1
|
Chen M, Shang Y, Cui W, Wang X, Zhu J, Dong H, Wang H, Su T, Wang W, Zhang K, Li B, Xu S, Hu W, Zhang F, Gu L. Molecular mechanism of proteolytic cleavage-dependent activation of CadC-mediated response to acid in E. coli. Commun Biol 2024; 7:1335. [PMID: 39415060 PMCID: PMC11484849 DOI: 10.1038/s42003-024-06931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Colonizing in the gastrointestinal tract, Escherichia coli confronts diverse acidic challenges and evolves intricate acid resistance strategies for its survival. The lysine-mediated decarboxylation (Cad) system, featuring lysine decarboxylase CadA, lysine/cadaverine antiporter CadB, and transcriptional activator CadC, plays a crucial role in E. coli's adaptation to moderate acidic stress. While the activation of the one-component system CadC and subsequent upregulation of cadBA operon in response to acid and lysine presence have been proposed, the molecular mechanisms governing the transition of CadC from an inactive to an active state remain elusive. Under neutral conditions, CadC is inhibited by forming a complex with lysine-specific permease LysP, stabilized in this inactive state by a disulfide bond. Our study unveils that, in an acidic environment, the disulfide bond in CadC is reduced by the disulfide bond isomerase DsbC, exposing R184 to periplasmic proteases, namely DegQ and DegP. Cleavage at R184 by DegQ and DegP generates an active N-terminal DNA-binding domain of CadC, which binds to the cadBA promoter, resulting in the upregulated transcription of the cadA and cadB genes. Upon activation, CadA decarboxylates lysine, producing cadaverine, subsequently transported extracellularly by CadB. We propose that accumulating cadaverine gradually binds to the CadC pH-sensing domain, preventing cleavage and activation of CadC as a feedback mechanism. The identification of DegP, DegQ, and DsbC completes a comprehensive roadmap for the activation and regulation of the Cad system in response to moderate acidic stress in E. coli.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Ye Shang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Wenhao Cui
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Xiaomeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Jiakun Zhu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Hongjie Dong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Tiantian Su
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, jinan, China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, jinan, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China.
| |
Collapse
|
2
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022; 14:2146979. [PMID: 36456534 PMCID: PMC9728131 DOI: 10.1080/19490976.2022.2146979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China,Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China,KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China,CONTACT Bingqing Li Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021Shandong, China
| |
Collapse
|
5
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
6
|
Division of labor and collective functionality in Escherichia coli under acid stress. Commun Biol 2022; 5:327. [PMID: 35393532 PMCID: PMC8989999 DOI: 10.1038/s42003-022-03281-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
The acid stress response is an important factor influencing the transmission of intestinal microbes such as the enterobacterium Escherichia coli. E. coli activates three inducible acid resistance systems - the glutamate decarboxylase, arginine decarboxylase, and lysine decarboxylase systems to counteract acid stress. Each system relies on the activity of a proton-consuming reaction catalyzed by a specific amino acid decarboxylase and a corresponding antiporter. Activation of these three systems is tightly regulated by a sophisticated interplay of membrane-integrated and soluble regulators. Using a fluorescent triple reporter strain, we quantitatively illuminated the cellular individuality during activation of each of the three acid resistance (AR) systems under consecutively increasing acid stress. Our studies highlight the advantages of E. coli in possessing three AR systems that enable division of labor in the population, which ensures survival over a wide range of low pH values.
Collapse
|
7
|
Meng J, Yang Q, Wan W, Zhu Q, Zeng X. Physicochemical properties and adaptability of amine-producing Enterobacteriaceae isolated from traditional Chinese fermented fish (Suan yu). Food Chem 2022; 369:130885. [PMID: 34461516 DOI: 10.1016/j.foodchem.2021.130885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
The formation of biogenic amines (BAs) is an important potential danger in traditional fermented fish (Suan yu), and Enterobacteriaceae play an important role in the formation of BAs. The amine production abilities of 97 strains of Enterobacteriaceae screened from traditional fermented Suan yu were analyzed by reversed-phased high-performance liquid chromatography (HPLC). The genotypic diversity of amino acid decarboxylase on 23 strains of high-yield BAs was verified by PCR. Enterobacteriaceae with the highest production of amines was determined by analysis of the effects of physicochemical factors (pH, NaCl, temperature, and aerobic/anaerobic) on BA production and principal component analysis (PCA). The adaptability of the strains was examined using surimi simulation fermentation system, and the correlations among the indicators were analyzed using Cytoscape. Results showed that 97 strains of Enterobacteriaceae had strong amine-producing ability. Furthermore, 23 strains producing high yields of putrescine, cadaverine, and histamine were identified. All of the strains carried Idc, odc, speA, speB, and adiA, and five strains carried hdc. pH mainly affected the BA production of amine-producing bacteria. Three strains (Enterobacter asburiae 26C3, Klebsiella pneumoniae 47C2, and Morganella morganii 45C3) had the best amine-producing ability and used as the inoculated group. In this group, the values of BA (228.70-290.05 mg/kg) and the total volatile base nitrogen (TVB-N, 173.87-221.87 mg/100 g) exceeded the limit. Moreover, myofibrillar protein degradation was significant as indicated by the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and decreased FAA content. Cytoscape software and principal component analysis (PCA) indicated that Enterobacteriaceae and pH were related to BA formation in Suan yu. These results provide a theoretical basis for controlling the BA of fermented fish products.
Collapse
Affiliation(s)
- Ju Meng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Qin Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Weiyang Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China.
| |
Collapse
|
8
|
Wang W, Yue Y, Zhang M, Song N, Jia H, Dai Y, Zhang F, Li C, Li B. Host acid signal controls Salmonella flagella biogenesis through CadC-YdiV axis. Gut Microbes 2022. [PMID: 36456534 DOI: 10.1080/194909762125747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Upon entering host cells, Salmonella quickly turns off flagella biogenesis to avoid recognition by the host immune system. However, it is not clear which host signal(s) Salmonella senses to initiate flagellum control. Here, we demonstrate that the acid signal can suppress flagella synthesis and motility of Salmonella, and this occurs after the transcription of master flagellar gene flhDC and depends on the anti-FlhDC factor YdiV. YdiV expression is activated after acid treatment. A global screen with ydiV promoter DNA and total protein from acid-treated Salmonella revealed a novel regulator of YdiV, the acid-related transcription factor CadC. Further studies showed that CadCC, the DNA binding domain of CadC, directly binds to a 33 nt region of the ydiV promoter with a 0.2 μM KD affinity. Furthermore, CadC could separate H-NS-ydiV promoter DNA complex to form CadC-DNA complex at a low concentration. Structural simulation and mutagenesis assays revealed that H43 and W106 of CadC are essential for ydiV promoter binding. No acid-induced flagellum control phenotype was observed in cadC mutant or ydiV mutant strains, suggesting that flagellum control during acid adaption is dependent on CadC and YdiV. The intracellular survival ability of cadC mutant strain decreased significantly compared with WT strain while the flagellin expression could not be effectively controlled in the cadC mutant strain when surviving within host cells. Together, our results demonstrated that acid stress acts as an important host signal to trigger Salmonella flagellum control through the CadC-YdiV-FlhDC axis, allowing Salmonella to sense a hostile environment and regulate flagellar synthesis during infection.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuanji Dai
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Jinan, China
- KeyLaboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
9
|
Understanding D-xylonic acid accumulation: a cornerstone for better metabolic engineering approaches. Appl Microbiol Biotechnol 2021; 105:5309-5324. [PMID: 34215905 DOI: 10.1007/s00253-021-11410-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023]
Abstract
The xylose oxidative pathway (XOP) has been engineered in microorganisms for the production of a wide range of industrially relevant compounds. However, the performance of metabolically engineered XOP-utilizing microorganisms is typically hindered by D-xylonic acid accumulation. It acidifies the media and perturbs cell growth due to toxicity, thus curtailing enzymatic activity and target product formation. Fortunately, from the growing portfolio of genetic tools, several strategies that can be adapted for the generation of efficient microbial cell factories have been implemented to address D-xylonic acid accumulation. This review centers its discussion on the causes of D-xylonic acid accumulation and how to address it through different engineering and synthetic biology techniques with emphasis given on bacterial strains. In the first part of this review, the ability of certain microorganisms to produce and tolerate D-xylonic acid is also tackled as an important aspect in developing efficient microbial cell factories. Overall, this review could shed some insights and clarity to those working on XOP in bacteria and its engineering for the development of industrially applicable product-specialist strains. KEY POINTS: D-Xylonic acid accumulation is attributed to the overexpression of xylose dehydrogenase concomitant with basal or inefficient expression of enzymes involved in D-xylonic acid assimilation. Redox imbalance and insufficient cofactors contribute to D-xylonic acid accumulation. Overcoming D-xylonic acid accumulation can increase product formation among engineered strains. Engineering strategies involving enzyme engineering, evolutionary engineering, coutilization of different sugar substrates, and synergy of different pathways could potentially address D-xylonic acid accumulation.
