiliation(s)
- Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
11
|
Sana M, Rashid M, Rashid I, Akbar H, Gomez-Marin JE, Dimier-Poisson I. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response. Int J Immunopathol Pharmacol 2022; 36:3946320221078436. [PMID: 35227108 PMCID: PMC8891885 DOI: 10.1177/03946320221078436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Cytokines, soluble mediators of immunity, are key factors of the innate and adaptive immune system. They are secreted from and interact with various types of immune cells to manipulate host body's immune cell physiology for a counter-attack on the foreign body. A study was designed to explore the mechanism of Toxoplasma gondii (T. gondii) resistance from host immune response. METHODS AND RESULTS The published data on aspect of host (murine and human) immune response against T. gondii was taken from Google scholar and PubMed. Most relevant literature was included in this study. The basic mechanism of immune response starts from the interactions of antigens with host immune cells to trigger the production of cytokines (pro-inflammatory and anti-inflammatory) which then act by forming a cytokinome (network of cytokine). Their secretory equilibrium is essential for endowing resistance to the host against infectious diseases, particularly toxoplasmosis. A narrow balance lying between Th1, Th2, and Th17 cytokines (as demonstrated until now) is essential for the development of resistance against T. gondii as well as for the survival of host. Excessive production of pro-inflammatory cytokines leads to tissue damage resulting in the production of anti-inflammatory cytokines which enhances the proliferation of Toxoplasma. Stress and other infectious diseases (human immunodeficiency virus (HIV)) that weaken the host immunity particularly the cellular component, make the host susceptible to toxoplasmosis especially in pregnant women. CONCLUSION The current review findings state that in vitro harvesting of IL12 from DCs, Np and MΦ upon exposure with T. gondii might be a source for therapeutic use in toxoplasmosis. Current review also suggests that therapeutic interventions leading to up-regulation/supplementation of SOCS-3, IL12, and IFNγ to the infected host could be a solution to sterile immunity against T. gondii infection. This would be of interest particularly in patients passing through immunosuppression owing to any reason like the ones receiving anti-cancer therapy, the ones undergoing immunosuppressive therapy for graft/transplantation, the ones suffering from immunodeficiency virus (HIV) or having AIDS. Another imortant suggestion is to launch the efforts for a vaccine based on GRA6Nt or other similar antigens of T. gondii as a probable tool to destroy tissue cysts.
Collapse
Affiliation(s)
- Madiha Sana
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, 66920The Islamia University of Bahawalpur, Pakistan
| | - Imran Rashid
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jorge E Gomez-Marin
- Grupo Gepamol, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, CO, South America
| | - Isabelle Dimier-Poisson
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| |
Collapse
|
12
|
Dai L, Li Z, Liang W, Hu W, Zhou S, Yang Z, Tao Y, Hou X, Xing Z, Mao J, Shi Z, Wang X. SOCS proteins and their roles in the development of glioblastoma. Oncol Lett 2021; 23:5. [PMID: 34820004 PMCID: PMC8607235 DOI: 10.3892/ol.2021.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor in adults. GBM is characterized by a high degree of malignancy and aggressiveness, as well as high morbidity and mortality rates. GBM is currently treatable via surgical resection, chemotherapy and radiotherapy, but the prognosis of patients with GBM is poor. The suppressor of cytokine signaling (SOCS) protein family comprises eight members, including SOCS1-SOCS7 and cytokine-inducible SH2-containing protein. SOCS proteins regulate the biogenesis of GBM via the JAK/STAT and NF-κB signaling pathways. Driven by NF-κB, the expression of SOCS proteins can serve as a negative regulator of the JAK/STAT signaling pathway and exerts a potential inhibitory effect on GBM. In GBM, E3 ubiquitin ligase is involved in the regulation of cellular functions, such as the receptor tyrosine kinase (RTK) survival signal, in which SOCS proteins negatively regulate RTK signaling, and kinase overexpression or mutation can lead to the development of malignancies. Moreover, SOCS proteins affect the proliferation and differentiation of GBM cells by regulating the tumor microenvironment. SOCS proteins also serve specific roles in GBM of different grades and different isocitrate dehydrogenase mutation status. The aim of the present review was to describe the biogenesis and function of the SOCS protein family, the roles of SOCS proteins in the microenvironment of GBM, as well as the role of this protein family and E3 ubiquitin ligases in GBM. Furthermore, the role of SOCS proteins as diagnostic and prognostic markers in GBM and their potential role as GBM therapeutics were explored.
Collapse
Affiliation(s)
- Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Wulong Liang
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Weihua Hu
- Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xuelei Hou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Jianchao Mao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Science and Technology of Henan Province, Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Dai L, Li Z, Tao Y, Liang W, Hu W, Zhou S, Fu X, Wang X. Emerging roles of suppressor of cytokine signaling 3 in human cancers. Biomed Pharmacother 2021; 144:112262. [PMID: 34607102 DOI: 10.1016/j.biopha.2021.112262] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
As a member of the suppressor of cytokine signaling (SOCS) family, SOCS3 is a cytokine-inducible protein that inhibits cytokine signaling in a variety of signaling pathways. Increasing evidence shows that SOCS3 regulates tumor development through multiple pathological and physiological processes. It is worth mentioning that SOCS3 negatively regulates JAK/STAT signaling by binding to JAK/cytokine receptors or phosphorylation docking sites on STAT receptors, thus preventing tumor cell proliferation and inhibiting tumor cell invasion and metastasis. The kinase inhibitory region KIR of SOCS3 is the key to JAK inhibition. In addition, SOCS3 may also regulate tumor progression through other molecules or signaling pathways, such as microRNAs (miRNAs), IL-6 and NF-κB signaling pathway. MicroRNAs inhibit SOCS3 expression by binding to the 3' untranslated region of SOCS3 mRNA, thus regulating tumor development processes, including tumor cell proliferation, invasion, metastasis, differentiation, cell cycle and apoptosis, as well as tumor metastasis and chemotherapy resistance. On the whole, SOCS3 acts as an inhibitor of the majority of tumors through various pathways. In the present review, the role of SOCS3 in multitudinous tumors was comprehensively summarized, the molecular mechanisms and modes of action of SOCS3 in tumors were discussed, and the association between SOCS3 expression and the clinical characteristics of patients with cancer were emphasized.
