1
|
Yu Y, Liu Q, Zeng J, Tan Y, Tang Y, Wei G. Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations. Chem Sci 2024; 15:12806-12818. [PMID: 39148776 PMCID: PMC11323318 DOI: 10.1039/d4sc03645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Liquid-Liquid phase separation (LLPS) of p53 to form liquid condensates has been implicated in cellular functions and dysfunctions. The p53 condensates may serve as amyloid fibril precursors to initiate p53 aggregation, which is associated with oncogenic gain-of-function and various human cancers. M237I and R249S mutations located in p53 core domain (p53C) have been detected respectively in glioblastomas and hepatocellular carcinoma. Interestingly, these p53C mutants can also undergo LLPS and liquid-to-solid phase transition, which are faster than wild type p53C. However, the underlying molecular basis governing the accelerated LLPS and liquid-to-solid transition of p53C remain poorly understood. Herein, we explore the M237I/R249S mutation-induced structural alterations and phase separation behavior of p53C by employing multiscale molecular dynamics simulations. All-atom simulations revealed conformational disruptions in the zinc-binding domain of the M237I mutant and in both loop3 and zinc-binding domain of the R249S mutant. The two mutations enhance hydrophobic exposure of those regions and attenuate intramolecular interactions, which may hasten the LLPS and aggregation of p53C. Martini 3 coarse-grained simulations demonstrated spontaneous phase separation of p53C and accelerated effects of M237I/R249S mutations on the phase separation of p53C. Importantly, we find that the regions with enhanced intermolecular interactions observed in coarse-grained simulations coincide with the disrupted regions with weakened intramolecular interactions observed in all-atom simulations, indicating that M237I/R249S mutation-induced local structural disruptions expedite the LLPS of p53C. This study unveils the molecular mechanisms underlying the two cancer-associated mutation-accelerated LLPS and aggregation of p53C, providing avenues for anticancer therapy by targeting the phase separation process.
Collapse
Affiliation(s)
- Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| |
Collapse
|
2
|
Han ISM, Thayer KM. Reconnaissance of Allostery via the Restoration of Native p53 DNA-Binding Domain Dynamics in Y220C Mutant p53 Tumor Suppressor Protein. ACS OMEGA 2024; 9:19837-19847. [PMID: 38737036 PMCID: PMC11079909 DOI: 10.1021/acsomega.3c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
Allosteric regulation of protein dynamics infers a long-range deliberate propagation of information via micro- and macroscale interactions. The Y220C structural mutant is one of the most frequent cancerous p53 mutants. The mutation is distally located from the DNA-binding site of the p53 DNA-binding domain yet causes changes in DNA recognition. This system presents a unique opportunity to examine the allosteric control of mutated proteins under a drug design paradigm. We focus on the key case study of p53 Y220C mutation restoration by a series of new compounds suggested to have Y220C reactivation properties in comparison to our previous findings on the restorative potential of PK11000, a compound studied extensively for reactivation in vitro and in vivo. Previously, we implemented all-atom molecular dynamics (MD) simulations and our lab's techniques of MD-Sectors and MD-Markov state models on the wild type, the Y220C mutant, and Y220C with PK11000 to characterize the effector's restorative properties in terms of conformational dynamics and hydrogen bonding. In this study, we turn to probing the effects made by docking the battery of a new but less well-tested set of aminobenzothiazole derivative compounds reported by Baud et al., which show promise of Y220C rescue. We find that while complete and precise reconstitution of p53 WT molecular dynamics may not be observed as was the case with PK11000, dispersed local reconstitution of loop dynamics provides evidence of rescuing effects by aminobenzothiazole derivative N,2-dihydroxy-3,5-diiodo-4-(1H-pyrrol-1-yl)benzamide, Effector 22, like what we observed for PK11000. Generalizable insights into the mutation and allosteric reactivation of p53 by various effectors by reconstitution of WT dynamics observed in statistical conformational ensemble analysis and network inference are discussed, considering the development of allosteric drug design rooted in first principles.