Collapse
|
10
|
Martini L, Brameyer S, Hoyer E, Jung K, Gerland U. Dynamics of chromosomal target search by a membrane-integrated one-component receptor. PLoS Comput Biol 2021; 17:e1008680. [PMID: 33539417 PMCID: PMC7888679 DOI: 10.1371/journal.pcbi.1008680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/17/2021] [Accepted: 01/07/2021] [Indexed: 12/03/2022] Open
Abstract
Membrane proteins account for about one third of the cellular proteome, but it is still unclear how dynamic they are and how they establish functional contacts with cytoplasmic interaction partners. Here, we consider a membrane-integrated one-component receptor that also acts as a transcriptional activator, and analyze how it kinetically locates its specific binding site on the genome. We focus on the case of CadC, the pH receptor of the acid stress response Cad system in E. coli. CadC is a prime example of a one-component signaling protein that directly binds to its cognate target site on the chromosome to regulate transcription. We combined fluorescence microscopy experiments, mathematical analysis, and kinetic Monte Carlo simulations to probe this target search process. Using fluorescently labeled CadC, we measured the time from activation of the receptor until successful binding to the DNA in single cells, exploiting that stable receptor-DNA complexes are visible as fluorescent spots. Our experimental data indicate that CadC is highly mobile in the membrane and finds its target by a 2D diffusion and capture mechanism. DNA mobility is constrained due to the overall chromosome organization, but a labeled DNA locus in the vicinity of the target site appears sufficiently mobile to randomly come close to the membrane. Relocation of the DNA target site to a distant position on the chromosome had almost no effect on the mean search time, which was between four and five minutes in either case. However, a mutant strain with two binding sites displayed a mean search time that was reduced by about a factor of two. This behavior is consistent with simulations of a coarse-grained lattice model for the coupled dynamics of DNA within a cell volume and proteins on its surface. The model also rationalizes the experimentally determined distribution of search times. Overall our findings reveal that DNA target search does not present a much bigger kinetic challenge for membrane-integrated proteins than for cytoplasmic proteins. More generally, diffusion and capture mechanisms may be sufficient for bacterial membrane proteins to establish functional contacts with cytoplasmic targets. Adaptation to changing environments is vital to bacteria and is enabled by sophisticated signal transduction systems. While signal transduction by two-component systems is well studied, the signal transduction of membrane-integrated one-component systems, where one protein performs both sensing and response regulation, are insufficiently understood. How can a membrane-integrated protein bind to specific sites on the genome to regulate transcription? Here, we study the kinetics of this process, which involves both protein diffusion within the membrane and conformational fluctuations of the genomic DNA. A well-suited model system for this question is CadC, the signaling protein of the E. coli Cad system involved in pH stress response. Fluorescently labeled CadC forms visible spots in single cells upon stable DNA-binding, marking the end of the protein-DNA search process. Moreover, the start of the search is triggered by a medium shift exposing cells to pH stress. We probe the underlying mechanism by varying the number and position of DNA target sites. We combine these experiments with mathematical analysis and kinetic Monte Carlo simulations of lattice models for the search process. Our results suggest that CadC diffusion in the membrane is pivotal for this search, while the DNA target site is just mobile enough to reach the membrane.
Collapse
Affiliation(s)
- Linda Martini
- Physics of Complex Biosystems, Technical University of Munich, Garching, Germany
| | - Sophie Brameyer
- Microbiology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Elisabeth Hoyer
- Microbiology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Kirsten Jung
- Microbiology, Ludwig-Maximilians-University Munich, Martinsried, Germany
- * E-mail: (KJ); (UG)
| | - Ulrich Gerland
- Physics of Complex Biosystems, Technical University of Munich, Garching, Germany
- * E-mail: (KJ); (UG)
| |
Collapse
|
11
|
Brameyer S, Hoyer E, Bibinger S, Burdack K, Lassak J, Jung K. Molecular design of a signaling system influences noise in protein abundance under acid stress in different γ-Proteobacteria. J Bacteriol 2020; 202:JB.00121-20. [PMID: 32482722 PMCID: PMC8404709 DOI: 10.1128/jb.00121-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Bacteria have evolved different signaling systems to sense and adapt to acid stress. One of these systems, the CadABC-system, responds to a combination of low pH and lysine availability. In Escherichia coli, the two signals are sensed by the pH sensor and transcription activator CadC and the co-sensor LysP, a lysine-specific transporter. Activated CadC promotes the transcription of the cadBA operon, which codes for the lysine decarboxylase CadA and the lysine/cadaverine antiporter CadB. The copy number of CadC is controlled translationally. Using a bioinformatics approach, we identified the presence of CadC with ribosomal stalling motifs together with LysP in species of the Enterobacteriaceae family. In contrast, we identified CadC without stalling motifs in species of the Vibrionaceae family, but the LysP co-sensor was not identified. Therefore, we compared the output of the Cad system in single cells of the distantly related organisms E. coli and V. campbellii using fluorescently-tagged CadB as the reporter. We observed a heterogeneous output in E. coli, and all the V. campbellii cells produced CadB. The copy number of the pH sensor CadC in E. coli was extremely low (≤4 molecules per cell), but it was 10-fold higher in V. campbellii An increase in the CadC copy number in E. coli correlated with a decrease in heterogeneous behavior. This study demonstrated how small changes in the design of a signaling system allow a homogeneous output and, thus, adaptation of Vibrio species that rely on the CadABC-system as the only acid resistance system.Importance Acid resistance is an important property of bacteria, such as Escherichia coli, to survive acidic environments like the human gastrointestinal tract. E. coli possess both passive and inducible acid resistance systems to counteract acidic environments. Thus, E. coli evolved sophisticated signaling systems to sense and appropriately respond to environmental acidic stress by regulating the activity of its three inducible acid resistance systems. One of these systems is the Cad system that is only induced under moderate acidic stress in a lysine-rich environment by the pH-responsive transcriptional regulator CadC. The significance of our research is in identifying the molecular design of the Cad systems in different Proteobacteria and their target expression noise at single cell level during acid stress conditions.
Collapse
Affiliation(s)
- Sophie Brameyer
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Elisabeth Hoyer
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sebastian Bibinger
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Korinna Burdack
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
12
|
Pienaar JA, Singh A, Barnard TG. Membrane modification as a survival mechanism through gastric fluid in non-acid adapted enteropathogenic Escherichia coli (EPEC). Microb Pathog 2020; 144:104180. [PMID: 32240767 DOI: 10.1016/j.micpath.2020.104180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/04/2023]
Abstract
In bacterial cells, the cytoplasmic membrane forms a barrier between the environment and the cell's cytoplasm. This barrier regulates which substances (and the amount) that leave and enter the cell, to maintain homeostasis between the cytoplasm and the external environment. One of the mechanisms employed to maintain structure and functionality during exposure to environmental stress is adaptation of the membrane lipids. The aim of this study was to investigate membrane alteration as a possible survival method of non-acid adapted enteropathogenic Escherichia coli (E. coli) (EPEC) (as could be found in contaminated water or unprocessed food) through simulated gastric fluid (SGF). Enteropathogenic E. coli was grown in nutrient-rich media and then exposed to SGF of various pH (1.5, 2.5, 3.5, or 4.5) for 180 min. Flow cytometry was utilised to examine membrane integrity; and morphological changes were investigated using transmission electron microscopy (TEM). Gas chromatography-mass spectrometry (GC-MS) was used to assess the membrane lipid composition. The results of this study showed that SGF treatment caused membrane damage, as well as cell wall thickening and irregular plasma membranes. The morphological changes were accompanied by membrane lipid changes indicative of decreased membrane fluidity and increased rigidity. The findings suggest that non-acid adapted EPEC can perceive pH change in the environment and adapt accordingly.
