1
|
Uehara Y, Matsumoto A, Nakazawa T, Fukuta A, Ando K, Uchiumi T, Oka N, Ito K. Binding mode between peptidyl-tRNA hydrolase and the peptidyl-A76 moiety of the substrate. J Biol Chem 2025; 301:108385. [PMID: 40049414 PMCID: PMC11994314 DOI: 10.1016/j.jbc.2025.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/26/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025] Open
Abstract
Peptidyl-tRNA hydrolase (Pth) hydrolyzes the ester bond between the peptide and the tRNA of peptidyl-tRNA molecules, which are the products of aborted translation, to prevent cell death by recycling tRNA. Numerous studies have attempted to elucidate the substrate recognition mechanism of Pth. However, the binding mode of the peptidyl-A76 (3'-terminal adenosine of tRNA) moiety of the substrate to Pth, especially the A76 moiety, remains unclear. Here, we present the crystal structure of Thermus thermophilus Pth (TtPth) in complex with adenosine 5'-monophosphate (AMP), a mimic of A76. In addition, we show the crystal structure of TtPth in which the active site cleft interacts with the C-terminal three amino acid residues of a crystallographically related neighboring TtPth molecule. Superimposition of these two crystal structures reveals that the C-terminal carboxyl group of the neighboring TtPth molecule and the 3'-hydroxyl group of AMP are located in positions favorable for ester bond formation, and we present a TtPth⋅peptidyl-A76 complex model. The complex model agrees with many previous NMR and kinetic studies, and our site-directed mutagenesis studies support its validity. Based on these facts, we conclude that the complex model properly represents the interaction between Pth and the substrate in the reaction. Furthermore, structural comparisons suggest that the substrate recognition mode is conserved among bacterial Pths. This study provides insights into the molecular mechanism of the reaction and useful information to design new drugs targeting Pth.
Collapse
Affiliation(s)
- Yuji Uehara
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Ami Matsumoto
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Tomonori Nakazawa
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Akane Fukuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kaori Ando
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Toshio Uchiumi
- The Institute of Science and Technology, Niigata University, Niigata, Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan.
| |
Collapse
|
2
|
Yu T, Li X, Dong W, Zhou Q, Li Q, Du Z, Zeng F. Conserved GTPase OLA1 promotes efficient translation on D/E-rich mRNA. Nat Commun 2025; 16:1549. [PMID: 39934121 PMCID: PMC11814078 DOI: 10.1038/s41467-025-56797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The TRAFAC (translation factors) GTPase OLA1 plays a critical role in various stress responses and is implicated in the regulation of tumor progression. It is conserved from bacteria to eukaryotes and regulates the translation through binding to the ribosome. Here, we report the cryo-electron microscopy structure of its Escherichia coli homolog, YchF, with the 50S subunit. In this structure, YchF is positioned at the side of the 50S subunit by engaging with uL14, bL19, and rRNA helix H62 through its helical and ATPase domains. We further demonstrate that the helical domain is essential for OLA1/YchF to function. A comprehensive analysis of the structure and Ribo-seq data points out that OLA1/YchF promotes the splitting of ribosomes into subunits on D/E-rich mRNA. Our findings provide crucial structural insights into the molecular mechanism of OLA1/YchF-associated translation-stalling regulation, which maintains the translation of genes involved in stress response and tumor progression.
Collapse
Affiliation(s)
- Ting Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Xin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Wanlin Dong
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qixin Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qingrong Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Zisuo Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
| |
Collapse
|
3
|
Takada H, Paternoga H, Fujiwara K, Nakamoto J, Park E, Dimitrova-Paternoga L, Beckert B, Saarma M, Tenson T, Buskirk A, Atkinson G, Chiba S, Wilson D, Hauryliuk V. A role for the S4-domain containing protein YlmH in ribosome-associated quality control in Bacillus subtilis. Nucleic Acids Res 2024; 52:8483-8499. [PMID: 38811035 PMCID: PMC11317155 DOI: 10.1093/nar/gkae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Department of Biotechnology, Toyama Prefectural University,5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Esther N Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Merilin Saarma
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- Science for Life Laboratory, Lund, Sweden
| |
Collapse
|
4
|
Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front Cell Infect Microbiol 2024; 14:1289396. [PMID: 38655285 PMCID: PMC11035753 DOI: 10.3389/fcimb.2024.1289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.
