1
|
Zuniga K, Thompson M, Muire PJ, Clay N, Karna SLR, Leatherman L, Lopez R, You T, Harm K, Brammer J, Wenke J, Christy R, Kowalczewski C. Development and Characterization of a Collagen-Based Three-Dimensional In Vitro Model to Mimic Biofilm Formation in a Wound Bed. ACS APPLIED BIO MATERIALS 2025. [PMID: 40433975 DOI: 10.1021/acsabm.5c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Current studies using in vitro biofilm culturing systems have been instrumental at elucidating wound biofilm formation but fail to account for the diverse environment that bacteria are exposed to within the host. In the current study, we recapitulated this wound biofilm microenvironment by creating a hydrogel composed of collagen, thrombin, fibrinogen, meat broth, and FBS and subsequently infected the scaffolds with UAMS-1. We characterized the material properties of the hydrogel (noninfected) and found no significant differences in the storage modulus when fibrin was added to the collagen hydrogel. When infected with UAMS-1, temporal growth and polysaccharide formation were observed through plating, SEM, and histological staining, indicative of biofilm formation. PCR analysis revealed heightened expression of adhesion-associated genes with no increase in expression of metabolic genes, indicating significant increase in the formation of a robust biofilm over time. Vancomycin was ineffective in eradicating the already-developed biofilm, whereas the total CFUs in rifampin-treated models decreased significantly compared to those in the untreated group. Although it was not significant, an increase in SCVs was observed in the rifampin-treated group, suggesting that rifampin may create a harsher environment against the Staphylococcus aureus, allowing the increase in more resistant bacteria. The persistence of an infection in our rifampin-treated 3D in vitro wound model indicates an increased similarity to the host environment compared to that of a static biofilm model.
Collapse
Affiliation(s)
- Kameel Zuniga
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Marc Thompson
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Preeti J Muire
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Nicholas Clay
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - S L Rajasekhar Karna
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Logan Leatherman
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Rebecca Lopez
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Tao You
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Krystle Harm
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Jerod Brammer
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Joseph Wenke
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Robert Christy
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| | - Christine Kowalczewski
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA, Ft. Sam Houston, Texas 78234-7767, United States
| |
Collapse
|
2
|
Aliberti A, Gasparro R, Triassi M, Piscopo M, Ausiello P, Tribst JPM. Fluoride Release from Pediatric Dental Restorative Materials: A Laboratory Investigation. Dent J (Basel) 2025; 13:224. [PMID: 40422644 DOI: 10.3390/dj13050224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Objectives: Dental caries remains a prevalent issue in pediatric dentistry, necessitating restorative materials that not only repair decay but also provide protective benefits. Fluoride-releasing restorative materials have a key function in preventing recurrent caries by inhibiting bacterial activity and promoting remineralization. The objective of this study was to examine fluoride release from three pediatric dental restorative materials-Riva Light Cure HV, Fuji IX GP Fast, and the Cention Forte Filling Material-under different pH and temperature conditions. Methods: Specimens (10 mm diameter and 2 mm thickness; n = 3 for each material) were prepared according to the manufacturers' instructions; immersed in buffer solutions at pH 4.8, 6.8, and 8.8; and stored at 37 °C and 44 °C. Fluoride release was quantified using ion chromatography at three time points (1 day, 7 days, and 28 days). Results: The data revealed that fluoride release was significantly influenced by pH, temperature, and time (p < 0.05). Riva Light Cure HV exhibited the highest release, particularly in acidic conditions (pH 4.8), reaching 40.14 mg/L at 44 °C after 28 days. The Cention Forte Filling Material and Fuji IX GP Fast also showed increased release over time, but with lower cumulative concentrations. Higher temperatures generally enhanced fluoride diffusion across all materials. Conclusions: These findings emphasize the pivotal impact of environmental factors in fluoride release dynamics. Riva Light Cure HV demonstrated superior fluoride release, particularly in acidic environments, suggesting its potential for high-caries-risk pediatric patients. These insights can inform the selection of restorative materials in pediatric dentistry, optimizing caries prevention strategies.
Collapse
Affiliation(s)
- Angelo Aliberti
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Interdepartmental Research Centre in Health Management and Innovation in Healthcare (CIRMIS), Via Sergio Pansini 5, 80131 Naples, Italy
| | - Roberta Gasparro
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Triassi
- Interdepartmental Research Centre in Health Management and Innovation in Healthcare (CIRMIS), Via Sergio Pansini 5, 80131 Naples, Italy
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Mirko Piscopo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Pietro Ausiello
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Interdepartmental Research Centre in Health Management and Innovation in Healthcare (CIRMIS), Via Sergio Pansini 5, 80131 Naples, Italy
| | - João Paulo Mendes Tribst
- Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| |
Collapse
|
3
|
Schlechter RO, Marti E, Remus-Emsermann MNP, Drissner D, Gekenidis MT. Correlation of in vitro biofilm formation capacity with persistence of antibiotic-resistant Escherichia coli on gnotobiotic lamb's lettuce. Appl Environ Microbiol 2025; 91:e0029925. [PMID: 40293242 DOI: 10.1128/aem.00299-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Bacterial contamination of fresh produce is a growing concern for food safety, as apart from human pathogens, antibiotic-resistant bacteria (ARB) can persist on fresh leafy produce. A prominent persistence trait in bacteria is biofilm formation, as it provides increased tolerance to stressful conditions. We screened a comprehensive collection of 174 antibiotic-susceptible and -resistant Escherichia coli originating from fresh leafy produce and its production environment. We tested the ability of these strains to produce biofilms, ranging from none or weak to extreme biofilm-forming bacteria. Next, we tested the ability of selected antibiotic-resistant isolates to colonize gnotobiotic lamb's lettuce (Valerianella locusta) plants. We hypothesized that a higher in vitro biofilm formation capacity correlates with increased colonization of gnotobiotic plant leaves. Despite a marked difference in the ability to form in vitro biofilms for a number of E. coli strains, in vitro biofilm formation was not associated with increased survival on gnotobiotic V. locusta leaf surfaces. However, all tested strains persisted for at least 21 days, highlighting potential food safety risks through unwanted ingestion of resistant bacteria. Population densities of biofilm-forming E. coli exhibited a complex pattern, with subpopulations more successful in colonizing gnotobiotic V. locusta leaves. These findings emphasize the complex behavior of ARB on leaf surfaces and their implications for human safety.IMPORTANCEEach raw food contains a collection of microorganisms, including bacteria. This is of special importance for fresh produce such as leafy salads or herbs, as these foods are usually consumed raw or after minimal processing, whereby higher loads of living bacteria are ingested than with a food that is heated before consumption. A common bacterial lifestyle involves living in large groups embedded in secreted protective substances. Such bacterial assemblies, so-called biofilms, confer high persistence and resistance of bacteria to external harsh conditions. In our research, we investigated whether stronger in vitro biofilm formation by antibiotic-resistant Escherichia coli correlates with better survival on lamb's lettuce leaves. Although no clear correlation was observed between biofilm formation capacity and population density on the salad, all tested isolates could survive for at least 3 weeks with no significant decline over time, highlighting a potential food safety risk independently of in vitro biofilm formation.
Collapse
Affiliation(s)
- Rudolf O Schlechter
- Institute of Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Elisabet Marti
- Research Group Microbiological Food Safety, Agroscope, Bern, Switzerland
| | - Mitja N P Remus-Emsermann
- Institute of Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | | |
Collapse
|
4
|
Duarte AC, Fernández L, Rodríguez A, García P. A new bacteriophage infecting Staphylococcus epidermidis with potential for removing biofilms by combination with chimeric lysin CHAPSH3b and vancomycin. mSphere 2025; 10:e0101424. [PMID: 39982075 PMCID: PMC11934314 DOI: 10.1128/msphere.01014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Staphylococcus epidermidis is the cause of serious skin and prosthetic joint infections despite being a common inhabitant of human body surfaces. However, both the rise in antibiotic resistance in this species and its ability to form biofilms are increasingly limiting the available therapeutic options against these illnesses. In this landscape, phage therapy stands out as an interesting alternative to antibiotics. In the present study, we report the isolation and characterization of a novel virulent phage infecting S. epidermidis (Staphylococcus phage IPLA-AICAT), which belongs to the Herelleviridae family. The estimated genome size of this virus is 139,941 bp, and sequence analysis demonstrated the absence of antibiotic resistance genes and virulence factors. This phage infects a high proportion (79%) of clinically relevant S. epidermidis strains and exhibits antibiofilm activity. Moreover, a combination of this phage with other antimicrobials, i.e., vancomycin and the lytic protein CHAPSH3b, further improved the reduction in surface-attached bacteria. Notably, the combination of Staphylococcus phage IPLA-AICAT (109 PFU/mL) and CHAPSH3b (8 µM), originally designed to target Staphylococcus aureus, was able to reduce the number of viable cells by 3.06 log units in 5-h-old biofilms. In 24-h-old biofilms, the reduction was also significant after 6 h of treatment (2.06 log units) and 24 h of treatment (2.52 log units). These results confirm our previous data regarding the potential of phage-lysin mixtures against staphylococcal biofilms.IMPORTANCEStaphylococcus epidermidis is one of the main causes to device-associated infections mostly due to its ability to form stable biofilms attached to human tissues. Besides the inherent antimicrobial tolerance of biofilms, this microorganism is also increasingly becoming resistant to standard-of-care antibiotics. To fight against this problem, phage therapy is a viable option to complement the available antibiotics in the treatment of recalcitrant infections. This work describes a new phage infecting S. epidermidis clinical strains that is a member of the Herelleviridae family and the combination with other antimicrobials to further improve the reduction of biofilms. Together with the significant progress achieved in the development of diagnostic tools, phages and their derived proteins will bring us much closer to a therapeutic landscape in which we are not so heavily reliant on antibiotics to combat bacterial pathogens.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Oviedo, Asturias, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Oviedo, Asturias, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Oviedo, Asturias, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Oviedo, Asturias, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
5
|
Gannon AD, Matlack J, Darch SE. Exploring aggregation genes in a P. aeruginosa chronic infection model. J Bacteriol 2025; 207:e0042924. [PMID: 39660900 PMCID: PMC11784459 DOI: 10.1128/jb.00429-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Bacterial aggregates are observed in both natural and artificial environments. In the context of disease, aggregates have been isolated from chronic and acute infections. Pseudomonas aeruginosa (Pa) aggregates contribute significantly to chronic infections, particularly in the lungs of people with cystic fibrosis (CF). Unlike the large biofilm structures observed in vitro, Pa in CF sputum forms smaller aggregates (~10-1,000 cells), and the mechanisms behind their formation remain underexplored. This study aims to identify genes essential and unique to Pa aggregate formation in a synthetic CF sputum media (SCFM2). We cultured Pa strain PAO1 in SCFM2 and LB, both with and without mucin, and used RNA sequencing (RNA-seq) to identify differentially expressed genes. The presence of mucin revealed 13 significantly differentially expressed (DE) genes, predominantly downregulated, with 40% encoding hypothetical proteins unique to aggregates. Using high-resolution microscopy, we assessed the ability of mutants to form aggregates. Notably, no mutant exhibited a completely planktonic phenotype. Instead, we identified multiple spatial phenotypes described as "normal," "entropic," or "impaired." Entropic mutants displayed tightly packed, raft-like structures, while impaired mutants had loosely packed cells. Predictive modeling linked the prioritized genes to metabolic shifts, iron acquisition, surface modification, and quorum sensing. Co-culture experiments with wild-type PAO1 revealed further spatial heterogeneity and the ability to "rescue" some mutant phenotypes, suggesting cooperative interactions during growth. This study enhances our understanding of Pa aggregate biology, specifically the genes and pathways unique to aggregation in CF-like environments. Importantly, it provides insights for developing therapeutic strategies targeting aggregate-specific pathways. IMPORTANCE This study identifies genes essential for the formation of Pseudomonas aeruginosa (Pa) aggregates in cystic fibrosis (CF) sputum, filling a critical gap in understanding their specific biology. Using a synthetic CF sputum model (SCFM2) and RNA sequencing, 13 key genes were identified, whose disruption led to distinct spatial phenotypes observed through high-resolution microscopy. The addition of wild-type cells either rescued the mutant phenotype or increased spatial heterogeneity, suggesting cooperative interactions are involved in aggregate formation. This research advances our knowledge of Pa aggregate biology, particularly the unique genes and pathways involved in CF-like environments, offering valuable insights for developing targeted therapeutic strategies against aggregate-specific pathways.