Collapse
Affiliation(s)
- Jennifer Anne Pienaar
- Department of Biomedical Technology, University of Johannesburg, Doornfontein, South Africa; Water and Health Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Atheesha Singh
- Water and Health Research Centre, University of Johannesburg, Doornfontein, South Africa.
| | - Tobias George Barnard
- Water and Health Research Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
13
|
The role of bacterial cell envelope structures in acid stress resistance in E. coli. Appl Microbiol Biotechnol 2020; 104:2911-2921. [PMID: 32067056 DOI: 10.1007/s00253-020-10453-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Acid resistance (AR) is an indispensable mechanism for the survival of neutralophilic bacteria, such as Escherichia coli (E. coli) strains that survive in the gastrointestinal tract. E. coli acid tolerance has been extensively studied during past decades, with most studies focused on gene regulation and mechanisms. However, the role of cell membrane structure in the context of acid stress resistance has not been discussed in depth. Here, we provide a comprehensive review of the roles and mechanisms of the E. coli cell envelope from different membrane components, such as membrane proteins, fatty acids, chaperones, and proton-consuming systems, and particularly focus on the innovative effects revealed by recent studies. We hope that the information guides us to understand the bacterial survival strategies under acid stress and to further explore the AR regulatory mechanisms to prevent or treat E. coli and other related Gram-negative bacteria infection, or to enhance the AR of engineering E. coli.
Collapse
|
14
|
Alvarado A, Behrens W, Josenhans C. Protein Activity Sensing in Bacteria in Regulating Metabolism and Motility. Front Microbiol 2020; 10:3055. [PMID: 32010106 PMCID: PMC6978683 DOI: 10.3389/fmicb.2019.03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied. For instance, the sensing of internal or external cues can also be mediated by changes in protein conformation, which can either be implicated in enzymatic reactions, transport channel formation or other important cellular functions. These activities can then feed into pathways of characterized kinases, which translocate the information to the DNA or other response units. This type of bacterial sensory activity has previously been termed protein activity sensing. In this review, we highlight the recent findings about this non-canonical sensory mechanism, as well as its involvement in metabolic functions and bacterial motility. Additionally, we explore some of the specific proteins and protein-protein interactions that mediate protein activity sensing and their downstream effects. The complex sensory activities covered in this review are important for bacterial navigation and gene regulation in their dynamic environment, be it host-associated, in microbial communities or free-living.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine Josenhans
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
15
|
Bañares AB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Chung WJ. A pH-responsive genetic sensor for the dynamic regulation of D-xylonic acid accumulation in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:2097-2108. [PMID: 31900554 DOI: 10.1007/s00253-019-10297-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
The xylose oxidative pathway (XOP) is continuously gaining prominence as an alternative for the traditional pentose assimilative pathways in prokaryotes. It begins with the oxidation of D-xylose to D-xylonic acid, which is further converted to α-ketoglutarate or pyruvate + glycolaldehyde through a series of enzyme reactions. The persistent drawback of XOP is the accumulation of D-xylonic acid intermediate that causes culture media acidification. This study addresses this issue through the development of a novel pH-responsive synthetic genetic controller that uses a modified transmembrane transcription factor called CadCΔ. This genetic circuit was tested for its ability to detect extracellular pH and to control the buildup of D-xylonic acid in the culture media. Results showed that the pH-responsive genetic sensor confers dynamic regulation of D-xylonic acid accumulation, which adjusts with the perturbation of culture media pH. This is the first report demonstrating the use of a pH-responsive transmembrane transcription factor as a transducer in a synthetic genetic circuit that was designed for XOP. This may serve as a benchmark for the development of other genetic controllers for similar pathways that involve acidic intermediates.
Collapse
Affiliation(s)
- Angelo B Bañares
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea.
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
16
|
Minimal exposure of lipid II cycle intermediates triggers cell wall antibiotic resistance. Nat Commun 2019; 10:2733. [PMID: 31227716 PMCID: PMC6588590 DOI: 10.1038/s41467-019-10673-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Cell wall antibiotics are crucial for combatting the emerging wave of resistant bacteria. Yet, our understanding of antibiotic action is limited, as many strains devoid of all resistance determinants display far higher antibiotic tolerance in vivo than suggested by the antibiotic-target binding affinity in vitro. To resolve this conflict, here we develop a comprehensive theory for the bacterial cell wall biosynthetic pathway and study its perturbation by antibiotics. We find that the closed-loop architecture of the lipid II cycle of wall biosynthesis features a highly asymmetric distribution of pathway intermediates, and show that antibiotic tolerance scales inversely with the abundance of the targeted pathway intermediate. We formalize this principle of minimal target exposure as intrinsic resistance mechanism and predict how cooperative drug-target interactions can mitigate resistance. The theory accurately predicts the in vivo efficacy for various cell wall antibiotics in different Gram-positive bacteria and contributes to a systems-level understanding of antibiotic action.
Collapse
|
17
|
Jung K, Fabiani F, Hoyer E, Lassak J. Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biol 2019; 8:rsob.180023. [PMID: 29695618 PMCID: PMC5936718 DOI: 10.1098/rsob.180023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Every living cell possesses numerous transmembrane signalling systems that receive chemical and physical stimuli from the environment and transduce this information into an intracellular signal that triggers some form of cellular response. As unicellular organisms, bacteria require these systems for survival in rapidly changing environments. The receptors themselves act as ‘sensory organs’, while subsequent signalling circuits can be regarded as forming a ‘neural network’ that is involved in decision making, adaptation and ultimately in ensuring survival. Bacteria serve as useful biosensors in industry and clinical diagnostics, in addition to producing drugs for therapeutic purposes. Therefore, there is a great demand for engineered bacterial strains that contain transmembrane signalling systems with high molecular specificity, sensitivity and dose dependency. In this review, we address the complexity of transmembrane signalling systems and discuss principles to rewire receptors and their signalling outputs.
Collapse
Affiliation(s)
- Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Florian Fabiani
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Elisabeth Hoyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
18
|
Mansouri M, Nounou MN, Nounou HN. Multiscale Kernel PLS-Based Exponentially Weighted-GLRT and Its Application to Fault Detection. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2019. [DOI: 10.1109/tetci.2017.2769111] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Brameyer S, Rösch TC, El Andari J, Hoyer E, Schwarz J, Graumann PL, Jung K. DNA-binding directs the localization of a membrane-integrated receptor of the ToxR family. Commun Biol 2019; 2:4. [PMID: 30740540 PMCID: PMC6320335 DOI: 10.1038/s42003-018-0248-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022] Open
Abstract
All living cells have a large number of proteins that are anchored with one transmembrane helix in the cytoplasmic membrane. Almost nothing is known about their spatiotemporal organization in whole cells. Here we report on the localization and dynamics of one representative, the pH sensor and transcriptional regulator CadC in Escherichia coli. Fluorophore-tagged CadC was detectable as distinct cluster only when the receptor was activated by external stress, which results in DNA-binding. Clusters immediately disappeared under non-stress conditions. CadC variants that mimic the active state of CadC independent of environmental stimuli corroborated the correlation between CadC clustering and binding to the DNA, as did altering the number or location of the DNA-binding site(s) in whole cells. These studies reveal a novel diffusion-and-capture mechanism to organize a membrane-integrated receptor dependent on the DNA in a rod-shaped bacterium.