Collapse
Affiliation(s)
- Lukasz Korczak
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Svetlov MS, Dunand CF, Nakamoto JA, Atkinson GC, Safdari HA, Wilson DN, Vázquez-Laslop N, Mankin AS. Peptidyl-tRNA hydrolase is the nascent chain release factor in bacterial ribosome-associated quality control. Mol Cell 2024; 84:715-726.e5. [PMID: 38183984 DOI: 10.1016/j.molcel.2023.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 01/08/2024]
Abstract
Rescuing stalled ribosomes often involves their splitting into subunits. In many bacteria, the resultant large subunits bearing peptidyl-tRNAs are processed by the ribosome-associated quality control (RQC) apparatus that extends the C termini of the incomplete nascent polypeptides with polyalanine tails to facilitate their degradation. Although the tailing mechanism is well established, it is unclear how the nascent polypeptides are cleaved off the tRNAs. We show that peptidyl-tRNA hydrolase (Pth), the known role of which has been to hydrolyze ribosome-free peptidyl-tRNA, acts in concert with RQC factors to release nascent polypeptides from large ribosomal subunits. Dislodging from the ribosomal catalytic center is required for peptidyl-tRNA hydrolysis by Pth. Nascent protein folding may prevent peptidyl-tRNA retraction and interfere with the peptide release. However, oligoalanine tailing makes the peptidyl-tRNA ester bond accessible for Pth-catalyzed hydrolysis. Therefore, the oligoalanine tail serves not only as a degron but also as a facilitator of Pth-catalyzed peptidyl-tRNA hydrolysis.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Clémence F Dunand
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jose A Nakamoto
- Department of Experimental Medicine, University of Lund, 221 00 Lund, Sweden
| | - Gemma C Atkinson
- Department of Experimental Medicine, University of Lund, 221 00 Lund, Sweden
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Nagao A, Nakanishi Y, Yamaguchi Y, Mishina Y, Karoji M, Toya T, Fujita T, Iwasaki S, Miyauchi K, Sakaguchi Y, Suzuki T. Quality control of protein synthesis in the early elongation stage. Nat Commun 2023; 14:2704. [PMID: 37198183 PMCID: PMC10192219 DOI: 10.1038/s41467-023-38077-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.
Collapse
Affiliation(s)
- Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yui Nakanishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshifumi Mishina
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minami Karoji
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Toya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
7
|
Tomasi FG, Schweber JTP, Kimura S, Zhu J, Cleghorn LAT, Davis SH, Green SR, Waldor MK, Rubin EJ. Peptidyl tRNA Hydrolase Is Required for Robust Prolyl-tRNA Turnover in Mycobacterium tuberculosis. mBio 2023; 14:e0346922. [PMID: 36695586 PMCID: PMC9973355 DOI: 10.1128/mbio.03469-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Enzymes involved in rescuing stalled ribosomes and recycling translation machinery are ubiquitous in bacteria and required for growth. Peptidyl tRNA drop-off is a type of abortive translation that results in the release of a truncated peptide that is still bound to tRNA (peptidyl tRNA) into the cytoplasm. Peptidyl tRNA hydrolase (Pth) recycles the released tRNA by cleaving off the unfinished peptide and is essential in most bacteria. We developed a sequencing-based strategy called copper sulfate-based tRNA sequencing (Cu-tRNAseq) to study the physiological role of Pth in Mycobacterium tuberculosis (Mtb). While most peptidyl tRNA species accumulated in a strain with impaired Pth expression, peptidyl prolyl-tRNA was particularly enriched, suggesting that Pth is required for robust peptidyl prolyl-tRNA turnover. Reducing Pth levels increased Mtb's susceptibility to tRNA synthetase inhibitors that are in development to treat tuberculosis (TB) and rendered this pathogen highly susceptible to macrolides, drugs that are ordinarily ineffective against Mtb. Collectively, our findings reveal the potency of Cu-tRNAseq for profiling peptidyl tRNAs and suggest that targeting Pth would open new therapeutic approaches for TB. IMPORTANCE Peptidyl tRNA hydrolase (Pth) is an enzyme that cuts unfinished peptides off tRNA that has been prematurely released from a stalled ribosome. Pth is essential in nearly all bacteria, including the pathogen Mycobacterium tuberculosis (Mtb), but it has not been clear why. We have used genetic and novel biochemical approaches to show that when Pth levels decline in Mtb, peptidyl tRNA accumulates to such an extent that usable tRNA pools drop. Thus, Pth is needed to maintain normal tRNA levels, most strikingly for prolyl-tRNAs. Many antibiotics act on protein synthesis and could be affected by altering the availability of tRNA. This is certainly true for tRNA synthetase inhibitors, several of which are drug candidates for tuberculosis. We find that their action is potentiated by Pth depletion. Furthermore, Pth depletion results in hypersensitivity to macrolides, drugs that are not active enough under ordinary circumstances to be useful for tuberculosis.