Collapse
Affiliation(s)
- Alexa D. Gannon
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jenet Matlack
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sophie E. Darch
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Tabassum N, Khan F, Jeong GJ, Oh DK, Kim YM. Controlling Oral Polymicrobial Biofilm Using Usnic Acid on the Surface of Titanium in the Artificial Saliva Media. Antibiotics (Basel) 2025; 14:115. [PMID: 40001359 PMCID: PMC11852094 DOI: 10.3390/antibiotics14020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Titanium dental implants, while highly successful, face challenges due to polymicrobial infections leading to peri-implantitis and implant failure. Biofilm formation on implant surfaces is the primary cause of these infections, with factors such as matrix production and cross-kingdom interactions contributing to the microbial accumulation of bacterial and fungal pathogens species. To combat this issue, naturally derived molecules have been reported to overcome the hurdle of antimicrobial resistance against the application of conventional antibiotics and antifungals. Methods: The present study aimed to employ the lichen-derived molecules, usnic acid (UA), to retard the development of biofilms of bacterial and fungal pathogens on the surface of titanium kept in the human artificial saliva (HAS) working as a growth-supporting, host-mimicking media. Results: The minimum inhibitory concentration of UA in HAS towards Candida albicans was >512 µg/mL, whereas against Staphylococcus aureus and Streptococcus mutans, it was determined to be 512 µg/mL. Whereas, in the standard growth media, the MIC value of UA towards S. mutans and S. aureus were 8 and 16 µg/mL; however, against C. albicans, it was 512 µg/mL. UA synergistically enhanced the efficacy of the antibiotics toward bacterial pathogens and the efficacy of antifungals against C. albicans. The antibiofilm results depict the fact that in the HAS, UA significantly reduced both mono-species of S. mutans, S. aureus, and C. albicans and mixed-species biofilm of C. albicans with S. mutans and S. aureus on the surface of the titanium. Conclusions: The present study showed that UA is a promising natural drug that can control oral polymicrobial disease as a result of the application of dental implants.
Collapse
Affiliation(s)
- Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Do Kyung Oh
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Wale YM, Roberts JA, Sime FB. Dynamic In Vitro PK/PD Infection Models for the Development and Optimisation of Antimicrobial Regimens: A Narrative Review. Antibiotics (Basel) 2024; 13:1201. [PMID: 39766591 PMCID: PMC11672834 DOI: 10.3390/antibiotics13121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The antimicrobial concentration-time profile in humans affects antimicrobial activity, and as such, it is critical for preclinical infection models to simulate human-like dynamic concentration-time profiles for maximal translatability. This review discusses the setup, principle, and application of various dynamic in vitro PK/PD infection models commonly used in the development and optimisation of antimicrobial treatment regimens. It covers the commonly used dynamic in vitro infection models, including the one-compartment model, hollow fibre infection model, biofilm model, bladder infection model, and aspergillus infection model. It summarises the mathematical methods for the simulation of the pharmacokinetic profile of single or multiple antimicrobials when using the serial or parallel configurations of in vitro systems. Dynamic in vitro models offer reliable pharmacokinetic/pharmacodynamic data to help define the initial dosing regimens of new antimicrobials that can be developed further in clinical trials. They can also help in the optimisation of dosing regimens for existing antimicrobials, especially in the presence of emerging antimicrobial resistance. In conclusion, dynamic in vitro infection models replicate the interactions that occur between microorganisms and dynamic antimicrobial exposures in the human body to generate data highly predictive of the clinical efficacy. They are particularly useful for the development new treatment strategies against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yalew M. Wale
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Jason A. Roberts
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia
- Division of Anesthesia Critical Care and Emergency and Pain Medicine, Nimes University Hospital, University of Montpellier, UR UM 103, 34090 Nimes, France
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, QLD 4006, Australia
| | - Fekade B. Sime
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
8
|
Kraus RF, Panter D, Gruber MA, Arndt S, Unger P, Pawlik MT, Bitzinger D. Effects of Pressure, Hypoxia, and Hyperoxia on Neutrophil Granulocytes. Biomolecules 2024; 14:1242. [PMID: 39456176 PMCID: PMC11505959 DOI: 10.3390/biom14101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The application of normo- and hyperbaric O2 is a common therapy option in various disease patterns. Thereby, the applied O2 affects the whole body, including the blood and its components. This study investigates influences of pressure and oxygen fraction on human blood plasma, nutrient media, and the functions of neutrophil granulocytes (PMNs). Methods: Neutrophil migration, reactive oxygen species (ROS) production, and NETosis were examined by live cell imaging. The treatment of various matrices (Roswell Park Memorial Institute 1640 medium, Dulbecco's Modified Eagle's Medium, H2O, human plasma, and isolated PMNs) with hyperbaric oxygen (HBO) was performed. In addition, the expression of different neutrophil surface epitopes (CD11b, CD62L, CD66b) and the oxidative burst were investigated by flow cytometry (FACS). The application of cold atmospheric plasma (CAP) to normoxic and normobaric culture media served as a positive control. Soluble reaction products such as H2O2, reactive nitrogen species (RNS: NO2- and NO3-), and ROS-dependent dihydrorhodamine oxidation were quantified by fluoro- and colorimetric assay kits. Results: Under normobaric normoxia, PMNs migrate slower and shorter in comparison with normobaric hyper- or hypoxic conditions and hyperbaric hyperoxia. The pressure component has less effect on the migration behavior of PMNs than the O2 concentration. Individual PMN cells produce prolonged ROS at normoxic conditions. PMNs showed increased expression of CD11b in normobaric normoxia, lower expression of CD62L in normobaric normoxia, and lower expression of CD66b after HBO and CAP treatment. Treatment with CAP increased the amount of ROS and RNS in common culture media. Conclusions: Hyperbaric and normobaric O2 influences neutrophil functionality and surface epitopes in a measurable way, which may have an impact on disorders with neutrophil involvement. In the context of hyperbaric experiments, especially high amounts of H2O2 in RPMI after hyperbaric oxygen should be taken into account. Therefore, our data support a critical indication for the use of normobaric and hyperbaric oxygen and conscientious and careful handling of oxygen in everyday clinical practice.
Collapse
Affiliation(s)
- Richard F. Kraus
- Department of Anaesthesiology, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Daniel Panter
- Department of Anaesthesiology, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Michael A. Gruber
- Department of Anaesthesiology, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Petra Unger
- Department of Dermatology, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Michael T. Pawlik
- Center of Dive and Hyperbaric Medicine, Department of Anaesthesiology, Caritas Hospital St. Josef, Landshuter Str. 65, 93053 Regensburg, Germany
| | - Diane Bitzinger
- Department of Anaesthesiology, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Nissanka MC, Dilhari A, Wijesinghe GK, Weerasekera MM. Advances in experimental bladder models: bridging the gap between in vitro and in vivo approaches for investigating urinary tract infections. BMC Urol 2024; 24:206. [PMID: 39313789 PMCID: PMC11418205 DOI: 10.1186/s12894-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Urinary tract infections (UTIs) pose a substantial burden on global healthcare systems. When unraveling the complex pathophysiology of UTIs, bladder models are used to understand complex and multifaceted interactions between different components within the system. This review aimed to bridge the gap between in vitro and in vivo experimental bladder models towards UTI research. We reviewed clinical, animal, and analytical studies and patents from 1959 to the end of 2023. Both in vivo and in vitro models offer unique benefits and drawbacks in understanding UTIs. In vitro models provide controlled environments for studying specific aspects of UTI biology and testing potential treatments, while in vivo models offer insights into how UTIs manifest and progress within living organisms. Thus, both types of models are leading to the development of more effective diagnostic tools and therapeutic interventions against UTIs. Moreover, advanced methodologies involving three-dimensional bladder organoids have also been used to study bladder biology, model bladder-related disorders, and explore new treatments for bladder cancers, UTIs, and urinary incontinence. Narrowing the distance between fundamental scientific research and practical medical applications, these pioneering models hold the key to unlocking new avenues for the development of personalized diagnostics, precision medicine, and ultimately, the alleviation of UTI-related morbidity worldwide.
Collapse
Affiliation(s)
| | - Ayomi Dilhari
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | | | - Manjula Manoji Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
10
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
11
|
Ding L, Wang G, Wang J, Peng Y, Cai S, Khan SU, Cui Z, Zhang X, Wu C, Smyth H. Targeted treatment for biofilm-based infections using PEGylated tobramycin. J Control Release 2024; 372:43-58. [PMID: 38866243 DOI: 10.1016/j.jconrel.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Chronic infections often involve biofilm-based bacteria, in which the biofilm results in significant resistance against antimicrobial agents and prevents eradication of the infection. The physicochemical barrier presented by the biofilm matrix is a major impediment to the delivery of many antibiotics. Previously, PEGylation has been shown to improve antibiotic penetration into biofilms in vitro. In these studies, PEGylating tobramycin was investigated both in vitro and in vivo. Two distinct PEGylated tobramycin molecules were synthesized (mPEG-SA-Tob and mPEG-AA-Tob). Then, in a P. aeruginosa biofilm in vitro model, we found that mPEG-SA-Tob can operate as a prodrug and showed 7 times more effectiveness than tobramycin (MIC80: 14 μM vs.100 μM). This improved biofilm eradication is attributable to the fact that mPEG-SA-Tob can aid tobramycin to penetrate through the biofilm and overcome the alginate-mediated antibiotic resistance. Finally, we used an in vivo biofilm-based chronic pulmonary infection rat model to confirm the therapeutic impact of mPEG-SA-Tob on biofilm-based chronic lung infection. mPEG-SA-Tob has a better therapeutic impact than tobramycin in that it cannot only stop P. aeruginosa from multiplying in the lungs but can also reduce inflammation caused by infections and prevent a recurrence infection. Overall, our findings show that PEGylated tobramycin is an effective treatment for biofilm-based chronic lung infections.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511443, China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511443, China
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Grassi L, Crabbé A. Recreating chronic respiratory infections in vitro using physiologically relevant models. Eur Respir Rev 2024; 33:240062. [PMID: 39142711 PMCID: PMC11322828 DOI: 10.1183/16000617.0062-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the need for effective treatments against chronic respiratory infections (often caused by pathogenic biofilms), only a few new antimicrobials have been introduced to the market in recent decades. Although different factors impede the successful advancement of antimicrobial candidates from the bench to the clinic, a major driver is the use of poorly predictive model systems in preclinical research. To bridge this translational gap, significant efforts have been made to develop physiologically relevant models capable of recapitulating the key aspects of the airway microenvironment that are known to influence infection dynamics and antimicrobial activity in vivo In this review, we provide an overview of state-of-the-art cell culture platforms and ex vivo models that have been used to model chronic (biofilm-associated) airway infections, including air-liquid interfaces, three-dimensional cultures obtained with rotating-wall vessel bioreactors, lung-on-a-chips and ex vivo pig lungs. Our focus is on highlighting the advantages of these infection models over standard (abiotic) biofilm methods by describing studies that have benefited from these platforms to investigate chronic bacterial infections and explore novel antibiofilm strategies. Furthermore, we discuss the challenges that still need to be overcome to ensure the widespread application of in vivo-like infection models in antimicrobial drug development, suggesting possible directions for future research. Bearing in mind that no single model is able to faithfully capture the full complexity of the (infected) airways, we emphasise the importance of informed model selection in order to generate clinically relevant experimental data.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
13
|
Vestweber PK, Wächter J, Planz V, Jung N, Windbergs M. The interplay of Pseudomonas aeruginosa and Staphylococcus aureus in dual-species biofilms impacts development, antibiotic resistance and virulence of biofilms in in vitro wound infection models. PLoS One 2024; 19:e0304491. [PMID: 38805522 PMCID: PMC11132468 DOI: 10.1371/journal.pone.0304491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.