Collapse
Affiliation(s)
- Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Wulong Liang
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Weihua Hu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
15
|
Park SG, Kim EK, Nam KH, Lee JG, Baek IJ, Lee BJ, Nam SY. Heart defects and embryonic lethality in Asb2 knock out mice correlate with placental defects. Cells Dev 2021; 165:203663. [PMID: 33993984 DOI: 10.1016/j.cdev.2021.203663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Asb2, ankyrin repeat, and SOCS box protein 2 form an E3 ubiquitin ligase complex. Asb2 ubiquitin ligase activity drives the degradation of filamins, which have essential functions in humans. The placenta is a temporary organ that forms during pregnancy, and normal placentation is important for survival and growth of the fetus. Recent studies have shown that approximately 25-30% of knockout (KO) mice have non-viable offspring, and 68% of knockout lines exhibit placental dysmorphologies. There are very few studies on Asb2, with insufficient research on its role in placental development. Therefore, we generated Asb2 knockout mice and undertook to investigate Asb2 expression during organogenesis, and to identify its role in early embryonic and placental development. The external morphology of KO embryos revealed abnormal phenotypes including growth retardation, pericardial effusion, pale color, and especially heart beat defect from E 9.5. Furthermore, Asb2 expression was observed in the heart from E 9.5, indicating that it is specifically expressed during early heart formation, resulting in embryonic lethality. Histological analysis of E 10.5 KO heart showed malformations such as failure of chamber formation, reduction in trabeculated myocardium length, absence of mesenchymal cells, and destruction of myocardium wall. Moreover, the histological results of Asb2-deficient placenta showed abnormal phenotypes including small labyrinth and reduced vascular complexity, indicating that failure to establish mature circulatory pattern affects the embryonic development and results in early mortality. Collectively, our results demonstrate that Asb2 knockout mice have placental defects, that subsequently result in failure to form a normal cardiac septum, and thereby result in embryo mortality in utero at around E 9.5.
Collapse
Affiliation(s)
- Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Republic of Korea
| | - Jong Geol Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Jun Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
16
|
Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond) 2020; 134:2091-2115. [PMID: 32808663 PMCID: PMC7434989 DOI: 10.1042/cs20191211] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has one of the poorest prognoses of all malignancies, with little improvement in clinical outcome over the past 40 years. Pancreatic ductal adenocarcinoma is responsible for the vast majority of pancreatic cancer cases, and is characterised by the presence of a dense stroma that impacts therapeutic efficacy and drives pro-tumorigenic programs. More specifically, the inflammatory nature of the tumour microenvironment is thought to underlie the loss of anti-tumour immunity and development of resistance to current treatments. Inflammatory pathways are largely mediated by the expression of, and signalling through, cytokines, chemokines, and other cellular messengers. In recent years, there has been much attention focused on dual targeting of cancer cells and the tumour microenvironment. Here we review our current understanding of the role of IL-6, and the broader IL-6 cytokine family, in pancreatic cancer, including their contribution to pancreatic inflammation and various roles in pancreatic cancer pathogenesis. We also summarise potential opportunities for therapeutic targeting of these pathways as an avenue towards combating poor patient outcomes.
Collapse
|
17
|
Qing X, Tan GL, Liu HW, Li W, Ai JG, Xiong SS, Yang MQ, Wang TS. LINC00669 insulates the JAK/STAT suppressor SOCS1 to promote nasopharyngeal cancer cell proliferation and invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:166. [PMID: 32831137 PMCID: PMC7444085 DOI: 10.1186/s13046-020-01674-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial cancer emerging from the lining of nasopharyngeal mucosa, with extremely frequent occurrence in east and southeast Asia. For the purpose of exploring roles of the dysregulated long non-coding RNA (lncRNA) in NPC, we identified a novel lncRNA LINC00669 with an apparent negative correlation to the overall survival from human NPC mRNA expression profiling databases. We further performed RNA pulldown coupled with mass spectrum to find out its target protein, and applied a series of in vitro and in vivo loss-and-gain-of function assays to investigate its oncogenic roles in NPC tumor development and progression. Our results demonstrated that LINC00669 competitively binds to the key JAK/STAT signaling pathway suppressor SOCS1, and insulates it from imposing ubiquitination modification on the pathway component of STAT1, which leads to its abnormal stabilization and activation. The activated STAT1 is then transferred into the nucleus and initiates the transcription of genes related to proliferation and invasion. In summary, our study reveals that the cytoplasmic resident lncRNA LINC00669 confers malignant properties on NPC cancer cells by facilitating a persistent activation of the JAK/STAT signaling pathway. Findings in the current study shed lights on prospects for treating NPC using strategies targeting the novel regulator of the JAK/STAT signaling.
Collapse
Affiliation(s)
- Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Guo-Lin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huo-Wang Liu
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jin-Gang Ai
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shan-Shan Xiong
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Meng-Qing Yang
- Department of Postgraduate Office, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tian-Sheng Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
18
|
Luo X, Chen XX, Qiao S, Li R, Xie S, Zhou X, Deng R, Zhou EM, Zhang G. Porcine Reproductive and Respiratory Syndrome Virus Enhances Self-Replication via AP-1-Dependent Induction of SOCS1. THE JOURNAL OF IMMUNOLOGY 2019; 204:394-407. [PMID: 31826939 DOI: 10.4049/jimmunol.1900731] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses in the swine industry since its emergence in the late 1980s. PRRSV exploits various strategies to evade immune responses and establish chronic persistent infections. Suppressor of cytokine signaling (SOCS) 1, a member of the SOCS family, is a crucial intracellular negative regulator of innate immunity. In this study, it was shown that SOCS1 can be co-opted by PRRSV to evade host immune responses, facilitating viral replication. It was observed that PRRSV induced SOCS1 production in porcine alveolar macrophages, monkey-derived Marc-145 cells, and porcine-derived CRL2843-CD163 cells. SOCS1 inhibited the expression of IFN-β and IFN-stimulated genes, thereby markedly enhancing PRRSV replication. It was observed that the PRRSV N protein has the ability to upregulate SOCS1 production and that nuclear localization signal-2 (NLS-2) is essential for SOCS1 induction. Moreover, SOCS1 upregulation was dependent on p38/AP-1 and JNK/AP-1 signaling pathways rather than classical type I IFN signaling pathways. In summary, to our knowledge, the findings of this study uncovered the molecular mechanism that underlay SOCS1 induction during PRRSV infection, providing new insights into viral immune evasion and persistent infection.