Collapse
Affiliation(s)
- In Sub M. Han
- College of Integrated Sciences, Wesleyan University, Hall-Atwater Laboratories, Middletown, Connecticut 06459-0180, United States
| | - Kelly M. Thayer
- College of Integrated Sciences, Wesleyan University, Hall-Atwater Laboratories, Middletown, Connecticut 06459-0180, United States
| |
Collapse
|
3
|
Martin DR, Mutombwera AT, Madiehe AM, Onani MO, Meyer M, Cloete R. Molecular modeling and simulation studies of SELEX-derived high-affinity DNA aptamers to the Ebola virus nucleoprotein. J Biomol Struct Dyn 2024:1-18. [PMID: 38217874 DOI: 10.1080/07391102.2024.2302922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Ebola viral disease (EVD) is a highly infectious and potentially fatal illness with a case fatality rate ranging from 25% to 90%. To effectively control its spread, there is a need for rapid, reliable and lowcost point-of-care (P OC) diagnostic tests. While various EVD diagnostic tests exist, few are P OC tests, and many are not cost-effective. The use of antibodies in these tests has limitations, prompting the exploration of aptamers as potential alternatives. Various proteins from the Ebola virus (EBOV) proteome, including EBOV nucleoprotein (NP), are considered viable targets for diagnostic assays. A previous study identified three aptamers (Apt1. Apt2 and Apt3) with high affinity for EBOV NP using systemic evolution of ligands by exponential enrichment (SELEX). This study aimed to employ in silico methods, such as Phyre2, RNAfold, RNAComposer, HADDOCK and GROMACS, to model the structures of EBOV NP and the aptamers, and to investigate their binding. The in silico analysis revealed successful binding of all the three aptamers to EBOV NP, with a suggested ranking of Apt1 > Apt2 > Apt3 based on binding affinity. Microscale thermophoresis (MST) analysis confirmed the binding, providing dissociation constants of 25 ± 2.84, 56 ± 2.76 and 140 ±3.69 nM for Apt1, Apt2 and Apt3, respectively. The study shows that the findings of the in silico analysis was in agreement with the MST analysis. Inclusion of these in silico approaches in diagnostic assay development can expedite the selection of candidate aptamers, potentially overcoming challenges associated with aptamer application in diagnostics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D R Martin
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville, South Africa Cape Town, South Africa
| | - A T Mutombwera
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - A M Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - M O Onani
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - M Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - R Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville, South Africa Cape Town, South Africa
| |
Collapse
|
4
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
5
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 338] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Chen H, Lin X, Yi X, Liu X, Yu R, Fan W, Ling Y, Liu Y, Xie W. SIRT1-mediated p53 deacetylation inhibits ferroptosis and alleviates heat stress-induced lung epithelial cells injury. Int J Hyperthermia 2022; 39:977-986. [PMID: 35853732 DOI: 10.1080/02656736.2022.2094476] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Acute lung injury (ALI) is a common complication of heat stroke (HS) and a direct cause of death. However, the mechanism underlying ALI following HS remains unclear. METHOD To investigate whether ferroptosis is involved in HS-ALI. We established a HS model of mice and mouse lung epithelial-2 cells (MLE-2). The severity of lung injury was measured by H&E staining, the wet-to-dry lung weight ratio, and Transmission electron microscopy. Potential markers of ferroptosis Fe2+, malondialdehyde (MDA), hydroxynonenal (4-HNE) and lipid peroxidation were detected. The percentages of cell death and viability induced by HS were assessed by LDH and CCK8 assays. SLC7A11, ACSL4, GPX4, SIRT1, p53, and p53 K382 acetylation levels were measured by Western blot. RESULTS The administration of ferroptosis inhibitor ferrostatin-1(Fer-1) could significantly ameliorate lung injury, inhibiting levels of MDA and 4-HNE, and ameliorating HS-induced increased ACSL4, decreased SLC7A11 and GPX4, suggesting ferroptosis was involved in HS-induced ALI in vivo and in vitro. Moreover, SIRT1 expression decreased, and p53 K382 acetylation levels increased in MLE-2 cells. Activation of SIRT1 could improve lung epithelial ferroptosis caused by HS in vivo ang in vitro. Besides, the activation of SIRT1 could significantly reduce the p53 K382 acetylation levels, suggesting that activation of SIRT1 could prevent ferroptosis via inhibiting p53 acetylation. CONCLUSION These findings substantiate the vital role of the SIRT1/p53 axis in mediating ferroptosis in HS-ALI, suggesting that targeting SIRT1 may represent a novel therapeutic strategy to ameliorate ALI during HS.