Collapse
Affiliation(s)
- Pia Katharina Vestweber
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jana Wächter
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Rapsinski GJ, Michaels LA, Hill M, Yarrington KD, Haas AL, D’Amico EJ, Armbruster CR, Zemke A, Limoli D, Bomberger JM. Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm. PLoS Pathog 2024; 20:e1011453. [PMID: 38820569 PMCID: PMC11168685 DOI: 10.1371/journal.ppat.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Mucosa-associated biofilms are associated with many human disease states, but the host mechanisms promoting biofilm remain unclear. In chronic respiratory diseases like cystic fibrosis (CF), Pseudomonas aeruginosa establishes chronic infection through biofilm formation. P. aeruginosa can be attracted to interspecies biofilms through potassium currents emanating from the biofilms. We hypothesized that P. aeruginosa could, similarly, sense and respond to the potassium efflux from human airway epithelial cells (AECs) to promote biofilm. Using respiratory epithelial co-culture biofilm imaging assays of P. aeruginosa grown in association with CF bronchial epithelial cells (CFBE41o-), we found that P. aeruginosa biofilm was increased by potassium efflux from AECs, as examined by potentiating large conductance potassium channel, BKCa (NS19504) potassium efflux. This phenotype is driven by increased bacterial attachment and increased coalescence of bacteria into aggregates. Conversely, biofilm formation was reduced when AECs were treated with a BKCa blocker (paxilline). Using an agar-based macroscopic chemotaxis assay, we determined that P. aeruginosa chemotaxes toward potassium and screened transposon mutants to discover that disruption of the high-sensitivity potassium transporter, KdpFABC, and the two-component potassium sensing system, KdpDE, reduces P. aeruginosa potassium chemotaxis. In respiratory epithelial co-culture biofilm imaging assays, a KdpFABCDE deficient P. aeruginosa strain demonstrated reduced biofilm growth in association with AECs while maintaining biofilm formation on abiotic surfaces. Furthermore, we determined that the Kdp operon is expressed in vivo in people with CF and the genes are conserved in CF isolates. Collectively, these data suggest that P. aeruginosa biofilm formation can be increased by attracting bacteria to the mucosal surface and enhancing coalescence into microcolonies through aberrant AEC potassium efflux sensed by the KdpFABCDE system. These findings suggest host electrochemical signaling can enhance biofilm, a novel host-pathogen interaction, and potassium flux could be a therapeutic target to prevent chronic infections in diseases with mucosa-associated biofilms, like CF.
Collapse
Affiliation(s)
- Glenn J. Rapsinski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
- Division of Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lia A. Michaels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Madison Hill
- Department of Biology, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Kaitlin D. Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Allison L. Haas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Emily J. D’Amico
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Catherine R. Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Anna Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dominique Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| |
Collapse
|
15
|
Mishra SK, Baidya S, Bhattarai A, Shrestha S, Homagain S, Rayamajhee B, Hui A, Willcox M. Bacteriology of endotracheal tube biofilms and antibiotic resistance: a systematic review. J Hosp Infect 2024; 147:146-157. [PMID: 38522561 DOI: 10.1016/j.jhin.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Bacteria commonly adhere to surfaces and produce polymeric material to encase the attached cells to form communities called biofilms. Within these biofilms, bacteria can appear to be many times more resistant to antibiotics or disinfectants. This systematic review explores the prevalence and microbial profile associated with biofilm production of bacteria isolated from endotracheal tubes and its associations with antimicrobial resistance. A comprehensive search was performed on databases PubMed, Embase, and Google Scholar for relevant articles published between 1st January 2000 and 31st December 2022. The relevant articles were exported to Mendeley Desktop 1.19.8 and screened by title and abstract, followed by full text screening based on the eligibility criteria of the study. Quality assessment of the studies was performed using the Newcastle-Ottawa Scale (NOS) customized for cross-sectional studies. Furthermore, the prevalence of antimicrobial resistance in biofilm-producers isolated from endotracheal tube specimens was investigated. Twenty studies encompassing 981 endotracheal tubes met the eligibility criteria. Pseudomonas spp. and Acinetobacter spp. were predominant isolates among the biofilm producers. These biofilms provided strong resistance against commonly used antibiotics. The highest resistance rate observed in Pseudomonas spp. was against fluoroquinolones whereas the least resistance was seen against piperacillin-tazobactam. A similar trend of susceptibility was observed in Acinetobacter spp. with a very high resistance rate against fluoroquinolones, third-generation cephalosporins and carbapenems. In conclusion, endotracheal tubes were associated with colonization by biofilm forming bacteria with varying levels of antimicrobial resistance. Biofilms may promote the occurrence of recalcitrant infections in endotracheal tubes which need to be managed with appropriate protocols and antimicrobial stewardship. Research focus should shift towards meticulous exploration of biofilm-associated infections to improve detection and management.
Collapse
Affiliation(s)
- S K Mishra
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia; Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal.
| | - S Baidya
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - A Bhattarai
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - S Shrestha
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - S Homagain
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - B Rayamajhee
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia
| | - A Hui
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia; Center for Ocular Research and Education, School of Optometry &Vision Science, University of Waterloo, Ontario, Canada
| | - M Willcox
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
Martínez SR, Odella E, Ibarra LE, Sosa Lochedino A, Wendel AB, Durantini AM, Chesta CA, Palacios RE. Conjugated polymer nanoparticles as sonosensitizers in sono-inactivation of a broad spectrum of pathogens. ULTRASONICS 2024; 137:107180. [PMID: 37847942 DOI: 10.1016/j.ultras.2023.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Sonodynamic inactivation (SDI) of pathogens has an important advantage when compared to optical excitation-based protocols due to the deeper penetration of ultrasound (US) excitation in biological media or animal tissue. Sonosensitizers (SS) are compounds or systems that upon US stimulation in the therapeutic window (frequency = 0.8-3 MHz and intensity < 3 W/cm2) can induce damage to vital components of pathogenic microorganisms. Herein, we report the synthesis and application of conjugated polymer nanoparticles (CPNs) as an efficient SS in SDI of methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae and Candida tropicalis. A frequent problem in the design and testing of new SS for SDI is the lack of proper sonoreactor characterization which leads to reproducibility concerns. To address this issue, we performed dosimetry experiments in our setup. This enables the validation of our results by other researchers and facilitates meaningful comparisons with different SDI systems in future studies. On a different note, it is generally accepted that the mechanisms of action underlying SS-mediated SDI involve the production of reactive oxygen species (ROS). In an attempt to establish the nature of the cytotoxic species involved in our CPNs-based SDI protocol, we demonstrated that singlet oxygen (1O2) does not play a major role in the observed sonoinduced killing effect. SDI experiments in planktonic cultures of optimally growing pathogens using CPNs result in a germicide effect on the studied pathogenic microorganisms. The implementation of SDI protocols using CPNs was further tested in mature biofilms of a MRSA resulting in ∼40 % reduction of biomass and ∼70 % reduction of cellular viability. Overall, these results highlight the unique and unexplored capacity of CPNs to act as sonosensitizers opening new possibilities in the design and application of novel inactivation protocols against morbific microbes.
Collapse
Affiliation(s)
- Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Arianna Sosa Lochedino
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Ana B Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Andrés M Durantini
- Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
17
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. Microbiol Spectr 2023; 11:e0177323. [PMID: 37877708 PMCID: PMC10714928 DOI: 10.1128/spectrum.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.
Collapse
Affiliation(s)
- Madeline Mei
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Pham LHP, Ly KL, Colon-Ascanio M, Ou J, Wang H, Lee SW, Wang Y, Choy JS, Phillips KS, Luo X. Dissolvable alginate hydrogel-based biofilm microreactors for antibiotic susceptibility assays. Biofilm 2023; 5:100103. [PMID: 36691521 PMCID: PMC9860113 DOI: 10.1016/j.bioflm.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Biofilms are found in many infections in the forms of surface-adhering aggregates on medical devices, small clumps in tissues, or even in synovial fluid. Although antibiotic resistance genes are studied and monitored in the clinic, the structural and phenotypic changes that take place in biofilms can also lead to significant changes in how bacteria respond to antibiotics. Therefore, it is important to better understand the relationship between biofilm phenotypes and resistance and develop approaches that are compatible with clinical testing. Current methods for studying antimicrobial susceptibility are mostly planktonic or planar biofilm reactors. In this work, we develop a new type of biofilm reactor-three-dimensional (3D) microreactors-to recreate biofilms in a microenvironment that better mimics those in vivo where bacteria tend to form surface-independent biofilms in living tissues. The microreactors are formed on microplates, treated with antibiotics of 1000 times of the corresponding minimal inhibitory concentrations (1000 × MIC), and monitored spectroscopically with a microplate reader in a high-throughput manner. The hydrogels are dissolvable on demand without the need for manual scraping, thus enabling measurements of phenotypic changes. Bacteria inside the biofilm microreactors are found to survive exposure to 1000 × MIC of antibiotics, and subsequent comparison with plating results reveals no antibiotic resistance-associated phenotypes. The presented microreactor offers an attractive platform to study the tolerance and antibiotic resistance of surface-independent biofilms such as those found in tissues.