Collapse
Affiliation(s)
- Xuegang Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Sha Xie
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Xinyu Zhou
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China; .,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2019; 27:1984-2009. [PMID: 30267440 DOI: 10.1002/pro.3519] [Citation(s) in RCA: 575] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine-based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain-containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine-induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| |
Collapse
|
20
|
Targeting SOCS Proteins to Control JAK-STAT Signalling in Disease. Trends Pharmacol Sci 2019; 40:298-308. [PMID: 30948191 DOI: 10.1016/j.tips.2019.03.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Defective regulation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway in cancers, haematological diseases, and chronic inflammatory conditions highlights its clinical significance. While several biologic and small molecule therapeutics targeting this pathway have been developed, these have several limitations. Therefore, there is a need to identify new targets for intervention. Suppressor of cytokine signalling (SOCS) proteins are a family of inducible inhibitors of cytokine receptors that activate the JAK-STAT pathway. Here we propose that newly identified mechanisms controlling SOCS function could be exploited to develop molecularly targeted drugs with unique modes of action to inhibit JAK-STAT signalling in disease.
Collapse
|
21
|
Crystal structure of the yeast Rad7-Elc1 complex and assembly of the Rad7-Rad16-Elc1-Cul3 complex. DNA Repair (Amst) 2019; 77:1-9. [PMID: 30840920 DOI: 10.1016/j.dnarep.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/20/2022]
Abstract
Nucleotide excision repair (NER) is a versatile system that deals with various bulky and helix-distorting DNA lesions caused by UV and environmental mutagens. Based on how lesion recognition occurs, NER has been separated into global genome repair (GGR) and transcription-coupled repair (TCR). The yeast Rad7-Rad16 complex is indispensable for the GGR sub-pathway. Rad7-Rad16 binds to UV-damaged DNA in a synergistic fashion with Rad4, the main lesion recognizer, to achieve efficient recognition of lesions. In addition, Rad7-Rad16 associates with Elc1 and Cul3 to form an EloC-Cul-SOCS-box (ECS)-type E3 ubiquitin ligase complex that ubiquitinates Rad4 in response to UV radiation. However, the structure and architecture of the Rad7-Rad16-Elc1-Cul3 complex remain unsolved. Here, we determined the structure of the Rad7-Elc1 complex and revealed key interaction regions responsible for the formation of the Rad7-Rad16-Elc1-Cul3 complex. These results provide new insights into the assembly of the Rad7-Rad16-Elc1-Cul3 complex and structural framework for further studies.
Collapse
|
22
|
SOCS1 and its Potential Clinical Role in Tumor. Pathol Oncol Res 2019; 25:1295-1301. [DOI: 10.1007/s12253-019-00612-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
|
23
|
Zhao G, Gong L, Su D, Jin Y, Guo C, Yue M, Yao S, Qin Z, Ye Y, Tang Y, Wu Q, Zhang J, Cui B, Ding Q, Huang H, Hu L, Chen Y, Zhang P, Hu G, Chen L, Wong KK, Gao D, Ji H. Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin β1. J Clin Invest 2019; 129:972-987. [PMID: 30688657 DOI: 10.1172/jci122779] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
Metastasis is the dominant cause of patient death in small-cell lung cancer (SCLC), and a better understanding of the molecular mechanisms underlying SCLC metastasis may potentially improve clinical treatment. Through genome-scale screening for key regulators of mouse Rb1-/- Trp53-/- SCLC metastasis using the pooled CRISPR/Cas9 library, we identified Cullin5 (CUL5) and suppressor of cytokine signaling 3 (SOCS3), two components of the Cullin-RING E3 ubiquitin ligase complex, as top candidates. Mechanistically, the deficiency of CUL5 or SOCS3 disrupted the functional formation of the E3 ligase complex and prevented the degradation of integrin β1, which stabilized integrin β1 and activated downstream focal adhesion kinase/SRC (FAK/SRC) signaling and eventually drove SCLC metastasis. Low expression levels of CUL5 and SOCS3 were significantly associated with high integrin β1 levels and poor prognosis in a large cohort of 128 clinical patients with SCLC. Moreover, the CUL5-deficient SCLCs were vulnerable to the treatment of the FDA-approved SRC inhibitor dasatinib. Collectively, this work identifies the essential role of CUL5- and SOCS3-mediated integrin β1 turnover in controlling SCLC metastasis, which might have therapeutic implications.
Collapse
Affiliation(s)
- Gaoxiang Zhao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Gong
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Shun Yao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhen Qin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Ye
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ying Tang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qibiao Wu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Binghai Cui
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hsinyi Huang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yuting Chen
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Peiyuan Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Daming Gao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
24
|
Gordon TB, Hayward JA, Marsh GA, Baker ML, Tachedjian G. Host and Viral Proteins Modulating Ebola and Marburg Virus Egress. Viruses 2019; 11:v11010025. [PMID: 30609802 PMCID: PMC6357148 DOI: 10.3390/v11010025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
The filoviruses Ebolavirus and Marburgvirus are among the deadliest viral pathogens known to infect humans, causing emerging diseases with fatality rates of up to 90% during some outbreaks. The replication cycles of these viruses are comprised of numerous complex molecular processes and interactions with their human host, with one key feature being the means by which nascent virions exit host cells to spread to new cells and ultimately to a new host. This review focuses on our current knowledge of filovirus egress and the viral and host factors and processes that are involved. Within the virus, these factors consist of the major matrix protein, viral protein 40 (VP40), which is necessary and sufficient for viral particle release, and nucleocapsid and glycoprotein that interact with VP40 to promote egress. In the host cell, some proteins are hijacked by filoviruses in order to enhance virion budding capacity that include members of the family of E3 ubiquitin ligase and the endosomal sorting complexes required for transport (ESCRT) pathway, while others such as tetherin inhibit viral egress. An understanding of these molecular interactions that modulate viral particle egress provides an important opportunity to identify new targets for the development of antivirals to prevent and treat filovirus infections.
Collapse
Affiliation(s)
- Tamsin B Gordon
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Joshua A Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Glenn A Marsh
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Michelle L Baker
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3010, Australia.