Collapse
Affiliation(s)
- Francesca G. Tomasi
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jessica T. P. Schweber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Laura A. T. Cleghorn
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan H. Davis
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simon R. Green
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew K. Waldor
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Role of ribosome recycling factor in natural termination and translational coupling as a ribosome releasing factor. PLoS One 2023; 18:e0282091. [PMID: 36827443 PMCID: PMC9955659 DOI: 10.1371/journal.pone.0282091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/07/2023] [Indexed: 02/26/2023] Open
Abstract
The role of ribosome recycling factor (RRF) of E. coli was studied in vivo and in vitro. We used the translational coupling without the Shine-Dalgarno sequence of downstream ORF (d-ORF) as a model system of the RRF action in natural termination of protein synthesis. For the in vivo studies we used the translational coupling by the adjacent coat and lysis genes of RNA phage GA sharing the termination and initiation (UAAUG) and temperature sensitive RRF. The d-ORF translation was measured by the expression of the reporter lacZ gene connected to the 5'-terminal part of the lysis gene. The results showed that more ribosomes which finished upstream ORF (u-ORF) reading were used for downstream reading when RRF was inactivated. The in vitro translational coupling studies with 027mRNA having the junction sequence UAAUG with wild-type RRF were carried out with measuring amino acids incorporation. The results showed that ribosomes released by RRF read downstream from AUG of UAAUG. In the absence of RRF, ribosomes read downstream in frame with UAA. These in vivo and in vitro studies indicate that RRF releases ribosomes from mRNA at the termination codon of u-ORF. Furthermore, the non-dissociable ribosomes read downstream from AUG of UAAUG with RRF in vitro. This suggests that complete ribosomal splitting is not required for ribosome release by RRF in translational coupling. The data are consistent with the interpretation that RRF functions mostly as a ribosome releasing factor rather than ribosome splitting factor. Additionally, the in vivo studies showed that short (less than 5 codons) u-ORF inhibited d-ORF reading by ribosomes finishing u-ORF reading, suggesting that the termination process in short ORF is not similar to that in normal ORF. This means that all the preexisting studies on RRF with short mRNA may not represent what goes on in natural termination step.
Collapse
|
9
|
Kaji H, Kaji A. Recollection of How We Came Across the Protein Modification with Amino Acids by Aminoacyl tRNA-Protein Transferase. Methods Mol Biol 2023; 2620:15-20. [PMID: 37010743 DOI: 10.1007/978-1-0716-2942-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Protein arginylation has been discovered in 1963 as a soluble activity in cell extracts that mediates the addition of amino acids to proteins. This discovery was nearly accidental, but due to the persistence of the research team, it has been followed through and led to the emergence of a new field of research. This chapter describes the original discovery of arginylation and the first methods used to demonstrate the existence of this important biological process.
Collapse
Affiliation(s)
- Hideko Kaji
- Thomas Jefferson University, Philadelphia, PA, USA
| | - Akira Kaji
- University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Wu Y, Tang M, Wang Z, Yang Y, Li Z, Liang S, Yin P, Qi H. Efficient In Vitro Full-Sense-Codons Protein Synthesis. Adv Biol (Weinh) 2022; 6:e2200023. [PMID: 35676219 DOI: 10.1002/adbi.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Indexed: 01/28/2023]
Abstract
Termination of translation is essential but hinders applications of genetic code engineering, e.g., unnatural amino acids incorporation and codon randomization mediated saturation mutagenesis. Here, for the first time, it is demonstrated that E. coli Pth and ArfB together play an efficient translation termination without codon preference in the absence of class-I release factors. By degradation of the targeted protein, both essential and alternative termination types of machinery are completely removed to disable codon-dependent termination in cell extract. Moreover, a total of 153 engineered tRNAs are screened for efficient all stop-codons decoding to construct a codon-dependent termination defect in vitro protein synthesis with all 64 sense-codons, iPSSC. Finally, this full sense genetic code achieves significant improvement in the incorporation of distinct unnatural amino acids at up to 12 positions and synthesis of protein encoding consecutive NNN codons. By decoding all information in nucleotides to amino acids, iPSSC may hold great potential in building artificial protein synthesis beyond the cell.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China.,College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengtong Tang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Youhui Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Zhong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Shurui Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Peng Yin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China.,Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang, China
| |
Collapse
|
11
|
Hua X, He J, Wang J, Zhang L, Zhang L, Xu Q, Shi K, Leptihn S, Shi Y, Fu X, Zhu P, Higgins PG, Yu Y. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf. Emerg Microbes Infect 2021; 10:1404-1417. [PMID: 34170209 PMCID: PMC8274536 DOI: 10.1080/22221751.2021.1948804] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acinetobacter baumannii is an important pathogen in hospital acquired infections. Although tigecycline currently remains a potent antibiotic for treating infections caused by multidrug resistant A. baumannii (MDRAB) strains, reports of tigecycline resistant isolates have substantially increased. The resistance mechanisms to tigecycline in A. baumannii are far more complicated and diverse than what has been described in the literature so far. Here, we characterize in vitro-selected MDRAB strains obtained by increasing concentrations of tigecycline. We have identified mutations in adeS, rrf and rpoB that result in reduced susceptibility to tigecycline. Using in situ complementation experiments, we confirm that mutations in rrf, rpoB, and two types of mutations in adeS correlate with tigecycline resistance. By Western blot and polysome profile analysis, we demonstrate that the rrf mutation results in decreased expression of RRF, which affects the process of ribosome recycling ultimately leading to increased tigecycline tolerance. A transcriptional analysis shows that the mutated rpoB gene plays a role in regulating the expression of the SAM-dependent methyltransferase (trm) and transcriptional regulators, to confer moderate tigecycline resistance. This study provides direct in vitro evidence that mutations in the adeS, rpoB and rrf are associated with tigecycline resistance in A. baumannii.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingfen Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yue Shi
