1
|
Lv HW, Tang JG, Wei B, Zhu MD, Zhang HW, Zhou ZB, Fan BY, Wang H, Li XN. Bioinformatics assisted construction of the link between biosynthetic gene clusters and secondary metabolites in fungi. Biotechnol Adv 2025; 81:108547. [PMID: 40024584 DOI: 10.1016/j.biotechadv.2025.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Fungal secondary metabolites are considered as important resources for drug discovery. Despite various methods being employed to facilitate the discovery of new fungal secondary metabolites, the trend of identifying novel secondary metabolites from fungi is inevitably slowing down. Under laboratory conditions, the majority of biosynthetic gene clusters, which store information for secondary metabolites, remain inactive. Therefore, establishing the link between biosynthetic gene clusters and secondary metabolites would contribute to understanding the genetic logic underlying secondary metabolite biosynthesis and alleviating the current challenges in discovering novel natural products. Bioinformatics methods have garnered significant attention due to their powerful capabilities in data mining and analysis, playing a crucial role in various aspects. Thus, we have summarized successful cases since 2016 in which bioinformatics methods were utilized to establish the link between fungal biosynthetic gene clusters and secondary metabolites, focusing on their biosynthetic gene clusters and associated secondary metabolites, with the goal of aiding the field of natural product discovery.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China; School of Pharmacy, Youjiang Medical University for Nationalities, Baise, PR China
| | - Jia-Gui Tang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China
| | - Bin Wei
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hang Zhou, PR China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, PR China
| | - Bo-Yi Fan
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hang Zhou, PR China.
| |
Collapse
|
2
|
Wang D, Zhang T, Deng Z, Xie XS, Bao AL, Chen W, Li W, Li SS, Tang X, Yan YK. Preparation, Antifungal Activity Evaluation, and Mechanistic Studies of Unique and Structurally Novel Pyrazole-Heterocyclic-Amide Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2332-2341. [PMID: 39834227 DOI: 10.1021/acs.jafc.4c10490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thirty-six novel pyrazole-heterocyclic-amide analogues were designed, synthesized, and characterized. The bioassay results showed that most target compounds exhibited good fungicidal activities against Rhizoctonia solani, Gibberella zeae, Pseudoperonospora cubensis, Helminthosporium maydis, and Coniothyrium diplodiella at 20 μg/mL. Compounds 6d, 6f, 6l, and 6j possessed better fungicidal activities than the commercial fungicide prochloraz against H. maydis. Their half maximal effective concentration (EC50) values were 0.47, 0.26, 0.58, and 0.69 μg/mL, respectively, and the EC50 value of prochloraz was 0.77 μg/mL. Furthermore, the inhibitory activities for the bioactive compounds were determined against sterol 14α-demethylase (CYP51), the results displayed that they had prominent activities, compounds 6d, 6f, 6l, and 6j also showed better inhibitory activities than prochloraz against CYP51, their half maximal inhibitory concentration (IC50) values were 0.543, 0.29, 0.77, 0.66, and 0.86 μg/mL, respectively. The results of molecular dynamics simulations exhibited that compound 6f displayed stronger affinity to CYP51 than prochloraz, and estimated ΔGbind values of -44.9 and -37.2 kcal/mol were found for 6f and prochloraz, respectively.
Collapse
Affiliation(s)
- Deyuan Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tingting Zhang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Ziquan Deng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Xian-Song Xie
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Ai-Ling Bao
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Wenrui Chen
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Weiyi Li
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Ying-Kun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
3
|
Shyamlal BK, Mahajan AT, Kumar V, Gupta A, Shrivastava Ronin R, Mathur M, Sen J, Chaudhary S. N-Arylsulfonylated C-Homoaporphines as a New Class of Antiplatelet and Antimicrobial Agents. ACS Med Chem Lett 2025; 16:116-125. [PMID: 39811136 PMCID: PMC11726367 DOI: 10.1021/acsmedchemlett.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
A series of novel N-arylsulfonylated C-homoaporphine alkaloids were synthesized under microwave irradiation and evaluated for their in vitro antiplatelet and antimicrobial activities. Among the series, compounds 12a, 12c, 12e, 12f, 12h, 12j, 12k, 12m, and 12o demonstrated highly potent (∼3-fold) platelet aggregation inhibitory activity than acetylsalicylic acid (IC50 = 21.34 μg/mL). Several N-arylsulfonylated C-homoaporphines also exhibited promising antimicrobial activity against various strains, including Macrophoma phaseolina, Trichoderma reesei, and Aspergillus niger, with minimum inhibitory concentrations (MIC) of 12.5, 6.25, and 12.5 μg/mL, respectively, comparable to Ketoconazole [MIC = 12.5 μg/mL (MP and AN strain); 6.25 μg/mL (TR strain)]. 12h showed potent antibacterial activity (IC50 = 6.25 μg/mL against Escherichia coli and Bacillus subtilis) compared to Ampicillin (IC50 = 12.5 μg/mL). After thorough structure-activity relationship (SAR) and in silico studies, C-homoaporphines were identified as a novel class of antiplatelet and antimicrobial agents.
Collapse
Affiliation(s)
- Bharti
Rajesh Kumar Shyamlal
- Laboratory
of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Amol T. Mahajan
- Laboratory
of Bioactive Heterocycles and Catalysis (BHC lab), Department of Medicinal
Chemistry, National Institute of Pharmaceutical
Education and Research-Raebareli (Transit Campus), Bijnor−Sisendi Road, Near
CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Vikash Kumar
- Laboratory
of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Aarohi Gupta
- Laboratory
of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
- Department
of Chemistry, University of Massachusetts
Amherst, 710 North Pleasant
Street, Amherst, Massachusetts 01003, United States
| | | | - Manas Mathur
- School
of Agriculture, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 303806, India
| | - Janmejaya Sen
- Laboratory
of Bioactive Heterocycles and Catalysis (BHC lab), Department of Medicinal
Chemistry, National Institute of Pharmaceutical
Education and Research-Raebareli (Transit Campus), Bijnor−Sisendi Road, Near
CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Sandeep Chaudhary
- Laboratory
of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
- Laboratory
of Bioactive Heterocycles and Catalysis (BHC lab), Department of Medicinal
Chemistry, National Institute of Pharmaceutical
Education and Research-Raebareli (Transit Campus), Bijnor−Sisendi Road, Near
CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| |
Collapse
|
4
|
Sun Y, Zhang J, Liu R, Gao Z, Wu X, Liu N, Zhang H, Li K, Luo Z, Liu R, Qin Q, Yin W, Su X, Zhao D, Cheng M. Discovery of highly potent triazole derivatives with broad-spectrum antifungal activity based on Iodiconazole. Eur J Med Chem 2024; 280:116949. [PMID: 39406120 DOI: 10.1016/j.ejmech.2024.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/25/2024]
Abstract
The widespread use of broad-spectrum antibiotics, the growing number of immunocompromised individuals, and the emergence of drug-resistant strains have resulted in the increasing incidence and mortality of invasive fungal infections. Azole drugs are the primary treatment for invasive fungal infections, and Iodiconazole is a potent azole drug with strong antifungal activity, but its stability is poor. In order to improve stability, a series of triazole compounds containing ethynyl group were designed and synthesized. Most of the compounds showed strong inhibitory activity against pathogenic fungi, among which compound 20l showed excellent inhibitory activity against pathogenic fungi and drug-resistant fungi. Importantly, and the stability of 20l (T1/2 = 30.2 min) was obviously improved compared with Iodiconazole (T1/2 = 4.39 min). In addition, the preferred compound 20l can prevent fungal phase transition and the formation of fungal biofilm, and show satisfactory fungicidal activity. In addition, the compound 20l was almost non-toxic to mammalian HUVEC cell and 293T cell. In vivo pharmacokinetic studies showed that 20l had acceptable pharmacokinetic properties. These results strongly demonstrate that compound 20l was worth further investigation as a potential antifungal inhibitor.
Collapse
Affiliation(s)
- Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jiachen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Rui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xudong Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Kejian Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zirui Luo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Rongrong Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xin Su
- The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
5
|
Sun Y, Liu R, Luo Z, Zhang J, Gao Z, Liu R, Liu N, Zhang H, Li K, Wu X, Yin W, Qin Q, Su X, Zhao D, Cheng M. Identification of novel and potent triazoles targeting CYP51 for antifungal: Design, synthesis, and biological study. Eur J Med Chem 2024; 280:116942. [PMID: 39369483 DOI: 10.1016/j.ejmech.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Invasive fungal infections (IFIs) are emerging as a serious infectious disease worldwide. Due to the lack of effective antifungal drugs and serious drug resistance, the number of people with low immunity is increasing, leading to high morbidity and mortality. Azole drugs targeting CYP51 are widely used in the treatment of invasive fungal infections. By analyzing representative azole antifungal drugs, the characteristics of pharmacophore were summarized. The binding mode of lead compound Iodiconazole was analyzed, and it was found that the narrow hydrophobic cavity was not fully occupied. Therefore, a series of triazole compounds were designed and synthesized by fragment growth strategy. Most of the compounds showed strong inhibitory activity against pathogenic fungi, among which compound A33 showed excellent inhibitory activity against pathogenic fungi and drug-resistant strains. In addition, the preferred compound A33 can prevent fungal phase transition, the formation of fungal biofilm, and show satisfactory fungicidal activity. In addition, the compound A33 was almost non-toxic to mammalian HUVEC cell. These results strongly suggested that compound A33 was worth further investigation as a potential azole inhibitor.
