1
|
Adda Neggaz L, Dahmani AC, Derriche I, Adda Neggaz N, Boudjema A. Computational prediction of deleterious nonsynonymous SNPs in the CTNS gene: implications for cystinosis. BMC Genom Data 2025; 26:35. [PMID: 40375073 PMCID: PMC12079974 DOI: 10.1186/s12863-025-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Cystinosis is a rare autosomal recessive lysosomal storage disorder caused by mutations in the CTNS gene, which encodes cystinosin, a lysosomal cystine transporter. These mutations disrupt cystine efflux, leading to its accumulation in lysosomes and subsequent cellular damage. While more than 140 mutations have been identified, the functional and structural impacts of many nonsynonymous single nucleotide polymorphisms (nsSNPs) remain poorly understood. Nonsynonymous SNPs are of particular interest because they can directly alter protein structure and function, potentially leading to disease. Clinically, cystinosis most often presents with renal Fanconi syndrome, photophobia and vision loss due to corneal cystine crystals, and progressive neuromuscular complications such as distal myopathy and swallowing difficulties This study aimed to identify deleterious nsSNPs in the CTNS gene and evaluate their effects on cystinosin stability, structure, and function via computational tools and molecular dynamics simulations. RESULTS From a dataset of 12,028 SNPs, 327 nsSNPs were identified, among which 19 were consistently classified as deleterious across multiple predictive tools, including SIFT, PolyPhen, and molecular dynamics simulations. Stability predictions revealed that most of these mutations destabilize cystinosin, with G308R and G308V located in the sixth transmembrane domain essential for transporter function having the most severe effects. Molecular dynamics simulations revealed that these mutations significantly increase local flexibility, alter hydrogen bonding patterns, and enhance solvent accessibility, resulting in structural perturbations. Notably, D305G and F142S disrupted the transmembrane domains essential for the function of cystinosin, whereas compared with the wild-type protein, G309V resulted in increased stability. Conservation analysis revealed that 16 of the 19 mutations affected highly conserved residues, indicating their crucial roles in the function of cystinosin. Additionally, protein interaction analyses suggested that mutations could impact associations with lysosomal and membrane transport proteins. CONCLUSIONS This study identified 19 deleterious nsSNPs in the CTNS gene that impair cystinosin stability and function. These findings highlight the structural and functional importance of key residues, such as G308, D305, and F142, which play critical roles in maintaining the active conformation and transport capacity of cystinosin. These insights provide a foundation for future experimental validation and the development of targeted therapeutic strategies to mitigate the effects of pathogenic mutations in cystinosis.
Collapse
Affiliation(s)
- Leila Adda Neggaz
- Laboratory of Molecular and Cellular Genetics (LGMC), University of Sciences and Technology of Oran Mohamed Boudiaf, Oran, Algeria.
| | - Amira Chahinez Dahmani
- Laboratory of Molecular and Cellular Genetics (LGMC), University of Sciences and Technology of Oran Mohamed Boudiaf, Oran, Algeria
- Biology Department, Faculty of Natural and Life Sciences, University of Mostaganem, Mostaganem, Algeria
| | - Ibtissem Derriche
- Laboratory of Nutrition Physiology and Food Safety, University of Oran, Oran, Algeria
| | | | - Abdallah Boudjema
- Laboratory of Molecular and Cellular Genetics (LGMC), University of Sciences and Technology of Oran Mohamed Boudiaf, Oran, Algeria
| |
Collapse
|
2
|
Oldham KE, Jiao W, Prentice E, Hicks JL. Identification of novel inhibitors targeting serine acetyltransferase from Neisseria gonorrhoeae. Comput Struct Biotechnol J 2025; 27:682-691. [PMID: 40070520 PMCID: PMC11894326 DOI: 10.1016/j.csbj.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen and the etiological agent of the sexually transmitted infection, gonorrhoea. The rapid emergence of extensively antimicrobial-resistant strains, including those resistant to all frontline antibiotics, has led to N. gonorrhoeae being labelled a priority pathogen by the World Health Organization, highlighting the need for new antimicrobial treatments. Given its absence in humans, targeting de novo cysteine biosynthesis has been identified as a promising avenue for developing new antimicrobials against bacterial pathogens. The biosynthesis of cysteine is catalyzed by two enzymes; serine acetyltransferase (SAT/CysE) which catalyzes the first step and O-acetylserine sulfhydrylase (OASS/CysK) that catalyzes the second step incorporating sulfur to form l-cysteine. CysE is reported to be essential for bacterial survival in several bacterial pathogens including N. gonorrhoeae. Here, we have conducted virtual inhibitor screening of commercially available compound libraries against SAT from N. gonorrhoeae (NgSAT). We have identified a hit compound with an IC50 of 8.6 µM and analyzed its interactions with the enzyme's active site. This provides a platform for the identification and development of novel SAT inhibitors to combat drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Keely E.A. Oldham
- School of Pharmacy and Biomedical Science, University of Waikato, Hamilton 3216, New Zealand
- School of Science, University of Waikato, Hamilton 3216, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Erica Prentice
- School of Science, University of Waikato, Hamilton 3216, New Zealand
| | - Joanna L. Hicks
- School of Pharmacy and Biomedical Science, University of Waikato, Hamilton 3216, New Zealand
| |
Collapse
|
3
|
Lonare S, Gupta DN, Kaur H, Rode S, Verma S, Gubyad M, Ghosh DK, Kumar P, Sharma AK. Characterization of Cationic Amino Acid Binding Protein from Candidatus Liberibacter Asiaticus and in Silico Study to Identify Potential Inhibitor Molecules. Protein J 2024; 43:967-982. [PMID: 39306651 DOI: 10.1007/s10930-024-10233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Cationic amino acid binding protein (CLasArgBP), one of the two amino acid binding receptor in Candidatus Liberibacter asiaticus (CLas), is predominately expressed in citrus psyllids as a part of ATP-binding cassette transport system. The present study describes characterization of CLasArgBP by various biophysical techniques and in silico study, to identify potential inhibitor molecules against CLasArgBP through virtual screening and MD simulations. Further, in planta study was carried out to assess the effect of selected inhibitors on Huanglongbing infected Mosambi plants. The results showed that CLasArgBP exhibits pronounced specificity for arginine, histidine and lysine. Surface plasmon resonance (SPR) study reports highest binding affinity for arginine (Kd, 0.14 µM), compared to histidine and lysine (Kd, 15 µΜ and 26 µΜ, respectively). Likewise, Differential Scanning Calorimetry (DSC) study showed higher stability of CLasArgBP for arginine, compared to histidine and lysine. N(omega)-nitro-L-arginine, Gamma-hydroxy-L-arginine and Gigartinine emerged as lead compounds through in silico study displaying higher binding energy and stability compared to arginine. SPR reports elevated binding affinities for N(omega)-nitro-L-arginine and Gamma-hydroxy-L-arginine (Kd, 0.038 µΜ and 0.061 µΜ, respectively) relative to arginine. DSC studies showed enhanced thermal stability for CLasArgBP in complex with selected inhibitors. Circular dichroism and fluorescence studies showed pronounced conformational changes in CLasArgBP with selected inhibitors than with arginine. In planta study demonstrated a substantial decrease in CLas titer in treated plants as compared to control plants. Overall, the study provides the first comprehensive characterization of cationic amino acid binding protein from CLas, as a potential drug target to manage HLB disease.