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
EXPRESSION OF NUCLEOCAPSID VIRAL PROTEINS IN THE BACTERIAL SYSTEM OF Escherichia coli: THE INFLUENCE OF THE CODON COMPOSITION AND THE UNIFORMITY OF ITS DISTRIBUTION WITHIN GENE. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A heterologous host has got a unique expression ability of each gene. Differences between the synonymous sequences play an important role in regulation of protein expression in organisms from Escherichia coli to human, and many details of this process remain unclear. The work was aimed to study the composition of codons, its distribution over the sequence and the effect of rare codons on the expression of viral nucleocapsid proteins and their fragments in the heterologous system of E.coli. The plasmid vector pJC 40 and the BL 21 (DE 3) E. coli strain were used for protein expression. The codon composition analysis was performed using the online resource (www.biologicscorp.com). 10 recombinant polypeptides were obtained encoding the complete nucleotide sequence of nucleocapsid proteins (West Nile and hepatitis C viruses) and the fragments including antigenic determinants (Lassa virus, Marburg, Ebola, Crimean-Congo hemorrhagic fever (CCHF), Puumaravala, Hantaan, and lymphocytic choriomeningitis (LHM)). Hybrid plasmid DNAs provide efficient production of these proteins in the prokaryotic system with the recombinant protein yield varying by a factor of 8: from 5 to 40 mg per 1 liter of bacterial culture. No correlation was found between the level of protein expression and the frequency of occurrence of rare codons in the cloned sequence: the maximum frequency of occurrence of rare codons per cloned sequence was observed for the West Nile virus (14.6%), the minimum was for the CCHF virus (6.6%), whereas the expression level for these proteins was 30 and 5 mg/L culture, respectively. The codon adaptation index (CAI) values, calculated on the basis of the codon composition in E. coli, for the cloned viral sequences were in the range from 0.50 to 0.58, which corresponded to the average expressed proteins. The analysis of the distribution profiles of CAI in the cloned sequences indicated the absence of clusters of rare codons that could create difficulties in translation. A statistically significant difference between the frequencies of the distribution of amino acids in the cloned sequences and their content in E. coli was observed for the nucleocapsid proteins of the Marburg, Ebola, West Nile, and hepatitis C viruses.
Collapse
|
14
|
Characterization of active/binding site residues of peptidyl-tRNA hydrolase using biophysical and computational studies. Int J Biol Macromol 2020; 159:877-885. [PMID: 32445815 DOI: 10.1016/j.ijbiomac.2020.05.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/09/2020] [Accepted: 05/17/2020] [Indexed: 11/21/2022]
Abstract
All mRNAs cannot be translated into full-length proteins due to ribosome-stalling that leads to release of peptidyl-tRNA which can be lethal for bacterial survival. The enzyme peptidyl-tRNA hydrolase (PtH) hydrolyses the ester bond between nascent peptide and tRNA of peptidyl-tRNA and rescues the cells from toxicity. PtH is an essential enzyme in bacteria and inhibiting this crucial enzyme can serve to combat bacterial diseases. But due to lack of understanding about the catalytic mechanism of PtH, its inhibitors have not been developed. In this work, we have carried out the binding studies of M. tuberculosis and E. coli PtH with the peptidyl-tRNA analogue (puromycin) using ITC, FTIR, CD experiments followed by docking and MD simulations to identify the potential active site residues that would help to design PtH inhibitors. Binding studies of puromycin with both PtH by ITC experiments demonstrate similar thermodynamic parameters and three fold difference in their KD. CD and FTIR studies detected changes in secondary structure composition of PtH in the presence of puromycin with different degree of perturbation. Though interactions with puromycin are conserved in both proteins, modelling studies revealed that water mediated interactions in M. tb-PtH resulting in higher affinity to puromycin.
Collapse
|
15
|
Yang Q, Yu CH, Zhao F, Dang Y, Wu C, Xie P, Sachs MS, Liu Y. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Res 2019; 47:9243-9258. [PMID: 31410471 PMCID: PMC6755126 DOI: 10.1093/nar/gkz710] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and plays an important role in regulating gene expression levels. A major role of codon usage is thought to regulate protein expression levels by affecting mRNA translation efficiency, but the underlying mechanism is unclear. By analyzing ribosome profiling results, here we showed that codon usage regulates translation elongation rate and that rare codons are decoded more slowly than common codons in all codon families in Neurospora. Rare codons resulted in ribosome stalling in manners both dependent and independent of protein sequence context and caused premature translation termination. This mechanism was shown to be conserved in Drosophila cells. In both Neurospora and Drosophila cells, codon usage plays an important role in regulating mRNA translation efficiency. We found that the rare codon-dependent premature termination is mediated by the translation termination factor eRF1, which recognizes ribosomes stalled on rare sense codons. Silencing of eRF1 expression resulted in codon usage-dependent changes in protein expression. Together, these results establish a mechanism for how codon usage regulates mRNA translation efficiency.