Collapse
Affiliation(s)
- Sophie Brameyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Thomas C. Rösch
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, Marburg, Germany
| | - Jihad El Andari
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, Marburg, Germany
| | - Elisabeth Hoyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Julia Schwarz
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Peter L. Graumann
- LOEWE SYNMIKRO, LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, Marburg, Germany
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
20
|
Mosayebi R, Bahrami F. A modified particle swarm optimization algorithm for parameter estimation of a biological system. Theor Biol Med Model 2018; 15:17. [PMID: 30392468 PMCID: PMC6217775 DOI: 10.1186/s12976-018-0089-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/15/2018] [Indexed: 11/13/2022] Open
Abstract
Background Mathematical modeling has achieved a broad interest in the field of biology. These models represent the associations among the metabolism of the biological phenomenon with some mathematical equations such that the observed time course profile of the biological data fits the model. However, the estimation of the unknown parameters of the model is a challenging task. Many algorithms have been developed for parameter estimation, but none of them is entirely capable of finding the best solution. The purpose of this paper is to develop a method for precise estimation of parameters of a biological model. Methods In this paper, a novel particle swarm optimization algorithm based on a decomposition technique is developed. Then, its root mean square error is compared with simple particle swarm optimization, Iterative Unscented Kalman Filter and Simulated Annealing algorithms for two different simulation scenarios and a real data set related to the metabolism of CAD system. Results Our proposed algorithm results in 54.39% and 26.72% average reduction in root mean square error when applied to the simulation and experimental data, respectively. Conclusion The results show that the metaheuristic approaches such as the proposed method are very wise choices for finding the solution of nonlinear problems with many unknown parameters.
Collapse
Affiliation(s)
- Raziyeh Mosayebi
- School of Electrical and computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Prajapat MK, Ribeiro AS. Added value of autoregulation and multi-step kinetics of transcription initiation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181170. [PMID: 30564410 PMCID: PMC6281912 DOI: 10.1098/rsos.181170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Bacterial gene expression regulation occurs mostly during transcription, which has two main rate-limiting steps: the close complex formation, when the RNA polymerase binds to an active promoter, and the subsequent open complex formation, after which it follows elongation. Tuning these steps' kinetics by the action of e.g. transcription factors, allows for a wide diversity of dynamics. For example, adding autoregulation generates single-gene circuits able to perform more complex tasks. Using stochastic models of transcription kinetics with empirically validated parameter values, we investigate how autoregulation and the multi-step transcription initiation kinetics of single-gene autoregulated circuits can be combined to fine-tune steady state mean and cell-to-cell variability in protein expression levels, as well as response times. Next, we investigate how they can be jointly tuned to control complex behaviours, namely, time counting, switching dynamics and memory storage. Overall, our finding suggests that, in bacteria, jointly regulating a single-gene circuit's topology and the transcription initiation multi-step dynamics allows enhancing complex task performance.
Collapse
Affiliation(s)
- Mahendra Kumar Prajapat
- Laboratory of Biosystem Dynamics, Faculty of Biomedical Sciences and Engineering, BioMediTech Institute, Tampere University of Technology, 33101 Tampere, Finland
| | - Andre S. Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Biomedical Sciences and Engineering, BioMediTech Institute, Tampere University of Technology, 33101 Tampere, Finland
- Multi-scaled Biodata Analysis and Modelling Research Community, Tampere University of Technology, 33101 Tampere, Finland
- CA3 CTS/UNINOVA, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| |
Collapse
|
22
|
Carriel D, Simon Garcia P, Castelli F, Lamourette P, Fenaille F, Brochier-Armanet C, Elsen S, Gutsche I. A Novel Subfamily of Bacterial AAT-Fold Basic Amino Acid Decarboxylases and Functional Characterization of Its First Representative: Pseudomonas aeruginosa LdcA. Genome Biol Evol 2018; 10:3058-3075. [PMID: 30321344 PMCID: PMC6257575 DOI: 10.1093/gbe/evy228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
Polyamines are small amino-acid derived polycations capable of binding negatively charged macromolecules. Bacterial polyamines are structurally and functionally diverse, and are mainly produced biosynthetically by pyridoxal-5-phosphate-dependent amino acid decarboxylases referred to as Lysine-Arginine-Ornithine decarboxylases (LAOdcs). In a phylogenetically limited group of bacteria, LAOdcs are also induced in response to acid stress. Here, we performed an exhaustive phylogenetic analysis of the AAT-fold LAOdcs which showcased the ancient nature of their short forms in Cyanobacteria and Firmicutes, and emergence of distinct subfamilies of long LAOdcs in Proteobacteria. We identified a novel subfamily of lysine decarboxylases, LdcA, ancestral in Betaproteobacteria and Pseudomonadaceae. We analyzed the expression of LdcA from Pseudomonas aeruginosa, and uncovered its role, intimately linked to cadaverine (Cad) production, in promoting growth and reducing persistence of this multidrug resistant human pathogen during carbenicillin treatment. Finally, we documented a certain redundancy in the function of the three main polyamines—Cad, putrescine (Put), and spermidine (Spd)—in P. aeruginosa by demonstrating the link between their intracellular level, as well as the capacity of Put and Spd to complement the growth phenotype of the ldcA mutant.
Collapse
Affiliation(s)
- Diego Carriel
- University of Grenoble Alpes, CNRS, CEA, CNRS, IBS, France.,University of Grenoble Alpes, INSERM, CEA, ERL5261 CNRS, BIG BCI, France
| | - Pierre Simon Garcia
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.,MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines, Lyon, France
| | - Florence Castelli
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - Patricia Lamourette
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - François Fenaille
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.,MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines, Lyon, France
| | - Sylvie Elsen
- University of Grenoble Alpes, INSERM, CEA, ERL5261 CNRS, BIG BCI, France
| | - Irina Gutsche
- University of Grenoble Alpes, CNRS, CEA, CNRS, IBS, France
| |
Collapse
|
23
|
Kumar A, Mathimaran A, Shrikanta AH, Govindaswamy V. Role of Partially Saturated Canthaxanthin and Ergosterol in the Survival of Aspergillus carbonarius Mutant at Extreme Acidic Condition. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Lee YH, Kim JH. Direct interaction between the transcription factors CadC and OmpR involved in the acid stress response of Salmonella enterica. J Microbiol 2017; 55:966-972. [DOI: 10.1007/s12275-017-7410-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023]
|
25
|
Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator. Sci Rep 2017; 7:1051. [PMID: 28432336 PMCID: PMC5430869 DOI: 10.1038/s41598-017-01031-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/23/2017] [Indexed: 11/08/2022] Open
Abstract
The transmembrane DNA-binding protein CadC of E. coli, a representative of the ToxR-like receptor family, combines input and effector domains for signal sensing and transcriptional activation, respectively, in a single protein, thus representing one of the simplest signalling systems. At acidic pH in a lysine-rich environment, CadC activates the transcription of the cadBA operon through recruitment of the RNA polymerase (RNAP) to the two cadBA promoter sites, Cad1 and Cad2, which are directly bound by CadC. However, the molecular details for its interaction with DNA have remained elusive. Here, we present the crystal structure of the CadC DNA-binding domain (DBD) and show that it adopts a winged helix-turn-helix fold. The interaction with the cadBA promoter site Cad1 is studied by using nuclear magnetic resonance (NMR) spectroscopy, biophysical methods and functional assays and reveals a preference for AT-rich regions. By mutational analysis we identify amino acids within the CadC DBD that are crucial for DNA-binding and functional activity. Experimentally derived structural models of the CadC-DNA complex indicate that the CadC DBD employs mainly non-sequence-specific over a few specific contacts. Our data provide molecular insights into the CadC-DNA interaction and suggest how CadC dimerization may provide high-affinity binding to the Cad1 promoter.