Collapse
Affiliation(s)
- Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
4
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
5
|
He Y, Jin H, Ju F. Toxicological effects and underlying mechanisms of chlorination-derived metformin byproducts in Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167281. [PMID: 37758144 DOI: 10.1016/j.scitotenv.2023.167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Chlorination-derived byproducts of the emerging contaminant metformin, such as (3E)-3-(chloroimino)-N,N-dimethyl-3H-1,2,4-triazol-5-amine (3,3-CDTA) and N-cyano-N,N-dimethylcarbaminmidic chloride (NCDC), occur in global waters and are toxic to organisms, from bacteria to mice. However, the mechanisms underlying their toxicity remain unknown. Here, we explored the toxicological effects and potential molecular mechanisms of 3,3-CDTA and NCDC at milligram concentrations, using Escherichia coli as a model organism. Compared with metformin (>300 mg/L), 3,3-CDTA and NCDC exerted stronger toxicity to E. coli, with a 4-h half maximal inhibitory concentration of 2.97 mg/L and 75.7 mg/L, respectively. Both byproducts disrupted E. coli cellular structures and components, decreased membrane potential and adenosine triphosphate (ATP) biosynthesis, and led to excessive reactive oxidative species (ROS), as well as the ROS-scavenging enzymes superoxide dismutase and catalase. Proteomic analysis and molecular docking supported these biomarker responses in the byproduct-treated E. coli, and indicated potential damage to DNA/RNA processes, while also provided novel insights into the toxicological and detoxified-byproduct effects at the proteome level. The toxicity-related events of NCDC and 3,3-CDTA included membrane disruption, oxidative stress, and abnormal protein expression. This study is the first to examine the toxicological effects of chlorination-derived metformin byproducts in E. coli and the associated pathways involved; thereby broadening our understanding regarding the toxicity and transformation risks of metformin throughout its entire life process.
Collapse
Affiliation(s)
- Yuanzhen He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Hui Jin
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Research Centre for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| |
Collapse
|
6
|
Teng Z, Zhao X, Jia B, Ye L, Tian S, Guo H, Guo Y, Ji X, Li T, Li M. Bioremediation system consisted with Leclercia adecarboxylata and nZVI@Carbon/Phosphate for lead immobilization: The passivation mechanisms of chemical reaction and biological metabolism in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117888. [PMID: 37087891 DOI: 10.1016/j.jenvman.2023.117888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Bioremediation is one of the most promising strategies for heavy metal immobilization. A new remediation system was demonstrated in this research, which combined phosphate solubilizing bacteria (PSB) with nZVI@Carbon/Phosphate (nZVI@C/P) composite to remediate lead contaminated soil. Experimental results indicated that the new system (nZVI@C/P + PSB) could effectively convert the labile Pb into the stable fraction after 30 days of incubation, which increased the maximum residual fraction percentage of Pb by 70.58%. The characterization results showed that lead may exist in the forms of Pb5(PO4)3Cl, PbSO4 and 3PbCO3·2Pb(OH)2·H2O in the soil treated with nZVI@C/P + PSB. Meanwhile, soil enzyme activities and Leclercia abundance were enhanced in the treated soil compared with CK during the incubation time. In addition, the specialized functions (e.g. ABC transporters, siderophore metabolism, sulfur metabolism and phosphorus metabolism) in PSB and nZVI@C/P + PSB group were also enhanced. These phenomena proved that the key soil metabolic functions may be maintained and enhanced through the synergistic effect of incubated PSB and nZVI@C/P. The study demonstrated that this new bioremediation system provided feasible way to improve the efficacy for lead contaminated soil remediation.
Collapse
Affiliation(s)
- Zedong Teng
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Xin Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bojie Jia
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liangjun Ye
- Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Shaojing Tian
- Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Huiyuan Guo
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Tinggang Li
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China; Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Xu R, Wang YN, Sun Y, Wang H, Gao Y, Li S, Guo L, Gao L. External sodium acetate improved Cr(VI) stabilization in a Cr-spiked soil during chemical-microbial reduction processes: Insights into Cr(VI) reduction performance, microbial community and metabolic functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114566. [PMID: 36680991 DOI: 10.1016/j.ecoenv.2023.114566] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Interest combined chemical and microbial reduction for Cr(VI) remediation in contaminated sites has greatly increased. However, the effect of external carbon sources on Cr(VI) reduction during chemical-microbial reduction processes has not been studied. Therefore, in this study, the role of external sodium acetate (SA) in improving Cr(VI) reduction and stabilization in a representative Cr(VI)-spiked soils was systemically investigated. The results of batch experiments suggested that the soil Cr(VI) content declined from 1000 mg/kg to 2.6-5.1 mg/kg at 1-5 g C/kg SA supplemented within 15 days of reaction. The external addition of SA resulted in a significant increase in the relative abundances of Cr(VI)-reducing microorganisms, such as Tissierella, Proteiniclasticum and Proteiniclasticum. The relative abundance of Tissierella increased from 9.1% to 29.8% with the SA treatment at 5 g C/kg soil, which was the main contributors to microbial Cr(VI) reduction. Redundancy analysis indicated that pH and SA were the predominant factors affecting the microbial community in the SA treatments at 2 g C/kg soil and 5 g C/kg soil. Functional prediction suggested that the addition of SA had a positive effect on the metabolism of key substances involved in Cr(VI) microbial reduction. This work provides new insightful guidance on Cr(VI) remediation in contaminated soils.