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
25
|
Therapeutic Targeting of the Proinflammatory IL-6-JAK/STAT Signalling Pathways Responsible for Vascular Restenosis in Type 2 Diabetes Mellitus. Cardiol Res Pract 2019; 2019:9846312. [PMID: 30719343 PMCID: PMC6334365 DOI: 10.1155/2019/9846312] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is increasing worldwide, and it is associated with increased risk of coronary artery disease (CAD). For T2DM patients, the main surgical intervention for CAD is autologous saphenous vein grafting. However, T2DM patients have increased risk of saphenous vein graft failure (SVGF). While the mechanisms underlying increased risk of vascular disease in T2DM are not fully understood, hyperglycaemia, insulin resistance, and hyperinsulinaemia have been shown to contribute to microvascular damage, whereas clinical trials have reported limited effects of intensive glycaemic control in the management of macrovascular complications. This suggests that factors other than glucose exposure may be responsible for the macrovascular complications observed in T2DM. SVGF is characterised by neointimal hyperplasia (NIH) arising from endothelial cell (EC) dysfunction and uncontrolled migration and proliferation of vascular smooth muscle cells (SMCs). This is driven in part by proinflammatory cytokines released from the activated ECs and SMCs, particularly interleukin 6 (IL-6). IL-6 stimulation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT) pathway is a key mechanism through which EC inflammation, SMC migration, and proliferation are controlled and whose activation might therefore be enhanced in patients with T2DM. In this review, we investigate how proinflammatory cytokines, particularly IL-6, contribute to vascular damage resulting in SVGF and how suppression of proinflammatory cytokine responses via targeting the JAK/STAT pathway could be exploited as a potential therapeutic strategy. These include the targeting of suppressor of cytokine signalling (SOCS3), which appears to play a key role in suppressing unwanted vascular inflammation, SMC migration, and proliferation.
Collapse
|
26
|
Gao Y, Zhao H, Wang P, Wang J, Zou L. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scand J Immunol 2018; 88:e12727. [PMID: 30341772 DOI: 10.1111/sji.12727] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Gao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Stockholm Sweden
| | - Honglei Zhao
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Peng Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Jun Wang
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| | - Lili Zou
- Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy; The People's Hospital of China Three Gorges University; Yichang China
| |
Collapse
|
27
|
Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, Callaghan K, Nicola NA, Kershaw NJ, Babon JJ. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun 2018. [PMID: 29674694 DOI: 10.1038/s41467‐018‐04013‐1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The SOCS family of proteins are negative-feedback inhibitors of signalling induced by cytokines that act via the JAK/STAT pathway. SOCS proteins can act as ubiquitin ligases by recruiting Cullin5 to ubiquitinate signalling components; however, SOCS1, the most potent member of the family, can also inhibit JAK directly. Here we determine the structural basis of both these modes of inhibition. Due to alterations within the SOCS box domain, SOCS1 has a compromised ability to recruit Cullin5; however, it is a direct, potent and selective inhibitor of JAK catalytic activity. The kinase inhibitory region of SOCS1 targets the substrate binding groove of JAK with high specificity and thereby blocks any subsequent phosphorylation. SOCS1 is a potent inhibitor of the interferon gamma (IFNγ) pathway, however, it does not bind the IFNγ receptor, making its mode-of-action distinct from SOCS3. These findings reveal the mechanism used by SOCS1 to inhibit signalling by inflammatory cytokines.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Artem Laktyushin
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Shenggen Yao
- The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Eden Whitlock
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Kimberley Callaghan
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
28
|
Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, Callaghan K, Nicola NA, Kershaw NJ, Babon JJ. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun 2018; 9:1558. [PMID: 29674694 PMCID: PMC5908791 DOI: 10.1038/s41467-018-04013-1] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
The SOCS family of proteins are negative-feedback inhibitors of signalling induced by cytokines that act via the JAK/STAT pathway. SOCS proteins can act as ubiquitin ligases by recruiting Cullin5 to ubiquitinate signalling components; however, SOCS1, the most potent member of the family, can also inhibit JAK directly. Here we determine the structural basis of both these modes of inhibition. Due to alterations within the SOCS box domain, SOCS1 has a compromised ability to recruit Cullin5; however, it is a direct, potent and selective inhibitor of JAK catalytic activity. The kinase inhibitory region of SOCS1 targets the substrate binding groove of JAK with high specificity and thereby blocks any subsequent phosphorylation. SOCS1 is a potent inhibitor of the interferon gamma (IFNγ) pathway, however, it does not bind the IFNγ receptor, making its mode-of-action distinct from SOCS3. These findings reveal the mechanism used by SOCS1 to inhibit signalling by inflammatory cytokines. Cytokines are key molecules in controlling haematopoiesis that signal via the JAK/STAT pathway. Here the authors present the structures of SOCS1 bound to its JAK1 target as well as in complex with elonginB and elonginC, providing a molecular explanation for the potent JAK- inhibitory activity of SOCS1.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Artem Laktyushin
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Shenggen Yao
- The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Eden Whitlock
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Kimberley Callaghan
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
29
|
Purification of SOCS (Suppressor of Cytokine Signaling) SH2 Domains for Structural and Functional Studies. Methods Mol Biol 2018; 1555:173-182. [PMID: 28092033 DOI: 10.1007/978-1-4939-6762-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Src Homology 2 (SH2) domains are protein domains which have a high binding affinity for specific amino acid sequences containing a phosphorylated tyrosine residue. The Suppressors of Cytokine Signaling (SOCS) proteins use an SH2 domain to bind to components of certain cytokine signaling pathways to downregulate the signaling cascade. The recombinantly produced SH2 domains of various SOCS proteins have been used to undertake structural and functional studies elucidating the method of how such targeting occurs. Here, we describe the protocol for the recombinant production and purification of SOCS SH2 domains, with an emphasis on SOCS3.
Collapse
|
30
|
Williams JJL, Alotaiq N, Mullen W, Burchmore R, Liu L, Baillie GS, Schaper F, Pilch PF, Palmer TM. Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability. Nat Commun 2018; 9:168. [PMID: 29330478 PMCID: PMC5766592 DOI: 10.1038/s41467-017-02585-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Effective suppression of JAK-STAT signalling by the inducible inhibitor "suppressor of cytokine signalling 3" (SOCS3) is essential for limiting signalling from cytokine receptors. Here we show that cavin-1, a component of caveolae, is a functionally significant SOCS3-interacting protein. Biochemical and confocal imaging demonstrate that SOCS3 localisation to the plasma membrane requires cavin-1. SOCS3 is also critical for cavin-1 stabilisation, such that deletion of SOCS3 reduces the expression of cavin-1 and caveolin-1 proteins, thereby reducing caveola abundance in endothelial cells. Moreover, the interaction of cavin-1 and SOCS3 is essential for SOCS3 function, as loss of cavin-1 enhances cytokine-stimulated STAT3 phosphorylation and abolishes SOCS3-dependent inhibition of IL-6 signalling by cyclic AMP. Together, these findings reveal a new functionally important mechanism linking SOCS3-mediated inhibition of cytokine signalling to localisation at the plasma membrane via interaction with and stabilisation of cavin-1.