Collapse
|
26
|
Lorenz N, Shin JY, Jung K. Activity, Abundance, and Localization of Quorum Sensing Receptors in Vibrio harveyi. Front Microbiol 2017; 8:634. [PMID: 28458660 PMCID: PMC5394107 DOI: 10.3389/fmicb.2017.00634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Quorum sensing (QS) is a process enabling a bacterial population to communicate via small molecules called autoinducers (AIs). This intercellular communication process allows single cells to synchronize their behavior within a population. The marine bacterium Vibrio harveyi ATCC BAA-1116 channels the information of three AI signals into one QS cascade. Three receptors perceive these AIs, the hybrid histidine kinases LuxN, Lux(P)Q and CqsS, to transduce the information to the histidine phosphotransfer (HPt) protein LuxU via phosphorelay, and finally to the response regulator LuxO. Hence, the level of phosphorylated LuxO depends on the AI concentrations. The phosphorylated LuxO (P-LuxO) controls the expression of small regulatory RNAs (sRNAs), which together with the RNA chaperon Hfq, destabilize the transcript of the master regulator luxR. LuxR is responsible for the induction and repression of several genes (e.g., for bioluminescence, exoprotease and siderophore production). In vivo studies with various mutants have demonstrated that the ratio between kinase and phosphatase activities of the individual QS receptors and therefore the P-LuxO/LuxO ratio is crucial not only for the output strength but also for the degree of noise. This study was undertaken to better understand the inherent design principles of this complex signaling cascade, which allows sensing and integration of different signals, but also the differentiated output in individual cells. Therefore, we quantitatively analyzed not only the enzymatic activities, but also the abundance and localization of the three QS receptors. We found that LuxN presents the highest capacity to phosphorylate LuxU, while the phosphatase activity was comparable to LuxQ and CqsS in vitro. In whole cells the copy number of LuxN was higher than that of LuxQ and CqsS, and further increased in the late exponential growth phase. Microscopy experiments indicate that LuxN and LuxQ form independent clusters. Altogether, these results suggest, that the three QS receptors act in parallel, and V. harveyi has developed with LuxN the most dynamic sensing range for HAI-1, the species-specific AI.
Collapse
Affiliation(s)
- Nicola Lorenz
- Microbiology, Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Ludwig-Maximilians-Universität MünchenMartinsried, Germany
| | - Jae Yen Shin
- Microbiology, Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Ludwig-Maximilians-Universität MünchenMartinsried, Germany
| | - Kirsten Jung
- Microbiology, Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Ludwig-Maximilians-Universität MünchenMartinsried, Germany
| |
Collapse
|
27
|
Piepenbreier H, Fritz G, Gebhard S. Transporters as information processors in bacterial signalling pathways. Mol Microbiol 2017; 104:1-15. [DOI: 10.1111/mmi.13633] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Hannah Piepenbreier
- LOEWE Center for Synthetic Microbiology; Philipps-University Marburg; Germany
| | - Georg Fritz
- LOEWE Center for Synthetic Microbiology; Philipps-University Marburg; Germany
| | - Susanne Gebhard
- Milner Centre for Evolution, Department of Biology and Biochemistry; University of Bath; UK
| |
Collapse
|
28
|
Lorenz N, Reiger M, Toro-Nahuelpan M, Brachmann A, Poettinger L, Plener L, Lassak J, Jung K. Identification and Initial Characterization of Prophages in Vibrio campbellii. PLoS One 2016; 11:e0156010. [PMID: 27214518 PMCID: PMC4877103 DOI: 10.1371/journal.pone.0156010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
Phages are bacteria targeting viruses and represent the most abundant biological entities on earth. Marine environments are exceptionally rich in bacteriophages, harboring a total of 4x1030 viruses. Nevertheless, marine phages remain poorly characterized. Here we describe the identification of intact prophage sequences in the genome of the marine γ-proteobacterium Vibrio campbellii ATCC BAA-1116 (formerly known as V. harveyi ATCC BAA-1116), which presumably belong to the family of Myoviridae. One prophage was found on chromosome I and shows significant similarities to the previously identified phage ΦHAP-1. The second prophage region is located on chromosome II and is related to Vibrio phage kappa. Exposure of V. campbellii to mitomycin C induced the lytic cycle of two morphologically distinct phages and, as expected, extracellular DNA from induced cultures was found to be specifically enriched for the sequences previously identified as prophage regions. Heat stress (50°C, 30 min) was also found to induce phage release in V. campbellii. Notably, promoter activity of two representative phage genes indicated heterogeneous phage induction within the population.
Collapse
Affiliation(s)
- Nicola Lorenz
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Matthias Reiger
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Mauricio Toro-Nahuelpan
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Andreas Brachmann
- Department of Biology I, Genetics, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Lisa Poettinger
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Laure Plener
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- * E-mail:
| |
Collapse
|
29
|
Lassak J, Wilson DN, Jung K. Stall no more at polyproline stretches with the translation elongation factors EF-P and IF-5A. Mol Microbiol 2015; 99:219-35. [PMID: 26416626 DOI: 10.1111/mmi.13233] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Abstract
Synthesis of polyproline proteins leads to translation arrest. To overcome this ribosome stalling effect, bacteria depend on a specialized translation elongation factor P (EF-P), being orthologous and functionally identical to eukaryotic/archaeal elongation factor e/aIF-5A (recently renamed 'EF5'). EF-P binds to the stalled ribosome between the peptidyl-tRNA binding and tRNA-exiting sites, and stimulates peptidyl-transferase activity, thus allowing translation to resume. In their active form, both EF-P and e/aIF-5A are post-translationally modified at a positively charged residue, which protrudes toward the peptidyl-transferase center when bound to the ribosome. While archaeal and eukaryotic IF-5A strictly depend on (deoxy-) hypusination (hypusinylation) of a conserved lysine, bacteria have evolved diverse analogous modification strategies to activate EF-P. In Escherichia coli and Salmonella enterica a lysine is extended by β-lysinylation and subsequently hydroxylated, whereas in Pseudomonas aeruginosa and Shewanella oneidensis an arginine in the equivalent position is rhamnosylated. Inactivation of EF-P, or the corresponding modification systems, reduces not only bacterial fitness, but also impairs virulence. Here, we review the function of EF-P and IF-5A and their unusual posttranslational protein modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, D-82152, Martinsried, Germany
| | - Daniel N Wilson
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, D-82152, Martinsried, Germany
| |
Collapse
|
30
|
Kim HC, Kim KS, Kang TJ, Choi JH, Song JJ, Choi YH, Kim BG, Kim DM. Implementing bacterial acid resistance into cell-free protein synthesis for buffer-free expression and screening of enzymes. Biotechnol Bioeng 2015; 112:2630-5. [PMID: 26059009 DOI: 10.1002/bit.25671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/23/2015] [Accepted: 06/01/2015] [Indexed: 01/02/2023]
Abstract
Cell-free protein synthesis utilizes translational machinery isolated from the cells for in vitro expression of template genes. Because it produces proteins without gene cloning and cell cultivation steps, cell-free protein synthesis can be used as a versatile platform for high-throughput expression of enzyme libraries. Furthermore, the open nature of cell-free protein synthesis allows direct integration of enzyme synthesis with subsequent screening steps. However, the presence of high concentration of chemical buffers in the conventional reaction mixture makes it difficult to streamline cell-free protein synthesis with pH-based assay of the synthesized enzymes. In this study, we have implemented an enzyme-assisted bacterial acid resistance mechanism into an Escherichia coli (E.coli) extract-based cell-free protein synthesis system in place of chemical buffers. When deployed in the reaction mixture for cell-free synthesis of enzymes, through proton-consuming conversion of glutamate into γ-aminobutyric acid (GABA), an engineered glutamate decarboxylase (GADβ) was able to maintain the pH of reaction mixture during enzyme synthesis. Because the reaction mixture becomes free of buffering capacity upon the depletion of glutamate, synthesized enzyme could be directly assayed without purification steps. The designed method was successfully applied to the screening of mutant library of sialyltransferase genes to identify mutants with improved enzymatic activity.