Collapse
Affiliation(s)
- Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shupeng Li
- Beijing Construction Engineering Environmental Remediation Co., Ltd., National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Lili Guo
- Beijing Construction Engineering Environmental Remediation Co., Ltd., National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Lei Gao
- School of Marine Sciences and Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
8
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
9
|
Guo X, Schmiege P, Assafa TE, Wang R, Xu Y, Donnelly L, Fine M, Ni X, Jiang J, Millhauser G, Feng L, Li X. Structure and mechanism of human cystine exporter cystinosin. Cell 2022; 185:3739-3752.e18. [PMID: 36113465 PMCID: PMC9530027 DOI: 10.1016/j.cell.2022.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023]
Abstract
Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tufa E Assafa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Fine
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA.
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Li ZW, Wang JH. Analysis of the functional gene of degrading BDE-47 by Acinetobacter pittii GB-2 based on transcriptome sequencing. Gene 2022; 844:146826. [PMID: 35998843 DOI: 10.1016/j.gene.2022.146826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
Abstract
2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) is one of the most widely distributed PBDEs. BDE-47 is also the most abundant in organisms and the most toxic to humans and animals. Herein, we have studied the pathway of BDE-47 degradation and gene involvement in Acinetobacter pittii GB-2. This degradation is dominated by hydroxylation, resulting in hydroxylated products 6-OH-BDE-47, 5-OH-BDE-47 and 2'-OH-BDE-28, and bromophenol products 2,4-DBP and 4-BP. Transcriptome sequencing results showed 359 differentially expressed genes (DEGs) induced by BDE-47, of which 159 were up-regulated and 200 were down-regulated. The up-regulated ones were mainly related to substance transport, degradation and cell stress. From these results, we suggest that 1,2-dioxygenase, phenol hydroxylase and monooxygenase are involved in BDE-47 degradation. The function of AntA gene was identified by constructing a prokaryotic expression vector. Our study contributes to understanding how the metabolism of strain GB-2 changes under BDE-47 stress conditions, and sheds light on the mechanism of BDE-47 degradation.
Collapse
Affiliation(s)
- Zi-Wei Li
- School of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ji-Hua Wang
- School of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
11
|
Li J, Tang C, Zhang M, Fan C, Guo D, An Q, Wang G, Xu H, Li Y, Zhang W, Chen X, Zhao R. Exploring the Cr(VI) removal mechanism of Sporosarcina saromensis M52 from a genomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112767. [PMID: 34507039 DOI: 10.1016/j.ecoenv.2021.112767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Serious hexavalent chromium [Cr(VI)] pollution has continuously threatened ecological security and public health. Microorganism-assisted remediation technology has strong potential in the treatment of environmental Cr(VI) pollution due to its advantages of high efficiency, low cost, and low secondary pollution. Sporosarcina saromensis M52, a strain with strong Cr(VI) removal ability, isolated from coastal intertidal zone was used in this study. Scanning electron microscopy coupled with energy dispersive X-ray analysis indicated M52 was relatively stable under Cr(VI) stress and trace amount of Cr deposited on the cell surface. X-ray photoelectron spectroscopy and X-ray diffraction analyses exhibited M52 could reduce Cr(VI) into Cr(III). Fourier transform infrared spectroscopy showed the bacterial surface was mainly consisted of polysaccharides, phosphate groups, carboxyl groups, amide II (NH/CN) groups, alkyl groups, and hydroxyl groups, while functional groups involving in Cr(VI) bio-reduction were not detected. According to these characterization analyses, the removal of Cr(VI) was primarily depended on bio-reduction, instead of bio-adsorption by M52. Genome analyses further indicated the probable mechanisms of bio-reduction, including the active efflux of Cr(VI) by chromate transporter ChrA, enzymatic redox reactions mediated by reductases, DNA-repaired proteases ability to minimize the ROS damage, and the formation of specific cell components to minimize the biofilm injuries caused by Cr(VI). These studies provided a theoretical basis which was useful for Cr(VI) remediation, especially in terms of increasing its effectiveness. THE MAIN FINDING OF THE WORK: M52 realized the bioremediation of Cr(VI) majorly through bio-reduction, including Cr(VI) efflux, chromate reduction, DNA repair, and the formation of specific cell components, instead of bio-adsorption.
Collapse
Affiliation(s)
- Jiayao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Chen Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Min Zhang
- Department of Environmental and Occupational Health, Huzhou Center for Disease Control and Prevention, Huzhou 313000, Zhejiang, PR China
| | - Chun Fan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Qiuying An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Guangshun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Hao Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Wei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiaoxuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Ran Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
12
|
Dodson E. Introduction to molecular replacement: a time perspective. Acta Crystallogr D Struct Biol 2021; 77:867-879. [PMID: 34196614 PMCID: PMC8251348 DOI: 10.1107/s2059798321004368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022] Open
Abstract
This article provides an introduction to the crystal phasing technique known as molecular replacement. The available software is reviewed, and the prospects for future developments are considered. Several examples are described in detail to illustrate potential problems. A brief account of past progress is included. The basic crystallographic equations underlying the procedures are given in an appendix.