Collapse
Affiliation(s)
- Le Hoang Phu Pham
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Khanh Loan Ly
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Mariliz Colon-Ascanio
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Jin Ou
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Hao Wang
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Sang Won Lee
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Yi Wang
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Kenneth Scott Phillips
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| |
Collapse
|
19
|
Aoyama N, Kanematsu H, Barry DM, Miura H, Ogawa A, Kogo T, Kawai R, Hagio T, Hirai N, Kato T, Yoshitake M, Ichino R. AC Electromagnetic Field Controls the Biofilms on the Glass Surface by Escherichia coli & Staphylococcus epidermidis Inhibition Effect. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7051. [PMID: 37959648 PMCID: PMC10649311 DOI: 10.3390/ma16217051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
Biofilms, mainly comprised of bacteria, form on materials' surfaces due to bacterial activity. They are generally composed of water, extracellular polymeric substances (polysaccharides, proteins, nucleic acids, and lipids), and bacteria. Some bacteria that form biofilms cause periodontal disease, corrosion of the metal materials that make up drains, and slippage. Inside of a biofilm is an environment conducive to the growth and propagation of bacteria. Problems with biofilms include the inability of disinfectants and antibiotics to act on them. Therefore, we have investigated the potential application of alternating electromagnetic fields for biofilm control. We obtained exciting results using various materials' specimens and frequency conditions. Through these studies, we gradually understood that the combination of the type of bacteria, the kind of material, and the application of an electromagnetic field with various low frequencies (4 kHz-12 kHz) changes the circumstances of the onset of the biofilm suppression effect. In this study, relatively high frequencies (20 and 30 kHz) were applied to biofilms caused by Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), and quantitative evaluation was performed using staining methods. The sample surfaces were analyzed by Raman spectroscopy using a Laser Raman spectrometer to confirm the presence of biofilms on the surface.
Collapse
Affiliation(s)
- Natsu Aoyama
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Hideyuki Kanematsu
- Research Collaboration Promotion Center, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan
| | - Dana M. Barry
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA;
| | - Hidekazu Miura
- Faculty of Medical Engineering, Suzuka University of Medical Science, Suzuka 510-0293, Japan;
| | - Akiko Ogawa
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (A.O.); (N.H.)
| | - Takeshi Kogo
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Risa Kawai
- Department of Materials Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, (Currently Asahi Kasei Co.), Suzuka 510-0294, Japan; (N.A.); (T.K.); (R.K.)
| | - Takeshi Hagio
- Institutes of Innovation for Future Society, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan;
| | - Nobumitsu Hirai
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (A.O.); (N.H.)
| | - Takehito Kato
- National Institute of Technology (KOSEN), Oyama College, Oyama 323-0806, Japan;
| | - Michiko Yoshitake
- National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan;
| | - Ryoichi Ichino
- Graduate School of Engineering Chemical Systems Engineering 2, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan;
| |
Collapse
|
20
|
Valtin J, Behrens S, Ruland A, Schmieder F, Sonntag F, Renner LD, Maitz MF, Werner C. A New In Vitro Blood Flow Model for the Realistic Evaluation of Antimicrobial Surfaces. Adv Healthc Mater 2023; 12:e2301300. [PMID: 37498721 DOI: 10.1002/adhm.202301300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Indexed: 07/29/2023]
Abstract
Device-associated bloodstream infections can cause serious medical problems and cost-intensive postinfection management, defining a need for more effective antimicrobial coatings. Newly developed coatings often show reduced bacterial colonization and high hemocompatibility in established in vitro tests, but fail in animal studies or clinical trials. The poor predictive power of these models is attributed to inadequate representation of in vivo conditions. Herein, a new single-pass blood flow model, with simultaneous incubation of the test surface with bacteria and freshly-drawn human blood, is presented. The flow model is validated by comparative analysis of a recently developed set of antiadhesive and contact-killing polymer coatings, and the corresponding uncoated polycarbonate surfaces. The results confirm the model's ability to differentiate the antimicrobial activities of the studied surfaces. Blood activation data correlate with bacterial surface coverage: low bacterial adhesion is associated with low inflammation and hemostasis. Shear stress correlates inversely with bacterial colonization, especially on antiadhesive surfaces. The introduced model is concluded to enable the evaluation of novel antimicrobial materials under in vivo-like conditions, capturing interactions between bacteria and biomaterials surfaces in the presence of key components of the ex vivo host response.
Collapse
Affiliation(s)
- Juliane Valtin
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Lars D Renner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
- Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, 01307, Dresden, Germany
| |
Collapse
|
21
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-Pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538445. [PMID: 37163048 PMCID: PMC10168318 DOI: 10.1101/2023.04.26.538445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chronic, highly antibiotic-resistant infections in cystic fibrosis (CF) lungs contribute to increasing morbidity and mortality. Pseudomonas aeruginosa, a common CF pathogen, exhibits resistance to multiple antibiotics, contributing to antimicrobial resistance (AMR). These bacterial populations display genetic and phenotypic diversity, but it is unclear how this diversity affects susceptibility to bacteriocins. R-pyocins, i.e. bacteriocins produced by P. aeruginosa, are phage tail-like antimicrobials. R-pyocins have potential as antimicrobials, however recent research suggests the diversity of P. aeruginosa variants within CF lung infections leads to varying susceptibility to R-pyocins. This variation may be linked to changes in lipopolysaccharide (LPS), acting as the R-pyocin receptor. Currently, it is unknown how frequently R-pyocin-susceptible strains are in chronic CF lung infection, particularly when considering the heterogeneity within these strains. In this study, we tested R2-pyocin susceptibility of 139 P. aeruginosa variants from 17 sputum samples of seven CF patients and analyzed LPS phenotypes. We found that 83% of sputum samples did not have R2-pyocin-resistant variants, while nearly all samples contained susceptible variants. there was no correlation between LPS phenotype and R2-pyocin susceptibility, though we estimate that about 76% of sputum-derived variants lack an O-specific antigen, 40% lack a common antigen, and 24% have altered LPS cores. The absence of a correlation between LPS phenotype and R-pyocin susceptibility suggests LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Our research supports the potential of R-pyocins as therapeutic agents, as many infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations.
Collapse
Affiliation(s)
- Madeline Mei
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Kher L, Santoro D. Biofilm Models: Different Ways of Biofilm Characterization and Drug Discovery. Curr Protoc 2023; 3:e894. [PMID: 37732719 DOI: 10.1002/cpz1.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The ability of bacteria to develop biofilms and its added effect on antimicrobial resistance have been a concern for both animal and human medicine. The need to understand biofilm biology has been addressed with the help of three biofilm models, i.e., in vitro, ex vivo, and in vivo. Due to the implications of animal welfare involved in in vivo models, this article is mainly focused on in vitro and ex vivo study models to analyze biofilm biology. In in vitro biofilm models, the microtiter plate and Calgary biofilm device are the most commonly used techniques for biofilm analysis. Quantification of the biofilm biomass generated by these two techniques can be assessed with the help of a crystal violet assay. Although in vitro biofilm models help advance understanding of the biology of biofilm and are easy to perform, they fail to address certain important questions, such as the importance of the substrate on which biofilm grows and the interaction between the organisms and the substrate. To address this concern, an ex vivo model can be utilized to characterize the behavior and characteristics of biofilms on different substrates. Ex vivo biofilm models are considered a bridge between the in vitro and in vivo biofilm models. Although neither of the currently available biofilm assessment models is considered the gold standard, they have significantly increased understanding of biofilm behavior. Further studies are warranted to develop more refined biofilm models. © 2023 Wiley Periodicals LLC. Basic Protocol 1: In vitro biofilm models for microtiter plate/crystal violet assay for biofilm growth assessment Basic Protocol 2: Crystal violet assay/tissue culture plate method for testing of antibiofilm agents Alternate Protocol: Calgary biofilm device to determine biofilm susceptibility to antimicrobial agents Basic Protocol 3: Ex vivo biofilm skin models: canine/porcine skin explants.
Collapse
Affiliation(s)
- Lopamudra Kher
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Kragh KN, Tolker-Nielsen T, Lichtenberg M. The non-attached biofilm aggregate. Commun Biol 2023; 6:898. [PMID: 37658117 PMCID: PMC10474055 DOI: 10.1038/s42003-023-05281-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
Biofilms have conventionally been perceived as dense bacterial masses on surfaces, following the five-step model of development. Initial biofilm research focused on surface-attached formations, but detached aggregates have received increasing attention in the past decade due to their pivotal role in chronic infections. Understanding their nature sparked fervent discussions in biofilm conferences and scientific literature. This review consolidates current insights on non-attached aggregates, offering examples of their occurrence in nature and diseases. We discuss their formation and dispersion mechanisms, resilience to antibiotics and immune-responses, drawing parallels to surface-attached biofilms. Moreover, we outline available in vitro models for studying non-attached aggregates.
Collapse
Affiliation(s)
- Kasper N Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Petrillo F, Sinoca M, Fea AM, Galdiero M, Maione A, Galdiero E, Guida M, Reibaldi M. Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment. Antibiotics (Basel) 2023; 12:1277. [PMID: 37627697 PMCID: PMC10451181 DOI: 10.3390/antibiotics12081277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi represent a very important cause of microbial eye infections, especially in tropical and developing countries, as they could cause sight-threating disease, such as keratitis and ocular candidiasis, resulting in irreversible vision loss. Candida species are among the most frequent microorganisms associated with fungal infection. Although Candida albicans is still the most frequently detected organism among Candida subspecies, an important increase in non-albicans species has been reported. Mycotic infections often represent an important diagnostic-clinical problem due to the difficulties in performing the diagnosis and a therapeutic problem due to the limited availability of commercial drugs and the difficult penetration of antifungals into ocular tissues. The ability to form biofilms is another feature that makes Candida a dangerous pathogen. In this review, a summary of the state-of-the-art panorama about candida ocular pathology, diagnosis, and treatment has been conducted. Moreover, we also focused on new prospective natural compounds, including nanoparticles, micelles, and nanocarriers, as promising drug delivery systems to better cure ocular fungal and biofilm-related infections. The effect of the drug combination has also been examined from the perspective of increasing efficacy and improving the course of infections caused by Candida which are difficult to fight.
Collapse
Affiliation(s)
- Francesco Petrillo
- Department of Medical Sciences, Eye Clinic, Turin University, 10126 Turin, Italy; (F.P.); (A.M.F.); (M.R.)
| | - Marica Sinoca
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (M.G.)
| | - Antonio Maria Fea
- Department of Medical Sciences, Eye Clinic, Turin University, 10126 Turin, Italy; (F.P.); (A.M.F.); (M.R.)
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (M.G.)
