1
|
Mouillet JF, Ouyang Y, Sadovsky E, Kothnadan VK, Sorenson HL, Badeau LJ, Sarkar SN, Chu T, Sorkin A, Sadovsky Y. The Chromosome 19 miRNA Cluster Guards Trophoblasts Against Overacting Innate Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647038. [PMID: 40236003 PMCID: PMC11996509 DOI: 10.1101/2025.04.03.647038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
To maintain pregnancy health, the human placenta delicately balances protection of the developing fetus from invading pathogens with suppression of excessive inflammation that could lead to fetal and neonatal autoimmune disorders. Previous research, including our own, has shown that small RNA products of the Chromosome 19 MicroRNA Cluster (C19MC) promote viral resistance in non-trophoblastic cells. However, the role of C19MC products in placental trophoblasts remained unclear. Here, we analyzed chromatin accessibility in the C19MC enhancer and identified a previously unknown regulatory domain. Deletion of this domain silenced the expression of C19MC microRNA and Alu elements in trophoblasts. This silencing unexpectedly led to marked activation of cellular innate immune response and strikingly increased Toll-like receptor 3 (TLR3)-mediated sensitivity to poly(I:C), a viral RNA mimic. Our data suggest that C19MC non-coding RNAs interfere with endosomal TLR3 activation in trophoblasts, highlighting a previously unrecognized mechanism for hindrance of excessive innate immune activation.
Collapse
|
2
|
Kim S, Kim JW, Park JG, Lee SS, Choi SH, Lee JO, Jin MS. Disulfide-stabilized diabodies enable near-atomic cryo-EM imaging of small proteins: A case study of the bacterial Na +/citrate symporter CitS. Structure 2025:S0969-2126(25)00103-0. [PMID: 40169000 DOI: 10.1016/j.str.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Diabodies are engineered antibody fragments with two antigen-binding Fv domains. Previously, we demonstrated that they are often highly flexible but can be rigidified by introducing a disulfide bond at the Fv interface. In this study, we explored the potential of disulfide-bridged, bispecific diabodies for near-atomic cryoelectron microscopy (cryo-EM) imaging of small proteins because they can predictably link target proteins to "structural marker" proteins. As a case study, we used the bacterial citrate transporter CitS as the target protein, and the horseshoe-shaped ectodomain of human Toll-like receptor 3 (TLR3) as the marker. We show that diabodies containing one or two disulfide bonds enabled the 3D reconstruction of CitS at resolutions of 3.3 Å and 3.1 Å, respectively. This resolution surpassed previous crystallographic results and allowed us to visualize the high-resolution structural features of the transporter. Our work expands the application of diabodies in structural biology to address a key limitation in the field.
Collapse
Affiliation(s)
- Subin Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Institute of Membrane Proteins, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jun Gyou Park
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sang Soo Lee
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung Hun Choi
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Institute of Membrane Proteins, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Mi Sun Jin
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
3
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Tran-Pearson A, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. Nat Commun 2025; 16:1234. [PMID: 39890776 PMCID: PMC11785957 DOI: 10.1038/s41467-025-56369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multivalent forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Abigail E Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adri Tran-Pearson
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Aldor NL, Jadaa NA, Miller SY, Alla I, Richardson S, Kitaev V, Poynter SJ. Cationic Polystyrene Latex Nanocarriers for Immunostimulatory Long Double-Stranded RNA Delivery to Ovarian Cancer Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35487. [PMID: 39318330 DOI: 10.1002/jbm.b.35487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/05/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Long double-stranded (ds)RNA, a potent stimulator of type I interferon and the innate immune response. In the present study, we demonstrated, for the first time, the efficacy of cationic polystyrene latex nanostructures (clNPs) as a dsRNA carrier, improving cellular delivery and robustly potentiating the immunostimulatory capacity of dsRNA in the ovarian cancer cell line SKOV3. The clNPs complexed with an in vitro transcribed dsRNA molecule, were bound by SKOV3 cells, and had increased cellular association compared to uncomplexed clNPs. clNPs complexed with dsRNA induced a more robust innate immune response compared to dsRNA alone. Transcript expression of two interferon-stimulated genes, were increased 47- and 108-fold over dsRNA and induced a significant antiviral state against vesicular-stomatitis virus, resulting in a 3.3-fold improvement on the efficacy of dsRNA. These data highlight the potential of polystyrene latex nanostructures as dsRNA carriers for anticancer immunotherapies, improving the uptake and efficacy of the nucleic acid.
Collapse
Affiliation(s)
- N L Aldor
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - N A Jadaa
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S Y Miller
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - I Alla
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S Richardson
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - V Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S J Poynter
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Shimizu T. RNA recognition in toll-like receptor signaling. Curr Opin Struct Biol 2024; 88:102913. [PMID: 39168045 DOI: 10.1016/j.sbi.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
RNA, either from invading pathogens or within the hosts, is one of the principal PAMPs (pathogen-associated molecular patterns). Toll-like receptors (TLRs) and other receptors of the innate immune system exist that detect immunostimulatory RNA including double and single stranded RNA, and then induce cytokine-mediated antiviral and proinflammatory responses. Recent years have seen remarkable progress in biochemical, immunological, and structural biological studies on TLRs, opening new avenues for TLR signaling. In this review, we highlight our current understanding of RNA- sensing TLRs and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.