Collapse
Affiliation(s)
- Ho-Cheol Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 305-764, Korea
| | - Kwang-Soo Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 305-764, Korea
| | - Taek-Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Korea
| | - Jong Hyun Choi
- Industrial Microbiology & Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Korea
| | - Jae Jun Song
- Industrial Microbiology & Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Korea
| | - Yun Hee Choi
- Interdisciplinary Program for Biochemical Engineering and Biotechnology and School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology and School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 305-764, Korea.
| |
Collapse
|
31
|
Buchner S, Schlundt A, Lassak J, Sattler M, Jung K. Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli. J Mol Biol 2015; 427:2548-2561. [DOI: 10.1016/j.jmb.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
32
|
The phosphorylation flow of the Vibrio harveyi quorum-sensing cascade determines levels of phenotypic heterogeneity in the population. J Bacteriol 2015; 197:1747-56. [PMID: 25755191 DOI: 10.1128/jb.02544-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Quorum sensing (QS) is a communication process that enables a bacterial population to coordinate and synchronize specific behaviors. The bioluminescent marine bacterium Vibrio harveyi integrates three autoinducer (AI) signals into one quorum-sensing cascade comprising a phosphorelay involving three hybrid sensor kinases: LuxU; LuxO, an Hfq/small RNA (sRNA) switch; and the transcriptional regulator LuxR. Using a new set of V. harveyi mutants lacking genes for the AI synthases and/or sensors, we assayed the activity of the quorum-sensing cascade at the population and single-cell levels, with a specific focus on signal integration and noise levels. We found that the ratios of kinase activities to phosphatase activities of the three sensors and, hence, the extent of phosphorylation of LuxU/LuxO are important not only for the signaling output but also for the degree of noise in the system. The pools of phosphorylated LuxU/LuxO per cell directly determine the amounts of sRNAs produced and, consequently, the copy number of LuxR, generating heterogeneous quorum-sensing activation at the single-cell level. We conclude that the ability to drive the heterogeneous expression of QS-regulated genes in V. harveyi is an inherent feature of the architecture of the QS cascade. IMPORTANCE V. harveyi possesses one of the most complex quorum-sensing (QS) cascades known, using three different autoinducers (AIs) to control the induction of, e.g., bioluminescence, virulence factors, and biofilm and exoprotease production. We constructed various V. harveyi mutants to study the impact of each component and subsystem of the QS signaling cascade on QS activation at the population and single-cell levels. We found that the output was homogeneous only in the presence of all AIs. In the absence of any one AI, QS activation varied from cell to cell, resulting in phenotypic heterogeneity. This study elucidates a molecular design principle which enables a tightly integrated signaling cascade to control the expression of diverse phenotypes within a genetically homogeneous population.
Collapse
|
33
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
34
|
Lindner E, White SH. Topology, dimerization, and stability of the single-span membrane protein CadC. J Mol Biol 2014; 426:2942-57. [PMID: 24946151 DOI: 10.1016/j.jmb.2014.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Abstract
Under acid stress, Escherichia coli induce expression of CadA (lysine decarboxylase) and CadB (lysine/cadaverine antiporter) in a lysine-rich environment. The ToxR-like transcriptional activator CadC controls expression of the cadBA operon. Using a novel signal peptidase I (SPase I) cleavage assay, we show that CadC is a type II single-span membrane protein (S-SMP) with a cytoplasmic DNA-binding domain and a periplasmic sensor domain. We further show that, as long assumed, dimerization of the sensor domain is required for activating the cadBA operon. We prove this using a chimera in which the periplasmic domain of RodZ-a type II membrane protein involved in the maintenance of the rod shape of E. coli-replaces the CadC sensor domain. Because the RodZ periplasmic domain cannot dimerize, the chimera cannot activate the operon. However, replacement of the transmembrane (TM) domain of the chimera with the glycophorin A TM domain causes intramembrane dimerization and consequently operon activation. Using a low-expression protocol that eliminates extraneous TM helix dimerization signals arising from protein over-expression, we enhanced dramatically the dynamic range of the β-galactosidase assay for cadBA activation. Consequently, the strength of the intramembrane dimerization of the glycophorin A domain could be compared quantitatively with the strength of the much stronger periplasmic dimerization of CadC. For the signal peptidase assay, we inserted an SPase I cleavage site (AAA or AQA) at the periplasmic end of the TM helix. Cleavage occurred with high efficiency for all TM and periplasmic domains tested, thus eliminating the need for the cumbersome spheroplast-proteinase K method for topology determinations.
Collapse
Affiliation(s)
- Eric Lindner
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA
| | - Stephen H White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA.
| |
Collapse
|
35
|
Heermann R, Zigann K, Gayer S, Rodriguez-Fernandez M, Banga JR, Kremling A, Jung K. Dynamics of an interactive network composed of a bacterial two-component system, a transporter and K+ as mediator. PLoS One 2014; 9:e89671. [PMID: 24586952 PMCID: PMC3938482 DOI: 10.1371/journal.pone.0089671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
KdpD and KdpE form a histidine kinase/response regulator system that senses K+ limitation and induces the kdpFABC operon, which encodes a high-affinity K+ uptake complex. To define the primary stimulus perceived by KdpD we focused in this study on the dynamics of the Kdp response. Escherichia coli cells were subjected to severe K+ limitation, and all relevant parameters of the Kdp response, i.e., levels of kdpFABC transcripts and KdpFABC proteins, as well as extra- and intracellular K+ concentrations, were quantitatively analysed over time (0 to 180 min). Unexpectedly, induction of kdpFABC was found to follow a non-monotonic time-course. To interpret this unusual behaviour, a mathematical model that adequately captures the dynamics of the Kdp system was established and used for simulations. We found a strong correlation between KdpD/KdpE activation and the intracellular K+ concentration, which is influenced by the uptake of K+ via the KdpFABC complex. Based on these results a model is proposed in which KdpD/KdpE phosphorylation is inversely correlated with the intracellular K+ concentration. To corroborate this hypothesis an isogenic mutant that produces a defective KdpFABC complex, and the trans-complemented mutant that expresses the KtrAB high-affinity K+ uptake system of Vibrio alginolyticus were quantitatively analysed. Experimental data and simulations for the mutants consistently support the tight correlation between KdpD/KdpE activation and the intracellular K+ concentration. This study presents a striking example of the non-intuitive dynamics of a functional unit comprising signalling proteins and a transporter with K+ as mediator.
Collapse
Affiliation(s)
- Ralf Heermann
- Center for Integrated Protein Science Munich (CiPSM) at the Department Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Katja Zigann
- Center for Integrated Protein Science Munich (CiPSM) at the Department Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Stefan Gayer
- Fachgebiet für Systembiotechnologie, Technische Universität München, Garching b. München, Germany
| | | | - Julio R. Banga
- BioProcess Engineering Group, IIM-CSIC, Spanish Council for Scientific Research, Vigo, Spain
| | - Andreas Kremling
- Fachgebiet für Systembiotechnologie, Technische Universität München, Garching b. München, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich (CiPSM) at the Department Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- * E-mail:
| |
Collapse
|
36
|
Fritz G, Megerle JA, Westermayer SA, Brick D, Heermann R, Jung K, Rädler JO, Gerland U. Single cell kinetics of phenotypic switching in the arabinose utilization system of E. coli. PLoS One 2014; 9:e89532. [PMID: 24586851 PMCID: PMC3935871 DOI: 10.1371/journal.pone.0089532] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/22/2014] [Indexed: 12/05/2022] Open
Abstract
Inducible switching between phenotypes is a common strategy of bacteria to adapt to fluctuating environments. Here, we analyze the switching kinetics of a paradigmatic inducible system, the arabinose utilization system in E. coli. Using time-lapse fluorescence microscopy of microcolonies in a microfluidic chamber, which permits sudden up- and down-shifts in the inducer arabinose, we characterize the single-cell gene expression dynamics of the araBAD operon responsible for arabinose degradation. While there is significant, inducer-dependent cell-to-cell variation in the timing of the on-switching, the off-switching triggered by sudden removal of arabinose is homogeneous and rapid. We find that rapid off-switching does not depend on internal arabinose degradation. Because the system is regulated via the internal arabinose level sensed by AraC, internal arabinose must be rapidly depleted by leakage or export from the cell, or by degradation via a non-canonical pathway. We explored whether the poorly characterized membrane protein AraJ, which is part of the arabinose regulon and has been annotated as a possible arabinose efflux protein, is responsible for rapid depletion. However, we find that AraJ is not essential for rapid switching to the off-state. We develop a mathematical model for the arabinose system, which quantitatively describes both the heterogeneous on-switching and the homogeneous off-switching. The model also predicts that mutations which disrupt the positive feedback of internal arabinose on the production of arabinose uptake proteins change the heterogeneous on-switching behavior into a homogeneous, graded response. We construct such a mutant and confirm the graded response experimentally. Taken together, our results indicate that the physiological switching behavior of this sugar utilization system is asymmetric, such that off-switching is always rapid and homogeneous, while on-switching is slow and heterogeneously timed at sub-saturating inducer levels.
