1
|
Zi-Chang N, Ran A, Hui-Hui S, Qi J, Jun-Li S, Yan-Xu C, Yu-Hong L, Shu-Fei F, Hao-Ping M. Columbianadin Ameliorates Myocardial Injury by Inhibiting Autophagy Through the PI3K/Akt/mTOR Signaling Pathway in AMI Mice and Hypoxic H9c2 Cells. Phytother Res 2025; 39:521-535. [PMID: 39568432 DOI: 10.1002/ptr.8387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality among cardiovascular diseases, yet effective therapies for AMI are limited. Previous studies have suggested cardioprotective effects of columbianadin (CBN), but its specific role in AMI and the underlying mechanisms remain unclear. This study aims to investigate whether CBN influences AMI and to elucidate the underlying mechanisms. We conducted a network pharmacology analysis to investigate the relationship between CBN and AMI. The AMI model was established by ligating the left anterior descending (LAD) artery in C57BL/6J mice, which were subsequently administered CBN. Hypoxic H9c2 cells were utilized to evaluate the effects of CBN in vitro. Our study revealed that CBN treatment significantly reduced myocardial infarction in AMI mice. It enhanced mitochondrial function and suppressed autophagy flux in hypoxic H9c2 cells. Furthermore, CBN downregulated the expression of LC3, Beclin1, and Atg 5 genes and proteins. In response to CBN treatment, the phosphorylation levels of PI3K, Akt, and mTOR increased. Notably, RAPA attenuated the protective effect of CBN in enhancing the survival of hypoxic H9c2 cells and abolished its regulation of autophagy-related proteins via the PI3K/Akt/mTOR signaling pathway. In conclusion, CBN reduces myocardial damage by suppressing autophagy via the PI3K/Akt/mTOR signaling pathway in AMI mice and hypoxic H9c2 cells.
Collapse
Affiliation(s)
- Niu Zi-Chang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - An Ran
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shi Hui-Hui
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jin Qi
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Song Jun-Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chang Yan-Xu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Li Yu-Hong
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Fu Shu-Fei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Shcool of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Mao Hao-Ping
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Xu X, Peng Q, Jiang X, Tan S, Yang W, Han Y, Oyang L, Lin J, Shen M, Wang J, Li H, Xia L, Peng M, Wu N, Tang Y, Wang H, Liao Q, Zhou Y. Altered glycosylation in cancer: molecular functions and therapeutic potential. Cancer Commun (Lond) 2024; 44:1316-1336. [PMID: 39305520 PMCID: PMC11570773 DOI: 10.1002/cac2.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 11/19/2024] Open
Abstract
Glycosylation, a key mode of protein modification in living organisms, is critical in regulating various biological functions by influencing protein folding, transportation, and localization. Changes in glycosylation patterns are a significant feature of cancer, are associated with a range of pathological activities in cancer-related processes, and serve as critical biomarkers providing new targets for cancer diagnosis and treatment. Glycoproteins like human epidermal growth factor receptor 2 (HER2) for breast cancer, alpha-fetoprotein (AFP) for liver cancer, carcinoembryonic antigen (CEA) for colon cancer, and prostate-specific antigen (PSA) for prostate cancer are all tumor biomarkers approved for clinical use. Here, we introduce the diversity of glycosylation structures and newly discovered glycosylation substrate-glycosylated RNA (glycoRNA). This article focuses primarily on tumor metastasis, immune evasion, metabolic reprogramming, aberrant ferroptosis responses, and cellular senescence to illustrate the role of glycosylation in cancer. Additionally, we summarize the clinical applications of protein glycosylation in cancer diagnostics, treatment, and multidrug resistance. We envision a promising future for the clinical applications of protein glycosylation.