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (M.G.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (M.G.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Michele Reibaldi
- Department of Medical Sciences, Eye Clinic, Turin University, 10126 Turin, Italy; (F.P.); (A.M.F.); (M.R.)
| |
Collapse
|
25
|
Ma Y, Deng Y, Hua H, Khoo BL, Chua SL. Distinct bacterial population dynamics and disease dissemination after biofilm dispersal and disassembly. THE ISME JOURNAL 2023; 17:1290-1302. [PMID: 37270584 PMCID: PMC10356768 DOI: 10.1038/s41396-023-01446-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Microbial communities that form surface-attached biofilms must release and disperse their constituent cells into the environment to colonize fresh sites for continued survival of their species. For pathogens, biofilm dispersal is crucial for microbial transmission from environmental reservoirs to hosts, cross-host transmission, and dissemination of infections across tissues within the host. However, research on biofilm dispersal and its consequences in colonization of fresh sites remain poorly understood. Bacterial cells can depart from biofilms via stimuli-induced dispersal or disassembly due to direct degradation of the biofilm matrix, but the complex heterogeneity of bacterial populations released from biofilms rendered their study difficult. Using a novel 3D-bacterial "biofilm-dispersal-then-recolonization" (BDR) microfluidic model, we demonstrated that Pseudomonas aeruginosa biofilms undergo distinct spatiotemporal dynamics during chemical-induced dispersal (CID) and enzymatic disassembly (EDA), with contrasting consequences in recolonization and disease dissemination. Active CID required bacteria to employ bdlA dispersal gene and flagella to depart from biofilms as single cells at consistent velocities but could not recolonize fresh surfaces. This prevented the disseminated bacteria cells from infecting lung spheroids and Caenorhabditis elegans in on-chip coculture experiments. In contrast, EDA by degradation of a major biofilm exopolysaccharide (Psl) released immotile aggregates at high initial velocities, enabling the bacteria to recolonize fresh surfaces and cause infections in the hosts efficiently. Hence, biofilm dispersal is more complex than previously thought, where bacterial populations adopting distinct behavior after biofilm departure may be the key to survival of bacterial species and dissemination of diseases.
Collapse
Affiliation(s)
- Yeping Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Haojun Hua
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Kowloon, Hong Kong SAR, 999077, China.
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen-Futian Research Institute, Shenzhen, 518057, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen, China.
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
26
|
Ramachandra SS, Wright P, Han P, Abdal‐hay A, Lee RSB, Ivanovski S. Evaluating models and assessment techniques for understanding oral biofilm complexity. Microbiologyopen 2023; 12:e1377. [PMID: 37642488 PMCID: PMC10464519 DOI: 10.1002/mbo3.1377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Oral biofilms are three-dimensional (3D) complex entities initiating dental diseases and have been evaluated extensively in the scientific literature using several biofilm models and assessment techniques. The list of biofilm models and assessment techniques may overwhelm a novice biofilm researcher. This narrative review aims to summarize the existing literature on biofilm models and assessment techniques, providing additional information on selecting an appropriate model and corresponding assessment techniques, which may be useful as a guide to the beginner biofilm investigator and as a refresher to experienced researchers. The review addresses previously established 2D models, outlining their advantages and limitations based on the growth environment, availability of nutrients, and the number of bacterial species, while also exploring novel 3D biofilm models. The growth of biofilms on clinically relevant 3D models, particularly melt electrowritten fibrous scaffolds, is discussed with a specific focus that has not been previously reported. Relevant studies on validated oral microcosm models that have recently gaining prominence are summarized. The review analyses the advantages and limitations of biofilm assessment methods, including colony forming unit culture, crystal violet, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt assays, confocal microscopy, fluorescence in situ hybridization, scanning electron microscopy, quantitative polymerase chain reaction, and next-generation sequencing. The use of more complex models with advanced assessment methodologies, subject to the availability of equipment/facilities, may help in developing clinically relevant biofilms and answering appropriate research questions.
Collapse
Affiliation(s)
- Srinivas Sulugodu Ramachandra
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Preventive Dental Sciences, College of DentistryGulf Medical UniversityAjmanUnited Arab Emirates
| | - Patricia Wright
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Pingping Han
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Abdalla Abdal‐hay
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Department of Engineering Materials and Mechanical Design, Faculty of EngineeringSouth Valley UniversityQenaEgypt
- Faculty of Industry and Energy Technology, Mechatronics Technology ProgramNew Cairo Technological University, New Cairo‐Fifth SettlementCairoEgypt
| | - Ryan S. B. Lee
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Saso Ivanovski
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
27
|
Thaarup IC, Lichtenberg M, Nørgaard KTH, Xu Y, Lorenzen J, Thomsen TR, Bjarnsholt T. A collagen-based layered chronic wound biofilm model for testing antimicrobial wound products. Wound Repair Regen 2023; 31:500-515. [PMID: 37183189 DOI: 10.1111/wrr.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
A new in vitro chronic wound biofilm model was recently published, which provided a layered scaffold simulating mammalian tissue composition on which topical wound care products could be tested. In this paper, we updated the model even further to mimic the dynamic influx of nutrients from below as is the case in a chronic wound. The modified in vitro model was created using collagen instead of agar as the main matrix component and contained both Staphylococcus aureus and Pseudomonas aeruginosa. The model was cast in transwell inserts and then placed in wound simulating media, which allowed for an exchange of nutrients and waste products across a filter. Three potential wound care products and chlorhexidine digluconate 2% solution as a positive control were used to evaluate the model. The tested products were composed of hydrogels made from completely biodegradable starch microspheres carrying different active compounds. The compounds were applied topically and left for 2-4 days. Profiles of oxygen concentration and pH were measured to assess the effect of treatments on bacterial activity. Confocal microscope images were obtained of the models to visualise the existence of microcolonies. Results showed that the modified in vitro model maintained a stable number of the two bacterial species over 6 days. In untreated models, steep oxygen gradients developed and pH increased to >8.0. Hydrogels containing active compounds alleviated the high oxygen consumption and decreased pH drastically. Moreover, all three hydrogels reduced the colony forming units significantly and to a larger extent than the chlorhexidine control treatment. Overall, the modified model expressed several characteristics similar to in vivo chronic wounds.
Collapse
Affiliation(s)
- Ida C Thaarup
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lichtenberg
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim T H Nørgaard
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
| | - Yijuan Xu
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
- Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Jan Lorenzen
- Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Trine R Thomsen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
- Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
28
|
Bajaj A, Abutoama M, Isaacs S, Abuleil MJ, Yaniv K, Kushmaro A, Modic M, Cvelbar U, Abdulhalim I. Biofilm growth monitoring using guided wave ultralong-range Surface Plasmon Resonance: A proof of concept. Biosens Bioelectron 2023; 228:115204. [PMID: 36913883 DOI: 10.1016/j.bios.2023.115204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
Unwelcomed biofilms are problematic in food industries, surgical devices, marine applications, and wastewater treatment plants, essentially everywhere where there is moisture. Very recently, label-free advanced sensors such as localized and extended surface plasmon resonance (SPR) have been explored as tools for monitoring biofilm formation. However, conventional noble metal SPR substrates suffer from low penetration depth (100-300 nm) into the dielectric medium above the surface, preventing the reliable detection of large entities of single or multi-layered cell assemblies like biofilms which can grow up to a few micrometers or more. In this study, we propose using a plasmonic insulator-metal-insulator (IMI) structure (SiO2-Ag-SiO2) with a higher penetration depth based on a diverging beam single wavelength format of Kretschmann configuration in a portable SPR device. An SPR line detection algorithm for locating the reflectance minimum of the device helps to view changes in refractive index and accumulation of the biofilm in real-time down to 10-7 RIU precision. The optimized IMI structure exhibits strong penetration dependence on wavelength and incidence angle. Within the plasmonic resonance, different angles penetrate different depths, showing a maximum near the critical angle. At the wavelength of 635 nm, a high penetration depth of more than 4 μm was obtained. Compared to a thin gold film substrate, for which the penetration depth is only ∼200 nm, the IMI substrate provides more reliable results. The average thickness of the biofilm after 24 h of growth was found to be between 6 and 7 μm with ∼63% live cell volume, as estimated from confocal microscopic images using an image processing tool. To explain this saturation thickness, a graded index biofilm structure is proposed in which the refractive index decreases with the distance from the interface. Furthermore, when plasma-assisted degeneration of biofilms was studied in a semi-real-time format, there was almost no effect on the IMI substrate compared to the gold substrate. The growth rate over the SiO2 surface was higher than on gold, possibly due to differences between surface charge effects. On the gold, the excited plasmon generates an oscillating cloud of electrons, while for the SiO2 case, this does not happen. This methodology can be utilized to detect and characterize biofilms with better signal reliability with respect to concentration and size dependence.
Collapse
Affiliation(s)
- Aabha Bajaj
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Mohammad Abutoama
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sivan Isaacs
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Marwan J Abuleil
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ariel Kushmaro
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Martina Modic
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Ibrahim Abdulhalim
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
29
|
Józsa L, Nemes D, Pető Á, Kósa D, Révész R, Bácskay I, Haimhoffer Á, Vasvári G. Recent Options and Techniques to Assess Improved Bioavailability: In Vitro and Ex Vivo Methods. Pharmaceutics 2023; 15:pharmaceutics15041146. [PMID: 37111632 PMCID: PMC10144798 DOI: 10.3390/pharmaceutics15041146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Bioavailability assessment in the development phase of a drug product is vital to reveal the disadvantageous properties of the substance and the possible technological interventions. However, in vivo pharmacokinetic studies provide strong evidence for drug approval applications. Human and animal studies must be designed on the basis of preliminary biorelevant experiments in vitro and ex vivo. In this article, the authors have reviewed the recent methods and techniques from the last decade that are in use for assessing the bioavailability of drug molecules and the effects of technological modifications and drug delivery systems. Four main administration routes were selected: oral, transdermal, ocular, and nasal or inhalation. Three levels of methodologies were screened for each category: in vitro techniques with artificial membranes; cell culture, including monocultures and co-cultures; and finally, experiments where tissue or organ samples were used. Reproducibility, predictability, and level of acceptance by the regulatory organizations are summarized for the readers.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Réka Révész
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
30
|
Regulski M, Myntti MF, James GA. Anti-Biofilm Efficacy of Commonly Used Wound Care Products in In Vitro Settings. Antibiotics (Basel) 2023; 12:antibiotics12030536. [PMID: 36978402 PMCID: PMC10044339 DOI: 10.3390/antibiotics12030536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Considering the prevalence and pathogenicity of biofilms in wounds, this study was designed to evaluate the anti-biofilm capabilities of eight commercially available wound care products using established in vitro assays for biofilms. The products evaluated included dressings with multiple delivery formats for ionic silver including nanocrystalline, gelling fibers, polyurethane (PU) foam, and polymer matrix. Additionally, non-silver-based products including an extracellular polymeric substance (EPS)-dissolving antimicrobial wound gel (BDWG), a collagenase-based debriding ointment and a fish skin-based skin substitute were also evaluated. The products were evaluated on Staphylococcus aureus and Pseudomonas aeruginosa mixed-species biofilms grown using colony drip flow reactor (CDFR) and standard drip flow reactor (DFR) methodologies. Anti-biofilm efficacy was measured by viable plate counts and confocal scanning laser microscopy (CSLM). Four of the eight wound care products tested were efficacious in inhibiting growth of new biofilm when compared with untreated controls. These four products were further evaluated against mature biofilms. BDWG was the only product that achieved greater than 2-log growth reduction (5.88 and 6.58 for S. aureus and P. aeruginosa, respectively) of a mature biofilm. Evaluating both biofilm prevention and mature biofilm disruption capacity is important to a comprehensive understanding of the anti-biofilm efficacy of wound care products.