Collapse
Affiliation(s)
- Hui Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoping Lin
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaohong Yi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, P.R. China
| | - Xiaofeng Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ranghui Yu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Wenhao Fan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yaping Ling
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yanan Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Weidang Xie
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
7
|
Marx A, Julier A, Radtke V, Scheffner M. Generation and characterization of site-specifically mono-ubiquitylated p53. Chembiochem 2022; 23:e202100659. [PMID: 35025136 PMCID: PMC9303418 DOI: 10.1002/cbic.202100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Indexed: 11/11/2022]
Abstract
The tumor suppressor p53 is regulated by various posttranslational modifications including different types of ubiquitylation, which exert distinct effects on p53. While modification by ubiquitin chains targets p53 for degradation, attachment of single ubiquitin moieties (mono‐ubiquitylation) affects the intracellular location of p53 and/or its interaction with chromatin. However, how this is achieved at the molecular level remains largely unknown. Similarly, since p53 can be ubiquitylated at different lysine residues, it remains unclear if the eventual effect depends on the position of the lysine modified. Here, we combined genetic code expansion with oxime ligation to generate p53 site‐specifically mono‐ubiquitylated at position 120. We found that mono‐ubiquitylation at this position neither interferes with p53 ubiquitylation by the E3 ligases HDM2 and E6AP in complex with the viral E6 oncoprotein nor affects p53 binding to a cognate DNA sequence. Thus, ubiquitylation per se does not affect physiologically relevant properties of p53.
Collapse
Affiliation(s)
- Andreas Marx
- Konstanz University, Department of Chemistry, Universitaetsstrasse 10, 78457, Konstanz, GERMANY
| | | | - Vanessa Radtke
- University of Konstanz: Universitat Konstanz, Chemistry, GERMANY
| | | |
Collapse
|
8
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
9
|
Liu L, Ge W, Zhang Z, Li Y, Xie M, Zhao C, Yao C, Luo C, Wu Z, Wang W, Zhao D, Zhang J, Qiu W, Wang Y. Sublytic C5b-9 triggers glomerular mesangial cell proliferation via enhancing FGF1 and PDGFα gene transcription mediated by GCN5-dependent SOX9 acetylation in rat Thy-1 nephritis. FASEB J 2021; 35:e21751. [PMID: 34156114 DOI: 10.1096/fj.202002814rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Rat Thy-1 nephritis (Thy-1N) is an animal model of human mesangioproliferative glomerulonephritis (MsPGN), accompanied by glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) deposition. Although sublytic C5b-9 formed on GMC membrane could induce cell proliferation, the mechanism is still unclear. In this study, we first demonstrated that the level of SRY related HMG-BOX gene 9 (SOX9), general control nonderepressible 5 (GCN5), fibroblast growth factor 1 (FGF1) and platelet-derived growth factor α (PDGFα) was all elevated both in the renal tissues of Thy-1N rats (in vivo) and in the GMCs (in vitro) with sublytic C5b-9 stimulation. Then, we not only discovered that sublytic C5b-9 caused GMC proliferation through increasing SOX9, GCN5, FGF1 and PDGFα expression, but also proved that SOX9 and GCN5 formed a complex and combined with FGF1 and PDGFα promoters, leading to FGF1 and PDGFα gene transcription. More importantly, GCN5 could mediate SOX9 acetylation at lysine 62 (K62) to enhance SOX9 binding to FGF1 or PDGFα promoter and promote FGF1 or PDGFα synthesis and GMC proliferation. Besides, the experiments in vivo also showed that FGF1 and PDGFα expression, GMC proliferation and urinary protein secretion in Thy-1N rats were greatly reduced by silencing renal SOX9, GCN5, FGF1 or PDGFα gene. Furthermore, the renal tissues of MsPGN patients also exhibited positive expression of these genes mentioned above. Collectively, our findings indicate that GCN5, SOX9 and FGF1/PDGFα can form an axis and play an essential role in sublytic C5b-9-triggered GMC proliferation, which might provide a novel insight into the pathogenesis of Thy-1N and MsPGN.