Collapse
Affiliation(s)
- Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 701, Taiwan
| | - Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yunkun Dang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Pancheng Xie
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Doerr A, de Reus E, van Nies P, van der Haar M, Wei K, Kattan J, Wahl A, Danelon C. Modelling cell-free RNA and protein synthesis with minimal systems. Phys Biol 2019; 16:025001. [DOI: 10.1088/1478-3975/aaf33d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Abrahams L, Hurst LD. Refining the Ambush Hypothesis: Evidence That GC- and AT-Rich Bacteria Employ Different Frameshift Defence Strategies. Genome Biol Evol 2018; 10:1153-1173. [PMID: 29617761 PMCID: PMC5909447 DOI: 10.1093/gbe/evy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Stop codons are frequently selected for beyond their regular termination function for error control. The “ambush hypothesis” proposes out-of-frame stop codons (OSCs) terminating frameshifted translations are selected for. Although early indirect evidence was partially supportive, recent evidence suggests OSC frequencies are not exceptional when considering underlying nucleotide content. However, prior null tests fail to control amino acid/codon usages or possible local mutational biases. We therefore return to the issue using bacterial genomes, considering several tests defining and testing against a null. We employ simulation approaches preserving amino acid order but shuffling synonymous codons or preserving codons while shuffling amino acid order. Additionally, we compare codon usage in amino acid pairs, where one codon can but the next, otherwise identical codon, cannot encode an OSC. OSC frequencies exceed expectations typically in AT-rich genomes, the +1 frame and for TGA/TAA but not TAG. With this complex evidence, simply rejecting or accepting the ambush hypothesis is not warranted. We propose a refined post hoc model, whereby AT-rich genomes have more accidental frameshifts, handled by RF2–RF3 complexes (associated with TGA/TAA) and are mostly +1 (or −2) slips. Supporting this, excesses positively correlate with in silico predicted frameshift probabilities. Thus, we propose a more viable framework, whereby genomes broadly adopt one of the two strategies to combat frameshifts: preventing frameshifting (GC-rich) or permitting frameshifts but minimizing impacts when most are caught early (AT-rich). Our refined framework holds promise yet some features, such as the bias of out-of-frame sense codons, remain unexplained.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| |
Collapse
|
18
|
Kuroha K, Zinoviev A, Hellen CUT, Pestova TV. Release of Ubiquitinated and Non-ubiquitinated Nascent Chains from Stalled Mammalian Ribosomal Complexes by ANKZF1 and Ptrh1. Mol Cell 2018; 72:286-302.e8. [PMID: 30244831 DOI: 10.1016/j.molcel.2018.08.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023]
Abstract
The ribosome-associated quality control (RQC) pathway degrades nascent chains (NCs) arising from interrupted translation. First, recycling factors split stalled ribosomes, yielding NC-tRNA/60S ribosome-nascent chain complexes (60S RNCs). 60S RNCs associate with NEMF, which recruits the E3 ubiquitin ligase Listerin that ubiquitinates NCs. The mechanism of subsequent ribosomal release of Ub-NCs remains obscure. We found that, in non-ubiquitinated 60S RNCs and 80S RNCs formed on non-stop mRNAs, tRNA is not firmly fixed in the P site, which allows peptidyl-tRNA hydrolase Ptrh1 to cleave NC-tRNA, suggesting the existence of a pathway involving release of non-ubiquitinated NCs. Association with NEMF and Listerin and ubiquitination of NCs results in accommodation of NC-tRNA, rendering 60S RNCs resistant to Ptrh1 but susceptible to ANKZF1, which induces specific cleavage in the tRNA acceptor arm, releasing proteasome-degradable Ub-NCs linked to four 3'-terminal tRNA nucleotides. We also found that TCF25, a poorly characterized RQC component, ensures preferential formation of the K48-ubiquitin linkage.
Collapse
Affiliation(s)
- Kazushige Kuroha
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
19
|
Chadani Y, Niwa T, Izumi T, Sugata N, Nagao A, Suzuki T, Chiba S, Ito K, Taguchi H. Intrinsic Ribosome Destabilization Underlies Translation and Provides an Organism with a Strategy of Environmental Sensing. Mol Cell 2017; 68:528-539.e5. [PMID: 29100053 DOI: 10.1016/j.molcel.2017.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/28/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023]
Abstract
Nascent polypeptides can modulate the polypeptide elongation speed on the ribosome. Here, we show that nascent chains can even destabilize the translating Escherichia coli ribosome from within. This phenomenon, termed intrinsic ribosome destabilization (IRD), occurs in response to a special amino acid sequence of the nascent chain, without involving the release or the recycling factors. Typically, a consecutive array of acidic residues and those intermitted by alternating prolines induce IRD. The ribosomal protein bL31, which bridges the two subunits, counteracts IRD, such that only strong destabilizing sequences abort translation in living cells. We found that MgtL, the leader peptide of a Mg2+ transporter (MgtA), contains a translation-aborting sequence, which sensitizes the ribosome to a decline in Mg2+ concentration and thereby triggers the MgtA-upregulating genetic scheme. Translation proceeds at an inherent risk of ribosomal destabilization, and nascent chain-ribosome complexes can function as a Mg2+ sensor by harnessing IRD.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takashi Izumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Nobuyuki Sugata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
20
|