Collapse
Affiliation(s)
- Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Mengzhou Shen
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Jiewen Wang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Haofan Li
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Key Laboratory of Translational Radiation OncologyChangshaHunanP. R. China
| | - Qianjin Liao
- Department of OncologyHunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP. R. China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
- Hunan Key Laboratory of Translational Radiation OncologyChangshaHunanP. R. China
| |
Collapse
|
3
|
Cui J, Zhang T, Wang F, Feng L, Deng G, Wu T, Yin L, Hu Y. T1/T2 Proportional Magnetic Resonance Nanoprobe Monitoring Tumor Autophagy during Chemotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1673. [PMID: 39453009 PMCID: PMC11510095 DOI: 10.3390/nano14201673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Autophagy leads to cellular tolerance of the therapeutic pressure of chemotherapeutic drugs, resulting in treatment resistance. Therefore, the effective monitoring of the autophagy status of tumors in vivo and the regulating of the autophagy level are crucial for improving the efficacy of chemotherapy. In this work, we grafted nitroxide radicals onto the surface of iron oxide nanoparticles (Fe3O4 NPs) using dendrimer polymers, yielding Fe3O4-NO· NPs that are responsive to reactive oxygen species (ROS) and possess enhanced T1 and T2 signal capabilities in a magnetic resonance imaging (MRI) measurement. The ROS in tumor cells generated by autophagy quenches the nitroxide radicals, thereby weakening the T1 signal. In contrast, Fe3O4 NPs are unaffected by intracellular ROS, leading to a stable T2 signal. By comparing the intensity ratio of T1 to T2 in Fe3O4-NO· NPs, we can evaluate the in vivo autophagy status within tumors in real time. It also revealed that Fe3O4-NO· NPs loaded with doxorubicin (Dox) and combining the autophagy inhibitor exhibited high antitumor activity in cells and tumor-bearing mice. This system, which combines real-time monitoring of tumor cell autophagy with the delivery of chemotherapeutic drugs, provides an innovative and effective strategy for tumor treatment with potential clinical application prospects.
Collapse
Affiliation(s)
- Jia Cui
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (J.C.); (T.Z.); (F.W.); (L.F.)
| | - Taixing Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (J.C.); (T.Z.); (F.W.); (L.F.)
| | - Fei Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (J.C.); (T.Z.); (F.W.); (L.F.)
| | - Lingzi Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (J.C.); (T.Z.); (F.W.); (L.F.)
| | - Guangjun Deng
- Tongzhou Renming Hospital, 999 Jianshe Road, Jinsha Town, Tongzhou District, Nantong 226030, China;
| | - Ting Wu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210068, China
| | - Le Yin
- Tongzhou Renming Hospital, 999 Jianshe Road, Jinsha Town, Tongzhou District, Nantong 226030, China;
| | - Yong Hu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (J.C.); (T.Z.); (F.W.); (L.F.)
- Nanjing University (Suzhou) High-Tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
4
|
Chen L, Chen G, Zhang M, Zhang X. Modeling sporadic juvenile ALS in iPSC-derived motor neurons explores the pathogenesis of FUS R503fs mutation. Front Cell Neurosci 2024; 18:1364164. [PMID: 38711616 PMCID: PMC11070534 DOI: 10.3389/fncel.2024.1364164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Fused in sarcoma (FUS) mutations represent the most common genetic etiology of juvenile amyotrophic lateral sclerosis (JALS), for which effective treatments are lacking. In a prior report, we identified a novel FUS mutation, c.1509dupA: p. R503fs (FUSR503fs), in a sporadic JALS patient. Methods The physicochemical properties and structure of FUSR503fs protein were analyzed by software: Multi-electrode array (MEA) assay, calcium activity imaging assay and transcriptome analysis were used to explore the pathophysiological mechanism of iPSC derived motor neurons. Results Structural analysis and predictions regarding physical and chemical properties of this mutation suggest that the reduction of phosphorylation and glycosylation sites, along with alterations in the amino acid sequence, may contribute to abnormal FUS accumulation within the cytoplasm and nucleus of induced pluripotent stem cell- derived motor neurons (MNs). Multi-electrode array and calcium activity imaging indicate diminished spontaneous electrical and calcium activity signals in MNs harboring the FUSR503fs mutation. Transcriptomic analysis reveals upregulation of genes associated with viral infection and downregulation of genes involved in neural function maintenance, such as the ATP6V1C2 gene. Treatment with ropinirole marginally mitigates the electrophysiological decline in FUSR503fs MNs, suggesting the utility of this cell model for mechanistic exploration and drug screening. Discussion iPSCs-derived motor neurons from JALS patients are promising tools for drug screening. The pathological changes in motor neurons of FUSR503fs may occur earlier than in other known mutation types that have been reported.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Guojie Chen