Collapse
Affiliation(s)
- Longfei Liu
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China.,Department of Central Laboratory, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Wen Ge
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Zhiwei Zhang
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Ya Li
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunlei Yao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Luo
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Zhijiao Wu
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Wenbo Wang
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Dan Zhao
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Yingwei Wang
- Key Laboratory of Immunological Environment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Margiola S, Gerecht K, Müller MM. Semisynthetic 'designer' p53 sheds light on a phosphorylation-acetylation relay. Chem Sci 2021; 12:8563-8570. [PMID: 34221338 PMCID: PMC8221199 DOI: 10.1039/d1sc00396h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor suppressor protein p53 is a master regulator of cell fate. The activity of p53 is controlled by a plethora of posttranslational modifications (PTMs). However, despite extensive research, the mechanisms of this regulation are still poorly understood due to a paucity of biochemical studies with p53 carrying defined PTMs. Here, we report a protein semi-synthesis approach to access site-specifically modified p53. We synthesized a set of chemically homogeneous full-length p53 carrying one (Ser20ph and Ser15ph) or two (Ser15,20ph) naturally occurring, damage-associated phosphoryl marks. Refolding and biochemical characterization of semisynthetic p53 variants confirmed their structural and functional integrity. Furthermore, we show that phosphorylation within the N-terminal domain directly enhances p300-dependent acetylation approximately twofold, consistent with the role of these marks in p53 activation. Given that the p53 N-terminus is a hotspot for PTMs, we believe that our approach will contribute greatly to a mechanistic understanding of how p53 is controlled by PTMs.
Collapse
Affiliation(s)
- Sofia Margiola
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Karola Gerecht
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Manuel M Müller
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
11
|
Senitzki A, Safieh J, Sharma V, Golovenko D, Danin-Poleg Y, Inga A, Haran TE. The complex architecture of p53 binding sites. Nucleic Acids Res 2021; 49:1364-1382. [PMID: 33444431 PMCID: PMC7897521 DOI: 10.1093/nar/gkaa1283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Sequence-specific protein-DNA interactions are at the heart of the response of the tumor-suppressor p53 to numerous physiological and stress-related signals. Large variability has been previously reported in p53 binding to and transactivating from p53 response elements (REs) due, at least in part, to changes in direct (base) and indirect (shape) readouts of p53 REs. Here, we dissect p53 REs to decipher the mechanism by which p53 optimizes this highly regulated variable level of interaction with its DNA binding sites. We show that hemi-specific binding is more prevalent in p53 REs than previously envisioned. We reveal that sequences flanking the REs modulate p53 binding and activity and show that these effects extend to 4–5 bp from the REs. Moreover, we show here that the arrangement of p53 half-sites within its REs, relative to transcription direction, has been fine-tuned by selection pressure to optimize and regulate the response levels from p53 REs. This directionality in the REs arrangement is at least partly encoded in the structural properties of the REs. Furthermore, we show here that in the p21-5′ RE the orientation of the half-sites is such that the effect of the flanking sequences is minimized and we discuss its advantages.