Collapse
Affiliation(s)
- Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Rongrong Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zirui Luo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Jiachen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Rui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Kejian Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xudong Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xin Su
- The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
6
|
Gupta H, Bhatnagar P, Shahani L. Teratogenic effects of voriconazole (anti-fungal drug) on Swiss albino mice. Reprod Toxicol 2024; 129:108681. [PMID: 39111730 DOI: 10.1016/j.reprotox.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
Antifungals are a class of drugs that target the treatment of invasive fungal infections. This includes polyenes, triazoles, and echinocadins. Among these, azoles are being extensively used nowadays. Triazoles have become standard for the azoles and have replaced amphotericin B as the first line of defence for fungal infections. With the increased cases of fungal infection, which affect a majority of the population at different stages and situations, one such section of the population is pregnant females. The rate and susceptibility of fungal infections are particularly higher in pregnant females, as the immunity of the mother is highly compromised. Systemic fungal infections like invasive aspergillosis, esophageal candidiasis, and candidemia are being treated with new age triazole antifungals like voriconazole. Prolonged and high concentrations of this drug are associated with various developmental anomalies. With this aim, teratogenic studies were performed on pregnant female mice during gestation and the weaning/lactation period to observe the effects of voriconazole at different dosages (8 mg/kg b.w., 10 mg/kg b.w., and 20 mg/kg b.w.). Pregnant dams were subjected to 20 mg/kg b.w. Voriconazole had a small litter size and a high number of resorptions. Craniofacial defects in the form of reduced ossification and widely open sutures, the presence of the 14th rib, asymmetry in the sternebrae, and the absence of ossified distal phalanges were some of the skeletal anomalies which were significant in the foetus and pups subjected to both 10 mg/kg b.w. and 20 mg/kg b.w. doses of voriconazole.
Collapse
Affiliation(s)
- Hansa Gupta
- Department of life science and environmental science, Research scholar, Professor and Associate Professor, IIS (deemed to be University), Jaipur, Rajasthan 302020, India.
| | - Pradeep Bhatnagar
- Department of life science and environmental science, Research scholar, Professor and Associate Professor, IIS (deemed to be University), Jaipur, Rajasthan 302020, India
| | - Lata Shahani
- Department of life science and environmental science, Research scholar, Professor and Associate Professor, IIS (deemed to be University), Jaipur, Rajasthan 302020, India.
| |
Collapse
|
7
|
Chandrika KVSM, V P. An in silico molecular docking, ADMET and molecular dynamics simulations studies of azolyl-2H-chroman-4-ones as potential inhibitors against pathogenic fungi and bacteria. J Biomol Struct Dyn 2024; 42:7667-7685. [PMID: 37526222 DOI: 10.1080/07391102.2023.2241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Antimicrobial resistance is a major global threat. In an attempt to discover new compounds with improved efficiency and to overcome drug resistance, a library of 3960 compounds was designed as conformationally rigid analogues of oxiconazole with 2H-chroman-4-one, azole and substituted phenyl fragments. The antifungal and antibacterial activity of the compounds was evaluated using molecular docking studies in the active site of six fungal and four bacterial proteins to establish the binding affinity of the designed ligands. In-silico ADME and Lipinski's rule were used to establish the drug-likeness properties of the compounds. This study revealed that all the designed compounds had a high binding affinity with the target proteins and formed H-bond and π-π interactions. The identified hits have been subjected to molecular dynamics simulations to study protein-ligand complex stability. This study has led to the identification of important compounds that can be developed further as therapeutic agents against pathogenic fungi and bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K V S Mani Chandrika
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur, Andhra Pradesh, India
| | - Prathyusha V
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur, Andhra Pradesh, India
| |
Collapse
|
8
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
9
|
Stanković M, Skaro Bogojevic S, Kljun J, Milanović Ž, Stevanović NL, Lazic J, Vojnovic S, Turel I, Djuran MI, Glišić BĐ. Silver(I) complexes with voriconazole as promising anti-Candida agents. J Inorg Biochem 2024; 256:112572. [PMID: 38691971 DOI: 10.1016/j.jinorgbio.2024.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.
Collapse
Affiliation(s)
- Mia Stanković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Skaro Bogojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Žiko Milanović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sandra Vojnovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Iztok Turel
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
10
|
Yan Y, Xie X, Jiang W, Bao A, Deng Z, Wang D, Wang J, Li W, Tang X. Novel Pyrido[4,3- d]pyrimidine Derivatives as Potential Sterol 14α-Demethylase Inhibitors: Design, Synthesis, Inhibitory Activity, and Molecular Modeling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12260-12269. [PMID: 38759097 DOI: 10.1021/acs.jafc.3c09543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 μg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 μg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 μg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.
Collapse
Affiliation(s)
- Yingkun Yan
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiansong Xie
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Wenjing Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Ailing Bao
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Ziquan Deng
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Deyuan Wang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Jingwen Wang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Weiyi Li
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiaorong Tang
- School of Science, Xihua University, Chengdu 610039, PR China
| |
Collapse
|
11
|
Bao A, Jiang W, Xie X, Wang D, Deng Z, Wang J, Li W, Tang X, Yan Y. Design, Synthesis, Bioactive Evaluation, and Molecular Dynamics Simulation of Novel 4 H-Pyrano[3,2- c]pyridine Analogues as Potential Sterol 14α-Demethylase (CYP51) Inhibitors. J Med Chem 2024; 67:7954-7972. [PMID: 38703119 DOI: 10.1021/acs.jmedchem.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
To discover potential sterol 14α-demethylase (CYP51) inhibitors, thirty-four unreported 4H-pyrano[3,2-c]pyridine derivatives were designed and synthesized. The assay results indicated that most compounds displayed significant fungicidal activity against Sclerotinia sclerotiorum, Colletotrichum lagenarium, Botrytis cinerea, Penicillium digitatum, and Fusarium oxysporum at 16 μg/mL. The half maximal effective concentration (EC50) values of compounds 7a, 7b, and 7f against B. cinerea were 0.326, 0.530, and 0.610, respectively. Namely, they had better antifungal activity than epoxiconazole (EC50 = 0.670 μg/mL). Meanwhile, their half maximal inhibitory concentration (IC50) values against CYP51 were 0.377, 0.611, and 0.748 μg/mL, respectively, representing that they also possessed better inhibitory activities than epoxiconazole (IC50 = 0.802 μg/mL). The fluorescent quenching tests of proteins showed that 7a and 7b had similar quenching patterns to epoxiconazole. The molecular dynamics simulations indicated that the binding free energy of 7a and epoxiconazole to CYP51 was -35.4 and -27.6 kcal/mol, respectively.
Collapse
Affiliation(s)
- Ailing Bao
- School of Science, Xihua University, Chengdu 610039, China
| | - Wenjing Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiansong Xie
- School of Science, Xihua University, Chengdu 610039, China
| | - Deyuan Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Ziquan Deng
- School of Science, Xihua University, Chengdu 610039, China
| | - Jingwen Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Weiyi Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Xiaorong Tang
- School of Science, Xihua University, Chengdu 610039, China
| | - Yingkun Yan
- School of Science, Xihua University, Chengdu 610039, China
| |
Collapse
|
12
|
Bento-Oliveira A, Starosta R, de Almeida RFM. Interaction of the antifungal ketoconazole and its diphenylphosphine derivatives with lipid bilayers: Insights into their antifungal action. Arch Biochem Biophys 2024; 753:109919. [PMID: 38307316 DOI: 10.1016/j.abb.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Ketoconazole (Ke) is an important antifungal drug, and two of its diphenylphosphinemethyl derivatives (KeP: Ph2PCH2-Ke and KeOP: Ph2P(O)CH2-Ke) have shown improved antifungal activity, namely against a yeast strain lacking ergosterol, suggesting alternative modes of action for azole compounds. In this context, the interactions of these compounds with a model of the cell membrane were investigated, using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) large unilamellar vesicles and taking advantage of the intrinsic fluorescence of Ke, KeP and KeOP. Steady-state fluorescence spectra and anisotropy, including partition and aggregation studies, as well as fluorescence lifetime measurements, were carried out. In addition, the ability of the compounds to increase membrane permeability was assessed through carboxyfluorescein leakage. The membrane/water mole fraction partition coefficients (Kp,x): (3.31 ± 0.36) x105, (8.31 ± 1.60) x105 and (4.66 ± 0.72) x106, for Ke, KeP and KeOP, respectively, show that all three compounds have moderate to high affinity for the lipid bilayer. Moreover, KeP, and particularly KeOP interact more efficiently with POPC bilayers than Ke, which correlates well with their in vitro antifungal activity. Furthermore, although the three compounds disturb the lipid bilayer, KeOP is the quickest and most efficient one. Hence, the higher affinity and ability to permeabilize the membrane of KeOP when compared to that of KeP, despite the higher lipophilicity of the latter, points to an important role of Ph2P(O)CH2- oxygen. Overall, this work suggests that membrane interactions are important for the antifungal activity of these azoles and should be considered in the design of new therapeutic agents.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Radosław Starosta
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
13
|
Kaluzhskiy L, Yablokov E, Gnedenko O, Burkatovskii D, Maslov I, Bogorodskiy A, Ershov P, Tsybruk T, Zelepuga E, Rutckova T, Kozlovskaya E, Dmitrenok P, Gilep A, Borshchevskiy V, Strushkevich N, Ivanov A. The effect of membrane composition on the interaction between human CYP51 and its flavonoid inhibitor - luteolin 7,3'-disulfate. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184286. [PMID: 38272204 DOI: 10.1016/j.bbamem.2024.184286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Cytochromes P450 (CYP) are a family of membrane proteins involved in the production of endogenous molecules and the metabolism of xenobiotics. It is well-known that the composition of the membrane can influence the activity and orientation of CYP proteins. However, little is known about how membrane composition affects the ligand binding properties of CYP. In this study, we utilized surface plasmon resonance and fluorescence lifetime analysis to examine the impact of membrane micro-environment composition on the interaction between human microsomal CYP51 (CYP51A1) and its inhibitor, luteolin 7,3'-disulphate (LDS). We observed that membranes containing cholesterol or sphingomyelin exhibited the lowest apparent equilibrium dissociation constant for the CYP51A1-LDS complex. Additionally, the tendency for relation between kinetic parameters of the CYP51A1-LDS complex and membrane viscosity and overall charge was observed. These findings suggest that the specific composition of the membrane, particularly the presence of cholesterol and sphingomyelin, plays a vital role in regulating the interaction between CYP enzymes and their ligands.