Collapse
Affiliation(s)
- Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
6
|
Yao Z, Liang Z, Li M, Wang H, Ma Y, Guo Y, Chen C, Xue C, Sun B. Aluminum oxyhydroxide-Poly(I:C) combination adjuvant with balanced immunostimulatory potentials for prophylactic vaccines. J Control Release 2024; 372:482-493. [PMID: 38914205 DOI: 10.1016/j.jconrel.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The development of high-purity antigens promotes the urgent need of novel adjuvant with the capability to trigger high levels of immune response. Polyinosinic-polycytidylic (Poly(I:C)) is a synthetic double-stranded RNA (dsRNA) that can engage Toll-like receptor 3 (TLR3) to initiate immune responses. However, the Poly(I:C)-induced toxicity and inefficient delivery prevent its applications. In our study, combination adjuvants are formulated by aluminum oxyhydroxide nanorods (AlOOH NRs) and Poly(I:C), named Al-Poly(I:C), and the covalent interaction between the two components is further demonstrated. Al-Poly(I:C) mediates enhanced humoral and cellular immune responses in three antigen models, i.e., HBsAg virus-like particles (VLPs), human papilloma virus (HPV) VLPs and varicella-zoster virus (VZV) glycoprotein E (gE). Further mechanistic studies demonstrate that the dose and molecular weight (MW) of Poly(I:C) determine the physicochemical properties and adjuvanticity of the Al-Poly(I:C) combination adjuvants. Al-Poly(I:C) with higher Poly(I:C) dose promotes antigen-bearing dendritic cells (DCs) recruitment and B cells proliferation in lymph nodes. Al-Poly(I:C) formulated with higher MW Poly(I:C) induces higher activation of helper T cells, B cells, and CTLs. This study demonstrates that Al-Poly(I:C) potentiates the humoral and cellular responses in vaccine formulations. It offers insights for adjuvant design to meet the formulation requirements in both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zhiying Yao
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Huiyang Wang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yubin Ma
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
7
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
8
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589973. [PMID: 38659926 PMCID: PMC11042314 DOI: 10.1101/2024.04.17.589973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S. Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Abigail E. Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
9
|
Ebola virus disease: In vivo protection provided by the PAMP restricted TLR3 agonist rintatolimod and its mechanism of action. Antiviral Res 2023; 212:105554. [PMID: 36804324 DOI: 10.1016/j.antiviral.2023.105554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Ebola virus (EBOV) is a highly infectious and lethal pathogen responsible for sporadic self-limiting clusters of Ebola virus disease (EVD) in Central Africa capable of reaching epidemic status. 100% protection from lethal EBOV-Zaire in Balb/c mice was achieved by rintatolimod (Ampligen) at the well tolerated human clinical dose of 6 mg/kg. The data indicate that the mechanism of action is rintatolimod's dual ability to act as both a competitive decoy for the IID domain of VP35 blocking viral dsRNA sequestration and as a pathogen-associated molecular pattern (PAMP) restricted agonist for direct TLR3 activation but lacking RIG-1-like cytosolic helicase agonist properties. These data show promise for rintatolimod as a prophylactic therapy against human Ebola outbreaks.
Collapse
|
10
|
TLR3 forms a laterally aligned multimeric complex along double-stranded RNA for efficient signal transduction. Nat Commun 2023; 14:164. [PMID: 36631495 PMCID: PMC9834221 DOI: 10.1038/s41467-023-35844-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, which plays an important role in the innate immune system and is responsible for recognizing viral double-stranded RNA (dsRNA). Previous biochemical and structural studies have revealed that a minimum length of approximately 40-50 base pairs of dsRNA is necessary for TLR3 binding and dimerization. However, efficient TLR3 activation requires longer dsRNA and the molecular mechanism underlying its dsRNA length-dependent activation remains unknown. Here, we report cryo-electron microscopy analyses of TLR3 complexed with longer dsRNA. TLR3 dimers laterally form a higher multimeric complex along dsRNA, providing the basis for cooperative binding and efficient signal transduction.
Collapse
|
11
|
Lim CS, Jang YH, Lee GY, Han GM, Jeong HJ, Kim JW, Lee JO. TLR3 forms a highly organized cluster when bound to a poly(I:C) RNA ligand. Nat Commun 2022; 13:6876. [PMID: 36371424 PMCID: PMC9653405 DOI: 10.1038/s41467-022-34602-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
Toll-like Receptor 3 (TLR3) initiates a potent anti-viral immune response by binding to double-stranded RNA ligands. Previous crystallographic studies showed that TLR3 forms a homodimer when bound to a 46-base pair RNA ligand. However, this short RNA fails to initiate a robust immune response. To obtain structural insights into the length dependency of TLR3 ligands, we determine the cryo-electron microscopy structure of full-length TLR3 in a complex with a synthetic RNA ligand with an average length of ~400 base pairs. In the structure, the dimeric TLR3 units are clustered along the double-stranded RNA helix in a highly organized and cooperative fashion with a uniform inter-dimer spacing of 103 angstroms. The intracellular and transmembrane domains are dispensable for the clustering because their deletion does not interfere with the cluster formation. Our structural observation suggests that ligand-induced clustering of TLR3 dimers triggers the ordered assembly of intracellular signaling adaptors and initiates a robust innate immune response.
Collapse
Affiliation(s)
- Chan Seok Lim
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea
| | - Yoon Ha Jang
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea
| | - Ga Young Lee
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea
| | - Gu Min Han
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea
| | - Hye Jin Jeong
- grid.49100.3c0000 0001 0742 4007Institute of Membrane Proteins, POSTECH, Pohang, 37673 Korea
| | - Ji Won Kim
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea ,grid.49100.3c0000 0001 0742 4007Institute of Membrane Proteins, POSTECH, Pohang, 37673 Korea
| | - Jie-Oh Lee
- Department of Life Sciences and POSTECH, Pohang, 37673 Korea ,grid.49100.3c0000 0001 0742 4007Institute of Membrane Proteins, POSTECH, Pohang, 37673 Korea
| |
Collapse
|
12
|
Watanabe S, Hidenori U, Hashimoto S, Riko S, Aizawa T, Tsugawa K, Imaizumi T, Tanaka H. Sphingomyelin Phosphodiesterase Acid-Like 3b is Essential for Toll-Like Receptor 3 Signaling in Human Podocytes. J Membr Biol 2022; 255:117-122. [PMID: 34739556 DOI: 10.1007/s00232-021-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
Recent studies have revealed the importance of cell membrane stability in normal cell function. Sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), a lipid modifying enzyme that converts sphingomyelin to ceramide in the cell membrane, is expressed in macrophages and regulates Toll-like receptor (TLR) 4 signaling by altering cell membrane fluidity. SMPDL3b is also expressed in human podocytes, which are involved in the pathogenesis of several glomerular diseases such as diabetic kidney disease, focal segmental glomerulosclerosis, and idiopathic nephrotic syndrome in children; however, the role of SMPDL3b in podocyte innate immunity is unclear. As podocytes are equipped with innate immune systems including TLR3, and viral infections often exacerbate proteinuria in children with idiopathic nephrotic syndrome, we hypothesized that changes in SMPDL3b expression levels could affect anti-viral responses via TLR3 signaling in podocytes, consequently impairing normal podocyte function. To examine the role of SMPDL3b in TLR3 signaling in podocytes, we treated conditionally immortalized human podocytes with polyinosinic-polycytidylic acid (poly IC), to activate TLR3 signaling. The cells were then transfected with small interfering RNA against SMPDL3b. Poly IC activated the TLR3 pathway, whereas knockdown of SMPDL3b attenuated poly IC-induced interferon-β/chemokine C-X-C ligand 10 expression in podocytes. To our knowledge, this is the first report demonstrating SMPDL3b involvement in podocyte innate immunity; these results suggest that SMPDL3b is essential for adequate anti-viral responses in podocytes, possibly by modulating lipid metabolism in the cell membrane.