Collapse
Affiliation(s)
- Alon Senitzki
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Jessy Safieh
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Vasundhara Sharma
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, TN, Italy
| | - Dmitrij Golovenko
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Yael Danin-Poleg
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, TN, Italy
| | - Tali E Haran
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
12
|
Han CW, Lee HN, Jeong MS, Park SY, Jang SB. Structural basis of the p53 DNA binding domain and PUMA complex. Biochem Biophys Res Commun 2021; 548:39-46. [PMID: 33631672 DOI: 10.1016/j.bbrc.2021.02.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
PUMA (p53-upregulated modulator of apoptosis) is localized in mitochondria and a direct target in p53-mediated apoptosis. p53 elicits mitochondrial apoptosis via transcription-dependent and independent mechanisms. p53 is known to induce apoptosis via the transcriptional induction of PUMA, which encodes proapoptotic BH3-only members of the Bcl-2 protein family. However, the transcription-independent mechanisms of human PUMA remain poorly defined. For example, it is not known whether PUMA interacts directly with the DNA binding domain (DBD: residues 92-293) of p53 in vitro. Here, the structure of the complex between the DBD of p53 and PUMA peptide was elucidated by X-ray crystallography. Isothermal titration calorimetry showed that PUMA peptide binds strongly with p53 DBD, and the crystal structure of p53-PUMA peptide complex revealed it contains four molecules of p53 DBD and one PUMA peptide per asymmetric unit in space group P1. PUMA peptide bound to the N-terminal residues of p53 DBD. A cell proliferation assay demonstrated PUMA peptide inhibited the growth of a lung cancer cell line. These results contribute to understanding of the mechanism responsible for p53-mediated apoptosis.
Collapse
Affiliation(s)
- Chang Woo Han
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Han Na Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mi Suk Jeong
- Korea Nanobiotechnology Center, Pusan National University, 2,Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - So Young Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
13
|
Lin M, Guo JT. New insights into protein-DNA binding specificity from hydrogen bond based comparative study. Nucleic Acids Res 2020; 47:11103-11113. [PMID: 31665426 PMCID: PMC6868434 DOI: 10.1093/nar/gkz963] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
Knowledge of protein-DNA binding specificity has important implications in understanding DNA metabolism, transcriptional regulation and developing therapeutic drugs. Previous studies demonstrated hydrogen bonds between amino acid side chains and DNA bases play major roles in specific protein-DNA interactions. In this paper, we investigated the roles of individual DNA strands and protein secondary structure types in specific protein-DNA recognition based on side chain-base hydrogen bonds. By comparing the contribution of each DNA strand to the overall binding specificity between DNA-binding proteins with different degrees of binding specificity, we found that highly specific DNA-binding proteins show balanced hydrogen bonding with each of the two DNA strands while multi-specific DNA binding proteins are generally biased towards one strand. Protein-base pair hydrogen bonds, in which both bases of a base pair are involved in forming hydrogen bonds with amino acid side chains, are more prevalent in the highly specific protein-DNA complexes than those in the multi-specific group. Amino acids involved in side chain-base hydrogen bonds favor strand and coil secondary structure types in highly specific DNA-binding proteins while multi-specific DNA-binding proteins prefer helices.
Collapse
Affiliation(s)
- Maoxuan Lin
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jun-Tao Guo
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
14
|
Stelling AL, Liu AY, Zeng W, Salinas R, Schumacher MA, Al-Hashimi HM. Infrared Spectroscopic Observation of a G-C + Hoogsteen Base Pair in the DNA:TATA-Box Binding Protein Complex Under Solution Conditions. Angew Chem Int Ed Engl 2019; 58:12010-12013. [PMID: 31268220 PMCID: PMC6719543 DOI: 10.1002/anie.201902693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Hoogsteen DNA base pairs (bps) are an alternative base pairing to canonical Watson-Crick bps and are thought to play important biochemical roles. Hoogsteen bps have been reported in a handful of X-ray structures of protein-DNA complexes. However, there are several examples of Hoogsteen bps in crystal structures that form Watson-Crick bps when examined under solution conditions. Furthermore, Hoogsteen bps can sometimes be difficult to resolve in DNA:protein complexes by X-ray crystallography due to ambiguous electron density and by solution-state NMR spectroscopy due to size limitations. Here, using infrared spectroscopy, we report the first direct solution-state observation of a Hoogsteen (G-C+ ) bp in a DNA:protein complex under solution conditions with specific application to DNA-bound TATA-box binding protein. These results support a previous assignment of a G-C+ Hoogsteen bp in the complex, and indicate that Hoogsteen bps do indeed exist under solution conditions in DNA:protein complexes.