Collapse
Affiliation(s)
- Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| | - Nasser Alotaiq
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Libin Liu
- Departments of Biochemistry and Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fred Schaper
- Department of Systems Biology, Institute for Biology, Otto-von-Guericke-University Magdeburg, 39106, Magdeburg, Germany
| | - Paul F Pilch
- Departments of Biochemistry and Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
31
|
Liau NPD, Babon JJ. Expression and Purification of JAK1 and SOCS1 for Structural and Biochemical Studies. Methods Mol Biol 2018; 1725:267-280. [PMID: 29322424 DOI: 10.1007/978-1-4939-7568-6_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFNγ) is a potent inflammatory and immune cytokine. IFNγ signals via the interferon gamma receptor (IFNGR), which is constitutively bound to Janus Kinase (JAK) 1 and JAK2 via its intracellular domain. These two JAK proteins then initiate the inflammatory signaling cascade. The most potent inhibitor of IFNγ signaling is Suppressor of Cytokine Signaling 1 (SOCS1). SOCS1 negatively regulates IFNγ signaling pathway (and other pathways) by directly inhibiting JAKs. Here, we describe a protocol for the recombinant production and purification of the JAK1 kinase domain and its inhibitor SOCS1, for structural and biochemical studies.
Collapse
Affiliation(s)
- Nicholas P D Liau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
32
|
Guan HJ, Li XX, Guo YP, Dong J, Rong SZ, Niu YY, Meng LL, Zhao FY, Fan XJ, Zhang YS, Yang YD, Nan XH, Qi BL. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in bladder cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11326-11334. [PMID: 31966487 PMCID: PMC6965827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND It has been identified consequences of dysregulation of JAK-STAT signalling, particularly in regard to JAK-STAT signalling that has been shown to have roles in the oncogenesis of several cell types. SOCS3 protein, the negative regulatory protein of JAK-STAT signaling pathway, may also plays critical regulatory roles in cancer initiation and progression. SOCS3 promoter hypermethylation has often been identified in human cancers; however, the precise role of SOCS3 in bladder cancer is unclear. METHODS The methylation status of the SOCS3 was analyzed in an age (±5 years) and sex-matched case-control study, including 112 bladder cancer cases and 118 normal controls, using the MassARRAY EpiTYPER system. RESULTS Methylation rate of JAK2, SOCS3 and STAT3 gene were shown to vary among different CpG island. The methylation rate of SOCS3 gene was also much higher in BCa than in normal control participants, but the methylation rate of JAK2, STAT3 gene weren't different in Bca and normal control participants. CONCLUSIONS Our study demonstrates that promoter hypermethylation of SOCS3 gene is associated with BCa and thus, may serve as an independent prognostic biomarker.
Collapse
Affiliation(s)
- Hong-Jun Guan
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Xiao-Xia Li
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Yu-Peng Guo
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Jing Dong
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Sheng-Zhong Rong
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Ying-Ying Niu
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Li-Li Meng
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Fu-Yang Zhao
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Xing-Jun Fan
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Yue-Shun Zhang
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Yin-Dong Yang
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Xi-Hao Nan
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Bao-Lin Qi
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| |
Collapse
|
33
|
A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18102010. [PMID: 28934129 PMCID: PMC5666700 DOI: 10.3390/ijms18102010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease.
Collapse
|
34
|
Wood MB, Zuo J. The Contribution of Immune Infiltrates to Ototoxicity and Cochlear Hair Cell Loss. Front Cell Neurosci 2017; 11:106. [PMID: 28446866 PMCID: PMC5388681 DOI: 10.3389/fncel.2017.00106] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cells of the immune system have been shown to infiltrate the cochlea after acoustic trauma or ototoxic drug treatment; however, the contribution of the immune system to hair cell loss in the inner ear is incompletely understood. Most studies have concentrated on the immediate innate response to hair cell damage using CD45 as a broad marker for all immune cells. More recent studies have used RNA sequencing, GeneChip arrays and quantitative PCR to analyze gene expression in the entire cochlea after auditory trauma, leading to a better understanding of the chemokines and cytokines that attract immune cells to the cochlea. Immune suppression by blocking cytokines or immune receptors has been proven to suppress hair cell damage. However, it is now understood that not all immune cells are detrimental to the cochlea. CX3CR1+ resident macrophages protect hair cells from damage mediated by infiltrating immune cells. Systemically, the immune response is associated with both protection and pathology, and it has been implicated in the regeneration of certain tissues after injury. This review focuses on the studies of immune cells in various models of hearing loss and highlights the steps that can be taken to elucidate the connection between the immune response and hearing loss. The interplay between the immune system and tissues that were previously thought to be immune privileged, such as the cochlea, is an emerging research field, to which additional studies of the immune component of the cochlear response to injury will make an important contribution.
Collapse
Affiliation(s)
- Megan B Wood
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphis, TN, USA
| |
Collapse
|
35
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
36
|
Linossi EM, Nicholson SE. Kinase inhibition, competitive binding and proteasomal degradation: resolving the molecular function of the suppressor of cytokine signaling (SOCS) proteins. Immunol Rev 2016; 266:123-33. [PMID: 26085211 DOI: 10.1111/imr.12305] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The suppressor of cytokine signaling (SOCS) family of proteins are key negative regulators of cytokine and growth factor signaling. They act at the receptor complex to modulate the intracellular signaling cascade, preventing excessive signaling and restoring homeostasis. This regulation is critical to the normal cessation of signaling, highlighted by the complex inflammatory phenotypes exhibited by mice deficient in SOCS1 or SOCS3. These two SOCS proteins remain the best characterized of the eight family members (CIS, SOCS1-7), and in particular, we now possess a sound understanding of the mechanism of action for SOCS3. Here, we review the mechanistic role of the SOCS proteins and identify examples where clear, definitive data have been generated and discuss areas where the information is less clear. From this functional viewpoint, we discuss how the SOCS proteins achieve exquisite and specific regulation of cytokine signaling and highlight outstanding questions regarding the function of the less well-studied SOCS family members.