Collapse
Affiliation(s)
- Leonid Kaluzhskiy
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| | - Evgeniy Yablokov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| | - Oksana Gnedenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| | - Dmitrii Burkatovskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Pavel Ershov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Tatsiana Tsybruk
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia.
| | - Tatyana Rutckova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Pavel Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia.
| | - Andrei Gilep
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Natallia Strushkevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia.
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| |
Collapse
|
14
|
Elbouzidi A, Taibi M, Laaraj S, Loukili EH, Haddou M, El Hachlafi N, Naceiri Mrabti H, Baraich A, Bellaouchi R, Asehraou A, Bourhia M, Nafidi HA, Bin Jardan YA, Chaabane K, Addi M. Chemical profiling of volatile compounds of the essential oil of grey-leaved rockrose ( Cistus albidus L.) and its antioxidant, anti-inflammatory, antibacterial, antifungal, and anticancer activity in vitro and in silico. Front Chem 2024; 12:1334028. [PMID: 38435667 PMCID: PMC10905769 DOI: 10.3389/fchem.2024.1334028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cistus albidus: L., also known as Grey-leaved rockrose and locally addressed as šṭab or tûzzâla lbîḍa, is a plant species with a well-established reputation for its health-promoting properties and traditional use for the treatment of various diseases. This research delves into exploring the essential oil extracted from the aerial components of Cistus albidus (referred to as CAEO), aiming to comprehend its properties concerning antioxidation, anti-inflammation, antimicrobial efficacy, and cytotoxicity. Firstly, a comprehensive analysis of CAEO's chemical composition was performed through Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, four complementary assays were conducted to assess its antioxidant potential, including DPPH scavenging, β-carotene bleaching, ABTS scavenging, and total antioxidant capacity assays. The investigation delved into the anti-inflammatory properties via the 5-lipoxygenase assay and the antimicrobial effects of CAEO against various bacterial and fungal strains. Additionally, the research investigated the cytotoxic effects of CAEO on two human breast cancer subtypes, namely, MCF-7 and MDA-MB-231. Chemical analysis revealed camphene as the major compound, comprising 39.21% of the composition, followed by α-pinene (19.01%), bornyl acetate (18.32%), tricyclene (6.86%), and melonal (5.44%). Notably, CAEO exhibited robust antioxidant activity, as demonstrated by the low IC50 values in DPPH (153.92 ± 4.30 μg/mL) and β-carotene (95.25 ± 3.75 μg/mL) assays, indicating its ability to counteract oxidative damage. The ABTS assay and the total antioxidant capacity assay also confirmed the potent antioxidant potential with IC50 values of 120.51 ± 3.33 TE μmol/mL and 458.25 ± 3.67 µg AAE/mg, respectively. In terms of anti-inflammatory activity, CAEO displayed a substantial lipoxygenase inhibition at 0.5 mg/mL. Its antimicrobial properties were broad-spectrum, although some resistance was observed in the case of Escherichia coli and Staphylococcus aureus. CAEO exhibited significant dose-dependent inhibitory effects on tumor cell lines in vitro. Additionally, computational analyses were carried out to appraise the physicochemical characteristics, drug-likeness, and pharmacokinetic properties of CAEO's constituent molecules, while the toxicity was assessed using the Protox II web server.
Collapse
Affiliation(s)
- Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
- Euro-Mediterranean University of Fes (UEMF), Fes, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, Morocco
| | - Salah Laaraj
- Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Rabat, Morocco
| | | | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fes, Morocco
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques, Casablanca, Morocco
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| |
Collapse
|
15
|
Bai Y, Li T, Wang Q, You W, Yang H, Xu X, Li Z, Zhang Y, Yan C, Yang L, Qiu J, Liu Y, Chen S, Wang D, Huang B, Liu K, Song BL, Wang Z, Li K, Liu X, Wang G, Yang W, Chen J, Hao P, Zhang Z, Wang Z, Zhu ZJ, Xu C. Shaping immune landscape of colorectal cancer by cholesterol metabolites. EMBO Mol Med 2024; 16:334-360. [PMID: 38177537 PMCID: PMC10897227 DOI: 10.1038/s44321-023-00015-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Cancer immunotherapies have achieved unprecedented success in clinic, but they remain largely ineffective in some major types of cancer, such as colorectal cancer with microsatellite stability (MSS CRC). It is therefore important to study tumor microenvironment of resistant cancers for developing new intervention strategies. In this study, we identify a metabolic cue that determines the unique immune landscape of MSS CRC. Through secretion of distal cholesterol precursors, which directly activate RORγt, MSS CRC cells can polarize T cells toward Th17 cells that have well-characterized pro-tumor functions in colorectal cancer. Analysis of large human cancer cohorts revealed an asynchronous pattern of the cholesterol biosynthesis in MSS CRC, which is responsible for the abnormal accumulation of distal cholesterol precursors. Inhibiting the cholesterol biosynthesis enzyme Cyp51, by pharmacological or genetic interventions, reduced the levels of intratumoral distal cholesterol precursors and suppressed tumor progression through a Th17-modulation mechanism in preclinical MSS CRC models. Our study therefore reveals a novel mechanism of cancer-immune interaction and an intervention strategy for the difficult-to-treat MSS CRC.
Collapse
Affiliation(s)
- Yibing Bai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qinshu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weiqiang You
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haochen Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xintian Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Ziyi Li
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Yu Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengsong Yan
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanhua Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Shiyang Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongfang Wang
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Binlu Huang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Liu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bao- Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuozhong Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Xin Liu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangchuan Wang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Zemin Zhang
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Chenqi Xu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
16
|
McCarty KD, Liu L, Tateishi Y, Wapshott-Stehli HL, Guengerich FP. The multistep oxidation of cholesterol to pregnenolone by human cytochrome P450 11A1 is highly processive. J Biol Chem 2024; 300:105495. [PMID: 38006947 PMCID: PMC10716780 DOI: 10.1016/j.jbc.2023.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lu Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
17
|
Zhang F, Zhu G, Li Y, Qi Y, Wang Z, Li W. Dual-target inhibitors based on COX-2: a review from medicinal chemistry perspectives. Future Med Chem 2023; 15:2209-2233. [PMID: 38095081 DOI: 10.4155/fmc-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Inhibitors of COX-2 constitute a class of anti-inflammatory analgesics, showing potential against certain types of cancer. However, such inhibitors are associated with cardiovascular toxicity. Moreover, although single-target molecules possess specificity for particular targets, they often lead to poor safety, low efficacy and drug resistance due to compensatory mechanisms. A new generation of dual-target drugs that simultaneously inhibit COX-2 and another target is showing strong potential to treat cancer or reduce adverse cardiac effects. The present perspective focuses on the structure and functions of COX-2, and its role as a therapeutic target. It also explores the current state and future possibilities for dual-target strategies from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yangqian Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yawen Qi
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| |
Collapse
|
18
|
Zhang R, Wang Y, Wu A, Wang J, Zhang J. Strategies of targeting CYP51 for IFIs therapy: Emerging prospects, opportunities and challenges. Eur J Med Chem 2023; 259:115658. [PMID: 37480712 DOI: 10.1016/j.ejmech.2023.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
CYP51, a monooxygenase associated with the sterol synthesis pathway, is responsible for the catalysis of the 14-methyl hydroxylation reaction of lanosterol precursors. This enzyme is widely present in microorganisms, plants, and mammals. In mammals, CYP51 plays a role in cholesterol production, oligodendrocyte formation, oocyte maturation, and spermatogenesis. In fungal cells, CYP51 is an enzyme that synthesizes membrane sterols. By inhibiting fungal CYP51, ergosterol synthesis can be inhibited and ergosterol membrane fluidity is altered, resulting in fungal cell apoptosis. Thus, targeting CYP51 is a reliable antifungal strategy with important implications for the treatment of invasive fungal infections (IFIs). Many CYP51 inhibitors have been approved by the FDA for clinical treatment. However, several limitations of CYP51 inhibitors remain to be resolved, including fungal resistance, hepatotoxicity, and drug-drug interactions. New broad-spectrum, anti-resistant, highly selective CYP51 inhibitors are expected to be developed to enhance clinical efficacy and minimize adverse effects. Herein, we summarize the structural features and biological functions of CYP51 and emphatically analyze the structure-activity relationship (SAR) and therapeutic potential of different chemical types of small-molecule CYP51 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CYP51 for clinical practice.