Collapse
Affiliation(s)
- Allison L. Stelling
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Amy Y. Liu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Wenjie Zeng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Raul Salinas
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (USA)
- Department of Chemistry, Duke University, Durham, NC 27710 (USA)
| |
Collapse
|
15
|
Stelling AL, Liu AY, Zeng W, Salinas R, Schumacher MA, Al‐Hashimi HM. Infrared Spectroscopic Observation of a G–C
+
Hoogsteen Base Pair in the DNA:TATA‐Box Binding Protein Complex Under Solution Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Allison L. Stelling
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Amy Y. Liu
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Wenjie Zeng
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Raul Salinas
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Maria A. Schumacher
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
| | - Hashim M. Al‐Hashimi
- Department of BiochemistryDuke University Medical Center Durham NC 27710 USA
- Department of ChemistryDuke University Durham NC 27710 USA
| |
Collapse
|
16
|
Belo Y, Mielko Z, Nudelman H, Afek A, Ben-David O, Shahar A, Zarivach R, Gordan R, Arbely E. Unexpected implications of STAT3 acetylation revealed by genetic encoding of acetyl-lysine. Biochim Biophys Acta Gen Subj 2019; 1863:1343-1350. [PMID: 31170499 DOI: 10.1016/j.bbagen.2019.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) protein is activated by phosphorylation of a specific tyrosine residue (Tyr705) in response to various extracellular signals. STAT3 activity was also found to be regulated by acetylation of Lys685. However, the molecular mechanism by which Lys685 acetylation affects the transcriptional activity of STAT3 remains elusive. By genetically encoding the co-translational incorporation of acetyl-lysine into position Lys685 and co-expression of STAT3 with the Elk receptor tyrosine kinase, we were able to characterize site-specifically acetylated, and simultaneously acetylated and phosphorylated STAT3. We measured the effect of acetylation on the crystal structure, and DNA binding affinity and specificity of Tyr705-phosphorylated and non-phosphorylated STAT3. In addition, we monitored the deacetylation of acetylated Lys685 by reconstituting the mammalian enzymatic deacetylation reaction in live bacteria. Surprisingly, we found that acetylation, per se, had no effect on the crystal structure, and DNA binding affinity or specificity of STAT3, implying that the previously observed acetylation-dependent transcriptional activity of STAT3 involves an additional cellular component. In addition, we discovered that Tyr705-phosphorylation protects Lys685 from deacetylation in bacteria, providing a new possible explanation for the observed correlation between STAT3 activity and Lys685 acetylation.
Collapse
Affiliation(s)
- Yael Belo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Zachery Mielko
- Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Hila Nudelman
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ariel Afek
- Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Oshrit Ben-David
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Anat Shahar
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Raz Zarivach
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Raluca Gordan
- Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA; Department of Computer Science, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Eyal Arbely
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
17
|
Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 2019; 20:199-210. [DOI: 10.1038/s41580-019-0110-x] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins. Structure 2018; 26:1237-1250.e6. [PMID: 30057026 DOI: 10.1016/j.str.2018.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/03/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
The tumor suppressor p53 acts as a transcription factor recognizing diverse DNA response elements (REs). Previous structural studies of p53-DNA complexes revealed non-canonical Hoogsteen geometry of A/T base pairs at conserved CATG motifs leading to changes in DNA shape and its interface with p53. To study the effects of DNA shape on binding characteristics, we designed REs with modified base pairs "locked" into either Hoogsteen or Watson-Crick form. Here we present crystal structures of these complexes and their thermodynamic and kinetic parameters, demonstrating that complexes with Hoogsteen base pairs are stabilized relative to those with all-Watson-Crick base pairs. CATG motifs are abundant in p53REs such as GADD45 and p53R2 related to cell-cycle arrest and DNA repair. The high-resolution structures of these complexes validate their propensity to adopt the unique Hoogsteen-induced structure, thus providing insights into the functional role of DNA shape and broadening the mechanisms that contribute to DNA recognition by proteins.