Collapse
Affiliation(s)
- Matthew Regulski
- Wound Care Institute of Ocean County, 54 Bey Lea Road, Toms River, NJ 08753, USA
| | - Matthew F Myntti
- Next Science® LLC, 10550 Deerwood Park Blvd, Suite 300, Jacksonville, FL 32256, USA
| | - Garth A James
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| |
Collapse
|
31
|
Nesse LL, Osland AM, Vestby LK. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections. Microorganisms 2023; 11:608. [PMID: 36985183 PMCID: PMC10059901 DOI: 10.3390/microorganisms11030608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Biofilms are bacterial aggregates embedded in a self-produced, protective matrix. The biofilm lifestyle offers resilience to external threats such as the immune system, antimicrobials, and other treatments. It is therefore not surprising that biofilms have been observed to be present in a number of bacterial infections. This review describes biofilm-associated bacterial infections in most body systems of husbandry animals, including fish, as well as in sport and companion animals. The biofilms have been observed in the auditory, cardiovascular, central nervous, digestive, integumentary, reproductive, respiratory, urinary, and visual system. A number of potential roles that biofilms can play in disease pathogenesis are also described. Biofilms can induce or regulate local inflammation. For some bacterial species, biofilms appear to facilitate intracellular invasion. Biofilms can also obstruct the healing process by acting as a physical barrier. The long-term protection of bacteria in biofilms can contribute to chronic subclinical infections, Furthermore, a biofilm already present may be used by other pathogens to avoid elimination by the immune system. This review shows the importance of acknowledging the role of biofilms in animal bacterial infections, as this influences both diagnostic procedures and treatment.
Collapse
Affiliation(s)
- Live L. Nesse
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Ane Mohr Osland
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Lene K. Vestby
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| |
Collapse
|
32
|
Jens JN, Breiner DJ, Neve RL, Fiebig MM, Phelan VV. MBRA-2: a Modified Chemostat System to Culture Biofilms. Microbiol Spectr 2023; 11:e0292822. [PMID: 36475832 PMCID: PMC9927502 DOI: 10.1128/spectrum.02928-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Culture-dependent approaches for investigating microbial ecology aim to model the nutrient content of specific environments by simplifying the system for high-resolution molecular analysis. These in vitro systems are enticing due to their increased throughput compared to animal models, flexibility in modulating nutrient content and community composition, scaling of culture volume to isolate biological molecules, and control of environmental parameters, such as temperature, humidity, and nutrient flow. However, different devices are used to investigate homogenous, planktonic microbial communities and heterogeneous biofilms. Here, we present the minibioreactor array 2 (MBRA-2) with media rails, a benchtop multireactor system derived from the MBRA system that enables researchers to use the same system to grow planktonic and biofilm cultures. We simplified flow through the system and reduced contamination, leakage, and time required for array assembly by designing and implementing a reusable media rail to replace the branched tubing traditionally used to convey media through chemostat arrays. Additionally, we altered the structure of the six-bioreactor strip to incorporate a removable lid to provide easy access to the bioreactor wells, enabling biofilm recovery and thorough cleaning for reuse. Using Pseudomonas aeruginosa, a model biofilm-producing organism, we show that the technical improvements of the MBRA-2 for biofilms growth does not disrupt the function of the bioreactor array. IMPORTANCE The MBRA-2 with media rails provides an accessible system for investigators to culture heterogenous, suspended biofilms under constant flow.
Collapse
Affiliation(s)
- Justin N. Jens
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel J. Breiner
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matilda M. Fiebig
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
33
|
Kher L, Kelley K, Santoro D. Ultrastructural Analysis of Differences in the Growth and Maturation of Staphylococcus pseudintermedius Biofilm on Biotic and Abiotic Surfaces. Microbiol Spectr 2023; 11:e0357722. [PMID: 36779719 PMCID: PMC10100830 DOI: 10.1128/spectrum.03577-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Biofilms are extremely complex yet systematic microbial structures. Studies comparing the differences in their growth on living and nonliving surfaces by electron microscopy are limited. Therefore, the purpose of this study was to ultrastructurally investigate the differences in the growth and development of Staphylococcal biofilm on polycarbonate filters and canine skin explants. Using scanning and transmission electron microscopy (SEM and TEM), Staphylococcus pseudintermedius was incubated for 6, 12, 24, 48, and 72 h. It was observed that similar amounts of exopolymeric substance (EPS) were deposited on the biofilm on both surfaces, but the biofilm on the skin explants was primarily flat, whereas the biofilm on the membrane developed a multilayered plateaued look. Microcolony formation was only observed on the membrane filter during the early stages of biofilm development. On the membrane biofilms, EPS was observed to be deposited in a distinctive pattern. EPS deposition on the membrane surface was observed to peak before it declined, but on the explant, a constant increase was observed at all time points. Cell exposure to the environment on both the membrane filters and explants differed depending on the stage of biofilm formation. On both the membranes and the skin explants, there was a perceptible difference between the biofilm growth patterns and speeds. The results of this study suggest that data extrapolated from studies on biofilm bactericidal compounds performed on abiotic surfaces (such as polycarbonate filters) may not be entirely applicable to biofilm growing on biotic surfaces (e.g., skin) due to ultrastructural variations revealed in this study. IMPORTANCE Biofilm has been recognized as an important source of antimicrobial resistance. These sessile microbial colonies tend to attach and grow on every surface, biotic and abiotic, and they account for approximately 80% of chronic and recurrent infections. Biofilms are not all alike; they have different structures and microbial compositions. This high variability allows for differences in the production of exopolymer substances, affecting antimicrobial penetration. No studies have been published that simultaneously compare the structure of biofilms grown on abiotic (in vitro) and biotic (ex vivo) surfaces. To identify treatment alternatives, it is essential to understand the differences between biofilms. The results of the study show how biofilm structures and compositions are dependent on the substrate on which they grow.
Collapse
Affiliation(s)
- Lopamudra Kher
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA
| | - Karen Kelley
- Interdisciplinary Center for Biotechnology Research (ICBR), Electron Microscopy Core Facility, University of Florida, Gainesville, Florida, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
34
|
Morris D, Flores M, Harris L, Gammon J, Nigam Y. Larval Therapy and Larval Excretions/Secretions: A Potential Treatment for Biofilm in Chronic Wounds? A Systematic Review. Microorganisms 2023; 11:microorganisms11020457. [PMID: 36838422 PMCID: PMC9965881 DOI: 10.3390/microorganisms11020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Chronic wounds present a global healthcare challenge and are increasing in prevalence, with bacterial biofilms being the primary roadblock to healing in most cases. A systematic review of the to-date knowledge on larval therapy's interaction with chronic-wound biofilm is presented here. The findings detail how larval therapy-the controlled application of necrophagous blowfly larvae-acts on biofilms produced by chronic-wound-relevant bacteria through their principle pharmacological mode of action: the secretion and excretion of biologically active substances into the wound bed. A total of 12 inclusion-criteria-meeting publications were identified following the application of a PRISMA-guided methodology for a systematic review. The findings of these publications were qualitatively analyzed to provide a summary of the prevailing understanding of larval therapy's effects on bacterial biofilm. A further review assessed the quality of the existing evidence to identify knowledge gaps and suggest ways these may be bridged. In summary, larval therapy has a seemingly unarguable ability to inhibit and degrade bacterial biofilms associated with impaired wound healing. However, further research is needed to clarify and standardize the methodological approach in this area of investigation. Such research may lead to the clinical application of larval therapy or derivative treatments for the management of chronic-wound biofilms and improve patient healing outcomes at a time when alternative therapies are desperately needed.
Collapse
Affiliation(s)
- Daniel Morris
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
- BioMonde, Bridgend CF31 3BG, UK
| | | | - Llinos Harris
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - John Gammon
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Yamni Nigam
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
- Correspondence:
| |
Collapse
|
35
|
Pamukçu A, Erdoğan N, Şen Karaman D. Polyethylenimine-grafted mesoporous silica nanocarriers markedly enhance the bactericidal effect of curcumin against Staphylococcus aureus biofilm. J Biomed Mater Res B Appl Biomater 2022; 110:2506-2520. [PMID: 35735075 PMCID: PMC9541607 DOI: 10.1002/jbm.b.35108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022]
Abstract
The recalcitrant nature of biofilms makes biofilm-associated infections difficult to treat in modern medicine. Biofilms have a high vulnerability to antibiotics and a limited repertoire of antibiotics could act on matured biofilms. This issue has resulted in a gradual paradigm shift in drug discovery and therapy, with anti-biofilm compounds being sought alongside new drug carriers. A potential solution to biofilm-associated infections is to employ antibiofilm treatments, which can attack biofilms from many fronts. Nanocarriers are promising in this regard because they can be entrapped within biofilm matrix, target biofilm matrix, and provide local drug delivery to inhibit biofilm formation. In this study, curcumin as an herbal extract was loaded onto hyperbranched polyethylenimine-grafted mesoporous silica nanoparticles (F-MSN-PEI/Cur) and antibiofilm investigations were performed. The F-MSN-PEI/Cur design has the potential to repurpose curcumin as an antibiofilm agent by increasing its solubility and lowering the required doses for the destruction of matured biofilms as well as suppressing biofilm development. Using imaging and spectroscopic techniques, we assessed the interaction of F-MSN-PEI/Cur with Staphylococcus aureus bacterial cells and determined the impact of F-MSN-PEI/Cur on eradicating matured biofilms and suppressing biofilm development. The F-MSN-PEI/Cur design is highly cytocompatible, as observed by the cytotoxicity screening investigations on L929 mouse fibroblast cell line. Our findings show that F-MSN-PEI/Cur design reduces the bacterial cell viability, inhibits biofilm formation, and induces biofilm eradication, which is attributed to F-MSN-PEI/Cur design having the potential to repurpose the antibiofilm activity of curcumin-herbal extract.
Collapse
Affiliation(s)
- Ayşenur Pamukçu
- Department of Biomedical Technologies, Graduate School of Natural and Applied SciencesIzmir Katip Çelebi UniversityIzmirTurkey
| | - Nursu Erdoğan
- Department of Biomedical Technologies, Graduate School of Natural and Applied SciencesIzmir Katip Çelebi UniversityIzmirTurkey
| | - Didem Şen Karaman
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureIzmir Katip Çelebi UniversityIzmirTurkey
- Pharmaceutical Sciences Laboratory, Faculty of Science and EngineeringÅbo Akademi UniversityFinland
| |
Collapse
|
36
|
Reddersen K, Tittelbach J, Wiegand C. 3D Biofilm Models Containing Multiple Species for Antimicrobial Testing of Wound Dressings. Microorganisms 2022; 10:2027. [PMID: 36296303 PMCID: PMC9611244 DOI: 10.3390/microorganisms10102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of chronic wounds presents a major challenge in medical care. In particular, the effective treatment of bacterial infections that occur in the form of biofilms is of crucial importance. To develop successful antibiofilm strategies for chronic wound treatment, biofilm models are needed that resemble the in vivo situation, are easy to handle, standardizable, and where results are readily transferable to the clinical situation. We established two 3D biofilm models to distinguish the effectiveness of wound dressings on important microorganisms present in chronic wounds. The first 3D biofilm model contains Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii, while the second is based on Pseudomonas aeruginosa. Bacteria are cultivated in a nutrient-rich agar/gelatin mix, into which air bubbles are incorporated. This results in a mature biofilm growing in clusters similar to its organization in chronic wounds. The models are convenient to use, have low variability and are easy to establish in the laboratory. Treatment with polihexanide and silver-containing wound dressings showed that the models are very well suited for antimicrobial testing and that they can detect differences in the efficacy of antimicrobial substances. Therefore, these models present valuable tools in the development of effective antibiofilm strategies in chronic wounds.