Collapse
Affiliation(s)
- Georg Fritz
- Arnold Sommerfeld Center for Theoretical Physics and CeNS, Ludwig- Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science (CiPSM) at the Department of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Judith A. Megerle
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sonja A. Westermayer
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Delia Brick
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ralf Heermann
- Center for Integrated Protein Science (CiPSM) at the Department of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science (CiPSM) at the Department of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Joachim O. Rädler
- Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Gerland
- Arnold Sommerfeld Center for Theoretical Physics and CeNS, Ludwig- Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
37
|
Modeling of nonlinear biological phenomena modeled by S-systems. Math Biosci 2014; 249:75-91. [PMID: 24524881 DOI: 10.1016/j.mbs.2014.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/26/2014] [Accepted: 01/31/2014] [Indexed: 11/22/2022]
Abstract
A central challenge in computational modeling of biological systems is the determination of the model parameters. In such cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. For example, time-series dynamic genomic data can be used to develop models representing dynamic genetic regulatory networks, which can be used to design intervention strategies to cure major diseases and to better understand the behavior of biological systems. Unfortunately, biological measurements are usually highly infected by errors that hide the important characteristics in the data. Therefore, these noisy measurements need to be filtered to enhance their usefulness in practice. This paper addresses the problem of state and parameter estimation of biological phenomena modeled by S-systems using Bayesian approaches, where the nonlinear observed system is assumed to progress according to a probabilistic state space model. The performances of various conventional and state-of-the-art state estimation techniques are compared. These techniques include the extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and the developed variational Bayesian filter (VBF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the enzyme CadA, the model cadBA, the cadaverine Cadav and the lysine Lys for a model of the Cad System in Escherichia coli (CSEC)) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of the number of estimated model parameters on the accuracy and convergence of these techniques is also assessed. The results of both comparative studies show that the UKF provides a higher accuracy than the EKF due to the limited ability of EKF to accurately estimate the mean and covariance matrix of the estimated states through lineralization of the nonlinear process model. The results also show that the VBF provides a relative improvement over PF. This is because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the VBF yields an optimum choice of the sampling distribution, which also utilizes the observed data. The results of the second comparative study show that, for all techniques, estimating more model parameters affects the estimation accuracy as well as the convergence of the estimated states and parameters. The VBF, however, still provides advantages over other methods with respect to estimation accuracy as well convergence.
Collapse
|
38
|
New Insights into the Interplay Between the Lysine Transporter LysP and the pH Sensor CadC in Escherichia Coli. J Mol Biol 2014; 426:215-29. [DOI: 10.1016/j.jmb.2013.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 11/20/2022]
|
39
|
Meskin N, Nounou H, Nounou M, Datta A. Parameter estimation of biological phenomena: an unscented Kalman filter approach. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:537-543. [PMID: 23929876 DOI: 10.1109/tcbb.2013.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recent advances in high-throughput technologies for biological data acquisition have spurred a broad interest in the construction of mathematical models for biological phenomena. The development of such mathematical models relies on the estimation of unknown parameters of the system using the time-course profiles of different metabolites in the system. One of the main challenges in the parameter estimation of biological phenomena is the fact that the number of unknown parameters is much more than the number of metabolites in the system. Moreover, the available metabolite measurements are corrupted by noise. In this paper, a new parameter estimation algorithm is developed based on the stochastic estimation framework for nonlinear systems, namely the unscented Kalman filter (UKF). A new iterative UKF algorithm with covariance resetting is developed in which the UKF algorithm is applied iteratively to the available noisy time profiles of the metabolites. The proposed estimation algorithm is applied to noisy time-course data synthetically produced from a generic branched pathway as well as real time-course profile for the Cad system of E. coli. The simulation results demonstrate the effectiveness of the proposed scheme.
Collapse
Affiliation(s)
- N Meskin
- Department, Qatar University, Doha, Qatar.
| | | | | | | |
Collapse
|
40
|
Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN, Jung K. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 2012; 339:82-5. [PMID: 23239623 DOI: 10.1126/science.1228985] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Translation elongation factor P (EF-P) is critical for virulence in bacteria. EF-P is present in all bacteria and orthologous to archaeal and eukaryotic initiation factor 5A, yet the biological function has so far remained enigmatic. Here, we demonstrate that EF-P is an elongation factor that enhances translation of polyproline-containing proteins: In the absence of EF-P, ribosomes stall at polyproline stretches, whereas the presence of EF-P alleviates the translational stalling. Moreover, we demonstrate the physiological relevance of EF-P to fine-tune the expression of the polyproline-containing pH receptor CadC to levels necessary for an appropriate stress response. Bacterial, archaeal, and eukaryotic cells have hundreds to thousands of polyproline-containing proteins of diverse function, suggesting that EF-P and a/eIF-5A are critical for copy-number adjustment of multiple pathways across all kingdoms of life.
Collapse
Affiliation(s)
- Susanne Ude
- Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Deactivation of the E. coli pH Stress Sensor CadC by Cadaverine. J Mol Biol 2012; 424:15-27. [DOI: 10.1016/j.jmb.2012.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/12/2012] [Accepted: 08/27/2012] [Indexed: 11/15/2022]
|
42
|
Anetzberger C, Reiger M, Fekete A, Schell U, Stambrau N, Plener L, Kopka J, Schmitt-Kopplin P, Hilbi H, Jung K. Autoinducers act as biological timers in Vibrio harveyi. PLoS One 2012; 7:e48310. [PMID: 23110227 PMCID: PMC3482212 DOI: 10.1371/journal.pone.0048310] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022] Open
Abstract
Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.
Collapse
Affiliation(s)
- Claudia Anetzberger
- Munich Center for integrated Protein Science at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität Munich, Germany
| | - Matthias Reiger
- Munich Center for integrated Protein Science at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität Munich, Germany
| | - Agnes Fekete
- Technische Universität Munich, Chair of Analytical Food Chemistry, Freising, Germany
| | - Ursula Schell
- Munich Center for integrated Protein Science at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität Munich, Germany
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Nina Stambrau
- Munich Center for integrated Protein Science at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität Munich, Germany
| | - Laure Plener
- Munich Center for integrated Protein Science at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität Munich, Germany
| | - Joachim Kopka
- Max-Planck-Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Hubert Hilbi
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Kirsten Jung
- Munich Center for integrated Protein Science at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität Munich, Germany
- * E-mail:
| |
Collapse
|
43
|
Impact of Gram-negative bacteria in interaction with a complex microbial consortium on biogenic amine content and sensory characteristics of an uncooked pressed cheese. Food Microbiol 2012; 30:74-82. [DOI: 10.1016/j.fm.2011.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 11/09/2011] [Accepted: 12/06/2011] [Indexed: 11/15/2022]
|
44
|
Geisel N. Constitutive versus responsive gene expression strategies for growth in changing environments. PLoS One 2011; 6:e27033. [PMID: 22140435 PMCID: PMC3227599 DOI: 10.1371/journal.pone.0027033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/09/2011] [Indexed: 12/22/2022] Open
Abstract
Microbes respond to changing environments by adjusting gene expression levels to the demand for the corresponding proteins. Adjusting protein levels is slow, consequently cells may reach the optimal protein level only by a time when the demand changed again. It is therefore not a priori clear whether expression "on demand" is always the optimal strategy. Indeed, many genes are constitutively expressed at intermediate levels, which represents a permanent cost but provides an immediate benefit when the protein is needed. Which are the conditions that select for a responsive or a constitutive expression strategy, what determines the optimal constitutive expression level in a changing environment, and how is the fitness of the two strategies affected by gene expression noise? Based on an established model of the lac- and gal-operon expression dynamics, we study the fitness of a constitutive and a responsive expression strategy in time-varying environments. We find that the optimal constitutive expression level differs from the average demand for the gene product and from the average optimal expression level; depending on the shape of the growth rate function, the optimal expression level either provides intermediate fitness in all environments, or maximizes fitness in only one of them. We find that constitutive expression can provide higher fitness than responsive expression even when regulatory machinery comes at no cost, and we determine the minimal response rate necessary for "expression on demand" to confer a benefit. Environmental and inter-cellular noise favor the responsive strategy while reducing fitness of the constitutive one. Our results show the interplay between the demand-frequency for a gene product, the genetic response rate, and the fitness, and address important questions on the evolution of gene regulation. Some of our predictions agree with recent yeast high throughput data, for others we propose the experiments that are needed to verify them.