Collapse
Affiliation(s)
- Eleanor Dodson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
13
|
Bioinformatics analysis and biochemical characterisation of ABC transporter-associated periplasmic substrate-binding proteins ModA and MetQ from Helicobacter pylori strain SS1. Biophys Chem 2021; 272:106577. [PMID: 33756269 DOI: 10.1016/j.bpc.2021.106577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
The human gastric pathogen Helicobacter pylori relies on the uptake of host-provided nutrients for its proliferation and pathogenicity. ABC transporters that mediate import of small molecules into the cytoplasm of H. pylori employ their cognate periplasmic substrate-binding proteins (SBPs) for ligand capture in the periplasm. The genome of the mouse-adapted strain SS1 of H. pylori encodes eight ABC transporter-associated SBPs, but little is known about their specificity or structure. In this study, we demonstrated that the SBP annotated as ModA binds molybdate (MoO42-, KD = 3.8 nM) and tungstate (WO42-, KD = 7.8 nM). In addition, we showed that MetQ binds D-methionine (KD = 9.5 μM), but not L-methionine, which suggests the existence of as yet unknown pathway for L-methionine uptake. Homology modelling has led to identification of the ligand-binding residues.
Collapse
|
14
|
Zhou Y, Imlay JA. Escherichia coli K-12 Lacks a High-Affinity Assimilatory Cysteine Importer. mBio 2020; 11:e01073-20. [PMID: 32518189 PMCID: PMC7373191 DOI: 10.1128/mbio.01073-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023] Open
Abstract
The most direct route by which microbes might assimilate sulfur would be by importing cysteine. However, alone among the amino acids, cysteine does not have well-characterized importers. We determined that Escherichia coli can rapidly import cysteine, but in our experiments, it did so primarily through the LIV ATP-driven system that is dedicated to branched-chain amino acids. The affinity of this system for cysteine is far lower than for Leu, Ile, and Val, and so in their presence, cysteine is excluded. Thus, this transport is unlikely to be relevant in natural environments. Growth studies, transcriptomics, and transport assays failed to detect any high-affinity importer that is dedicated to cysteine assimilation. Enteric bacteria do not contain the putative cysteine importer that was identified in Campylobacter jejuni This situation is surprising, because E. coli deploys ion- and/or ATP-driven transporters that import cystine, the oxidized form of cysteine, with high affinity and specificity. We conjecture that in oxic environments, molecular oxygen oxidizes environmental cysteine to cystine, which E. coli imports. In anoxic environments where cysteine is stable, the cell chooses to assimilate hydrogen sulfide instead. Calculations suggest that this alternative is almost as economical, and it avoids the toxic effects that can result when excess cysteine enters the cell.IMPORTANCE This investigation discovered that Escherichia coli lacks a transporter dedicated to the assimilation of cysteine, an outcome that is in striking contrast to the many transporters devoted to the other 19 amino acids. We ascribe the lack of a high-affinity cysteine importer to two considerations. First, the chemical reactivity of this amino acid is unique, and its poorly controlled import can have adverse consequences for the cell. Second, our analysis suggests that the economics of biosynthesis depend sharply upon whether the cell is respiring or fermenting. In the anoxic habitats in which cysteine might be found, the value of import versus biosynthesis is strongly reduced compared to that in oxic habitats. These studies may explain why bacteria choose to synthesize rather than to import other useful biomolecules as well.
Collapse
Affiliation(s)
- Yidan Zhou
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
15
|
Sabrialabed S, Yang JG, Yariv E, Ben-Tal N, Lewinson O. Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY. J Biol Chem 2020; 295:5245-5256. [PMID: 32144203 PMCID: PMC7170509 DOI: 10.1074/jbc.ra119.012063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfur is essential for biological processes such as amino acid biogenesis, iron-sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer-substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine-bound FliY, and maximally by l-cysteine- or l-cystine-bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.
Collapse
Affiliation(s)
- Siwar Sabrialabed
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Janet G Yang
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | - Elon Yariv
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
16
|
Kumar P, Dalal V, Kokane A, Singh S, Lonare S, Kaur H, Ghosh DK, Kumar P, Sharma AK. Mutation studies and structure-based identification of potential inhibitor molecules against periplasmic amino acid binding protein of Candidatus Liberibacter asiaticus (CLasTcyA). Int J Biol Macromol 2020; 147:1228-1238. [DOI: 10.1016/j.ijbiomac.2019.09.250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
|
17
|
The Staphylococcus aureus Cystine Transporters TcyABC and TcyP Facilitate Nutrient Sulfur Acquisition during Infection. Infect Immun 2020; 88:IAI.00690-19. [PMID: 31843961 DOI: 10.1128/iai.00690-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a significant human pathogen due to its capacity to cause a multitude of diseases. As such, S. aureus efficiently pillages vital nutrients from the host; however, the molecular mechanisms that support sulfur acquisition during infection have not been established. One of the most abundant extracellular sulfur-containing metabolites within the host is cysteine, which acts as the major redox buffer in the blood by transitioning between reduced and oxidized (cystine) forms. We therefore hypothesized that S. aureus acquires host-derived cysteine and cystine as sources of nutrient sulfur during systemic infection. To test this hypothesis, we used the toxic cystine analogue selenocystine to initially characterize S. aureus homologues of the Bacillus subtilis cystine transporters TcyABC and TcyP. We found that genetic inactivation of both TcyA and TcyP induced selenocystine resistance. The double mutant also failed to proliferate in medium supplemented with cystine, cysteine, or N-acetyl cysteine as the sole sulfur source. However, only TcyABC was necessary for proliferation in defined medium containing homocystine as the sulfur source. Using a murine model of systemic infection, we observed tcyP-dependent competitive defects in the liver and heart, indicating that this sulfur acquisition strategy supports proliferation of S. aureus in these organs. Phylogenetic analyses identified TcyP homologues in many pathogenic species, implying that this sulfur procurement strategy is conserved. In total, this study is the first to experimentally validate sulfur acquisition systems in S. aureus and establish their importance during pathogenesis.