Collapse
Affiliation(s)
- Kirsten Reddersen
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Jörg Tittelbach
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Cornelia Wiegand
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, 07743 Jena, Germany
| |
Collapse
|
37
|
Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front Microbiol 2022; 13:1023523. [PMID: 36312971 PMCID: PMC9607943 DOI: 10.3389/fmicb.2022.1023523] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous, motile, gram-negative bacterium that has been recently identified as a multi-drug resistant pathogen in critical need of novel therapeutics. Of the approximately 5,000 strains, PAO1 and PA14 are common laboratory reference strains, modeling moderately and hyper-virulent phenotypes, respectively. PAO1 and PA14 have been instrumental in facilitating the discovery of novel drug targets, testing novel therapeutics, and supplying critical genomic information on the bacterium. While the two strains have contributed to a wide breadth of knowledge on the natural behaviors and therapeutic susceptibilities of P. aeruginosa, they have demonstrated significant deviations from observations in human infections. Many of these deviations are related to experimental inconsistencies in laboratory strain environment that complicate and, at times, terminate translation from laboratory results to clinical applications. This review aims to provide a comparative analysis of the two strains and potential methods to improve their clinical relevance.
Collapse
Affiliation(s)
- Amber Grace
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | | | - Vida A. Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- *Correspondence: Vida A. Dennis,
| |
Collapse
|
38
|
Jensen N, Jensen HE, Aalbaek B, Blirup-Plum SA, Soto SM, Cepas V, López Y, Gabasa Y, Gutiérrez-del-Río I, Villar CJ, Lombó F, Iglesias MJ, Soengas R, López Ortiz F, Jensen LK. Synthesis of the cyanobacterial halometabolite Chlorosphaerolactylate B and demonstration of its antimicrobial effect in vitro and in vivo. Front Microbiol 2022; 13:950855. [PMID: 36246241 PMCID: PMC9557163 DOI: 10.3389/fmicb.2022.950855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chlorosphaerolactylate B, a newly discovered antimicrobial halometabolite from the cyanobacterium Sphaerospermopsis sp. LEGE 00249 has been synthesized in three steps by using 12-bromododecanoic acid as starting material. A total of 0.5 g was produced for in vitro and in vivo antimicrobial efficacy testing. In vitro, the minimal inhibitory concentration (MIC) was estimated to be 256 mg/L for Staphylococcus aureus, while the minimal biofilm inhibitory concentration (MBIC) was estimated to be 74 mg/L. The in vivo study utilized a porcine model of implant-associated osteomyelitis. In total, 12 female pigs were allocated into 3 groups based on inoculum (n = 4 in each group). An implant cavity (IC) was drilled in the right tibia and followed by inoculation and insertion of a steel implant. All pigs were inoculated with 10 μL containing either: 11.79 mg synthetic Chlorosphaerolactylate B + 104 CFU of S. aureus (Group A), 104 CFU of S. aureus (Group B), or pure saline (Group C), respectively. Pigs were euthanized five days after inoculation. All Group B animals showed macroscopic and microscopic signs of bone infection and both tissue and implant harbored S. aureus bacteria (mean CFU on implants = 1.9 × 105). In contrast, S. aureus could not be isolated from animals inoculated with saline. In Group A, two animals had a low number of S. aureus (CFU = 6.7 × 101 and 3.8 × 101, respectively) on the implants, otherwise all Group A animals were similar to Group C animals. In conclusion, synthetic Chlorosphaerolactylate B holds potential to be a novel antimicrobial and antibiofilm compound.
Collapse
Affiliation(s)
- Nikoline Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Bent Aalbaek
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Amalie Blirup-Plum
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Sara M. Soto
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Virginio Cepas
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yuly López
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ignacio Gutiérrez-del-Río
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Claudio J. Villar
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Felipe Lombó
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María José Iglesias
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Raquel Soengas
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Fernando López Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
- *Correspondence: Fernando López Ortiz,
| | - Louise Kruse Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
- Louise Kruse Jensen,
| |
Collapse
|
39
|
Cheong JZA, Liu A, Rust CJ, Tran CL, Hassan SE, Kalan LR, Gibson ALF. Robbing Peter to Pay Paul: Chlorhexidine gluconate demonstrates short-term efficacy and long-term cytotoxicity. Wound Repair Regen 2022; 30:573-584. [PMID: 36638156 PMCID: PMC9542784 DOI: 10.1111/wrr.13044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Wound cleansing agents are routine in wound care and preoperative preparation. Antiseptic activity intends to prevent contaminating microbes from establishing an infection while also raising concerns of cytotoxicity and delayed wound healing. We evaluated the cytotoxicity of five clinically used wound cleaning agents (saline, povidone iodine, Dove® and Dial® soaps, and chlorhexidine gluconate [CHG]) using both an ex vivo and in vivo human skin xenograft mouse model, in contrast to classical in vitro models that lack the structural and compositional heterogeneity of human skin. We further established an ex vivo wound contamination model inoculated with ~100 cells of Pseudomonas aeruginosa or Staphylococcus aureus to evaluate antimicrobial efficacy. Scanning electron microscopy and confocal microscopy were used to evaluate phenotypic and spatial characteristics of bacterial cells in wound tissue. CHG significantly reduced metabolic activity of the skin explants, while all treatments except saline affected local cellular viability. CHG cytotoxicity persisted and progressed over 14 days, impairing wound healing in vivo. Within the contamination model, CHG treatment resulted in a significant reduction of P. aeruginosa wound surface counts at 24 h post-treatment. However, this effect was transient and serial application of CHG had no effect on both P. aeruginosa or S. aureus microbial growth. Microscopy revealed that viable cells of P. aeruginosa reside deep within wound tissue post-CHG application, likely serving as a reservoir to re-populate the tissue to a high bioburden. We reveal concerning cytotoxicity and limited antimicrobial activity of CHG in human skin using clinically relevant models, with the ability to resolve spatial localization and temporal dynamics of tissue viability and microbial growth.
Collapse
Affiliation(s)
- J. Z. Alex Cheong
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Aiping Liu
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Clayton J. Rust
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Collin L. Tran
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sameeha E. Hassan
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medicine, Division of Infectious DiseaseUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Angela L. F. Gibson
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
40
|
Pouget C, Dunyach-Remy C, Bernardi T, Provot C, Tasse J, Sotto A, Lavigne JP. A Relevant Wound-Like in vitro Media to Study Bacterial Cooperation and Biofilm in Chronic Wounds. Front Microbiol 2022; 13:705479. [PMID: 35464992 PMCID: PMC9019750 DOI: 10.3389/fmicb.2022.705479] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Biofilm on the skin surface of chronic wounds is an important factor in the pathology, inhibiting wound healing. The polymicrobial nature of these infected wounds and bacterial interactions inside this pathogenic biofilm are the keys for understanding chronic infection. The aim of our work was to develop an innovative in vitro medium that closely mimics the chronic wound emphasizing the microbiological, cellular, and inflammatory environment of chronic wounds but also focusing on the pH found at the wound level. This new medium, called chronic wound medium (CWM), will thus facilitate the study of pathogenic biofilm organization. Clinical Staphylococcus aureus and Pseudomonas aeruginosa strains coisolated from diabetic foot infection were collected and cultivated in this new medium for 24 h in monoculture and coculture. Bacterial growth (growth curves), presence of small colony variant (SCV), biofilm formation (BioFilm Ring Test® assay, biofilm biomass quantification), and virulence (survival curve in a Caenorhabditis elegans model) were evaluated. After 24 h in the in vitro conditions, we observed that P. aeruginosa growth was not affected, compared with a control bacterial medium, whereas for S. aureus, the stationary phase was reduced by two logs. Interestingly, S. aureus growth increased when cocultured with P. aeruginosa in CWM. In coculture with P. aeruginosa, SCV forms of S. aureus were detected. Biofilm studies showed that bacteria, alone and in combination, formed biofilm faster (as soon as 3 h) than the bacteria exposed in a control medium (as soon as 5 h). The virulence of all strains decreased in the nematode model when cultivated in our new in vitro medium. Taken together, our data confirmed the impact of the chronic wound environment on biofilm formation and bacteria virulence. They indicated that P. aeruginosa and S. aureus cooperated in coinfected wounds. Therefore, this in vitro model provides a new tool for bacterial cooperation investigation and polymicrobial biofilm formation.
Collapse
Affiliation(s)
- Cassandra Pouget
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Nîmes, France.,Biofilm Pharma SAS, Saint-Beauzire, France
| | - Catherine Dunyach-Remy
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | | | | | | | - Albert Sotto
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| |
Collapse
|
41
|
Fleming D, Niese B, Redman W, Vanderpool E, Gordon V, Rumbaugh KP. Contribution of Pseudomonas aeruginosa Exopolysaccharides Pel and Psl to Wound Infections. Front Cell Infect Microbiol 2022; 12:835754. [PMID: 35463635 PMCID: PMC9021892 DOI: 10.3389/fcimb.2022.835754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Biofilms are the cause of most chronic bacterial infections. Living within the biofilm matrix, which is made of extracellular substances, including polysaccharides, proteins, eDNA, lipids and other molecules, provides microorganisms protection from antimicrobials and the host immune response. Exopolysaccharides are major structural components of bacterial biofilms and are thought to be vital to numerous aspects of biofilm formation and persistence, including adherence to surfaces, coherence with other biofilm-associated cells, mechanical stability, protection against desiccation, binding of enzymes, and nutrient acquisition and storage, as well as protection against antimicrobials, host immune cells and molecules, and environmental stressors. However, the contribution of specific exopolysaccharide types to the pathogenesis of biofilm infection is not well understood. In this study we examined whether the absence of the two main exopolysaccharides produced by the biofilm former Pseudomonas aeruginosa would affect wound infection in a mouse model. Using P. aeruginosa mutants that do not produce the exopolysaccharides Pel and/or Psl we observed that the severity of wound infections was not grossly affected; both the bacterial load in the wounds and the wound closure rates were unchanged. However, the size and spatial distribution of biofilm aggregates in the wound tissue were significantly different when Pel and Psl were not produced, and the ability of the mutants to survive antibiotic treatment was also impaired. Taken together, our data suggest that while the production of Pel and Psl do not appear to affect P. aeruginosa pathogenesis in mouse wound infections, they may have an important implication for bacterial persistence in vivo.