Collapse
Affiliation(s)
- Edmond M Linossi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,The University of Melbourne, Parkville, VIC, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
37
|
Feng Y, Sanders AJ, Morgan LD, Harding KG, Jiang WG. Potential roles of suppressor of cytokine signaling in wound healing. Regen Med 2016; 11:193-209. [PMID: 26877242 DOI: 10.2217/rme.16.4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wound healing is a dynamic process comprising three overlapping, highly orchestrated stages known as inflammation, proliferation and re-epithelialization, and tissue remodeling. This complex process is regulated by numerous cytokines, with dysregulation of cytokine-induced signaling leading to impaired wound healing. Suppressor of cytokine signaling (SOCS) proteins are a family of eight intracellular proteins which may hold the potential to maintain homeostasis during wound healing through their negative feedback inhibition of cytokine signaling. To date, the roles of SOCS proteins in inflammation, autoimmunity and cancer have been comprehensively illustrated; however, only a limited number of studies focused on their role in wound healing. This review demonstrates the possible links between SOCS proteins and wound healing, and also highlights the potential importance of this family in a variety of other aspects of regenerative medicine.
Collapse
Affiliation(s)
- Yi Feng
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Liam D Morgan
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Keith G Harding
- Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative & Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
38
|
Hwang W, Artan M, Seo M, Lee D, Nam HG, Lee SV. Inhibition of elongin C promotes longevity and protein homeostasis via HIF-1 in C. elegans. Aging Cell 2015; 14:995-1002. [PMID: 26361075 PMCID: PMC4693473 DOI: 10.1111/acel.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
The transcription factor hypoxia‐inducible factor 1 (HIF‐1) is crucial for responses to low oxygen and promotes longevity in Caenorhabditis elegans. We previously performed a genomewide RNA interference screen and identified many genes that act as potential negative regulators of HIF‐1. Here, we functionally characterized these genes and found several novel genes that affected lifespan. The worm ortholog of elongin C, elc‐1, encodes a subunit of E3 ligase and transcription elongation factor. We found that knockdown of elc‐1 prolonged lifespan and delayed paralysis caused by impaired protein homeostasis. We further showed that elc‐1 RNA interference increased lifespan and protein homeostasis by upregulating HIF‐1. The roles of elongin C and HIF‐1 are well conserved in eukaryotes. Thus, our study may provide insights into the aging regulatory pathway consisting of elongin C and HIF‐1 in complex metazoans.
Collapse
Affiliation(s)
- Wooseon Hwang
- Department of Life SciencesPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
| | - Murat Artan
- Information Technology Convergence EngineeringPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
| | - Mihwa Seo
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
- Center for Plant Aging ResearchInstitute for Basic ScienceDaegu42988South Korea
| | - Dongyeop Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
| | - Hong Gil Nam
- Center for Plant Aging ResearchInstitute for Basic ScienceDaegu42988South Korea
- Department of New BiologyDGISTDaegu42988South Korea
| | - Seung‐Jae V. Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
- Information Technology Convergence EngineeringPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
| |
Collapse
|
39
|
McCormick SM, Heller NM. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front Immunol 2015; 6:549. [PMID: 26579124 PMCID: PMC4621458 DOI: 10.3389/fimmu.2015.00549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.
Collapse
Affiliation(s)
- Sarah M McCormick
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| | - Nicola M Heller
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA ; Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
40
|
Yin Y, Liu W, Dai Y. SOCS3 and its role in associated diseases. Hum Immunol 2015; 76:775-80. [DOI: 10.1016/j.humimm.2015.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/03/2015] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
|
41
|
Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 2015; 467:365-86. [PMID: 25886174 PMCID: PMC4403949 DOI: 10.1042/bj20141450] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs.
Collapse
|
42
|
Fu X, Ren L, Chen J, Liao K, Fu Y, Qian X, Xiao J. Characterization of the roles of suppressor of cytokine signaling-3 in prostate cancer development and progression. Asia Pac J Clin Oncol 2015; 11:106-13. [PMID: 25899712 DOI: 10.1111/ajco.12357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2015] [Indexed: 01/01/2023]
Abstract
As negative feedback regulators of cytokine signaling, suppressor of cytokine signaling proteins are induced by interleukins and various peptide hormones and may prevent sustained activation of signaling pathways. In particular, suppressor of cytokine signaling-3 (SOCS-3) plays pivotal roles in the development and progression of various cancers and exerts pleiotropic effects on cell proliferation and apoptosis. In recent years, abnormal expression of SOCS-3 and its multiple functions have been extensively investigated in human carcinomas, particularly in prostate cancer. SOCS-3 can act as an oncogene or a tumor suppressor depending on the cellular context. In this review, we focus on the role of SOCS-3 in prostate cancer development and prognosis, as well as the potential of SOCS-3 as a therapeutic target and diagnostic marker.
Collapse
Affiliation(s)
- Xian Fu
- Department of Urology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Jensik PJ, Arbogast LA. Regulation of cytokine-inducible SH2-containing protein (CIS) by ubiquitination and Elongin B/C interaction. Mol Cell Endocrinol 2015; 401:130-41. [PMID: 25448846 PMCID: PMC4373541 DOI: 10.1016/j.mce.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Cytokine-inducible SH2-containing protein (CIS) inhibits prolactin receptor (PRLR) signaling and acts as part of an E3 ubiquitin ligase complex through interactions with Elongin B/C proteins. This study aimed to identify CIS lysine ubiquitination sites and determine roles of ubiquitination and Elongin B/C interactions on CIS protein stability and PRLR signaling inhibition. Site-directed mutations revealed that CIS can be ubiquitinated on all six lysine residues. Elongin B/C interaction box mutation had no influence on CIS ubiquitination. CIS stability was increased by mutation of lysine residues and further enhanced by co-mutation of Elongin B/C interaction domain. CIS inhibition of STAT5B phosphorylation and casein promoter activation was dependent on CIS interactions with Elongin B/C, but not on CIS ubiquitination. These data indicate CIS protein stability is regulated through multiple mechanisms, including ubiquitination and interaction with Elongin B/C proteins, whereas CIS functional inhibition of PRLR signaling is dependent on the Elongin B/C interaction.