Collapse
|
18
|
Gang H, Xiao C, Xiao Y, Yan W, Bai R, Ding R, Yang Z, Zhao F. Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress. ENVIRONMENT INTERNATIONAL 2019; 127:94-102. [PMID: 30909098 DOI: 10.1016/j.envint.2019.03.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/25/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a priority heavy metal pollutant causing a series of environmental issues, and bio-reduction of Cr(VI) to trivalent chromium can remarkably decrease the environmental risk of Cr(VI). The reduction and resistance abilities of microorganisms to Cr(VI) can be dramatically improved by acclimatization. In the present study, we collected Shewanella oneidensis MR-1 from a 120-day acclimatization by increasing Cr(VI) concentration in the culture media to investigate its adaptation mechanisms under long-term Cr(VI) stress at the proteome level. Tandem mass tag-based quantitative proteomic analysis was performed to study the differences between 9 collected samples. A total of 2500 proteins were quantified from 2723 identified protein groups. Bioinformatics analysis showed that the differentially expressed proteins after the 120-day Cr(VI) acclimatization were mostly related to flagellar assembly, ribosomes, transport, sulfur metabolism, and energy metabolism. The findings of this study present novel insights into the molecular mechanisms for the reduction and resistance of S. oneidensis MR-1 responding to long-term Cr(VI) stress at the proteome level.
Collapse
Affiliation(s)
- Haiyin Gang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changye Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weifu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohui Yang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Kumar P, Kesari P, Kokane S, Ghosh DK, Kumar P, Sharma AK. Crystal structures of a putative periplasmic cystine-binding protein from Candidatus Liberibacter asiaticus: insights into an adapted mechanism of ligand binding. FEBS J 2019; 286:3450-3472. [PMID: 31063259 DOI: 10.1111/febs.14921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 11/28/2022]
Abstract
The amino acid-binding receptors, a component of ABC transporters, have evolved to cater to different specificities and functions. Of particular interest are cystine-binding receptors, which have shown broad specificity. In the present study, a putative periplasmic cystine-binding protein from Candidatus Liberibacter asiaticus (CLasTcyA) was characterized. Analysis of the CLasTcyA sequence and crystal structures in the ligand-bound state revealed novel features of CLasTcyA in comparison to related proteins. One of the unique features found in CLasTcyA structure was the positioning of the C-terminal extended loop of one chain very close to the substrate-binding site of the adjacent monomer in the asymmetric unit. The presence of a disulphide bond, unique to Candidatus Liberibacter family, holds the C-terminal extended loop in position. Analysis of the substrate-binding pocket of CLasTcyA suggested a broad specificity and a completely different orientation of the bound substrates in comparison to related protein structures. The open conformation for one of the two chains of the asymmetric unit in the Arg-bound structure revealed a limited open state (18.4°) for CLasTcyA as compared to open state of other related proteins (~ 60°). The strong interaction between Asp126 on helix-α5 of small domain and Arg82 (bigger domain) restricts the degree of opening in ligand-free open state. The dissociation constant of 1.26 μm by SPR and 3.7 μm by MST exhibited low affinity for the cystine. This is the first structural characterization of an l-cystine ABC transporter from plant pathogen and our results suggest that CLasTcyA may have evolved to cater to its specific needs for its survival in the host.
Collapse
Affiliation(s)
- Pranav Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | | |
Collapse
|
20
|
Rahman MM, Machuca MA, Roujeinikova A. Preliminary X-ray crystallographic studies on the Helicobacter pylori ABC transporter glutamine-binding protein GlnH. Drug Discov Ther 2019; 13:52-58. [DOI: 10.5582/ddt.2019.01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mohammad M. Rahman
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University
| | - Mayra A. Machuca
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University
- Department of Biochemistry and Molecular Biology, Monash University
| |
Collapse
|
21
|
Licht A, Bommer M, Werther T, Neumann K, Hobe C, Schneider E. Structural and functional characterization of a maltose/maltodextrin ABC transporter comprising a single solute binding domain (MalE) fused to the transmembrane subunit MalF. Res Microbiol 2019; 170:1-12. [DOI: 10.1016/j.resmic.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 01/21/2023]
|
22
|
Hicks JL, Mullholland CV. Cysteine biosynthesis in Neisseria species. MICROBIOLOGY-SGM 2018; 164:1471-1480. [PMID: 30307392 DOI: 10.1099/mic.0.000728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The principal mechanism of reducing sulfur into organic compounds is via the synthesis of l-cysteine. Cysteine is used for protein and glutathione synthesis, as well as being the primary sulfur source for a variety of other molecules, such as biotin, coenzyme A, lipoic acid and more. Glutathione and other cysteine derivatives are important for protection against the oxidative stress that pathogenic bacteria such as Neisseria gonorrhoeae and Neisseria meningitidis encounter during infection. With the alarming rise of antibiotic-resistant strains of N. gonorrhoeae, the development of inhibitors for the future treatment of this disease is critical, and targeting cysteine biosynthesis enzymes could be a promising approach for this. Little is known about the transport of sulfate and thiosulfate and subsequent sulfate reduction and incorporation into cysteine in Neisseria species. In this review we investigate cysteine biosynthesis within Neisseria species and examine the differences between species and with other bacteria. Neisseria species exhibit different arrangements of cysteine biosynthesis genes and have slight differences in how they assimilate sulfate and synthesize cysteine, while, most interestingly, N. gonorrhoeae by virtue of a genome deletion, lacks the ability to reduce sulfate to bisulfide for incorporation into cysteine, and as such uses the thiosulfate uptake pathway for the synthesis of cysteine.