Collapse
Affiliation(s)
- Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan.
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, 7910295, Japan.
| | - Umetsu Hidenori
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Shun Hashimoto
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Sato Riko
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
- Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
13
|
Samms KA, Alkie TN, Jenik K, de Jong J, Klinger KM, DeWitte-Orr SJ. Oral delivery of a dsRNA-Phytoglycogen nanoparticle complex enhances both local and systemic innate immune responses in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2022; 121:215-222. [PMID: 34999226 DOI: 10.1016/j.fsi.2021.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Salmonids are one of the most farmed fish species worldwide. These aquatic vertebrates rely heavily on their innate immune responses as the first line of defense to defend themselves against invading pathogens. Although commercial vaccines are available against some viral and bacterial pathogens affecting salmonids, their protective efficacy varies. Using a prophylactic inducer of local and systemic innate immune responses to limit infection could have significant implications in salmonid aquaculture. A potent inducer of innate immune responses in fish is double-stranded RNA (dsRNA), a molecule that all viruses make during their replicative cycle. Polyinosinic: polycytidylic acid (polyI:C) is a synthetic dsRNA commonly used to induce type I interferons (IFNs), interferon stimulated genes (ISGs) as well as an antiviral state in vertebrate species. Based on in vitro data it was hypothesized that both local and systemic innate immune responses, in salmonids, would be enhanced by orally delivering high molecular weight polyI:C (HMW polyI:C) using cationic phytoglycogen nanoparticles (NPs) as a delivery method. The present study investigates this hypothesis using two feed delivery methods. In the first in vivo study, to ensure an equal distribution of dose, individual rainbow trout (Oncorhynchus mykiss) were orally gavaged with feed moistened with a solution containing HMW-NP (polyI:C complexed with cationic phytoglycogen nanoparticles) or HMW polyI:C alone. In a second in vivo experiment, to better mimic a more realistic feeding scenario, rainbow trout were fed feed pellets to which HMW, or HMW-NP was added. The expression of IFN1 and ISGs (vig-3, Mx1) were quantified using real-time PCR in the intestine (local response) and head kidney (systemic response). The results of these studies indicate that HMW-NP induced a higher level of IFN1 and ISG expression in the intestine and head kidney compared to the HMW fed fish. The results of this study could lead to new advances in therapeutics for the aquaculture industry by utilizing the innate immune response against invading pathogens using an orally delivered stimulant.
Collapse
Affiliation(s)
- Kayla A Samms
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Tamiru N Alkie
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Kristof Jenik
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | | | |
Collapse
|
14
|
Wang Y, Wu S, Zhang C, Jin Y, Wang X. Dissecting the Role of N-Glycan at N413 in Toll-like Receptor 3 via Molecular Dynamics Simulations. J Chem Inf Model 2021; 62:5258-5266. [PMID: 34494836 DOI: 10.1021/acs.jcim.1c00818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Toll-like receptor 3 (TLR3) is an endosomal receptor involved in initiating immune responses upon viral infection by directly recognizing double-stranded RNA (dsRNA). As one of the most heavily glycosylated TLR family members, the role of glycan at N413 of TLR3 in ligand recognition has been in debate for decades. Herein, to investigate the role of glycans in TLR3, specifically at amino acid residue N413, molecular dynamic simulations were performed. The loop region of LRR12 (residues 323-355), which protrudes from the dsRNA binding TLR3 lateral surface was found to be vital for interacting with dsRNA via the formation of hydrogen bonds. The glycan at N413 not only prevented dsRNA from being exposed to the bulk water during the binding process but further stabilized dsRNA in the TLR3 binding site. When N413 was in the glycosylated form, the binding free energy of TLR3 interacting with dsRNA was significantly lower than that of TLR3 in the N413 unglycosylated form. Additionally, as the glycan at N413 functioned to alter the dynamics of the dsRNA binding process, its flexibility was meanwhile influenced by dsRNA. In all, these results demonstrate that the size, length, and branch of glycan at N413 affect the thermodynamics and dynamics of TLR3 recognition with dsRNA. This study further extends our understanding of the biological role of glycans in the innate immune recognition of dsRNA by TLR3 and provides a new perspective for modulating TLR3 function.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Cong Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yushan Jin
- Department of Immunology and Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
15
|
Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 2021; 22:609-632. [PMID: 34414698 PMCID: PMC8377577 DOI: 10.1631/jzus.b2000808] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response. Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β (TRIF). However, the details of how the TLR3-TRIF signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of novel treatments for viral diseases.