Behloul N, Wei W, Baha S, Liu Z, Wen J, Meng J. Effects of mRNA secondary structure on the expression of HEV ORF2 proteins in Escherichia coli. Microb Cell Fact 2017; 16:200. [PMID: 29137642 PMCID: PMC5686824 DOI: 10.1186/s12934-017-0812-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Background Viral protein expression in Escherichia coli (E. coli) is a powerful tool for structural/functional studies as well as for vaccine and diagnostics development. However, numerous factors such as codon bias, mRNA secondary structure and nucleotides distribution, have been indentified to hamper this heterologous expression. Results In this study, we combined computational and biochemical methods to analyze the influence of these factors on the expression of different segments of hepatitis E virus (HEV) ORF 2 protein and hepatitis B virus surface antigen (HBsAg). Three out of five HEV antigens were expressed while all three HBsAg fragments were not. The computational analysis revealed a significant difference in nucleotide distribution between expressed and non-expressed genes; and all these non-expressing constructs shared similar stable 5′-end mRNA secondary structures that affected the accessibility of both Shine-Dalgarno (SD) sequence and start codon AUG. By modifying the 5′-end of HEV and HBV non-expressed genes, there was a significant increase in the total free energy of the mRNA secondary structures that permitted the exposure of the SD sequence and the start codon, which in turn, led to the successful expression of these genes in E. coli. Conclusions This study demonstrates that the mRNA secondary structure near the start codon is the key limiting factor for an efficient expression of HEV ORF2 proteins in E. coli. It describes also a simple and effective strategy for the production of viral proteins of different lengths for immunogenicity/antigenicity comparative studies during vaccine and diagnostics development. Electronic supplementary material The online version of this article (10.1186/s12934-017-0812-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nouredine Behloul
- Department of Microbiology and Immunology, School of Medicine, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, Jiangsu, China
| | - Wenjuan Wei
- Department of Microbiology and Immunology, School of Medicine, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, Jiangsu, China
| | - Sarra Baha
- Department of Microbiology and Immunology, School of Medicine, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, Jiangsu, China
| | - Zhenzhen Liu
- Department of Microbiology and Immunology, School of Medicine, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, Jiangsu, China
| | - Jiyue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Jihong Meng
- Department of Microbiology and Immunology, School of Medicine, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
21
|
Iwakura N, Yokoyama T, Quaglia F, Mitsuoka K, Mio K, Shigematsu H, Shirouzu M, Kaji A, Kaji H. Chemical and structural characterization of a model Post-Termination Complex (PoTC) for the ribosome recycling reaction: Evidence for the release of the mRNA by RRF and EF-G. PLoS One 2017; 12:e0177972. [PMID: 28542628 PMCID: PMC5443523 DOI: 10.1371/journal.pone.0177972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/06/2017] [Indexed: 12/02/2022] Open
Abstract
A model Post-Termination Complex (PoTC) used for the discovery of Ribosome Recycling Factor (RRF) was purified and characterized by cryo-electron microscopic analysis and biochemical methods. We established that the model PoTC has mostly one tRNA, at the P/E or P/P position, together with one mRNA. The structural studies were supported by the biochemical measurement of bound tRNA and mRNA. Using this substrate, we establish that the release of tRNA, release of mRNA and splitting of ribosomal subunits occur during the recycling reaction. Order of these events is tRNA release first followed by mRNA release and splitting almost simultaneously. Moreover, we demonstrate that IF3 is not involved in any of the recycling reactions but simply prevents the re-association of split ribosomal subunits. Our finding demonstrates that the important function of RRF includes the release of mRNA, which is often missed by the use of a short ORF with the Shine-Dalgarno sequence near the termination site.
Collapse
Affiliation(s)
- Nobuhiro Iwakura
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Takeshi Yokoyama
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Fabio Quaglia
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- University of Camerino, School of Biosciences and Veterinary Medicine, Camerino, Italy
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Kazuhiro Mio
- Molecular Profiling Research Center for Drug Discovery and OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hideki Shigematsu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Akira Kaji
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (HK); (AK)
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
- * E-mail: (HK); (AK)
| |
Collapse
|
22
|
Qin B, Yamamoto H, Ueda T, Varshney U, Nierhaus KH. The Termination Phase in Protein Synthesis is not Obligatorily Followed by the RRF/EF-G-Dependent Recycling Phase. J Mol Biol 2016; 428:3577-87. [PMID: 27261258 DOI: 10.1016/j.jmb.2016.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 11/30/2022]
Abstract
It is general wisdom that termination of bacterial protein synthesis is obligatorily followed by recycling governed by the factors ribosomal recycling factor (RRF), EF-G, and IF3, where the ribosome dissociates into its subunits. In contrast, a recently described 70S-scanning mode of initiation holds that after termination, scanning of 70S can be triggered by fMet-tRNA to the initiation site of a downstream cistron. Here, we analyze the apparent conflict. We constructed a bicistronic mRNA coding for luciferases and showed with a highly resolved in vitro system that the expression of the second cistron did not at all depend on the presence of active RRF. An in vivo analysis cannot be performed in a straightforward way, since RRF is essential for viability and therefore, the RRF gene cannot be knocked out. However, we found an experimental window, where the RRF amount could be reduced to below 2.5%, and in this situation, the expression of the second cistron of a bicistronic luciferase mRNA was only moderately reduced. Both in vitro and in vivo results suggested that RRF-dependent recycling is not an obligatory step after termination, in agreement with the previous findings concerning 70S-scanning initiation. In this view, recycling after termination is a special case of the general RRF function, which happens whenever fMet-tRNA is not available for triggering 70S scanning.