Collapse
Affiliation(s)
- Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, United States
| | - Brandon Niese
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin TX, United States
| | - Whitni Redman
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, United States
| | - Emily Vanderpool
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, United States
| | - Vernita Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin TX, United States
- Interdisciplinary Life Sciences Graduate Programs, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, United States
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences, Lubbock, TX, United States
- Burn Center for Research Excellence, Texas Tech University Health Sciences, Lubbock, TX, United States
| |
Collapse
|
42
|
Falk KN, Satola SW, Chassagne F, Northington GM, Quave CL. Biofilm Production by Uropathogens in Postmenopausal Women with Recurrent and Isolated Urinary Tract Infection. Female Pelvic Med Reconstr Surg 2022; 28:e127-e132. [PMID: 34768258 DOI: 10.1097/spv.0000000000001124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aims of this study were to assess the in vitro biofilm-producing capabilities of uropathogens grown from a postmenopausal urogynecologic population with isolated and recurrent urinary tract infection (UTI) and to determine whether the biofilm-producing bacterial phenotype was associated with recurrent infection. METHODS This was an institutional review board-approved cross-sectional analysis within a large academic referral center. Uropathogens were cultured from postmenopausal women with either isolated or recurrent acute UTI and then screened for in vitro biofilm formation using crystal violet microtiter assays. Demographic and clinical variables, including pelvic floor symptoms and surgical history were collected and analyzed. A multivariate model was developed to determine whether recurrent UTI was independently associated with biofilm production. RESULTS Eighty-nine women were included: 67.4% White, 25.8% Black, 3.4% Asian, and 1.1% Hispanic with a mean age of 72 ± 10.5 years. Ninety-five uropathogen strains were isolated. Most uropathogens produced biofilm (n = 53, 55.8%). Uropathogens from women with recurrent UTI were significantly more likely to produce biofilm (70%) than uropathogens collected from women with isolated UTI (38.6%, P = 0.0033). Adjusting for age, prior pelvic reconstructive surgery, and body mass index, recurrent UTI bacteria were more likely to produce biofilm, compared with isolated UTI (odds ratio, 5.37; 95% confidence interval, 2.0-14.4; P = 0.001). CONCLUSIONS In this cohort of postmenopausal urogynecology patients, in vitro biofilm formation was more frequently observed in uropathogens isolated from women with recurrent UTI compared with women with isolated UTI. Further study is needed to assess the role of biofilms in recurrent UTIs in postmenopausal women.
Collapse
Affiliation(s)
- Kerac N Falk
- From the Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Gynecology and Obstetrics
| | | | - François Chassagne
- Department of Dermatology and Center for the Study of Human Health, Emory University School of Medicine, Atlanta, GA
| | - Gina M Northington
- From the Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Gynecology and Obstetrics
| | - Cassandra L Quave
- Department of Dermatology and Center for the Study of Human Health, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
43
|
Medina Lopez AI, Fregoso DR, Gallegos A, Yoon DJ, Fuentes JJ, Crawford R, Kaba H, Yang H, Isseroff RR. Beta adrenergic receptor antagonist can modify
Pseudomonas aeruginosa
biofilm formation in vitro: Implications for chronic wounds. FASEB J 2022; 36:e22057. [DOI: 10.1096/fj.202100717rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
| | - Daniel R. Fregoso
- Department of Dermatology University of California, Davis Davis California USA
| | - Anthony Gallegos
- Department of Dermatology University of California, Davis Davis California USA
| | - Daniel J. Yoon
- Department of Dermatology University of California, Davis Davis California USA
| | - Jaime J. Fuentes
- Department of Biological Sciences California State University Sacramento Sacramento California USA
| | - Robert Crawford
- Department of Biological Sciences California State University Sacramento Sacramento California USA
| | - Hawa Kaba
- Department of Dermatology University of California, Davis Davis California USA
| | - Hsin‐ya Yang
- Department of Dermatology University of California, Davis Davis California USA
| | - R. Rivkah Isseroff
- Department of Dermatology University of California, Davis Davis California USA
- Dermatology Section VA Northern California Health Care System Mather USA
| |
Collapse
|
44
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
45
|
Vyas HKN, Xia B, Mai-Prochnow A. Clinically relevant in vitro biofilm models: A need to mimic and recapitulate the host environment. Biofilm 2022; 4:100069. [PMID: 36569981 PMCID: PMC9782257 DOI: 10.1016/j.bioflm.2022.100069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Biofilm-associated infections are difficult to treat and eradicate because of their increased antimicrobial tolerance. In vitro biofilm models have enabled the high throughput testing of an array of differing novel antimicrobials and treatment strategies. However, biofilms formed in these oftentimes basic in vitro systems do not resemble biofilms seen in vivo. As a result, translatability from the lab to the clinic is poor or limited. To improve translatability, in vitro models must better recapitulate the host environment. This review describes and critically evaluates new and innovative in vitro models that better mimic the environments of a variety of clinically important, biofilm-associated infections of the skin, oropharynx, lungs, and infections related to indwelling implants and medical devices. This review highlights that many of these models represent considerable advances in the field of biofilm research and help to translate laboratory findings into the clinical practice.
Collapse
|
46
|
Probiotics as Therapeutic Tools against Pathogenic Biofilms: Have We Found the Perfect Weapon? MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacterial populations inhabiting a variety of natural and human-associated niches have the ability to grow in the form of biofilms. A large part of pathological chronic conditions, and essentially all the bacterial infections associated with implanted medical devices or prosthetics, are caused by microorganisms embedded in a matrix made of polysaccharides, proteins, and nucleic acids. Biofilm infections are generally characterized by a slow onset, mild symptoms, tendency to chronicity, and refractory response to antibiotic therapy. Even though the molecular mechanisms responsible for resistance to antimicrobial agents and host defenses have been deeply clarified, effective means to fight biofilms are still required. Lactic acid bacteria (LAB), used as probiotics, are emerging as powerful weapons to prevent adhesion, biofilm formation, and control overgrowth of pathogens. Hence, using probiotics or their metabolites to quench and interrupt bacterial communication and aggregation, and to interfere with biofilm formation and stability, might represent a new frontier in clinical microbiology and a valid alternative to antibiotic therapies. This review summarizes the current knowledge on the experimental and therapeutic applications of LAB to interfere with biofilm formation or disrupt the stability of pathogenic biofilms.
Collapse
|
47
|
Jin X, An S, Kightlinger W, Zhou J, Hong SH. Engineering Escherichia coli to produce and secrete colicins for rapid and selective biofilm cell killing. AIChE J 2021; 67:e17466. [PMID: 36329688 PMCID: PMC9629166 DOI: 10.1002/aic.17466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacterial biofilms are associated with chronic infectious diseases and are highly resistant to conventional antibiotics. Antimicrobial bacteriocins are alternatives to conventional antibiotics and are characterized by unique cell-killing mechanisms, including pore formation on cell membranes, nuclease activity, and cell wall synthesis inhibition. Here, we used cell-free protein synthesis to rapidly evaluate the anti-biofilm activities of colicins E1, E2, and E3. We found that E2 (with DNase activity) most effectively killed target biofilm cells (i.e., the K361 strain) while leaving non-targeted biofilms intact. We then engineered probiotic Escherichia coli microorganisms with genetic circuits to controllably synthesize and secrete colicin E2, which successfully inhibited biofilms and killed pre-formed indicator biofilms. Our findings suggest that colicins rapidly and selectively kill target biofilm cells in multispecies biofilms and demonstrate the potential of using microorganisms engineered to produce antimicrobial colicin proteins as live therapeutic strategies to treat biofilm-associated infections.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sungjun An
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jiacheng Zhou
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
48
|
Abusrewil S, Brown JL, Delaney C, Butcher MC, Tiba M, Scott JA, Ramage G, McLean W. Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model. Antibiotics (Basel) 2021; 10:antibiotics10111317. [PMID: 34827255 PMCID: PMC8614659 DOI: 10.3390/antibiotics10111317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
Endodontic infection is a biofilm disease that is difficult to irradicate with current treatment protocols, and as such, persistent micro-organisms may lead to ongoing or recurrent disease. The potential for the use of enhanced filling materials to modify biofilm regrowth is a promising strategy. This current study aimed to evaluate the anti-biofilm efficacy of calcium silicate cements modified with chitosan. The development of mono-species and multi-species biofilms on ProRoot MTA, Biodentine and bovine dentine discs were explored using quantitative microbiology analysis. The effect on regrowth of biofilms was assessed following the addition of chitosan to each cement. In comparison to a dentine substrate, both materials did not show the ability to inhibit biofilm regrowth. Biodentine incorporated with chitosan displayed a dose-dependent reduction in multi-species biofilm regrowth, unlike MTA. Notably, interkingdom biofilms were shown to enhance bacterial tolerance in the presence of chitosan. This study demonstrates the potential to enhance the antimicrobial properties of Biodentine. The findings highlight the need for appropriate model systems when exploring antimicrobial properties of materials in vitro so that interspecies and interkingdom interactions that modify tolerance are not overlooked while still supporting the development of innovative materials.
Collapse
Affiliation(s)
- Sumaya Abusrewil
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - Jason L. Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Mark C. Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Mohammed Tiba
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - J. Alun Scott
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - Gordon Ramage
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - William McLean
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
- Correspondence: ; Tel.: +44(0)141-956-0991
| |
Collapse
|
49
|
Jørgensen E, Bjarnsholt T, Jacobsen S. Biofilm and Equine Limb Wounds. Animals (Basel) 2021; 11:2825. [PMID: 34679846 PMCID: PMC8532864 DOI: 10.3390/ani11102825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
In chronic wounds in humans, biofilm formation and wound chronicity are linked, as biofilms contribute to chronic inflammation and delayed healing. Biofilms are aggregates of bacteria, and living as biofilms is the default mode of bacterial life; within these aggregates, the bacteria are protected from both antimicrobial substances and the immune response of the host. In horses, delayed healing is more commonly seen in limb wounds than body wounds. Chronic inflammation and hypoxia are the main characteristics of delayed wound healing in equine limbs, and biofilms might also contribute to this healing pattern in horses. However, biofilm formation in equine wounds has been studied to a very limited degree. Biofilms have been detected in equine traumatic wounds, and recent experimental models have shown that biofilms protract the healing of equine limb wounds. Detection of biofilms within wounds necessitates advanced techniques that are not available in routine diagnostic yet. However, infections with biofilm should be suspected in equine limb wounds not healing as expected, as they are in human wounds. Treatment should be based on repeated debridement and application of topical antimicrobial therapy.
Collapse
Affiliation(s)
- Elin Jørgensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- Department of Clinical Microbiology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark;
| |
Collapse
|
50
|
Rodríguez-Merchán EC, Davidson DJ, Liddle AD. Recent Strategies to Combat Infections from Biofilm-Forming Bacteria on Orthopaedic Implants. Int J Mol Sci 2021; 22:10243. [PMID: 34638591 PMCID: PMC8549706 DOI: 10.3390/ijms221910243] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related implant infections (BRII) are a disastrous complication of both elective and trauma orthopaedic surgery and occur when an implant becomes colonised by bacteria. The definitive treatment to eradicate the infections once a biofilm has established is surgical excision of the implant and thorough local debridement, but this carries a significant socioeconomic cost, the outcomes for the patient are often poor, and there is a significant risk of recurrence. Due to the large volumes of surgical procedures performed annually involving medical device implantation, both in orthopaedic surgery and healthcare in general, and with the incidence of implant-related infection being as high as 5%, interventions to prevent and treat BRII are a major focus of research. As such, innovation is progressing at a very fast pace; the aim of this study is to review the latest interventions for the prevention and treatment of BRII, with a particular focus on implant-related approaches.
Collapse
Affiliation(s)
- Emérito Carlos Rodríguez-Merchán
- Department of Orthopaedic Surgery, La Paz University Hospital, 28046 Madrid, Spain
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain
| | - Donald J. Davidson
- Eastman Dental Institute, University College London, London WC1E 6BT, UK; (D.J.D.); (A.D.L.)
| | - Alexander D. Liddle
- Eastman Dental Institute, University College London, London WC1E 6BT, UK; (D.J.D.); (A.D.L.)
- MSk Lab, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|