Collapse
Affiliation(s)
- Yujuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Junhong Lin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Yao Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Xianping Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
16
|
Amin M, Barzegari E, Pourshohod A, Zeinali M, Jamalan M. 3D structure prediction, dynamic investigation and rational construction of an epitope-masked thermostable bovine hyaluronidase. Int J Biol Macromol 2021; 187:544-553. [PMID: 34298049 DOI: 10.1016/j.ijbiomac.2021.07.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023]
Abstract
Hyaluronidase (HAase) from bovine testes (BTH) has long been used in broad pharmaceutical areas, while it is associated with drawbacks in aspects of solubility, immunogenicity and pharmacokinetics. These issues can be addressed by gaining structural insights and designing rational modifications to the enzyme structure, as proposed in this study. A 3D structural model was built for HAase and underwent 40 ns of molecular dynamic simulation to examine its thermostability under normal, melting, and extreme conditions. The enzyme activity of BTH was measured against temperature and pH by kinetic assays. The interaction of bovine HAase with HA and chondroitin was defined by molecular docking. Furthermore, immunogenic properties of the enzyme were explored by immunoinformatics. Thermal effects on bovine HAase structural model and the HAase interactions with its substrates were described. We identified some B- and T-cell epitopes and showed that the protein could be recognized by human immune receptor molecules. Epitope masking by adding polyethylene glycol (PEG) to amine groups of residues presenting on the surface of the protein structure was adopted as a surface modification to enhance pharmacological properties of BTH. Assays showed that PEGylated BTH had higher thermostability and similar activity compared to the native enzyme.
Collapse
Affiliation(s)
- Mansour Amin
- Department of Microbiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aminollah Pourshohod
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Science, Medical School, Ahvaz, Iran
| | - Majid Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
17
|
Behzadi P, García-Perdomo HA, Karpiński TM. Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res 2021; 2021:9914854. [PMID: 34195298 PMCID: PMC8181103 DOI: 10.1155/2021/9914854] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIM Toll-like receptors (TLRs) are pivotal biomolecules in the immune system. Today, we are all aware of the importance of TLRs in bridging innate and adaptive immune system to each other. The TLRs are activated through binding to damage/danger-associated molecular patterns (DAMPs), microbial/microbe-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), and xenobiotic-associated molecular patterns (XAMPs). The immunogenetic molecules of TLRs have their own functions, structures, coreceptors, and ligands which make them unique. These properties of TLRs give us an opportunity to find out how we can employ this knowledge for ligand-drug discovery strategies to control TLRs functions and contribution, signaling pathways, and indirect activities. Hence, the authors of this paper have a deep observation on the molecular and structural biology of human TLRs (hTLRs). METHODS AND MATERIALS To prepare this paper and fulfill our goals, different search engines (e.g., GOOGLE SCHOLAR), Databases (e.g., MEDLINE), and websites (e.g., SCOPUS) were recruited to search and find effective papers and investigations. To reach this purpose, we tried with papers published in the English language with no limitation in time. The iCite bibliometrics was exploited to check the quality of the collected publications. RESULTS Each TLR molecule has its own molecular and structural biology, coreceptor(s), and abilities which make them unique or a complementary portion of the others. These immunogenetic molecules have remarkable roles and are much more important in different sections of immune and nonimmune systems rather than that we understand to date. CONCLUSION TLRs are suitable targets for ligand-drug discovery strategies to establish new therapeutics in the fields of infectious and autoimmune diseases, cancers, and other inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Herney Andrés García-Perdomo
- Division of Urology. Department of Surgery, School of Medicine, UROGIV Research Group, Universidad del Valle, Cali, Colombia
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
18
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
19
|
Patra MC, Batool M, Haseeb M, Choi S. A Computational Probe into the Structure and Dynamics of the Full-Length Toll-Like Receptor 3 in a Phospholipid Bilayer. Int J Mol Sci 2020; 21:ijms21082857. [PMID: 32325904 PMCID: PMC7215789 DOI: 10.3390/ijms21082857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 3 (TLR3) provides the host with antiviral defense by initiating an immune signaling cascade for the production of type I interferons. The X-ray structures of isolated TLR3 ectodomain (ECD) and transmembrane (TM) domains have been reported; however, the structure of a membrane-solvated, full-length receptor remains elusive. We investigated an all-residue TLR3 model embedded inside a phospholipid bilayer using molecular dynamics simulations. The TLR3-ECD exhibited a ~30°–35° tilt on the membrane due to the electrostatic interaction between the N-terminal subdomain and phospholipid headgroups. Although the movement of dsRNA did not affect the dimer integrity of TLR3, its sugar-phosphate backbone was slightly distorted with the orientation of the ECD. TM helices exhibited a noticeable tilt and curvature but maintained a consistent crossing angle, avoiding the hydrophobic mismatch with the bilayer. Residues from the αD helix and the CD and DE loops of the Toll/interleukin-1 receptor (TIR) domains were partially absorbed into the lower leaflet of the bilayer. We found that the previously unknown TLR3-TIR dimerization interface could be stabilized by the reciprocal contact between αC and αD helices of one subunit and the αC helix and the BB loop of the other. Overall, the present study can be helpful to understand the signaling-competent form of TLR3 in physiological environments.
Collapse
|
20
|
Alkie TN, de Jong J, Jenik K, Klinger KM, DeWitte-Orr SJ. Enhancing innate antiviral immune responses in rainbow trout by double stranded RNA delivered with cationic phytoglycogen nanoparticles. Sci Rep 2019; 9:13619. [PMID: 31541160 PMCID: PMC6754369 DOI: 10.1038/s41598-019-49931-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is induced when pathogen-associated molecular patterns (PAMPs) bind host pattern recognition receptors (PRRs). Polyinosinic:polycytidylic acid [poly(I:C)] is a synthetic analogue of viral dsRNA that acts as a PAMP, inducing type I interferons (IFNs) in vertebrates. In the present study, the immunostimulatory effects of high molecular weight (HMW) poly(I:C) in rainbow trout cells were measured when bound to a cationic phytoglycogen nanoparticle (Nano-HMW). The physical characteristics of the nanoparticle itself, when bound to different lengths of dsRNA and when cell associated was evaluated. Optimal concentration and timing for innate immune stimulation was measured using the RTG-P1 reporter cell line. The immunostimulatory effects of HMW poly (I:C) was compared to Nano-HMW in vitro using the RTgutGC cell line cultured in a conventional monolayer or a transwell culture system. The ability of an activated intestinal epithelium to transmit an antiviral signal to macrophages was evaluated using a co-culture of RTgutGC cells and RTSll (a monocyte/macrophage cell). In all culture conditions, Nano-HMW was a more effective inducer of IFN-related antiviral immune responses compared to HMW poly (I:C) alone. This study introduces the use of cationic phytoglycogen nanoparticles as a novel delivery system for immunomodulatory molecules to enhance immune responses in aquatic vertebrates.