Collapse
Affiliation(s)
- Ruofei Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aijia Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Tsybruk TV, Kaluzhskiy LA, Mezentsev YV, Makarieva TN, Tabakmaher KM, Ivanchina NV, Dmitrenok PS, Baranovsky AV, Gilep AA, Ivanov AS. Molecular Cloning, Heterologous Expression, Purification, and Evaluation of Protein-Ligand Interactions of CYP51 of Candida krusei Azole-Resistant Fungal Strain. Biomedicines 2023; 11:2873. [PMID: 38001874 PMCID: PMC10668980 DOI: 10.3390/biomedicines11112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Due to the increasing prevalence of fungal diseases caused by fungi of the genus Candida and the development of pathogen resistance to available drugs, the need to find new effective antifungal agents has increased. Azole antifungals, which are inhibitors of sterol-14α-demethylase or CYP51, have been widely used in the treatment of fungal infections over the past two decades. Of special interest is the study of C. krusei CYP51, since this fungus exhibit resistance not only to azoles, but also to other antifungal drugs and there is no available information about the ligand-binding properties of CYP51 of this pathogen. We expressed recombinant C. krusei CYP51 in E. coli cells and obtained a highly purified protein. Application of the method of spectrophotometric titration allowed us to study the interaction of C. krusei CYP51 with various ligands. In the present work, the interaction of C. krusei CYP51 with azole inhibitors, and natural and synthesized steroid derivatives was evaluated. The obtained data indicate that the resistance of C. krusei to azoles is not due to the structural features of CYP51 of this microorganism, but rather to another mechanism. Promising ligands that demonstrated sufficiently strong binding in the micromolar range to C. krusei CYP51 were identified, including compounds 99 (Kd = 1.02 ± 0.14 µM) and Ch-4 (Kd = 6.95 ± 0.80 µM). The revealed structural features of the interaction of ligands with the active site of C. krusei CYP51 can be taken into account in the further development of new selective modulators of the activity of this enzyme.
Collapse
Affiliation(s)
- Tatsiana V. Tsybruk
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220084 Minsk, Belarus; (A.V.B.); (A.A.G.)
| | - Leonid A. Kaluzhskiy
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10 Building 8, 119121 Moscow, Russia; (L.A.K.); (Y.V.M.)
| | - Yuri V. Mezentsev
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10 Building 8, 119121 Moscow, Russia; (L.A.K.); (Y.V.M.)
| | - Tatyana N. Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (T.N.M.); (K.M.T.); (N.V.I.); (P.S.D.)
| | - Kseniya M. Tabakmaher
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (T.N.M.); (K.M.T.); (N.V.I.); (P.S.D.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (T.N.M.); (K.M.T.); (N.V.I.); (P.S.D.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (T.N.M.); (K.M.T.); (N.V.I.); (P.S.D.)
| | - Alexander V. Baranovsky
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220084 Minsk, Belarus; (A.V.B.); (A.A.G.)
| | - Andrei A. Gilep
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220084 Minsk, Belarus; (A.V.B.); (A.A.G.)
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10 Building 8, 119121 Moscow, Russia; (L.A.K.); (Y.V.M.)
| | - Alexis S. Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya Str. 10 Building 8, 119121 Moscow, Russia; (L.A.K.); (Y.V.M.)
| |
Collapse
|
20
|
Goldstone JV, Lamb DC, Kelly SL, Lepesheva GI, Stegeman JJ. Structural modeling of cytochrome P450 51 from a deep-sea fish points to a novel structural feature in other CYP51s. J Inorg Biochem 2023; 245:112241. [PMID: 37209461 PMCID: PMC10330650 DOI: 10.1016/j.jinorgbio.2023.112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Cytochromes P450 (CYP), enzymes involved in the metabolism of endogenous and xenobiotic substrates, provide an excellent model system to study how membrane proteins with unique functions have catalytically adapted through evolution. Molecular adaptation of deep-sea proteins to high hydrostatic pressure remains poorly understood. Herein, we have characterized recombinant cytochrome P450 sterol 14α-demethylase (CYP51), an essential enzyme of cholesterol biosynthesis, from an abyssal fish species, Coryphaenoides armatus. C. armatus CYP51 was heterologously expressed in Escherichia coli following N-terminal truncation and purified to homogeneity. Recombinant C. armatus CYP51 bound its sterol substrate lanosterol giving a Type I binding spectra (KD 15 μM) and catalyzed lanosterol 14α-demethylation turnover at 5.8 nmol/min/nmol P450. C. armatus CYP51 also bound the azole antifungals ketoconazole (KD 0.12 μM) and propiconazole (KD 0.54 μM) as determined by Type II absorbance spectra. Comparison of C. armatus CYP51 primary sequence and modeled structures with other CYP51s identified amino acid substitutions that may confer an ability to function under pressures of the deep sea and revealed heretofore undescribed internal cavities in human and other non-deep sea CYP51s. The functional significance of these cavities is not known. PROLOGUE: This paper is dedicated in memory of Michael Waterman and Tsuneo Omura, who as good friends and colleagues enriched our lives. They continue to inspire us.
Collapse
Affiliation(s)
- Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David C Lamb
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
21
|
McCarty KD, Sullivan ME, Tateishi Y, Hargrove TY, Lepesheva GI, Guengerich FP. Processive kinetics in the three-step lanosterol 14α-demethylation reaction catalyzed by human cytochrome P450 51A1. J Biol Chem 2023; 299:104841. [PMID: 37209823 PMCID: PMC10285260 DOI: 10.1016/j.jbc.2023.104841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Abstract
Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4β,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450-dihydrolanosterol complex showed that the overall reaction is highly processive, with koff rates of P450 51A1-dihydrolanosterol and the 14α-alcohol and 14α-aldehyde complexes being 1 to 2 orders of magnitude less than the forward rates of competing oxidations. epi-Dihydrolanosterol (the 3α-hydroxy analog) was as efficient as the common 3β-hydroxy isomer in the binding and formation of dihydro FF-MAS. The common lanosterol contaminant dihydroagnosterol was found to be a substrate of human P450 51A1, with roughly one-half the activity of dihydrolanosterol. Steady-state experiments with 14α-methyl deuterated dihydrolanosterol showed no kinetic isotope effect, indicating that C-14α C-H bond breaking is not rate-limiting in any of the individual steps. The high processivity of this reaction generates higher efficiency and also renders the reaction less sensitive to inhibitors.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Molly E Sullivan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
22
|
Katta C, Shaikh AS, Bhale N, Jyothi VGSS, Kaki VR, Dikundwar AG, Singh PK, Shukla R, Mishra K, Madan J. Naringenin-Capped Silver Nanoparticles Amalgamated Gel for the Treatment of Cutaneous Candidiasis. AAPS PharmSciTech 2023; 24:126. [PMID: 37226032 DOI: 10.1208/s12249-023-02581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
The current research was aimed to synthesize a phytomolecule, naringenin (NRG)-mediated silver nanoparticles (NRG-SNPs) to study their antifungal potential against Candida albicans (C. albicans) and Candida glabrata (C. glabrata). The NRG-SNPs were synthesized by using NRG as a reducing agent. The synthesis of NRG-SNPs was confirmed by a color change and surface plasmon resonance (SPR) peak at 425 nm. Furthermore, the NRG-SNPs were analyzed for size, PDI, and zeta potential, which were found to be 35 ± 0.21 nm, 0.19 ± 0.03, and 17.73 ± 0.92 mV, respectively. In silico results demonstrated that NRG had a strong affinity towards the sterol 14α-demethylase. The docking with ceramide revealed the skin permeation efficiency of the NRG-SNPs. Next, the NRG-SNPs were loaded into the topical dermal dosage form (NRG-SNPs-TDDF) by formulating a gel using Carbopol Ultrez 10 NF. The MIC50 of NRG solution and TSC-SNPs against C. albicans was found to be 50 µg/mL and 4.8 µg/mL, respectively, significantly (P < 0.05) higher than 0.3625 µg/mL of NRG-SNPs-TDDF. Correspondingly, MIC50 results were calculated against C. glabrata and the results of NRG, TSC-SNPs, NRG-SNPs-TDDF, and miconazole nitrate were found to be 50 µg/mL, 9.6 µg/mL, 0.3625 µg/mL, and 3-µg/mL, respectively. Interestingly, MIC50 of NRG-SNPs-TDDF was significantly (P < 0.05) lower than MIC50 of miconazole nitrate against C. glabrata. The FICI (fractional inhibitory concentration index) value against both the C. albicans and C. glabrata was found to be 0.016 and 0.011, respectively, which indicated the synergistic antifungal activity of NRG-SNPs-TDDF. Thus, NRG-SNPs-TDDF warrants further in depth in vivo study under a set of stringent parameters for translating in to a clinically viable antifungal product.