Collapse
|
44
|
Nguyen HC, Yang H, Fribourgh JL, Wolfe LS, Xiong Y. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure 2015; 23:441-449. [PMID: 25661653 DOI: 10.1016/j.str.2014.12.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023]
Abstract
The von Hippel-Lindau tumor suppressor protein (VHL) recruits a Cullin 2 (Cul2) E3 ubiquitin ligase to downregulate HIF-1α, an essential transcription factor for the hypoxia response. Mutations in VHL lead to VHL disease and renal cell carcinomas. Inhibition of this pathway to upregulate erythropoietin production is a promising new therapy to treat ischemia and chronic anemia. Here, we report the crystal structure of VHL bound to a Cul2 N-terminal domain, Elongin B, and Elongin C (EloC). Cul2 interacts with both the VHL BC box and cullin box and a novel EloC site. Comparison with other cullin E3 ligase structures shows that there is a conserved, yet flexible, cullin recognition module and that cullin selectivity is influenced by distinct electrostatic interactions. Our structure provides a structural basis for the study of the pathogenesis of VHL disease and rationale for the design of novel compounds that may modulate cullin-substrate receptor interactions.
Collapse
Affiliation(s)
- Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Haitao Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Jennifer L Fribourgh
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Leslie S Wolfe
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
45
|
Zhang H, Hu H, Greeley N, Jin J, Matthews AJ, Ohashi E, Caetano MS, Li HS, Wu X, Mandal PK, McMurray JS, Moghaddam SJ, Sun SC, Watowich SS. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nat Commun 2014; 5:5798. [PMID: 25503582 PMCID: PMC4270087 DOI: 10.1038/ncomms6798] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 01/05/2023] Open
Abstract
The transcriptional regulator STAT3 curbs pro-inflammatory cytokine production mediated by NF-κB signaling in innate immune cells, yet the mechanism by which this occurs has been unclear. Here we identify STAT3 as a pivotal negative regulator of Ubc13, an E2 ubiquitin-conjugating enzyme that facilitates TRAF6 K63-linked ubiquitination and NF-κB activation. Ubc13 accumulates intracellularly in the absence of STAT3. Depletion of Ubc13 in Stat3-deficient macrophages subdues excessive RANKL- or LPS-dependent gene expression, indicating Ubc13 overexpression mediates enhanced transcriptional responses in the absence of STAT3. In RANKL-activated macrophages, STAT3 is stimulated by autocrine IL-6 and inhibits accrual of Ets-1, Set1 methyltransferase and trimethylation of histone H3 lysine 4 (H3K4me3) at the Ube2n (Ubc13) promoter. These results delineate a mechanism by which STAT3 operates as a transcriptional repressor on Ube2n, thus modulating NF-κB activity by regulation of Ubc13 abundance. Our data suggest this pathway plays important roles in bone homeostasis and restraint of inflammation.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hongbo Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nathaniel Greeley
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Allison J Matthews
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Erika Ohashi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mauricio S Caetano
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xuefeng Wu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Pijus K Mandal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John S McMurray
- 1] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA [2] Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Seyed Javad Moghaddam
- 1] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA [2] Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shao-Cong Sun
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Stephanie S Watowich
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
46
|
Zhu M, Chen Y, Ding XS, Webb SL, Zhou T, Nelson RS, Fan Z. Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection. THE NEW PHYTOLOGIST 2014; 203:1291-1304. [PMID: 24954157 PMCID: PMC4143955 DOI: 10.1111/nph.12890] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/08/2014] [Indexed: 05/18/2023]
Abstract
The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Yuting Chen
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Xin Shun Ding
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Stephen L Webb
- Department of Computing Services, The Samuel Roberts Noble Foundation Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Tao Zhou
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Richard S Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Zaifeng Fan
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| |
Collapse
|
47
|
Uren RT, Turnley AM. Regulation of neurotrophin receptor (Trk) signaling: suppressor of cytokine signaling 2 (SOCS2) is a new player. Front Mol Neurosci 2014; 7:39. [PMID: 24860421 PMCID: PMC4030161 DOI: 10.3389/fnmol.2014.00039] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/21/2014] [Indexed: 12/17/2022] Open
Abstract
The classic neurotrophins Nerve Growth Factor (NGF), Brain Derived Neurotrophic Factor (BDNF) and Neurotrophins NT-3 and NT-4 are well known to regulate various aspects of neuronal differentiation, survival and growth. They do this by binding to their cognate receptors, members of the Tropomyosin-related kinase (Trk) receptor tyrosine kinase family, namely TrkA, TrkB, and TrkC. These receptors are then internalized and localized to different cellular compartments, where signal transduction occurs. Conversely, members of the suppressor of cytokine signaling (SOCS) family are best known as negative regulators of signaling via the JAK/STAT pathway. Some members of the family, and in particular SOCS2, have roles in the nervous system that at least partially overlap with that of neurotrophins, namely neuronal differentiation and neurite outgrowth. Recent evidence suggests that SOCS2 is a novel regulator of NGF signaling, altering TrkA cellular localization and downstream signaling to affect neurite growth but not neuronal survival. This review first discusses regulation of Trk receptor signaling, followed by the role of SOCS2 in the nervous system and finishes with a discussion of possible mechanisms by which SOCS2 may regulate TrkA function.