Collapse
Affiliation(s)
- Tamiru N Alkie
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jondavid de Jong
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.,Glysantis Inc., Guelph, ON, Canada
| | - Kristof Jenik
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | |
Collapse
|
21
|
Velová H, Gutowska-Ding MW, Burt DW, Vinkler M. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Mol Biol Evol 2018; 35:2170-2184. [PMID: 29893911 PMCID: PMC6107061 DOI: 10.1093/molbev/msy119] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are key sensor molecules in vertebrates triggering initial phases of immune responses to pathogens. The avian TLR family typically consists of ten receptors, each adapted to distinct ligands. To understand the complex evolutionary history of each avian TLR, we analyzed all members of the TLR family in the whole genome assemblies and target sequence data of 63 bird species covering all major avian clades. Our results indicate that gene duplication events most probably occurred in TLR1 before synapsids diversified from sauropsids. Unlike mammals, ssRNA-recognizing TLR7 has duplicated independently in several avian taxa, while flagellin-sensing TLR5 has pseudogenized multiple times in bird phylogeny. Our analysis revealed stronger positive, diversifying selection acting in TLR5 and the three-domain TLRs (TLR10 [TLR1A], TLR1 [TLR1B], TLR2A, TLR2B, TLR4) that face the extracellular space and bind complex ligands than in single-domain TLR15 and endosomal TLRs (TLR3, TLR7, TLR21). In total, 84 out of 306 positively selected sites were predicted to harbor substitutions dramatically changing the amino acid physicochemical properties. Furthermore, 105 positively selected sites were located in the known functionally relevant TLR regions. We found evidence for convergent evolution acting between birds and mammals at 54 of these sites. Our comparative study provides a comprehensive insight into the evolution of avian TLR genetic variability. Besides describing the history of avian TLR gene gain and gene loss, we also identified candidate positions in the receptors that have been likely shaped by direct molecular host-pathogen coevolutionary interactions and most probably play key functional roles in birds.
Collapse
Affiliation(s)
- Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maria W Gutowska-Ding
- Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Midlothian, United Kingdom
| | - David W Burt
- Office of DVC (Research), University of Queensland, St. Lucia, QLD, Australia
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
22
|
Nakano T, Yamamura ET, Fujita H, Sone T, Asano K. Novel methods for nucleotide length control in double-stranded polyinosinic-polycytidylic acid production using uneven length components. Biosci Biotechnol Biochem 2018; 82:1889-1901. [PMID: 30079840 DOI: 10.1080/09168451.2018.1501264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyinosinic-polycytidylic acid (PIC), a double-stranded RNA that induces innate immunity in mammals, is a candidate immunopotentiator for pharmaceuticals. The potency and adverse effects of PIC are strongly correlated with the nucleotide length, and the inability to precisely control the length in PIC production limits its practical use. Length extension during the annealing process is the major factor underlying the lack of control, but tuning the annealing conditions is insufficient to resolve this issue. In this study, we developed a novel method to produce accurate nucleotide length PIC at an industrial scale. The length extension was significantly suppressed by the assembly of multiple short polyinosinic acid molecules with one long polycytidylic acid molecule. A newly developed PIC, uPIC100-400, demonstrated a reproducible length and better storage stability than that of corresponding evenly structured PIC. Human dsRNA receptors exhibited equivalent responsiveness to uPIC100-400 and the evenly structured PIC with the same length.
Collapse
Affiliation(s)
- Tetsuo Nakano
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan.,b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| | - Ei-Tora Yamamura
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan
| | - Hiroshi Fujita
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan
| | - Teruo Sone
- b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| | - Kozo Asano
- b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
23
|
Lee EY, Lee MW, Wong GCL. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol 2018; 88:173-184. [PMID: 29432957 DOI: 10.1016/j.semcdb.2018.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are typically thought of as molecular hole punchers that directly kill pathogens by membrane permeation. However, recent work has shown that AMPs are pleiotropic, multifunctional molecules that can strongly modulate immune responses. In this review, we provide a historical overview of the immunomodulatory properties of natural and synthetic antimicrobial peptides, with a special focus on human cathelicidin and defensins. We also summarize the various mechanisms of AMP immune modulation and outline key structural rules underlying the recently-discovered phenomenon of AMP-mediated Toll-like receptor (TLR) signaling. In particular, we describe several complementary studies demonstrating how AMPs self-assemble with nucleic acids to form nanocrystalline complexes that amplify TLR-mediated inflammation. In a broader scope, we discuss how this new conceptual framework allows for the prediction of immunomodulatory behavior in AMPs, how the discovery of hidden antimicrobial activity in known immune signaling proteins can inform these predictions, and how these findings reshape our understanding of AMPs in normal host defense and autoimmune disease.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
24
|
Ohto U. Conservation and Divergence of Ligand Recognition and Signal Transduction Mechanisms in Toll-Like Receptors. Chem Pharm Bull (Tokyo) 2017; 65:697-705. [PMID: 28768923 DOI: 10.1248/cpb.c17-00323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toll-like receptors (TLRs) play a central role in innate immunity as pathogen sensors. During the last decade, structural analyses of TLRs have revealed the mechanisms of ligand recognition and signal transduction. Each TLR recognizes its cognate ligand in a different manner, whereas signal transduction is achieved by a common mechanism. In this review, the mechanisms of ligand recognition and signal transduction by TLRs are summarized based on recent structural information.