Collapse
Affiliation(s)
- Bo Qin
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Hiroshi Yamamoto
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany.
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Knud H Nierhaus
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
23
|
Recollection of How We Came Across the Protein Modification with Amino Acids by Aminoacyl tRNA-Protein Transferase. Methods Mol Biol 2016; 1337:13-8. [PMID: 26285875 DOI: 10.1007/978-1-4939-2935-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein arginylation has been discovered in 1963 as a soluble activity in cell extracts that mediates addition of amino acids to proteins. This discovery was nearly accidental, but due to the persistence of the research team, it has been followed through and led to the emergence of a new field of research. This chapter describes the original discovery of arginylation and the first methods used to demonstrate the existence of this important biological process.
Collapse
|
24
|
Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 2016; 529:358-363. [PMID: 26760206 DOI: 10.1038/nature16509] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/01/2015] [Indexed: 02/06/2023]
Abstract
Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli.
Collapse
|
25
|
Hammerstrom TG, Beabout K, Clements TP, Saxer G, Shamoo Y. Acinetobacter baumannii Repeatedly Evolves a Hypermutator Phenotype in Response to Tigecycline That Effectively Surveys Evolutionary Trajectories to Resistance. PLoS One 2015; 10:e0140489. [PMID: 26488727 PMCID: PMC4619398 DOI: 10.1371/journal.pone.0140489] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 01/23/2023] Open
Abstract
The evolution of hypermutators in response to antibiotic treatment in both clinical and laboratory settings provides a unique context for the study of adaptive evolution. With increased mutation rates, the number of hitchhiker mutations within an evolving hypermutator population is remarkably high and presents substantial challenges in determining which mutations are adaptive. Intriguingly however, hypermutators also provide an opportunity to explore deeply the accessible evolutionary trajectories that lead to increased organism fitness, in this case the evolution of antibiotic resistance to the clinically relevant antibiotic tigecycline by the hospital pathogen Acinetobacter baumannii. Using a continuous culture system, AB210M, a clinically derived strain of A. baumannii, was evolved to tigecycline resistance. Analysis of the adapted populations showed that nearly all the successful lineages became hypermutators via movement of a mobile element to inactivate mutS. In addition, metagenomic analysis of population samples revealed another 896 mutations that occurred at a frequency greater than 5% in the population, while 38 phenotypically distinct individual colonies harbored a total of 1712 mutations. These mutations were scattered throughout the genome and affected ~40% of the coding sequences. The most highly mutated gene was adeS, a known tigecycline-resistance gene; however, adeS was not solely responsible for the high level of TGC resistance. Sixteen other genes stood out as potentially relevant to increased resistance. The five most prominent candidate genes (adeS, rpsJ, rrf, msbA, and gna) consistently re-emerged in subsequent replicate population studies suggesting they are likely to play a role in adaptation to tigecycline. Interestingly, the repeated evolution of a hypermutator phenotype in response to antibiotic stress illustrates not only a highly adaptive strategy to resistance, but also a remarkably efficient survey of successful evolutionary trajectories.
Collapse
Affiliation(s)
- Troy G Hammerstrom
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Kathryn Beabout
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Thomas P Clements
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Gerda Saxer
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
26
|
|
27
|
Abstract
La synthèse des protéines, également appelée traduction, est assurée dans chaque cellule par des machines moléculaires très sophistiquées : les ribosomes. Compte tenu de l’immense quantité de données biologiques à traiter, il arrive régulièrement que ces machines se bloquent et mettent en péril la survie de la cellule. Chez les bactéries, le principal processus de sauvetage des ribosomes bloqués est la trans-traduction. Il est assuré par un acide ribonucléique (ARN) hybride, l’ARN transfert-messager (ARNtm), associé à une petite protéine basique, SmpB (small protein B). Plusieurs autres systèmes de contrôle qualité ont récemment été mis en évidence, révélant un réseau de maintien de la survie cellulaire très sophistiqué. Cette machinerie du contrôle qualité de la synthèse protéique est une cible très prometteuse pour le développement de futurs antibiotiques.
Collapse
|
28
|
Abo T, Chadani Y. The fail-safe system to rescue the stalled ribosomes in Escherichia coli. Front Microbiol 2014; 5:156. [PMID: 24782844 PMCID: PMC3989581 DOI: 10.3389/fmicb.2014.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Translation terminates at stop codon. Without stop codon, ribosome cannot terminate translation properly and reaches and stalls at the 3′-end of the mRNA lacking stop codon. Bacterial tmRNA-mediated trans-translation releases such stalled ribosome and targets the protein product to degradation by adding specific “degradation tag.” Recently two alternative ribosome rescue factors, ArfA (YhdL) and ArfB (YaeJ), have been found in Escherichia coli. These three ribosome rescue systems are different each other in terms of molecular mechanism of ribosome rescue and their activity, but they are mutually related and co-operate to maintain the translation system in shape. This suggests the biological significance of ribosome rescue.