Collapse
Affiliation(s)
- Rachel T Uren
- Neural Regeneration Laboratory, Centre for Neuroscience Research and Department of Anatomy and Neuroscience, The University of Melbourne Melbourne, VIC, Australia
| | - Ann M Turnley
- Neural Regeneration Laboratory, Centre for Neuroscience Research and Department of Anatomy and Neuroscience, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
48
|
Varghese LN, Ungureanu D, Liau NPD, Young SN, Laktyushin A, Hammaren H, Lucet IS, Nicola NA, Silvennoinen O, Babon JJ, Murphy JM. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Biochem J 2014; 458:395-405. [PMID: 24354892 PMCID: PMC4085142 DOI: 10.1042/bj20131516] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
JAK2 (Janus kinase 2) initiates the intracellular signalling cascade downstream of cell surface receptor activation by cognate haemopoietic cytokines, including erythropoietin and thrombopoietin. The pseudokinase domain (JH2) of JAK2 negatively regulates the catalytic activity of the adjacent tyrosine kinase domain (JH1) and mutations within the pseudokinase domain underlie human myeloproliferative neoplasms, including polycythaemia vera and essential thrombocytosis. To date, the mechanism of JH2-mediated inhibition of JH1 kinase activation as well as the susceptibility of pathological mutant JAK2 to inhibition by the physiological negative regulator SOCS3 (suppressor of cytokine signalling 3) have remained unclear. In the present study, using recombinant purified JAK2JH1-JH2 proteins, we demonstrate that, when activated, wild-type and myeloproliferative neoplasm-associated mutants of JAK2 exhibit comparable enzymatic activity and inhibition by SOCS3 in in vitro kinase assays. SAXS (small-angle X-ray scattering) showed that JAK2JH1-JH2 exists in an elongated configuration in solution with no evidence for interaction between JH1 and JH2 domains in cis. Collectively, these data are consistent with a model in which JAK2's pseudokinase domain does not influence the activity of JAK2 once it has been activated. Our data indicate that, in the absence of the N-terminal FERM domain and thus cytokine receptor association, the wild-type and pathological mutants of JAK2 are enzymatically equivalent and equally susceptible to inhibition by SOCS3.
Collapse
Affiliation(s)
- Leila N. Varghese
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Daniela Ungureanu
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Nicholas P. D. Liau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Samuel N. Young
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Artem Laktyushin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Henrik Hammaren
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Isabelle S. Lucet
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nicos A. Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Olli Silvennoinen
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Jeffrey J. Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
49
|
Kershaw NJ, Laktyushin A, Nicola NA, Babon JJ. Reconstruction of an active SOCS3-based E3 ubiquitin ligase complex in vitro: identification of the active components and JAK2 and gp130 as substrates. Growth Factors 2014; 32:1-10. [PMID: 24438103 PMCID: PMC4085236 DOI: 10.3109/08977194.2013.877005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SOCS3 (suppressor of cytokine signaling 3) inhibits the intracellular signaling cascade initiated by exposure of cells to cytokines. SOCS3 regulates signaling via two distinct mechanisms: directly inhibiting the catalytic activity of Janus kinases (JAKs) that initiate the intracellular signaling cascade and catalysing the ubiquitination of signaling components by recruiting components of an E3 ubiquitin ligase complex. Here we investigate the latter mode-of-action biochemically by reconstructing a SOCS3-based E3 ubiquitin ligase complex in vitro using fully purified, recombinant components and examining its ability to promote the ubiquitination of molecules involved in the cytokine signaling cascade. We show that SOCS3 is an active substrate recruitment module for a Cullin5-based E3 ligase and have defined the core protein components required for ubiquitination. SOCS3-induced polyubiquitination was rapid and could proceed through a number of different ubiquitin lysines. SOCS3 catalyzed the ubiquitination of both the IL-6 receptor common chain (gp130) and JAK2.
Collapse
Affiliation(s)
- Nadia J Kershaw
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria , Australia
| | | | | | | |
Collapse
|
50
|
Sandoval-Usme MC, Umaña-Pérez A, Guerra B, Hernández-Perera O, García-Castellano JM, Fernández-Pérez L, Sánchez-Gómez M. Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT) signaling pathway in UMR-106 osteosarcoma cells. PLoS One 2014; 9:e87769. [PMID: 24489959 PMCID: PMC3906206 DOI: 10.1371/journal.pone.0087769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that statins reduce cell viability and induce apoptosis in various types of cancer cells. The molecular mechanisms underlying these effects are poorly understood. The JAK/STAT pathway plays an important role in the regulation of proliferation and apoptosis in many tissues, and its deregulation is believed to be involved in tumorigenesis and cancer. The physiological activation of STAT proteins by GH is rapid but transient in nature and its inactivation is regulated mainly by the expression of SOCS proteins. UMR-106 osteosarcoma cells express a GH-responsive JAK2/STAT5 signaling pathway, providing an experimental model to study the influence of statins on this system. In this study we investigated the actions of simvastatin on cell proliferation, migration, and invasion on UMR-106 cells and examined whether alterations in GH-stimulated JAK/STAT/SOCS signaling may be observed. Results showed that treatment of osteosarcoma cells with simvastatin at 3 to 10 µM doses decreases cell proliferation, migration, and invasion in a time- and dose-dependent manner. At the molecular level, although the mechanisms used by simvastatin are not entirely clear, the effect of the statin on the reduction of JAK2 and STAT5 phosphorylation levels may partially explain the decrease in the GH-stimulated STAT5 transcriptional activity. This effect correlated with a time- and dose-dependent increase of SOCS-3 expression levels in cells treated with simvastatin, a regulatory role that has not been previously described. Furthermore, the finding that simvastatin is capable of inducing SOCS-3 and CIS genes expression shows the potential of the JAK/STAT pathway as a therapeutic target, reinforcing the efficacy of simvastatin as chemotherapeutic drug for the treatment of osteosarcoma.
Collapse
Affiliation(s)
| | - Adriana Umaña-Pérez
- Hormone Laboratory, Department of Chemistry, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Borja Guerra
- Department of Clinical Sciences, Molecular and Translational Endocrinology Group, University of Las Palmas de Gran Canaria – Cancer Research Institute of The Canary Islands (ICIC), Las Palmas de Gran Canaria, Spain
- Associated Biomedical Unit of ULPGC-IIBM “Alberto Sols” - CSIC, Las Palmas de Gran Canaria, Spain
| | - Orlando Hernández-Perera
- Laboratory of Molecular Oncology, Research Unit, Complejo Hospitalario Universitario Insular Materno Infantil, CHUIMI, Las Palmas de Gran Canaria, Spain
| | - José Manuel García-Castellano
- Laboratory of Molecular Oncology, Research Unit, Complejo Hospitalario Universitario Insular Materno Infantil, CHUIMI, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Department of Clinical Sciences, Molecular and Translational Endocrinology Group, University of Las Palmas de Gran Canaria – Cancer Research Institute of The Canary Islands (ICIC), Las Palmas de Gran Canaria, Spain
- Associated Biomedical Unit of ULPGC-IIBM “Alberto Sols” - CSIC, Las Palmas de Gran Canaria, Spain
| | - Myriam Sánchez-Gómez
- Hormone Laboratory, Department of Chemistry, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|