Collapse
|
19
|
Muzika M, Muskat NH, Sarid S, Ben-David O, Mehl RA, Arbely E. Chemically-defined lactose-based autoinduction medium for site-specific incorporation of non-canonical amino acids into proteins. RSC Adv 2018; 8:25558-25567. [PMID: 30713681 PMCID: PMC6333248 DOI: 10.1039/c8ra04359k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 11/21/2022] Open
Abstract
Genetic code expansion technology enables the site-specific incorporation of dozens of non-canonical amino acids (NCAAs) into proteins expressed in live cells. The NCAAs can introduce various chemical functionalities into proteins, ranging from natural post-translational modifications, to spectroscopic probes and chemical handles for bioorthogonal reactions. These chemical groups provide powerful tools for structural, biochemical, and biophysical studies, which may require significant quantities of recombinantly expressed proteins. NCAAs are usually encoded by an in-frame stop codon, such as the TAG (amber) stop codon, which leads to the expression of C-terminally truncated proteins. In addition, the incubation medium should be supplemented with the NCAA at a final concentration of 1-10 mM, which may be challenging when the availability of the NCAA is limited. Hence, bacterial expression of proteins carrying NCAAs can benefit from improvement in protein yield per given amount of added NCAA. Here, we demonstrate the applicability of an optimized chemically-defined lactose-based autoinduction (AI) medium to the expression of proteins carrying a NCAA, using the archaeal pyrrolysyl-tRNA synthetase/tRNA pair from the Methanosarcina genus. Per given amount of added NCAA, the use of AI medium improved protein expression levels by up to 3-fold, compared to IPTG induction, without an increase in misincorporation of canonical amino acids in response to the in-frame stop codon. The suggested medium composition can be used with various Escherichia coli variants transformed with different expression vectors and incubated at different temperatures.
Collapse
Affiliation(s)
- Michael Muzika
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Natali H Muskat
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Shani Sarid
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Oshrit Ben-David
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, 97331, Oregon, USA
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
20
|
Zhang F, Zhou Q, Yang G, An L, Li F, Wang J. A genetically encoded 19F NMR probe for lysine acetylation. Chem Commun (Camb) 2018; 54:3879-3882. [PMID: 29595201 DOI: 10.1039/c7cc09825a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Advances in acetylated protein-protein/DNA interactions depend on the development of a novel NMR (nuclear magnetic resonance) probe to study the conformational changes of acetylated proteins. However, the method for detecting the acetylated protein conformation is underdeveloped. Herein, an acetyllysine mimic has been exploited for detecting the conformational changes of acetylated p53-protein/DNA interactions by genetic code expansion and 19F NMR. This 19F NMR probe shows high structural similarity to acetyllysine and could not be deacetylated by sirtuin deacetylase in vitro/vivo. Moreover, acetylation of p53 K164 is reported to be deacetylated by SIRT2 for the first time.
Collapse
Affiliation(s)
- Feng Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | | | | | | | | | | |
Collapse
|
21
|
Rusin A, Seymour C, Mothersill C. Chronic fatigue and immune deficiency syndrome (CFIDS), cellular metabolism, and ionizing radiation: a review of contemporary scientific literature and suggested directions for future research. Int J Radiat Biol 2018; 94:212-228. [DOI: 10.1080/09553002.2018.1422871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada
| | | |
Collapse
|
22
|
Diverse p53/DNA binding modes expand the repertoire of p53 response elements. Proc Natl Acad Sci U S A 2017; 114:10624-10629. [PMID: 28912355 DOI: 10.1073/pnas.1618005114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tumor suppressor protein p53 acts as a transcription factor, binding sequence-specifically to defined DNA sites, thereby activating the expression of genes leading to diverse cellular outcomes. Canonical p53 response elements (REs) are made of two decameric half-sites separated by a variable number of base pairs (spacers). Fifty percent of all validated p53 REs contain spacers between 1 and 18 bp; however, their functional significance is unclear at present. Here, we show that p53 forms two different tetrameric complexes with consensus or natural REs, both with long spacers: a fully specific complex where two p53 dimers bind to two specific half-sites, and a hemispecific complex where one dimer binds to a specific half-site and the second binds to an adjacent spacer sequence. The two types of complexes have comparable binding affinity and specificity, as judged from binding competition against bulk genomic DNA. Structural analysis of the p53 REs in solution shows that these sites are not bent in both their free and p53-bound states when the two half-sites are either abutting or separated by spacers. Cell-based assay supports the physiological relevance of our findings. We propose that p53 REs with long spacers comprise separate specific half-sites that can lead to several different tetrameric complexes. This finding expands the universe of p53 binding sites and demonstrates that even isolated p53 half-sites can form tetrameric complexes. Moreover, it explains the manner in which p53 binds to clusters of more than one canonical binding site, common in many natural REs.