Collapse
Affiliation(s)
- Chantibabu Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nagesh Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Renu Shukla
- Department of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Krishnaveni Mishra
- Department of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
23
|
Wang Z, Huang W, Liu Z, Zeng J, He Z, Shu L. The neonicotinoid insecticide imidacloprid has unexpected effects on the growth and development of soil amoebae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161884. [PMID: 36716868 DOI: 10.1016/j.scitotenv.2023.161884] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Neonicotinoid pesticides are the most widely used insecticides worldwide and have become a global environmental issue. Previous studies have shown that imidacloprid, the most used neonicotinoid, can negatively affect a wide range of organisms, including non-target insects, fish, invertebrates, and mammals. Imidacloprid can also accumulate and persist in soils, posing threats to the terrestrial ecosystem. However, we know little about one ecologically important group of organisms, the single-celled soil protists. In this study, we used a soil amoeba, Dictyostelium discoideum, to test whether and how imidacloprid affects the growth and development of soil amoebae. We provide the first empirical evidence that environmental concentrations of imidacloprid negatively impact the fitness and development of soil amoebae. In addition, the adverse effects did not show a dose-response relationship with increased imidacloprid concentrations, where no significant difference was observed among the treatment groups. Further transcriptome analyses showed that imidacloprid affected amoeba's key DEGs related to phagocytosis, cell division, morphogenesis, and cytochrome P450. Moreover, soil amoebae show both conserved and novel transcriptional responses to imidacloprid. In conclusion, this study has expanded the non-target list of imidacloprid from animals and plants to single-celled protists, and we believe the impact of neonicotinoid pesticides on the microbiome is significantly underestimated and deserves more studies.
Collapse
Affiliation(s)
- Zihe Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiwei Liu
- School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Jiaxiong Zeng
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
25
|
Salih RHH, Hasan AH, Hussen NH, Hawaiz FE, Hadda TB, Jamalis J, Almalki FA, Adeyinka AS, Coetzee LCC, Oyebamiji AK. Thiazole-Pyrazoline Hybrids as Potential Antimicrobial Agent: Synthesis, Biological Evaluation, Molecular Docking, DFT Studies and POM analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
26
|
Sanaullah AFM, Devi P, Hossain T, Sultan SB, Badhon MMU, Hossain ME, Uddin J, Patwary MAM, Kazi M, Matin MM. Rhamnopyranoside-Based Fatty Acid Esters as Antimicrobials: Synthesis, Spectral Characterization, PASS, Antimicrobial, and Molecular Docking Studies. Molecules 2023; 28:molecules28030986. [PMID: 36770652 PMCID: PMC9919056 DOI: 10.3390/molecules28030986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The most widely used and accessible monosaccharides have a number of stereogenic centers that have been hydroxylated and are challenging to chemically separate. As a result, the task of regioselective derivatization of such structures is particularly difficult. Considering this fact and to get novel rhamnopyranoside-based esters, DMAP-catalyzed di-O-stearoylation of methyl α-l-rhamnopyranoside (3) produced a mixture of 2,3-di-O- (4) and 3,4-di-O-stearates (5) (ratio 2:3) indicating the reactivity of the hydroxylated stereogenic centers of rhamnopyranoside as 3-OH > 4-OH > 2-OH. To get novel biologically active rhamnose esters, di-O-stearates 4 and 5 were converted into six 4-O- and 2-O-esters 6-11, which were fully characterized by FT-IR, 1H, and 13C NMR spectral techniques. In vitro antimicrobial assays revealed that fully esterified rhamnopyranosides 6-11 with maximum lipophilic character showed better antifungal susceptibility than antibacterial activity. These experimental findings are similar to the results found from PASS analysis data. Furthermore, the pentanoyl derivative of 2,3-di-O-stearate (compound 6) showed better antifungal functionality against F. equiseti and A. flavus, which were found to be better than standard antibiotics. To validate the better antifungal results, molecular docking of the rhamnose esters 4-11 was performed with lanosterol 14α-demethylase (PDB ID: 3LD6), including the standard antifungal antibiotics ketoconazole and fluconazole. In this instance, the binding affinities of 10 (-7.6 kcal/mol), 9 (-7.5 kcal/mol), and 7 (-6.9 kcal/mol) were better and comparable to fluconazole (-7.3 kcal/mol), indicating the likelihood of their use as non-azole type antifungal drugs in the future.
Collapse
Affiliation(s)
- Abul Fazal Muhammad Sanaullah
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Puja Devi
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Takbir Hossain
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sulaiman Bin Sultan
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammad Mohib Ullah Badhon
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md. Emdad Hossain
- Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, MD 21216, USA
| | | | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (M.K.); (M.M.M.); Tel.: +880-1716-839689 (M.M.M.)
| | - Mohammed Mahbubul Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
- Correspondence: (M.K.); (M.M.M.); Tel.: +880-1716-839689 (M.M.M.)
| |
Collapse
|
27
|
The effect of conazoles on reproductive organs structure and function – a review. ACTA VET BRNO 2023. [DOI: 10.2754/avb202392010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conazoles are azole antifungals used in agricultural and pharmaceutical products. Exposure to conazole fungicides leads to several toxic endpoints, including reproductive and endocrine. The results of animal experiments have shown that various conazole fungicides at high doses affect the structure and functions of reproductive organs. In males, adverse effects of conazole fungicides are manifested in the testes, prostate, sperm viability, fertility and sexual behaviour. Reduced testis weight, testis atrophy and reduced or absent sperm production were frequently observed. In female genitalia, structural changes in the ovaries and uterus have been observed. The extent of the changes depends on the dose and duration of treatment. Triazoles affected the expression of multiple genes involved in steroid hormone metabolism and modulate enzyme activity of multiple cytochrome P450 (CYP) and other metabolic enzymes in mammalian liver and other tissues. Conazole fungicides act as endocrine disruptors. Conazoles have been reported to reduce oestradiol and testosterone production and to increase progesterone concentration, indicating the inhibition of enzymes involved in the conversion of progesterone to testosterone. The reproductive effects are consistent with impairment of testosterone homeostasis. The disruption in steroid homeostasis is a common mode of action, leading to abnormal reproductive development and diminished reproductive function. At high doses, azole fungicides affect reproductive organs and fertility in several species.
Collapse
|
28
|
Design, Synthesis, Characterization, and Analysis of Antimicrobial Property of Novel Benzophenone Fused Azetidinone Derivatives through In Vitro and In Silico Approach. Curr Issues Mol Biol 2022; 45:92-109. [PMID: 36661493 PMCID: PMC9857151 DOI: 10.3390/cimb45010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
A sequence of novel 2-(4-benzoyl-2-methyl-phenoxy)-N-(3-chloro-2-oxo-4-phenyl-azetidin-1-yl)-acetamide analogues 9(a−n) were synthesized by multistep synthesis. The newly synthesized compounds were well characterized, and their antimicrobial activities were carried out by disc diffusion and broth dilution methods. Further, all the novel series of compounds (9a−n), were tested against a variety of bacterial and fungal strains in comparison to Ketoconazole, Chloramphenicol, and Amoxicillin as standard drugs, respectively. Compounds 9a, 9e, and 9g as a lead molecule demonstrated a good inhibition against tested strains. Further, molecular docking studies have been performed for the potent compounds to check the three-dimensional geometrical view of the ligand binding to the targeted proteins.
Collapse
|
29
|
Cohen LD, Ziv T, Ziv NE. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Front Mol Neurosci 2022; 15:1038614. [PMID: 36583084 PMCID: PMC9792512 DOI: 10.3389/fnmol.2022.1038614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
Collapse
Affiliation(s)
- Laurie D. Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion, Haifa, Israel
| | - Noam E. Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel,*Correspondence: Noam E. Ziv,
| |
Collapse
|
30
|
Design, Synthesis, in vitro and in silico Characterization of Plastoquinone Analogs Containing Piperidine Moiety as Antimicrobial Agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Synthesis and computational investigation of N,N-dimethyl-4-[(Z)-(phenylimino)methyl] aniline derivatives: Biological and quantitative structural activity relationship studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
New s-Triazine/Tetrazole conjugates as potent antifungal and antibacterial agents: Design, molecular docking and mechanistic study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Cheng YN, Sun L, Meng H, Jiang Z, Zhang Z, Yun Y, Wang X, Yan J, Yang X, Zhou H, Li H. Structure-Activity Studies of N-Heterocyclic Benzoyl Arylamine Derivatives Led to a Highly Fungicidal Candidate against Gaeumannomyces graminis var. tritici and Four Fusarium Wheat Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10305-10315. [PMID: 35950372 DOI: 10.1021/acs.jafc.2c03455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat root diseases can seriously reduce yields and quality of wheat. 1,2,4-Triazole benzoyl arylamine derivatives previously showed good activities against some wheat root fungal pathogens. To further systematically disclose the structure-activity relationship, a series of benzoyl arylamines were designed and prepared. Their structures were characterized and fungicidal activities against Gaeumannomyces graminis var. tritici and Fusarium graminearum were evaluated. The results indicated that the structure of the N-heterocyclic group and the substituted group and their position on the benzamide scaffold had an important influence on the activities, as predicted. Finally, compound 18f was found to show excellent activities against G. graminis var. tritici, F. graminearum, Fusarium culmorum, Fusarium pseudograminearum, and Fusarium moniliforme with half-maximum effective concentrations of 0.002, 0.093, 0.011, 0.881, and 0.287 μg/mL, respectively. These results proposed that compound 18f deserved serious consideration as a novel fungicide candidate for the control of wheat root diseases.