Collapse
Affiliation(s)
- Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
25
|
Mitchell WM. Efficacy of rintatolimod in the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Expert Rev Clin Pharmacol 2017; 9:755-70. [PMID: 27045557 PMCID: PMC4917909 DOI: 10.1586/17512433.2016.1172960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic fatigue syndrome/ Myalgic encephalomyelitis (CFS/ME) is a poorly understood seriously debilitating disorder in which disabling fatigue is an universal symptom in combination with a variety of variable symptoms. The only drug in advanced clinical development is rintatolimod, a mismatched double stranded polymer of RNA (dsRNA). Rintatolimod is a restricted Toll-Like Receptor 3 (TLR3) agonist lacking activation of other primary cellular inducers of innate immunity (e.g.- cytosolic helicases). Rintatolimod also activates interferon induced proteins that require dsRNA for activity (e.g.- 2ʹ-5ʹ adenylate synthetase, protein kinase R). Rintatolimod has achieved statistically significant improvements in primary endpoints in Phase II and Phase III double-blind, randomized, placebo-controlled clinical trials with a generally well tolerated safety profile and supported by open-label trials in the United States and Europe. The chemistry, mechanism of action, clinical trial data, and current regulatory status of rintatolimod for CFS/ME including current evidence for etiology of the syndrome are reviewed.
Collapse
Affiliation(s)
- William M Mitchell
- a Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , USA
| |
Collapse
|
26
|
Balancing Inflammation: Computational Design of Small-Molecule Toll-like Receptor Modulators. Trends Pharmacol Sci 2017; 38:155-168. [DOI: 10.1016/j.tips.2016.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
|
27
|
Patra MC, Choi S. Recent progress in the development of Toll-like receptor (TLR) antagonists. Expert Opin Ther Pat 2016; 26:719-30. [DOI: 10.1080/13543776.2016.1185415] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Abstract
An increasing body of literature is addressing the immuno-modulating functions of miRNAs which include paracrine signaling via exosome-mediated intercellular miRNA. In view of the recent evidence of intake and bioavailability of dietary miRNAs in humans and animals we explored the immuno-modulating capacity of plant derived miRNAs. Here we show that transfection of synthetic miRNAs or native miRNA-enriched fractions obtained from a wide range of plant species and organs modifies dendritic cells ability to respond to inflammatory agents by limiting T cell proliferation and consequently dampening inflammation. This immuno-modulatory effect appears associated with binding of plant miRNA on TLR3 with ensuing impairment of TRIF signaling. Similarly, in vivo, plant small RNAs reduce the onset of severity of Experimental Autoimmune Encephalomyelities by limiting dendritic cell migration and dampening Th1 and Th17 responses in a Treg-independent manner. Our results indicate a potential for therapeutic use of plant miRNAs in the prevention of chronic-inflammation related diseases.
Collapse
|
29
|
de Aguiar C, Costa MGS, Verli H. Dynamics on human Toll-like receptor 4 complexation to MD-2: the coreceptor stabilizing function. Proteins 2015; 83:373-82. [PMID: 25488602 DOI: 10.1002/prot.24739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/20/2014] [Accepted: 11/26/2014] [Indexed: 12/30/2022]
Abstract
The interaction between human Toll-like receptor 4 (hTLR4) and its coreceptor, myeloid differentiation factor 2 (MD-2), is important in Gram-negative bacteria lipopolysaccharide (LPS) recognition. In this process, MD-2 recognizes LPS and promotes the dimerization of the complex hTLR4-MD-2-LPS, triggering an intracellular immune signaling. In this study, we employed distinct computational methods to explore the dynamical properties of the hTLR4-MD-2 complex and investigated the implications of the coreceptor complexation to the structural biology of hTLR4. We characterized both global and local dynamics of free and MD-2 complexed hTLR4, in both (hTLR4-MD-2)1 and (hTLR4-MD-2)2 states. Both molecular dynamics and normal mode analysis reveled a stabilization of the terminal regions of hTLR4 upon complexation to MD-2. We are able to identify conserved important residues involved on the hTLR4-MD-2 interaction dynamics and disclose C-terminal motions that may be associated to the signaling process upon oligomerization.
Collapse
Affiliation(s)
- Carla de Aguiar
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15005, Porto Alegre, 91500-970, RS, Brazil
| | | | | |
Collapse
|
30
|
Guven-Maiorov E, Keskin O, Gursoy A, VanWaes C, Chen Z, Tsai CJ, Nussinov R. The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway. Sci Rep 2015; 5:13128. [PMID: 26293885 PMCID: PMC4544004 DOI: 10.1038/srep13128] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022] Open
Abstract
Activated Toll-like receptors (TLRs) cluster in lipid rafts and induce pro- and anti-tumor responses. The organization of the assembly is critical to the understanding of how these key receptors control major signaling pathways in the cell. Although several models for individual interactions were proposed, the entire TIR-domain signalosome architecture has not been worked out, possibly due to its complexity. We employ a powerful algorithm, crystal structures and experimental data to model the TLR4 and its cluster. The architecture that we obtain with 8 MyD88 molecules provides the structural basis for the MyD88-templated myddosome helical assembly and receptor clustering; it also provides clues to pro- and anti-inflammatory signaling pathways branching at the signalosome level to Mal/MyD88 and TRAM/TRIF pro- and anti-inflammatory pathways. The assembly of MyD88 death domain (DD) with TRAF3 (anti-viral/anti-inflammatory) and TRAF6 (pro-inflammatory) suggest that TRAF3/TRAF6 binding sites on MyD88 DD partially overlap, as do IRAK4 and FADD. Significantly, the organization illuminates mechanisms of oncogenic mutations, demonstrates that almost all TLR4 parallel pathways are competitive and clarifies decisions at pathway branching points. The architectures are compatible with the currently-available experimental data and provide compelling insights into signaling in cancer and inflammation pathways.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Carter VanWaes
- Clinical Genomic Unit, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Zhong Chen
- Clinical Genomic Unit, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
31
|
Matsushima N, Miyashita H, Enkhbayar P, Kretsinger RH. Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity. Biomolecules 2015; 5:1955-78. [PMID: 26295267 PMCID: PMC4598782 DOI: 10.3390/biom5031955] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022] Open
Abstract
The NOD-like receptors (NLRs) and Toll-like receptors (TLRs) are pattern recognition receptors that are involved in the innate, pathogen pattern recognition system. The TLR and NLR receptors contain leucine-rich repeats (LRRs) that are responsible for ligand interactions. In LRRs short β-strands stack parallel and then the LRRs form a super helical arrangement of repeating structural units (called a coil of solenoids). The structures of the LRR domains of NLRC4, NLRP1, and NLRX1 in NLRs and of TLR1-5, TLR6, TLR8, TLR9 in TLRs have been determined. Here we report nine geometrical parameters that characterize the LRR domains; these include four helical parameters from HELFIT analysis. These nine parameters characterize well the LRR structures in NLRs and TLRs; the LRRs of NLR adopts a right-handed helix. In contrast, the TLR LRRs adopt either a left-handed helix or are nearly flat; RP105 and CD14 also adopt a left-handed helix. This geometrical analysis subdivides TLRs into four groups consisting of TLR3/TLR8/TLR9, TLR1/TLR2/TRR6, TLR4, and TLR5; these correspond to the phylogenetic tree based on amino acid sequences. In the TLRs an ascending lateral surface that consists of loops connecting the β-strand at the C-terminal side is involved in protein, protein/ligand interactions, but not the descending lateral surface on the opposite side.