Collapse
Affiliation(s)
- Joanna L Hicks
- School of Science, University of Waikato, Gate 8 Hillcrest Road, Hamilton, 3216, New Zealand
| | - Claire V Mullholland
- School of Science, University of Waikato, Gate 8 Hillcrest Road, Hamilton, 3216, New Zealand
| |
Collapse
|
23
|
An Aspartate-Specific Solute-Binding Protein Regulates Protein Kinase G Activity To Control Glutamate Metabolism in Mycobacteria. mBio 2018; 9:mBio.00931-18. [PMID: 30065086 PMCID: PMC6069109 DOI: 10.1128/mbio.00931-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Signaling by serine/threonine phosphorylation controls diverse processes in bacteria, and identification of the stimuli that activate protein kinases is an outstanding question in the field. Recently, we showed that nutrients stimulate phosphorylation of the protein kinase G substrate GarA in Mycobacterium smegmatis and Mycobacterium tuberculosis and that the action of GarA in regulating central metabolism depends upon whether it is phosphorylated. Here we present an investigation into the mechanism by which nutrients activate PknG. Two unknown genes were identified as co-conserved and co-expressed with PknG: their products were a putative lipoprotein, GlnH, and putative transmembrane protein, GlnX. Using a genetic approach, we showed that the membrane protein GlnX is functionally linked to PknG. Furthermore, we determined that the ligand specificity of GlnH matches the amino acids that stimulate GarA phosphorylation. We determined the structure of GlnH in complex with different amino acid ligands (aspartate, glutamate, and asparagine), revealing the structural basis of ligand specificity. We propose that the amino acid concentration in the periplasm is sensed by GlnH and that protein-protein interaction allows transmission of this information across the membrane via GlnX to activate PknG. This sensory system would allow regulation of nutrient utilization in response to changes in nutrient availability. The sensor, signaling, and effector proteins are conserved throughout the Actinobacteria, including the important human pathogen Mycobacterium tuberculosis, industrial amino acid producer Corynebacterium glutamicum, and antibiotic-producing Streptomyces species.IMPORTANCE Tuberculosis (TB) kills 5,000 people every day, and the prevalence of multidrug-resistant TB is increasing in every country. The processes by which the pathogen Mycobacterium tuberculosis senses and responds to changes in its environment are attractive targets for drug development. Bacterial metabolism differs dramatically between growing and dormant cells, and these changes are known to be important in pathogenesis of TB. Here, we used genetic and biochemical approaches to identify proteins that allow M. tuberculosis to detect amino acids in its surroundings so that it can regulate its metabolism. We have also shown how individual amino acids are recognized. The findings have broader significance for other actinobacterial pathogens, such as nontuberculous mycobacteria, as well as Actinobacteria used to produce billions of dollars of amino acids and antibiotics every year.
Collapse
|
24
|
Balasco N, Smaldone G, Ruggiero A, De Simone A, Vitagliano L. Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. Int J Biol Macromol 2018; 118:1924-1930. [PMID: 30017977 DOI: 10.1016/j.ijbiomac.2018.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
The global/local fold of protein structures is stabilized by a variety of specific interactions. A primary role in this context is played by hydrogen bonds. In order to identify novel motifs in proteins, we searched Protein Data Bank structures looking for backbone H-bonds formed by NH groups of two (or more) consecutive residues with consecutive CO groups of distant residues in the sequence. The present analysis unravels the occurrence of recurrent structural motifs that, to the best of our knowledge, had not been characterized in literature. Indeed, these H-bonding patterns are found (i) in a specific parallel β-sheet capping, (ii) in linking of β-hairpins to α-helices, and (iii) in α-helix insertions. Interestingly, structural analyses of these motifs indicate that Gly residues frequently occupy prominent positions. The formation of these motifs is likely favored by the limited propensity of Gly to be embodied in helices/sheets. Of particular interest is the motif corresponding to insertions in helices that was detected in 1% of analyzed structures. Inserted fragments may assume different structures and aminoacid compositions and usually display diversified evolutionary conservation. Since inserted regions are physically separated from the rest of the protein structure, they represent hot spots for ad-hoc protein functionalization.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College South Kensington Campus, London SW7 2AZ, UK
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| |
Collapse
|
25
|
Crystallisation and Preliminary Crystallographic Analysis of Helicobacter pylori Periplasmic Binding Protein YckK. CRYSTALS 2017. [DOI: 10.3390/cryst7110330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Qasem-Abdullah H, Perach M, Livnat-Levanon N, Lewinson O. ATP binding and hydrolysis disrupt the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate-binding protein. J Biol Chem 2017; 292:14617-14624. [PMID: 28710276 DOI: 10.1074/jbc.m117.779975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
Using the energy of ATP hydrolysis, ABC transporters catalyze the trans-membrane transport of molecules. In bacteria, these transporters partner with a high-affinity substrate-binding protein (SBP) to import essential micronutrients. ATP binding by Type I ABC transporters (importers of amino acids, sugars, peptides, and small ions) stabilizes the interaction between the transporter and the SBP, thus allowing transfer of the substrate from the latter to the former. In Type II ABC transporters (importers of trace elements, e.g. vitamin B12, heme, and iron-siderophores) the role of ATP remains debatable. Here we studied the interaction between the Yersinia pestis ABC heme importer (HmuUV) and its partner substrate-binding protein (HmuT). Using real-time surface plasmon resonance experiments and interaction studies in membrane vesicles, we find that in the absence of ATP the transporter and the SBP tightly bind. Substrate in excess inhibits this interaction, and ATP binding by the transporter completely abolishes it. To release the stable docked SBP from the transporter hydrolysis of ATP is required. Based on these results we propose a mechanism for heme acquisition by HmuUV-T where the substrate-loaded SBP docks to the nucleotide-free outward-facing conformation of the transporter. ATP binding leads to formation of an occluded state with the substrate trapped in the trans-membrane translocation cavity. Subsequent ATP hydrolysis leads to substrate delivery to the cytoplasm, release of the SBP, and resetting of the system. We propose that other Type II ABC transporters likely share the fundamentals of this mechanism.