Collapse
Affiliation(s)
- Yi-Nan Cheng
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Liansheng Sun
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Haoguang Meng
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Zhenhua Jiang
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Zhijia Zhang
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Yuanyuan Yun
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiafei Wang
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Jingming Yan
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xifa Yang
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Haifeng Zhou
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Honglian Li
- Plant Protection College of Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
34
|
Alrubia S, Al-Majdoub ZM, Achour B, Rostami-Hodjegan A, Barber J. Quantitative Assessment of the Impact of Crohn's Disease on Protein Abundance of Human Intestinal Drug-Metabolising Enzymes and Transporters. J Pharm Sci 2022; 111:2917-2929. [PMID: 35872023 DOI: 10.1016/j.xphs.2022.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Crohn's disease affects the mucosal layer of the intestine, predominantly ileum and colon segments, with the potential to affect the expression of intestinal enzymes and transporters, and consequently, oral drug bioavailability. We carried out a quantitative proteomic analysis of inflamed and non-inflamed ileum and colon tissues from Crohn's disease patients and healthy donors. Homogenates from samples in each group were pooled and protein abundance determined by liquid chromatography-mass spectrometry (LC-MS). In inflamed Crohn's ileum, CYP3A4, CYP20A1, CYP51A1, ADH1B, ALPI, FOM1, SULT1A2, SULT1B1 and ABCB7 showed ≥10-fold reduction in abundance compared with healthy baseline. By contrast, only MGST1 showed ≥10 fold reduction in inflamed colon. Ileal UGT1A1, MGST1, MGST2, and MAOA levels increased by ≥2 fold in Crohn's patients, while only ALPI showed ≥2 fold increase in the colon. Counter-intuitively, non-inflamed ileum had a higher magnitude of fold change than inflamed tissue when compared with healthy tissue. Marked but non-uniform alterations were observed in the expression of various enzymes and transporters in ileum and colon compared with healthy samples. Modelling will allow improved understanding of the variable effects of Crohn's disease on bioavailability of orally administered drugs.
Collapse
Affiliation(s)
- Sarah Alrubia
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK; Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK; Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
35
|
Mohamed GG, Omar MM, Moustafa BS, AbdEl-Halim HF, Farag NA. Spectroscopic investigation, thermal, molecular structure, antimicrobial and anticancer activity with modelling studies of some metal complexes derived from isatin Schiff base ligand. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Mohamed H, Child SA, Bruning JB, Bell SG. A comparison of the bacterial CYP51 cytochrome P450 enzymes from Mycobacterium marinum and Mycobacterium tuberculosis. J Steroid Biochem Mol Biol 2022; 221:106097. [PMID: 35346833 DOI: 10.1016/j.jsbmb.2022.106097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Members of the CYP51 family of cytochrome P450 enzymes are classified as sterol demethylases involved in the metabolic formation of cholesterol and related derivatives. The CYP51 enzyme from Mycobacterium marinum was studied and compared to its counterpart from Mycobacterium tuberculosis to determine the degree of functional conservation between them. Spectroscopic analyses of substrate and inhibitor binding of the purified CYP51 enzymes from M. marinum and M. tuberculosis were performed. The catalytic oxidation of lanosterol and related steroids was investigated. M. marinum CYP51 was structurally characterized by X-ray crystallography. The CYP51 enzyme of M. marinum is sequentially closely related to CYP51B1 from M. tuberculosis. However, differences in the heme spin state of each enzyme were observed upon the addition of steroids and other ligands. Both enzymes displayed different binding properties to those reported for the CYP51-Fdx fusion protein from the bacterium Methylococcus capsulatus. The enzymes were able to oxidatively demethylate lanosterol to generate 14-demethylanosterol, but no products were detected for the related species dihydrolanosterol and eburicol. The crystal structure of CYP51 from M. marinum in the absence of added substrate but with a Bis-Tris molecule within the active site was resolved. The CYP51 enzyme of M. marinum displays differences in how steroids and other ligands bind compared to the M. tuberculosis enzyme. This was related to structural differences between the two enzymes. Overall, both of these CYP51 enzymes from mycobacterial species displayed significant differences to the CYP51 enzymes of eukaryotic species and the bacterial CYP51-Fdx enzyme of Me. capsulatus.
Collapse
Affiliation(s)
| | - Stella A Child
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
37
|
Babu CK, Shubhra, Ghouse SM, Singh PK, Khatri DK, Nanduri S, Singh SB, Madan J. Luliconazole topical dermal drug delivery for superficial fungal infections: Penetration hurdles and role of functional nanomaterials. Curr Pharm Des 2022; 28:1611-1620. [PMID: 35747957 DOI: 10.2174/1381612828666220623095743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Luliconazole is the first and only anti-fungal agent approved for the short-term treatment of superficial fungal infections. However, commercially available conventional topical dermal drug delivery cargo of luliconazole is associated with certain limitations like lower skin permeation and shorter skin retention of drug. Therefore, present review is an attempt to decode the penetration hurdles in luliconazole topical dermal drug delivery. Moreover, we also summarized the activity of functional nanomaterials based drug delivery systems employed by the scientific fraternity to improve luliconazole efficacy in superficial fungal infections on case-to-case basis. In addition, efforts have also been made to unbox the critically acclaimed mechanism of action of luliconazole against fungal cells. Under the framework of future prospects, we have analyzed the combination of luliconazole with isoquercetin using in-silico docking technique for offering synergistic antifungal activity. Isoquercetin exhibited a good affinity for superoxide dismutase (SOD), a fungal target owing to the formation of hydrogen bond with Glu132, Glu133, and Arg143, in addition to few hydrophobic interactions. On the other hand, luliconazole inhibited lanosterol-14α-demethylase and consequently blocked ergosterol. In addition, nanotechnology and artificial neural network (ANN) derived integrated drug delivery systems may also be explored for augmenting the luliconazole therapeutic efficacy in topical fungal infections. Synergy of ANN models along with topical nanoscaled drug delivery may help to achieve critical quality attributes (CQA) to gain commercial success.
Collapse
Affiliation(s)
- Chanti Katta Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shubhra
- Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Telangana, India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
38
|
Prabhala P, Sutar SM, Manjunatha M, Pawashe GM, Gupta VK, Naik L, Kalkhambkar RG. Synthesis, In vitro and theoretical studies on newly synthesized deep blue emitting 4-(p-methylphenylsulfonyl-5-aryl/alkyl)oxazole analogues for biological and optoelectronic applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Molecular docking, theoretical calculations, synthesis of Ru(III), Pd(II) and VO(II) complexes and activity determination as antibacterial and antioxidant. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2022. [DOI: 10.2478/pjct-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Molecular modeling calculations were used to validate 3D structures of new complexes of Ru(III), Pd(II) and VO(II) ions chelated with (E)-2-(phenylamino)-N-(pyridine-2-yl)methylene)acetohydrazide ligand. Furthermore, the calculations were used to estimate selected electronic chemical descriptors which are responsible for the biological activity. The first insight of the compound activity as antibacterial was evaluated by molecular docking analysis. The titled models showed stable binding towards lanosterol 14 alpha-demethylase (CYP51) enzyme of E. coli, indicating their inhibition effect toward bacterial growth. Structural study of the ligand and Ru(III), Pd(II) and VO(II) chelates was done using elemental analysis, FT-IR, 1H-NMR techniques. Furthermore, complexes were physically investigated based on magnetic moment, molar conductance, electronic spectroscopic and thermal analysis techniques. The antibacterial study of the synthesized compounds screened against both Gram-positive and Gram-negative bacteria revealed that these compounds display remarkable antibacterial activity and can be used as therapeutic drugs for pathogenic bacterial diseases. All complexes and ligand showed good scavenging activities which indicate a promising result for their applications as antioxidants.
Collapse
|
40
|
Dean KR, Novak B, Moradipour M, Tong X, Moldovan D, Knutson BL, Rankin SE, Lynn BC. Complexation of Lignin Dimers with β-Cyclodextrin and Binding Stability Analysis by ESI-MS, Isothermal Titration Calorimetry, and Molecular Dynamics Simulations. J Phys Chem B 2022; 126:1655-1667. [PMID: 35175769 DOI: 10.1021/acs.jpcb.1c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lignin derived from lignocellulosic biomass is the largest source of renewable bioaromatics present on earth and requires environmentally sustainable separation strategies to selectively obtain high-value degradation products. Applications of supramolecular interactions have the potential to isolate lignin compounds from biomass degradation fractions by the formation of variable inclusion complexes with cyclodextrins (CDs). CDs are commonly used as selective adsorbents for many applications and can capture guest molecules in their internal hydrophobic cavity. The strength of supramolecular interactions between CDs and lignin model compounds that represent potential lignocellulosic biomass degradation products can be characterized by assessing the thermodynamics of binding stability. Consequently, the inclusion interactions of β-CD and lignin model compounds G-(β-O-4')-G, G-(β-O-4')-truncG (guaiacylglycerol-β-guaiacyl ether), and G-(β-β')-G (pinoresinol) were investigated empirically by electrospray ionization mass spectrometry and isothermal titration calorimetry, complemented by molecular dynamics (MD) simulations. Empirical results indicate that there are substantial differences in binding stability dependent on the linkage type. The lignin model β-β' dimer showed more potential bound states including 1:1, 2:1, and 1:2 (guest:host) complexation and, based on binding stability determinations, was consistently the most energetically favorable guest. Empirical results are supported by MD simulations that reveal that the capture of G-(β-β')-G by β-CD is promising with a 66% probability of being bound for G-(β-O-4')-truncG compared to 88% for G-(β-β')-G (unbiased distance trajectory and explicit counting of bound states). These outcomes indicate CDs as a promising material to assist in separations of lignin oligomers from heterogeneous mixtures for the development of environmentally sustainable isolations of lignin compounds from biomass fractions.