Collapse
Affiliation(s)
| | | | - Purevjav Enkhbayar
- Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 210646/377, Mongolia.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
32
|
Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease. Biochem J 2015; 471:323-33. [PMID: 26272943 DOI: 10.1042/bj20150617] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is an age-related movement disorder characterized by a progressive degeneration of dopaminergic neurons in the midbrain. Although the presence of amyloid deposits of α-synuclein (α-syn) is the main pathological feature, PD brains also present a severe permanent inflammation, which largely contributes to neuropathology. Although α-syn has recently been implicated in this process, the molecular mechanisms underlying neuroinflammation remain unknown. In the present study, we investigated the ability of different α-syn aggregates to trigger inflammatory responses. We showed that α-syn induced inflammation through activation of Toll-like receptor 2 (TLR2) and the nucleotide oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome only when folded as amyloid fibrils. Oligomeric species, thought to be the primary species responsible for the disease, were surprisingly unable to trigger the same cascades. As neuroinflammation is a key player in PD pathology, these results put fibrils back to the fore and rekindles discussions about the primary toxic species contributing to the disease. Our data also suggest that the inflammatory properties of α-syn fibrils are linked to their intrinsic structure, most probably to their cross-β structure. Since fibrils of other amyloids induce similar immunological responses, we propose that the canonical fibril-specific cross-β structure represents a new generic motif recognized by the innate immune system.
Collapse
|
33
|
Schmidt NW, Jin F, Lande R, Curk T, Xian W, Lee C, Frasca L, Frenkel D, Dobnikar J, Gilliet M, Wong GCL. Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation. NATURE MATERIALS 2015; 14:696-700. [PMID: 26053762 DOI: 10.1038/nmat4298] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs 1-5). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.
Collapse
Affiliation(s)
- Nathan W Schmidt
- Bioengineering Department, Chemistry &Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, California 90095, USA
| | - Fan Jin
- 1] Bioengineering Department, Chemistry &Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, California 90095, USA [2] Hefei National Laboratory for Physical Sciences at Microscale, Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Roberto Lande
- 1] Department of Dermatology, Lausanne University Hospital CHUV, 1009 Lausanne, Switzerland [2] Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Tine Curk
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Wujing Xian
- Bioengineering Department, Chemistry &Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, California 90095, USA
| | - Calvin Lee
- Bioengineering Department, Chemistry &Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, California 90095, USA
| | - Loredana Frasca
- 1] Department of Dermatology, Lausanne University Hospital CHUV, 1009 Lausanne, Switzerland [2] Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Jure Dobnikar
- 1] Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK [2] Department for Theoretical Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia [3] International Center for Soft Matter Research, Beijing University of Chemical Technology, Beijing 100029, China
| | - Michel Gilliet
- Department of Dermatology, Lausanne University Hospital CHUV, 1009 Lausanne, Switzerland
| | - Gerard C L Wong
- Bioengineering Department, Chemistry &Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Understanding the distinguishable structural and functional features in zebrafish TLR3 and TLR22, and their binding modes with fish dsRNA viruses: an exploratory structural model analysis. Amino Acids 2014; 47:381-400. [DOI: 10.1007/s00726-014-1872-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
|
35
|
Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014; 14:546-58. [PMID: 25060580 DOI: 10.1038/nri3713] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease.
Collapse
Affiliation(s)
- Nicholas J Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Martyn F Symmons
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
36
|
Levenson EA, Kiick KL. DNA-polymer conjugates for immune stimulation through Toll-like receptor 9 mediated pathways. Acta Biomater 2014; 10:1134-45. [PMID: 24316364 DOI: 10.1016/j.actbio.2013.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/01/2013] [Accepted: 11/24/2013] [Indexed: 01/01/2023]
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotide motifs are agonists of Toll-like receptor 9 and are currently being investigated for use as vaccine adjuvants through the promotion of type I immunity. Several classes of ODN have been developed which differ in their propensity to aggregate, which in turn alters cytokine profiles and cellular subsets activated. Although aggregation state is correlated with the change in cytokine response, it is unknown if this results from a change in the number of ODNs available for binding and/or the possible engagement of multiple TLR9 molecules. Here, we examined the role of ligand valency on the activation of TLR9 through the synthesis of ODN-poly(acrylic acid) (PAA) conjugates. The compositions and size of the conjugates were characterized by UV-vis spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography and dynamic light scattering. Enzyme-linked immunosorbent assays of cytokine secretion by murine-like macrophages indicate that these ODN-PAA polymer conjugates show enhanced immunostimulation at 100-fold lower concentrations than those required for ODN alone, for both TNF-α and IL-6 release, and are more potent than any other previously reported multivalent ODN constructs. Increasing valency was shown to significantly enhance cytokine expression, particularly for IL-6. Knockdown by siRNA demonstrates that these polymer conjugates are specific to TLR9. Our results define valency as a critical design parameter and polymer conjugation as an advantageous strategy for producing ODN immunomodulatory agents.