Collapse
Affiliation(s)
- Hiba Qasem-Abdullah
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Michal Perach
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Nurit Livnat-Levanon
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | |
Collapse
|
27
|
Homburg C, Bommer M, Wuttge S, Hobe C, Beck S, Dobbek H, Deutscher J, Licht A, Schneider E. Inducer exclusion in Firmicutes: insights into the regulation of a carbohydrate ATP binding cassette transporter from Lactobacillus casei BL23 by the signal transducing protein P-Ser46-HPr. Mol Microbiol 2017; 105:25-45. [PMID: 28370477 DOI: 10.1111/mmi.13680] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 12/24/2022]
Abstract
Catabolite repression is a mechanism that enables bacteria to control carbon utilization. As part of this global regulatory network, components of the phosphoenolpyruvate:carbohydrate phosphotransferase system inhibit the uptake of less favorable sugars when a preferred carbon source such as glucose is available. This process is termed inducer exclusion. In bacteria belonging to the phylum Firmicutes, HPr, phosphorylated at serine 46 (P-Ser46-HPr) is the key player but its mode of action is elusive. To address this question at the level of purified protein components, we have chosen a homolog of the Escherichia coli maltose/maltodextrin ATP-binding cassette transporter from Lactobacillus casei (MalE1-MalF1G1K12 ) as a model system. We show that the solute binding protein, MalE1, binds linear and cyclic maltodextrins but not maltose. Crystal structures of MalE1 complexed with these sugars provide a clue why maltose is not a substrate. P-Ser46-HPr inhibited MalE1/maltotetraose-stimulated ATPase activity of the transporter incorporated in proteoliposomes. Furthermore, cross-linking experiments revealed that P-Ser46-HPr contacts the nucleotide-binding subunit, MalK1, in proximity to the Walker A motif. However, P-Ser46-HPr did not block binding of ATP to MalK1. Together, our findings provide first biochemical evidence that P-Ser-HPr arrests the transport cycle by preventing ATP hydrolysis at the MalK1 subunits of the transporter.
Collapse
Affiliation(s)
- Constanze Homburg
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Martin Bommer
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Steven Wuttge
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Carolin Hobe
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Sebastian Beck
- Institut für Chemie/Angewandte Analytik und Umweltchemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Holger Dobbek
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, F-78350, France.,Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UMR8261, Paris, F-75005, France
| | - Anke Licht
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Erwin Schneider
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| |
Collapse
|
28
|
Lewinson O, Livnat-Levanon N. Mechanism of Action of ABC Importers: Conservation, Divergence, and Physiological Adaptations. J Mol Biol 2017; 429:606-619. [PMID: 28104364 DOI: 10.1016/j.jmb.2017.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
The past decade has seen a remarkable surge in structural characterization of ATP binding cassette (ABC) transporters, which have spurred a more focused functional analysis of these elaborate molecular machines. As a result, it has become increasingly apparent that there is a substantial degree of mechanistic variation between ABC transporters that function as importers, which correlates with their physiological roles. Here, we summarize recent advances in ABC importers' structure-function studies and provide an explanation as to the origin of the different mechanisms of action.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, 31096 Haifa, Israel.
| | - Nurit Livnat-Levanon
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, 31096 Haifa, Israel
| |
Collapse
|
29
|
Ye Y, Li H, Ling N, Han Y, Wu Q, Xu X, Jiao R, Gao J. Identification of potential virulence factors of Cronobacter sakazakii isolates by comparative proteomic analysis. Int J Food Microbiol 2015; 217:182-8. [PMID: 26546912 DOI: 10.1016/j.ijfoodmicro.2015.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/24/2015] [Accepted: 08/30/2015] [Indexed: 01/18/2023]
Abstract
Cronobacter is a group of important foodborne pathogens associated with neonatal meningitis, septicemia, and necrotizing enterocolitis. Among Cronobacter species, Cronobacter sakazakii is the most common species in terms of isolation frequency. However, the molecular basis involved in virulence differences among C. sakazakii isolates is still unknown. In this study, based on the determination of virulence differences of C. sakazakii G362 (virulent isolate) and L3101 (attenuated isolate) through intraperitoneal injection, histopathologic analysis (small intestine, kidney, and liver) further confirmed virulence differences. Thereafter, the potential virulence factors were determined using two-dimensional electrophoresis (2-DE) coupled with MALDI/TOP/TOF mass spectrometry. Among a total of 36 protein spots showing differential expression (fold change>1.2), we identified 31 different proteins, of which the expression abundance of 22 was increased in G362. These up-regulated proteins in G362 mainly contained DNA starvation/stationary phase protection protein Dps, OmpA, LuxS, ATP-dependent Clp protease ClpC, and ABC transporter substrate-binding proteins, which might be involved in virulence of C. sakazakii. This is the first report to determine the potential virulence factors of C. sakazakii isolates at the proteomic levels.
Collapse
Affiliation(s)
- Yingwang Ye
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Hui Li
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Yongjia Han
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Xiaoke Xu
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Rui Jiao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jina Gao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
30
|
Comparative proteomics reveal the impact of OmcA/MtrC deletion on Shewanella oneidensis MR-1 in response to hexavalent chromium exposure. Appl Microbiol Biotechnol 2014; 98:9735-47. [PMID: 25341401 DOI: 10.1007/s00253-014-6143-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a priority pollutant causing serious environmental issues. Microbial reduction provides an alternative strategy for Cr(VI) remediation. The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, was employed to study Cr(VI) reduction and toxicity in this work. To understand the effect of membrane cytochromes on Cr(VI) response, a comparative protein profile analysis from S. oneidensis MR-1 wild type and its mutant of deleting OmcA and MtrC (△omcA/mtrC) was conducted using two-dimensional electrophoresis (2-DE) technology. The 2-DE patterns were compared, and the proteins with abundant changes of up to twofold in the Cr(VI) treatment were detected. Using mass spectrometry, 38 and 45 differentially abundant proteins were identified in the wild type and the mutant, respectively. Among them, 25 proteins were shared by the two strains. The biological functions of these identified proteins were analyzed. Results showed that Cr(VI) exposure decreased the abundance of proteins involved in transcription, translation, pyruvate metabolism, energy production, and function of cellular membrane in both strains. There were also significant differences in protein expressions between the two strains under Cr(VI) treatment. Our results suggest that OmcA/MtrC deletion might result in the Cr(VI) toxicity to outer membrane and decrease assimilation of lactate, vitamin B12, and cystine. When carbohydrate metabolism was inhibited by Cr(VI), leucine and sulfur metabolism may act as the important compensatory mechanisms in the mutant. Furthermore, the mutant may regulate electron transfer in the inner membrane and periplasm to compensate for the deletion of OmcA and MtrC in Cr(VI) reduction.