Collapse
|
23
|
Subekti DRG, Murata A, Itoh Y, Fukuchi S, Takahashi H, Kanbayashi S, Takahashi S, Kamagata K. The Disordered Linker in p53 Participates in Nonspecific Binding to and One-Dimensional Sliding along DNA Revealed by Single-Molecule Fluorescence Measurements. Biochemistry 2017; 56:4134-4144. [DOI: 10.1021/acs.biochem.7b00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dwiky Rendra Graha Subekti
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Agato Murata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Fukuchi
- Faculty
of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Hiroto Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Saori Kanbayashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kiyoto Kamagata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
24
|
Stelling AL, Xu Y, Zhou H, Choi SH, Clay MC, Merriman DK, Al-Hashimi HM. Robust IR-based detection of stable and fractionally populated G-C + and A-T Hoogsteen base pairs in duplex DNA. FEBS Lett 2017; 591:1770-1784. [PMID: 28524232 PMCID: PMC5584567 DOI: 10.1002/1873-3468.12681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 11/11/2022]
Abstract
Noncanonical G-C+ and A-T Hoogsteen base pairs can form in duplex DNA and play roles in recognition, damage repair, and replication. Identifying Hoogsteen base pairs in DNA duplexes remains challenging due to difficulties in resolving syn versus antipurine bases with X-ray crystallography; and size limitations and line broadening can make them difficult to characterize by NMR spectroscopy. Here, we show how infrared (IR) spectroscopy can identify G-C+ and A-T Hoogsteen base pairs in duplex DNA across a range of different structural contexts. The utility of IR-based detection of Hoogsteen base pairs is demonstrated by characterizing the first example of adjacent A-T and G-C+ Hoogsteen base pairs in a DNA duplex where severe broadening complicates detection with NMR.
Collapse
Affiliation(s)
- Allison L Stelling
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Yu Xu
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Huiqing Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Seung H Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Mary C Clay
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| |
Collapse
|
25
|
Mayo JC, Sainz RM, González Menéndez P, Cepas V, Tan DX, Reiter RJ. Melatonin and sirtuins: A "not-so unexpected" relationship. J Pineal Res 2017; 62. [PMID: 28109165 DOI: 10.1111/jpi.12391] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications, including methylation or acetylation as well as post-transcriptional modifications, are mechanisms used by eukaryotic cells to increase the genome diversity in terms of differential gene expression and protein diversity. Among these modifying enzymes, sirtuins, a class III histone deacetylase (HDAC) enzymes, are of particular importance. Sirtuins regulate the cell cycle, DNA repair, cell survival, and apoptosis, thus having important roles in normal and cancer cells. Sirtuins can also regulate metabolic pathways by changing preference for glycolysis under aerobic conditions as well as glutaminolysis. These actions make sirtuins a major target in numerous physiological processes as well as in other contexts such as calorie restriction-induced anti-aging, cancer, or neurodegenerative disease. Interestingly, melatonin, a nighttime-produced indole synthesized by pineal gland and many other organs, has important cytoprotective effects in many tissues including aging, neurodegenerative diseases, immunomodulation, and cancer. The pleiotropic actions of melatonin in different physiological and pathological conditions indicate that may be basic cellular targeted for the indole. Thus, much research has focused attention on the potential mechanisms of the indole in modulating expression and/or activity of sirtuins. Numerous findings report a rise in activity, especially on SIRT1, in a diversity of cells and animal models after melatonin treatment. This contrasts, however, with data reporting an inhibitory effect of melatonin on this sirtuin in some tumor cells. This review tabulates and discusses the recent findings relating melatonin with sirtuins, particularly SIRT1 and mitochondrial SIRT3, showing the apparent dichotomy with the differential actions documented in normal and in cancer cells.
Collapse
Affiliation(s)
- Juan C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Pedro González Menéndez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Vanesa Cepas
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| |
Collapse
|