Collapse
Affiliation(s)
- Kimberly R Dean
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Brian Novak
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mahsa Moradipour
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xinjie Tong
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Dorel Moldovan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Barbara L Knutson
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Stephen E Rankin
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
41
|
Karacaoğlu E. Flusilazole-induced damage to SerW3 cells via cytotoxicity, oxidative stress and lipid metabolism: An in vitro study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104998. [PMID: 34955182 DOI: 10.1016/j.pestbp.2021.104998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Flusilazole (C16H15F2N3Si) is a triazole fungicide and it is being used widely in recent years to control fungal infections in various fruits and vegetables. This study aims to evaluate the impact of flusilazole on cytotoxicity, ATP-dependent cassette transporter proteins (ABC transporter proteins) in SerW3 cells. In this study, SerW3 cells have administrated with 25, 100, and 200 μM flusilazole, cell viability was performed. The quantity of the cellular lipids was evaluated spectrophotometrically. Moreover, the expression of the ABCA1 and ABCB1 proteins determined by immunofluorescence microscopy. Furtherly, evaluation of the cell death type and measurement of the activity of the antioxidant enzymes was performed. According to the results, flusilazole treatment gave rise to inhibition in cell viability, increase in apoptotic cell number, reduction in cellular lipids, and inhibition in the expression of ABCA1 and ABCB1 proteins. Furthermore, it caused decreases in antioxidant enzyme activities. It may be concluded that flusilazole administration may cause infertility/subfertility. The mechanism of action can be due to cytotoxicity, impairment of the detoxification mechanisms, lipid metabolism, and dysregulation of cell functions.
Collapse
Affiliation(s)
- Elif Karacaoğlu
- Hacettepe University, Faculty of Science, Department of Biology, 06800, Beytepe, Ankara, Turkey.
| |
Collapse
|
42
|
Machado SC, Souza BM, de Aguiar Marciano LP, Souza Pereira AF, Lima Brigagão MRP, Machado Viana AL, Rodrigues MR, Martins I. Endpoints as human biomarkers in exposure assessment of triazoles fungicides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103703. [PMID: 34265456 DOI: 10.1016/j.etap.2021.103703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Potential endpoint biomarkers were evaluated in the assessment of exposure to triazoles, in the southern region of Minas Gerais, Brazil. Volunteers were divided into three groups: occupationally exposed and rural residents (n = 21), non-occupationally exposed and rural residents (n = 35) and non-occupationally exposed and urban residents (n = 30). Of all endpoints evaluated, plasma concentration of androstenedione (p < 0.001) and glycine-conjugated bile acids presented statistical differences in the three studied groups (p < 0.05). However, our findings concerning oxidative stress and testosterone levels, plus that related to unconjugated and taurine conjugated bile acids, suggested that more studies are necessary to evaluate their potential as biomarkers for triazole exposure, as statistical significance was not attained between the groups. Our human population data contributes to the development of triazole exposure risk assessment with respect to these potential effect biomarkers, in potentially vulnerable groups and individuals.
Collapse
Affiliation(s)
- Simone Caetani Machado
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Bruna Maciel Souza
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Luiz Paulo de Aguiar Marciano
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Ana Flávia Souza Pereira
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | | | - André Luiz Machado Viana
- Laboratory of Clinical Analysis - LACEN, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Maria Rita Rodrigues
- Laboratory of Clinical Analysis - LACEN, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil
| | - Isarita Martins
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva street, 700, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
43
|
Shukla P, Deswal D, Pandit M, Latha N, Mahajan D, Srivastava T, Narula AK. Exploration of novel TOSMIC tethered imidazo[1,2-a]pyridine compounds for the development of potential antifungal drug candidate. Drug Dev Res 2021; 83:525-543. [PMID: 34569640 DOI: 10.1002/ddr.21883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022]
Abstract
New candidates of imidazo[1,2-a]pyridine were designed by combining 2-amino pyridine, TOSMIC and various assorted aldehydes to explore their antioxidant and antifungal potential. The design of these derivatives was based on utilizing the antifungal potential of azoles and TOSMIC moiety. These derivatives were synthesized by adopting multi-component reaction methodology, as it serves as a rapid and efficient tool to target structurally diverse heterocyclic compounds in quantitative yield. The resulting imidazo[1,2-a]pyridine derivatives were structurally verified by 1 HNMR, 13 CNMR, HRMS, and HPLC. The compounds were analyzed for their antioxidant and fluorescent properties and it was observed that compound 15 depicted highest potential. The compounds were evaluated for their antifungal potential to highlight their medical application in the area of Invasive Fungal Infections (IFI). Compound 12 gave the highest antifungal inhibition against Aspergillus fumigatus 3007 and Candida albicans 3018. To elucidate the antifungal mechanism, confocal images of treated fungi were analyzed, which depicted porous nature of fungal membrane. Estimation of fungal membrane sterols by UPLC indicated decrease in ergosterol component of fungal membrane. In silico studies further corroborated with the in vitro results as docking studies depicted interaction of synthesized heterocyclic compounds with amino acids present in the active site of target enzyme (lanosterol 14 alpha demethylase). Absorption, distribution, metabolism, and excretion (ADME) analysis was indicative of drug-likeliness of the synthesized compounds.
Collapse
Affiliation(s)
- Pratibha Shukla
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.,Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| | - Deepa Deswal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| | - Mansi Pandit
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Narayanan Latha
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Divyank Mahajan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Anudeep Kumar Narula
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.,Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| |
Collapse
|
44
|
Santos MF, Rappa G, Karbanová J, Fontana S, Bella MAD, Pope MR, Parrino B, Cascioferro SM, Vistoli G, Diana P, Cirrincione G, Arena GO, Woo G, Huang K, Huynh T, Moschetti M, Alessandro R, Corbeil D, Lorico A. Itraconazole inhibits nuclear delivery of extracellular vesicle cargo by disrupting the entry of late endosomes into the nucleoplasmic reticulum. J Extracell Vesicles 2021; 10:e12132. [PMID: 34429859 PMCID: PMC8363911 DOI: 10.1002/jev2.12132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication under both healthy and pathological conditions, including the induction of pro-metastatic traits, but it is not yet known how and where functional cargoes of EVs are delivered to their targets in host cell compartments. We have described that after endocytosis, EVs reach Rab7+ late endosomes and a fraction of these enter the nucleoplasmic reticulum and transport EV biomaterials to the host cell nucleoplasm. Their entry therein and docking to outer nuclear membrane occur through a tripartite complex formed by the proteins VAP-A, ORP3 and Rab7 (VOR complex). Here, we report that the antifungal compound itraconazole (ICZ), but not its main metabolite hydroxy-ICZ or ketoconazole, disrupts the binding of Rab7 to ORP3-VAP-A complexes, leading to inhibition of EV-mediated pro-metastatic morphological changes including cell migration behaviour of colon cancer cells. With novel, smaller chemical drugs, inhibition of the VOR complex was maintained, although the ICZ moieties responsible for antifungal activity and interference with intracellular cholesterol distribution were removed. Knowing that cancer cells hijack their microenvironment and that EVs derived from them determine the pre-metastatic niche, small-sized inhibitors of nuclear transfer of EV cargo into host cells could find cancer therapeutic applications, particularly in combination with direct targeting of cancer cells.
Collapse
Affiliation(s)
- Mark F. Santos
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Germana Rappa
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Jana Karbanová
- Biotechnology Centre and Centre for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | | | | | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Stella Maria Cascioferro
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Giulio Vistoli
- Dipartimento di Scienze FarmaceuticheUniversità degli Studi di MilanoMilanItaly
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Goffredo O. Arena
- Department of SurgeryMcGill UniversityMontréalQuébecCanada
- Fondazione Istituto G. GiglioCefalùItaly
| | - Gyunghwi Woo
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Kevin Huang
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Tony Huynh
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
- Institute for Biomedical Research and Innovation (IRIB)National Research Council (CNR)PalermoItaly
| | - Denis Corbeil
- Biotechnology Centre and Centre for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Aurelio Lorico
- College of MedicineTouro University NevadaHendersonNevadaUSA
- Mediterranean Institute of OncologyViagrandeItaly
| |
Collapse
|
45
|
Chaudhary C, Kumar S, Kumar S, Hashim SR. Synthesis and Antimicrobial Evaluation of Quinazoline-4[3H]-one Derivatives. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200818205800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present investigation aimed to synthesize quinazoline-4(3H)-one derivatives (B1-10)
and evaluated their antimicrobial activity. The test compounds (B1-10) were obtained by reaction of 2-
phenyl-4H-benzo[d] [1, 3]oxazin-4-one (1) with 4-aminophenol (2) to afford 3-(4-hydroxyphenyl)-2-
phenylquinazoline-4(3H)-one (3) which were further reacted with different N-phenylacetamide (4) in
the presence of anhydrous potassium carbonate and a catalytic amount of potassium iodide in ethylmethylketone.