Collapse
Affiliation(s)
- Eric A Levenson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
37
|
Ohto U, Tanji H, Shimizu T. Structure and function of toll-like receptor 8. Microbes Infect 2014; 16:273-82. [PMID: 24513445 DOI: 10.1016/j.micinf.2014.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) sense pathogen-associated molecular patterns originating from invading microorganisms and initiate innate immune responses. Recent structural studies of TLR-ligand complexes have revealed the detailed molecular mechanisms by which each TLR specifically recognizes its own ligands. This review focuses on the structure of TLR8 and discusses the similarities and diversities of TLR-ligand interactions and signaling mechanisms.
Collapse
Affiliation(s)
- Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, JST, Japan.
| |
Collapse
|
38
|
Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling. Proc Natl Acad Sci U S A 2013; 110:19908-13. [PMID: 24255114 DOI: 10.1073/pnas.1222811110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Homotypic and heterotypic interactions between Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors (TLRs) and downstream adaptors are essential to evoke innate immune responses. However, such oligomerization properties present intrinsic difficulties in structural studies of TIR domains. Here, using BB-loop mutations that disrupt homotypic interactions, we determined the structures of the monomeric TIR domain-containing adaptor molecule (TICAM)-1 and TICAM-2 TIR domains. Docking of the monomeric structures, together with yeast two hybrid-based mutagenesis assays, reveals that the homotypic interaction between TICAM-2 TIR is indispensable to present a scaffold for recruiting the monomeric moiety of the TICAM-1 TIR dimer. This result proposes a unique idea that oligomerization of upstream TIR domains is crucial for binding of downstream TIR domains. Furthermore, the bivalent nature of each TIR domain dimer can generate a large signaling complex under the activated TLRs, which would recruit downstream signaling molecules efficiently. This model is consistent with previous reports that BB-loop mutants completely abrogate downstream signaling.
Collapse
|
39
|
Gustot A, Raussens V, Dehousse M, Dumoulin M, Bryant CE, Ruysschaert JM, Lonez C. Activation of innate immunity by lysozyme fibrils is critically dependent on cross-β sheet structure. Cell Mol Life Sci 2013; 70:2999-3012. [PMID: 23334185 PMCID: PMC11113201 DOI: 10.1007/s00018-012-1245-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 12/24/2022]
Abstract
Inflammation occurs in many amyloidoses, but its underlying mechanisms remain enigmatic. Here we show that amyloid fibrils of human lysozyme, which are associated with severe systemic amyloidoses, induce the secretion of pro-inflammatory cytokines through activation of the NLRP3 (NLR, pyrin domain containing 3) inflammasome and the Toll-like receptor 2, two innate immune receptors that may be involved in immune responses associated to amyloidoses. More importantly, our data clearly suggest that the induction of inflammatory responses by amyloid fibrils is linked to their intrinsic structure, because the monomeric form and a non-fibrillar type of lysozyme aggregates are both unable to trigger cytokine secretion. These lysozyme species lack the so-called cross-β structure, a characteristic structural motif common to all amyloid fibrils irrespective of their origin. Since fibrils of other bacterial and endogenous proteins have been shown to trigger immunological responses, our observations suggest that the cross-β structural signature might be recognized as a generic danger signal by the immune system.
Collapse
Affiliation(s)
- Adelin Gustot
- Laboratory of Structure and Function of Biological Membranes, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Toll-like receptors (TLRs) sense structural patterns in microbial molecules and initiate immune defense mechanisms. The structures of many extracellular and intracellular domains of TLRs have been studied in the last 10 years. These structures reveal the extraordinary diversity of TLR-ligand interactions. Some TLRs use internal hydrophobic pockets to bind bacterial ligands and others use solvent-exposed surfaces to bind hydrophilic ligands. The structures suggest a common activation mechanism for TLRs: ligand binding to extracellular domains induces dimerization of the intracellular domains and so activates intracellular signaling pathways. Recently, the structure of the death domain complex of one of the signaling adapters, myeloid differentiation factor 88 (MyD88), has been determined. This structure shows how aggregation of signaling adapters recruits downstream kinases. However, we are still far from a complete understanding of TLR activation. We need to study the structures of TLR7-10 in complex with their ligands. We also need to determine the structures of TLR-adapter aggregates to understand activation mechanisms and the specificity of the signaling pathways. Ultimately, we will have to study the structures of the complete TLR signaling complexes containing full-length receptors, ligands, signaling, and bridging adapters, and some of the downstream kinases to understand how TLRs sense microbial infections and activate immune responses against them.
Collapse
|
41
|
Berke IC, Li Y, Modis Y. Structural basis of innate immune recognition of viral RNA. Cell Microbiol 2012; 15:386-94. [DOI: 10.1111/cmi.12061] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ian C. Berke
- Department of Molecular Biophysics & Biochemistry; Yale University; New Haven; CT; 06520; USA
| | - Yue Li
- Department of Molecular Biophysics & Biochemistry; Yale University; New Haven; CT; 06520; USA
| | - Yorgo Modis
- Department of Molecular Biophysics & Biochemistry; Yale University; New Haven; CT; 06520; USA
| |
Collapse
|
42
|
Multi-level regulation of cellular recognition of viral dsRNA. Cell Mol Life Sci 2012; 70:1949-63. [PMID: 22960755 PMCID: PMC7079809 DOI: 10.1007/s00018-012-1149-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Effective antiviral immunity depends on accurate recognition of viral RNAs by the innate immune system. Double-stranded RNA (dsRNA) often accumulates in virally infected cells and was initially considered a unique viral signature that was sufficient to initiate antiviral response through dsRNA receptors and dsRNA-dependent effectors such as Toll-like receptor 3, retinoic acid inducible gene-1, protein kinase RNA-activated and oligoadenylate synthetase. However, dsRNA is also present in many cellular RNAs, raising a question of how these receptors and effectors discriminate between viral and cellular dsRNAs. Accumulating evidence suggests that innate immune sensors detect not only dsRNA structure but also other and often multiple features of RNA such as length, sequence, cellular location, post-transcriptional processing and modification, which are divergent between viral and cellular RNAs. This review summarizes recent findings on the substrate specificities of a few selected dsRNA-dependent effectors and receptors, which have revealed more complex mechanisms involved in cellular discrimination between self and non-self RNA.
Collapse
|