Collapse
Affiliation(s)
- Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University Okayama, Japan ; Department of Biology, Faculty of Science, Okayama University Okayama, Japan
| | - Yuhei Chadani
- Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| |
Collapse
|
29
|
Giudice E, Gillet R. The task force that rescues stalled ribosomes in bacteria. Trends Biochem Sci 2013; 38:403-11. [PMID: 23820510 DOI: 10.1016/j.tibs.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
Abstract
In bacteria, the main quality control mechanism for rescuing ribosomes that have arrested during translation is trans-translation, performed by transfer-mRNA (tmRNA) associated with small protein B (SmpB). Intriguingly, this very elegant mechanism is not always necessary to maintain cell viability, suggesting the existence of alternatives. Other rescue systems have recently been discovered, revealing a far more complicated story than expected. These include the alternative ribosome rescue factors ArfA and ArfB, the elongation factors EF4 and EF-P, the peptidyl-tRNA hydrolase Pth, and several protein synthesis factors. These discoveries make it possible to describe a large network of factors dedicated to ribosome rescue, thus ensuring cell survival during stresses that induce ribosome stalling.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Translation and Folding Team, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu 35042 Rennes cedex, France
| | | |
Collapse
|
30
|
Richter U, Lahtinen T, Marttinen P, Myöhänen M, Greco D, Cannino G, Jacobs H, Lietzén N, Nyman T, Battersby B. A Mitochondrial Ribosomal and RNA Decay Pathway Blocks Cell Proliferation. Curr Biol 2013; 23:535-41. [DOI: 10.1016/j.cub.2013.02.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 12/28/2022]
|
31
|
Baugh L, Gallagher LA, Patrapuvich R, Clifton MC, Gardberg AS, Edwards TE, Armour B, Begley DW, Dieterich SH, Dranow DM, Abendroth J, Fairman JW, Fox D, Staker BL, Phan I, Gillespie A, Choi R, Nakazawa-Hewitt S, Nguyen MT, Napuli A, Barrett L, Buchko GW, Stacy R, Myler PJ, Stewart LJ, Manoil C, Van Voorhis WC. Combining functional and structural genomics to sample the essential Burkholderia structome. PLoS One 2013; 8:e53851. [PMID: 23382856 PMCID: PMC3561365 DOI: 10.1371/journal.pone.0053851] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.
Collapse
Affiliation(s)
- Loren Baugh
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Larry A. Gallagher
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Rapatbhorn Patrapuvich
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Matthew C. Clifton
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Anna S. Gardberg
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Brianna Armour
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Darren W. Begley
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | | | - David M. Dranow
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - James W. Fairman
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - David Fox
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Isabelle Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Angela Gillespie
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, United States of America
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, United States of America
| | - Steve Nakazawa-Hewitt
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, United States of America
| | - Mary Trang Nguyen
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, United States of America
| | - Alberto Napuli
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, United States of America
| | - Lynn Barrett
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, United States of America
| | - Garry W. Buchko
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Robin Stacy
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Medical Education and Biomedical Informatics, University of Washington, Seattle, Washington
| | - Lance J. Stewart
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
32
|
Kurata S, Shen B, Liu JO, Takeuchi N, Kaji A, Kaji H. Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors. Nucleic Acids Res 2012; 41:264-76. [PMID: 23087377 PMCID: PMC3592416 DOI: 10.1093/nar/gks958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ribosomes, after one round of translation, must be recycled so that the next round of translation can occur. Complete disassembly of post-termination ribosomal complex (PoTC) in yeast for the recycling consists of three reactions: release of tRNA, release of mRNA and splitting of ribosomes, catalyzed by eukaryotic elongation factor 3 (eEF3) and ATP. Here, we show that translocation inhibitors cycloheximide and lactimidomycin inhibited all three reactions. Cycloheximide is a non-competitive inhibitor of both eEF3 and ATP. The inhibition was observed regardless of the way PoTC was prepared with either release factors or puromycin. Paromomycin not only inhibited all three reactions but also re-associated yeast ribosomal subunits. On the other hand, sordarin or fusidic acid, when applied together with eEF2/GTP, specifically inhibited ribosome splitting without blocking of tRNA/mRNA release. From these inhibitor studies, we propose that, in accordance with eEF3’s known function in elongation, the release of tRNA via exit site occurs first, then mRNA is released, followed by the splitting of ribosomes during the disassembly of post-termination complexes catalyzed by eEF3 and ATP.
Collapse
Affiliation(s)
- Shinya Kurata
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
33
|
Chadani Y, Ito K, Kutsukake K, Abo T. ArfA recruits release factor 2 to rescue stalled ribosomes by peptidyl-tRNA hydrolysis inEscherichia coli. Mol Microbiol 2012; 86:37-50. [DOI: 10.1111/j.1365-2958.2012.08190.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|