Collapse
|
31
|
Deutch C, Spahija I, Wagner C. Susceptibility of Escherichia coli
to the toxic L-proline analogue L-selenaproline is dependent on two L-cystine transport systems. J Appl Microbiol 2014; 117:1487-99. [PMID: 25139244 DOI: 10.1111/jam.12623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022]
Affiliation(s)
- C.E. Deutch
- School of Mathematical and Natural Sciences; Arizona State University at the West Campus; Phoenix AZ USA
| | - I. Spahija
- School of Mathematical and Natural Sciences; Arizona State University at the West Campus; Phoenix AZ USA
| | - C.E. Wagner
- School of Mathematical and Natural Sciences; Arizona State University at the West Campus; Phoenix AZ USA
| |
Collapse
|
32
|
Vergauwen B, Verstraete K, Senadheera DB, Dansercoer A, Cvitkovitch DG, Guédon E, Savvides SN. Molecular and structural basis of glutathione import in Gram-positive bacteria via GshT and the cystine ABC importer TcyBC of Streptococcus mutans. Mol Microbiol 2013; 89:288-303. [PMID: 23701283 DOI: 10.1111/mmi.12274] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 12/25/2022]
Abstract
Glutathione (GSH) protects cells against oxidative injury and maintains a range of vital functions across all branches of life. Despite recent advances in our understanding of the transport mechanisms responsible for maintaining the spatiotemporal homeostasis of GSH and its conjugates in eukaryotes and Gram-negative bacteria, the molecular and structural basis of GSH import into Gram-positive bacteria has remained largely uncharacterized. Here, we employ genetic, biochemical and structural studies to investigate a possible glutathione import axis in Streptococcus mutans, an organism that has hitherto served as a model system. We show that GshT, a type 3 solute binding protein, displays physiologically relevant affinity for GSH and glutathione disulfide (GSSG). The crystal structure of GshT in complex with GSSG reveals a collapsed structure whereby the GS-I-leg of GSSG is accommodated tightly via extensive interactions contributed by the N- and C-terminal lobes of GshT, while the GS-II leg extends to the solvent. This can explain the ligand promiscuity of GshT in terms of binding glutathione analogues with substitutions at the cysteine-sulfur or the glycine-carboxylate. Finally, we show that GshT primes glutathione import via the L-cystine ABC transporter TcyBC, a membrane permease, which had previously exclusively been associated with the transport of L-cystine.
Collapse
Affiliation(s)
- Bjorn Vergauwen
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K. L. Ledeganckstraat 35, B-9000, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
33
|
Wuttge S, Bommer M, Jäger F, Martins BM, Jacob S, Licht A, Scheffel F, Dobbek H, Schneider E. Determinants of substrate specificity and biochemical properties of the sn-glycerol-3-phosphate ATP binding cassette transporter (UgpB-AEC2 ) of Escherichia coli. Mol Microbiol 2012; 86:908-20. [PMID: 23013274 DOI: 10.1111/mmi.12025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2012] [Indexed: 12/20/2022]
Abstract
Under phosphate starvation conditions, Escherichia coli can utilize sn-glycerol-3-phosphate (G3P) and G3P diesters as phosphate source when transported by an ATP binding cassette importer composed of the periplasmic binding protein, UgpB, the transmembrane subunits, UgpA and UgpE, and a homodimer of the nucleotide binding subunit, UgpC. The current knowledge on the Ugp transporter is solely based on genetic evidence and transport assays using intact cells. Thus, we set out to characterize its properties at the level of purified protein components. UgpB was demonstrated to bind G3P and glycerophosphocholine with dissociation constants of 0.68 ± 0.02 μM and 5.1 ± 0.3 μM, respectively, while glycerol-2-phosphate (G2P) is not a substrate. The crystal structure of UgpB in complex with G3P was solved at 1.8 Å resolution and revealed the interaction with two tryptophan residues as key to the preferential binding of linear G3P in contrast to the branched G2P. Mutational analysis validated the crucial role of Trp-169 for G3P binding. The purified UgpAEC2 complex displayed UgpB/G3P-stimulated ATPase activity in proteoliposomes that was neither inhibited by phosphate nor by the signal transducing protein PhoU or the phosphodiesterase UgpQ. Furthermore, a hybrid transporter composed of MalFG-UgpC could be functionally reconstituted while a UgpAE-MalK complex was unstable.
Collapse
Affiliation(s)
- Steven Wuttge
- Division of Microbial Physiology, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bulut H, Ma Q, Moniot S, Saenger W, Schneider E, Vahedi-Faridi A. Crystal structures of receptors involved in small molecule transport across membranes. Eur J Cell Biol 2012; 91:318-25. [PMID: 22341528 DOI: 10.1016/j.ejcb.2011.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 10/28/2022] Open
Abstract
This paper briefly reviews contemporary protein crystallography and focuses on six receptor proteins of membrane-intrinsic ATP binding cassette (ABC) transporters. Three of these receptors are specific for carbohydrates and three for amino acids. The receptor GacH of the transporter GacFGH from Streptomyces glaucescens is specific for acarbose and its homologs, and MalE of Salmonella typhimurium is specific for maltose but also forms a complex with acarbose, and the third receptor is the highly specific d-galactose receptor AcbH of the transporter AcbFGH from Actinoplanes sp. Concerning the receptors for amino acids, ArtJ belongs to the ArtJ-(MP)(2) transporter of Geobacillus stearotermophilus and recognizes and binds to positively charged arginine, lysine, and histidine with different sizes of side chains, contrasting the receptors Ngo0372 and Ngo2014 from Neisseria gonorrhaeae that are highly specific for cystine and cysteine, respectively. The differences in the rather unspecific receptors GacH, MalE and ArtJ are compared with the highly specific receptors AcbH, Ngo0372 and Ngo2014.
Collapse
Affiliation(s)
- Haydar Bulut
- Institut für Chemie und Biochemie, Abteilung Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|