Collapse
Affiliation(s)
- Nico Geisel
- Departament de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
45
|
Eichinger A, Haneburger I, Koller C, Jung K, Skerra A. Crystal structure of the sensory domain of Escherichia coli CadC, a member of the ToxR-like protein family. Protein Sci 2011; 20:656-69. [PMID: 21308846 DOI: 10.1002/pro.594] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The membrane-integral transcriptional activator CadC comprises sensory and transcriptional regulatory functions within one polypeptide chain. Its C-terminal periplasmic domain, CadC(pd), is responsible for sensing of environmental pH as well as for binding of the feedback inhibitor cadaverine. Here we describe the crystal structure of CadC(pd) (residues 188-512) solved at a resolution of 1.8 Å via multiple wavelength anomalous dispersion (MAD) using a ReCl(6)(2-) derivative. CadC(pd) reveals a novel fold comprising two subdomains: an N-terminal subdomain dominated by a β-sheet in contact with three α-helices and a C-terminal subdomain formed by an eleven-membered α-helical bundle, which is oriented almost perpendicular to the helices in the first subdomain. Further to the native protein, crystal structures were also solved for its variants D471N and D471E, which show functionally different behavior in pH sensing. Interestingly, in the heavy metal derivative of CadC(pd) used for MAD phasing a ReCl(6)(2-) ion was found in a cavity located between the two subdomains. Amino acid side chains that coordinate this complex ion are conserved in CadC homologues from various bacterial species, suggesting a function of the cavity in the binding of cadaverine, which was supported by docking studies. Notably, CadC(pd) forms a homo-dimer in solution, which can be explained by an extended, albeit rather polar interface between two symmetry-related monomers in the crystal structure. The occurrence of several acidic residues in this region suggests protonation-dependent changes in the mode of dimerization, which could eventually trigger transcriptional activation by CadC in the bacterial cytoplasm.
Collapse
Affiliation(s)
- Andreas Eichinger
- Munich Center for Integrated Protein Science and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
46
|
Nowak A, Czyzowska A. In vitro synthesis of biogenic amines by Brochothrix thermosphacta isolates from meat and meat products and the influence of other microorganisms. Meat Sci 2011; 88:571-4. [DOI: 10.1016/j.meatsci.2011.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
47
|
Optimal resting-growth strategies of microbial populations in fluctuating environments. PLoS One 2011; 6:e18622. [PMID: 21525975 PMCID: PMC3078108 DOI: 10.1371/journal.pone.0018622] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments.
Collapse
|
48
|
Detection and function of an intramolecular disulfide bond in the pH-responsive CadC of Escherichia coli. BMC Microbiol 2011; 11:74. [PMID: 21486484 PMCID: PMC3096576 DOI: 10.1186/1471-2180-11-74] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/12/2011] [Indexed: 01/13/2023] Open
Abstract
Background In an acidic and lysine-rich environment Escherichia coli induces expression of the cadBA operon which encodes CadA, the lysine decarboxylase, and CadB, the lysine/cadaverine antiporter. cadBA expression is dependent on CadC, a membrane-integrated transcriptional activator which belongs to the ToxR-like protein family. Activation of CadC requires two stimuli, lysine and low pH. Whereas lysine is detected by an interplay between CadC and the lysine-specific transporter LysP, pH alterations are sensed by CadC directly. Crystal structural analyses revealed a close proximity between two periplasmic cysteines, Cys208 and Cys272. Results Substitution of Cys208 and/or Cys272 by alanine resulted in CadC derivatives that were active in response to only one stimulus, either lysine or pH 5.8. Differential in vivo thiol trapping revealed a disulfide bond between these two residues at pH 7.6, but not at pH 5.8. When Cys208 and Cys272 were replaced by aspartate and lysine, respectively, virtually wild-type behavior was restored indicating that the disulfide bond could be mimicked by a salt bridge. Conclusion A disulfide bond was found in the periplasmic domain of CadC that supports an inactive state of CadC at pH 7.6. At pH 5.8 disulfide bond formation is prevented which transforms CadC into a semi-active state. These results provide new insights into the function of a pH sensor.
Collapse
|
49
|
Coton M, Fernández M, Trip H, Ladero V, Mulder NL, Lolkema JS, Alvarez MA, Coton E. Characterization of the tyramine-producing pathway in Sporolactobacillus sp. P3J. MICROBIOLOGY-SGM 2011; 157:1841-1849. [PMID: 21415114 DOI: 10.1099/mic.0.046367-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A sporulated lactic acid bacterium (LAB) isolated from cider must was shown to harbour the tdc gene encoding tyrosine decarboxylase. The isolate belonged to the Sporolactobacillus genus and may correspond to a novel species. The ability of the tdc-positive strain, Sporolactobacillus sp. strain P3J, to produce tyramine in vitro was demonstrated by using HPLC. A 7535 bp nucleotide sequence harbouring the putative tdc gene was determined. Analysis of the obtained sequence showed that four tyramine production-associated genes [tyrosyl-tRNA synthetase (tyrS), tyrosine decarboxylase (tdc), tyrosine permease (tyrP) and Na(+)/H(+) antiporter (nhaC)] were present and were organized as already described in other tyramine-producing LAB. This operon was surrounded by genes showing the highest identities with mobile elements: a putative phage terminase and a putative transposase (downstream and upstream, respectively), suggesting that the tyramine-forming trait was acquired through horizontal gene transfer. Transcription analyses of the tdc gene cluster suggested that tyrS and nhaC are expressed as monocistronic genes while tdc would be part of a polycistronic mRNA together with tyrP. The presence of tyrosine in the culture medium induced the expression of all genes except for tyrS. A clear correlation was observed between initial tyrosine concentration and tyramine production combined with an increase in the final pH reached by the culture. Finally, cloning and expression of the tyrP gene in Lactococcus lactis demonstrated that its product catalyses the exchange of tyrosine and tyramine.
Collapse
Affiliation(s)
- Monika Coton
- ADRIA Normandie, Boulevard du 13 Juin 1944, 14310 Villers-Bocage, France
| | - María Fernández
- Instituto de Productos Lácteos de Asturias, CSIC, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - Hein Trip
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias, CSIC, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - Niels L Mulder
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Juke S Lolkema
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Miguel A Alvarez
- Instituto de Productos Lácteos de Asturias, CSIC, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - Emmanuel Coton
- ADRIA Normandie, Boulevard du 13 Juin 1944, 14310 Villers-Bocage, France
| |
Collapse
|
50
|
Haneburger I, Eichinger A, Skerra A, Jung K. New insights into the signaling mechanism of the pH-responsive, membrane-integrated transcriptional activator CadC of Escherichia coli. J Biol Chem 2011; 286:10681-9. [PMID: 21216950 DOI: 10.1074/jbc.m110.196923] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-integrated transcriptional regulator CadC of Escherichia coli activates expression of the cadBA operon at low external pH with concomitantly available lysine, providing adaptation to mild acidic stress. CadC is a representative of the ToxR-like proteins that combine sensory, signal transduction, and DNA-binding activities within a single polypeptide. Although several ToxR-like regulators such as CadC, as well as the main regulator of Vibrio cholerae virulence, ToxR itself, which activate gene expression at acidic pH, have been intensively investigated, their molecular activation mechanism is still unclear. In this study, a structure-guided mutational analysis was performed to elucidate the mechanism by which CadC detects acidification of the external milieu. Thus, a cluster of negatively charged amino acids (Asp-198, Asp-200, Glu-461, Glu-468, and Asp-471) was found to be crucial for pH detection. These amino acids form a negatively charged patch on the surface of the periplasmic domain of CadC that stretches across its two subdomains. The results of different combinations of amino acid replacements within this patch indicated that the N-terminal subdomain integrates and transduces the signals coming from both subdomains to the transmembrane domain. Alterations in the phospholipid composition did not influence pH-dependent cadBA expression, and therefore, interplay of the acidic surface patch with the negatively charged headgroups is unlikely. Models are discussed according to which protonation of these acidic amino acid side chains reduces repulsive forces between the two subdomains and/or between two monomers within a CadC dimer and thereby enables receptor activation upon lowering of the environmental pH.
Collapse
Affiliation(s)
- Ina Haneburger
- Center of Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|