The test compounds (B1-10) were characterized by the spectroscopic method and evaluated
for their antimicrobial activity using the cup plate method by measuring the zone of inhibition. Among
the compounds, compound B1, B2, B4, B6, and B8 showed maximum zone of inhibition as compared
to standard drug ciprofloxacin and fluconazole against Bacillus subtilis, Escherichia coli and Aspergillus
niger. Molecular docking was also performed for test compounds to predict their binding affinities
in the target protein and results showed good drug-like properties.
Collapse
Affiliation(s)
- Cheenu Chaudhary
- Department of Chemistry, School of Sciences, IFTM University, Moradabad-244102 (U.P.),India
| | - Sushil Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad-244102 (U.P.),India
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon 21936,Korea
| | - S. Riaz Hashim
- Department of Chemistry, School of Sciences, IFTM University, Moradabad-244102 (U.P.),India
| |
Collapse
|
46
|
Bian C, Duan Y, Xiu Q, Wang J, Tao X, Zhou M. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2021; 22:769-785. [PMID: 33934484 PMCID: PMC8232029 DOI: 10.1111/mpp.13060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 04/14/2023]
Abstract
Deoxynivalenol (DON) is a vital virulence factor of Fusarium graminearum, which causes Fusarium head blight (FHB). We recently found that validamycin A (VMA), an aminoglycoside antibiotic, can be used to control FHB and inhibit DON contamination, but its molecular mechanism is still unclear. In this study, we found that both neutral and acid trehalase (FgNTH and FgATH) are the targets of VMA in F. graminearum, and the deficiency of FgNTH and FgATH reduces the sensitivity to VMA by 2.12- and 1.79-fold, respectively, indicating that FgNTH is the main target of VMA. We found FgNTH is responsible for vegetative growth, FgATH is critical to sexual reproduction, and both of them play an important role in conidiation and virulence in F. graminearum. We found that FgNTH resided in the cytoplasm, affected the localization of FgATH, and positively regulated DON biosynthesis; however, FgATH resided in vacuole and negatively regulated DON biosynthesis. FgNTH interacted with FgPK (pyruvate kinase), a key enzyme in glycolysis, and the interaction was reduced by VMA; the deficiency of FgNTH affected the localization of FgPK under DON induction condition. Strains with a deficiency of FgNTH were more sensitive to demethylation inhibitor (DMI) fungicides. FgNTH regulated the expression level of FgCYP51A and FgCYP51B by interacting with FgCYP51B. Taken together, VMA inhibits DON biosynthesis by targeting FgNTH and reducing the interaction between FgNTH and FgPK, and synergizes with DMI fungicides against F. graminearum by decreasing FgCYP51A and FgCYP51B expression.
Collapse
Affiliation(s)
- Chuanhong Bian
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yabing Duan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Qian Xiu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Jueyu Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xian Tao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Mingguo Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
47
|
Kabakci R, Kaya A, Yigit AA, Varisli O. Assessment of tebuconazole exposure on bovine testicular cells and epididymal spermatozoa. Acta Vet Hung 2021; 69:180-188. [PMID: 34214047 DOI: 10.1556/004.2021.00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
This study is the first to investigate the effects of tebuconazole (TEB) on the physiological functions of bovine testicular cells and epididymal spermatozoa. Motility and plasma membrane integrity of spermatozoa exposed to TEB (0.001-100 µM) were evaluated at different incubation times (0-6 h), while TEB-induced spermiotoxicity was assessed after 24 h in cell cultures. Testicular cells, obtained from the parenchyma of bovine testes, were seeded at 1.0 × 104 and 1.5 × 106 cells/well in 96- and 12-well culture plates and incubated for 48 h in culture media containing TEB (0.001-100 µM) to evaluate cytotoxicity and hormone release, respectively. TEB did not affect the motility and plasma membrane integrity. However, significant spermiotoxicity occurred at higher TEB (1-100 µM) concentrations (P < 0.05) compared to control and lower doses. Although no dose caused cytotoxicity in testicular cells (P > 0.05), 1 and 100 µM TEB caused a significant increase in testosterone secretion (P < 0.05). As a result, high doses of TEB (1-100 µM) had slightly suppressive effects on spermatozoa; however, these doses had stimulatory effects on testosterone secretion by testicular cells. It appears that the disruption of hormonal homeostasis of testicular cells after TEB exposure may result in metabolic and especially reproductive adverse effects in bulls.
Collapse
Affiliation(s)
- Ruhi Kabakci
- 1Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, 71450, Kirikkale, Turkey
| | - Abdulkadir Kaya
- 2Department of Artificial Insemination and Reproduction, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ayse Arzu Yigit
- 1Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, 71450, Kirikkale, Turkey
| | - Omer Varisli
- 2Department of Artificial Insemination and Reproduction, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
48
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
49
|
Liu N, Abramyan ED, Cheng W, Perlatti B, Harvey CJB, Bills GF, Tang Y. Targeted Genome Mining Reveals the Biosynthetic Gene Clusters of Natural Product CYP51 Inhibitors. J Am Chem Soc 2021; 143:6043-6047. [PMID: 33857369 DOI: 10.1021/jacs.1c01516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lanosterol 14α-demethylase (CYP51) is an important target in the development of antifungal drugs. The fungal-derived restricticin 1 and related molecules are the only examples of natural products that inhibit CYP51. Here, using colocalizations of genes encoding self-resistant CYP51 as the query, we identified and validated the biosynthetic gene cluster (BGC) of 1. Additional genome mining of related BGCs with CYP51 led to production of the related lanomycin 2. The pathways for both 1 and 2 were identified from fungi not known to produce these compounds, highlighting the promise of the self-resistance enzyme (SRE) guided approach to bioactive natural product discovery.
Collapse
Affiliation(s)
| | | | | | - Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | | | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | | |
Collapse
|
50
|
Kaluzhskiy L, Ershov P, Yablokov E, Shkel T, Grabovec I, Mezentsev Y, Gnedenko O, Usanov S, Shabunya P, Fatykhava S, Popov A, Artyukov A, Styshova O, Gilep A, Strushkevich N, Ivanov A. Human Lanosterol 14-Alpha Demethylase (CYP51A1) Is a Putative Target for Natural Flavonoid Luteolin 7,3'-Disulfate. Molecules 2021; 26:2237. [PMID: 33924405 PMCID: PMC8070018 DOI: 10.3390/molecules26082237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Widespread pathologies such as atherosclerosis, metabolic syndrome and cancer are associated with dysregulation of sterol biosynthesis and metabolism. Cholesterol modulates the signaling pathways of neoplastic transformation and tumor progression. Lanosterol 14-alpha demethylase (cytochrome P450(51), CYP51A1) catalyzes one of the key steps in cholesterol biosynthesis. The fairly low somatic mutation frequency of CYP51A1, its druggability, as well as the possibility of interfering with cholesterol metabolism in cancer cells collectively suggest the clinical importance of CYP51A1. Here, we show that the natural flavonoid, luteolin 7,3'-disulfate, inhibits CYP51A1 activity. We also screened baicalein and luteolin, known to have antitumor activities and low toxicity, for their ability to interact with CYP51A1. The Kd values were estimated using both a surface plasmon resonance optical biosensor and spectral titration assays. Unexpectedly, in the enzymatic activity assays, only the water-soluble form of luteolin-luteolin 7,3'-disulfate-showed the ability to potently inhibit CYP51A1. Based on molecular docking, luteolin 7,3'-disulfate binding suggests blocking of the substrate access channel. However, an alternative site on the proximal surface where the redox partner binds cannot be excluded. Overall, flavonoids have the potential to inhibit the activity of human CYP51A1 and should be further explored for their cholesterol-lowering and anti-cancer activity.
Collapse
Affiliation(s)
- Leonid Kaluzhskiy
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (P.E.); (E.Y.); (Y.M.); (O.G.); (A.I.)
| | - Pavel Ershov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (P.E.); (E.Y.); (Y.M.); (O.G.); (A.I.)
| | - Evgeniy Yablokov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (P.E.); (E.Y.); (Y.M.); (O.G.); (A.I.)
| | - Tatsiana Shkel
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (T.S.); (I.G.); (S.U.); (P.S.); (S.F.); (A.G.)
| | - Irina Grabovec
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (T.S.); (I.G.); (S.U.); (P.S.); (S.F.); (A.G.)
| | - Yuri Mezentsev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (P.E.); (E.Y.); (Y.M.); (O.G.); (A.I.)
| | - Oksana Gnedenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (P.E.); (E.Y.); (Y.M.); (O.G.); (A.I.)
| | - Sergey Usanov
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (T.S.); (I.G.); (S.U.); (P.S.); (S.F.); (A.G.)
| | - Polina Shabunya
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (T.S.); (I.G.); (S.U.); (P.S.); (S.F.); (A.G.)
| | - Sviatlana Fatykhava
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (T.S.); (I.G.); (S.U.); (P.S.); (S.F.); (A.G.)
| | - Alexander Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia; (A.P.); (A.A.); (O.S.)
| | - Aleksandr Artyukov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia; (A.P.); (A.A.); (O.S.)
| | - Olga Styshova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia; (A.P.); (A.A.); (O.S.)
| | - Andrei Gilep
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (T.S.); (I.G.); (S.U.); (P.S.); (S.F.); (A.G.)
| | - Natallia Strushkevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (P.E.); (E.Y.); (Y.M.); (O.G.); (A.I.)
| |
Collapse
|