- Hunan YoBon Biotechnology Limited Company, Changsha, Hunan, China
| | - Mengting Zhang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
5
|
Tiwari M, Srivastava P, Abbas S, Jegatheesan J, Ranjan A, Sharma S, Maurya VP, Saxena AK, Sharma LK. Emerging Role of Autophagy in Governing Cellular Dormancy, Metabolic Functions, and Therapeutic Responses of Cancer Stem Cells. Cells 2024; 13:447. [PMID: 38474411 PMCID: PMC10930960 DOI: 10.3390/cells13050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Tumors are composed of heterogeneous populations of dysregulated cells that grow in specialized niches that support their growth and maintain their properties. Tumor heterogeneity and metastasis are among the major hindrances that exist while treating cancer patients, leading to poor clinical outcomes. Although the factors that determine tumor complexity remain largely unknown, several genotypic and phenotypic changes, including DNA mutations and metabolic reprograming provide cancer cells with a survival advantage over host cells and resistance to therapeutics. Furthermore, the presence of a specific population of cells within the tumor mass, commonly known as cancer stem cells (CSCs), is thought to initiate tumor formation, maintenance, resistance, and recurrence. Therefore, these CSCs have been investigated in detail recently as potential targets to treat cancer and prevent recurrence. Understanding the molecular mechanisms involved in CSC proliferation, self-renewal, and dormancy may provide important clues for developing effective therapeutic strategies. Autophagy, a catabolic process, has long been recognized to regulate various physiological and pathological processes. In addition to regulating cancer cells, recent studies have identified a critical role for autophagy in regulating CSC functions. Autophagy is activated under various adverse conditions and promotes cellular maintenance, survival, and even cell death. Thus, it is intriguing to address whether autophagy promotes or inhibits CSC functions and whether autophagy modulation can be used to regulate CSC functions, either alone or in combination. This review describes the roles of autophagy in the regulation of metabolic functions, proliferation and quiescence of CSCs, and its role during therapeutic stress. The review further highlights the autophagy-associated pathways that could be used to regulate CSCs. Overall, the present review will help to rationalize various translational approaches that involve autophagy-mediated modulation of CSCs in controlling cancer progression, metastasis, and recurrence.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Pransu Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| | - Sabiya Abbas
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| | - Janani Jegatheesan
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Ashish Ranjan
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna 801507, India
| | - Ved Prakash Maurya
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ajit Kumar Saxena
- Department of Pathology/Lab Medicine, All India Institute of Medical Science, Patna 801507, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow 226014, India
| |
Collapse
|
6
|
Zhang L, Wang W, Yang Y, Liu X, Zhu W, Pi L, Liu X, Wang S. Spontaneous and site-specific immobilization of PNGase F via spy chemistry. RSC Adv 2023; 13:28493-28500. [PMID: 37771922 PMCID: PMC10523939 DOI: 10.1039/d3ra04591a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Protein N-glycosylation plays a critical role in a wide range of biological processes, and aberrant N-glycosylation is frequently associated with various pathological states. For global N-glycosylation analysis, N-glycans are typically released from glycoproteins mediated by endoglycosidases, primarily peptide N-glycosidase F (PNGase F). However, conventional N-glycan release by in-solution PNGase F is time-consuming and nonreusable. Although some immobilization methods can save time and reduce the enzyme dosage, including affinity interaction and covalent binding, the immobilized PNGase F by these traditional methods may compromises the immobilized enzyme's stability and biofunction. Therefore, a new approach is urgently needed to firmly and steadily immobilize PNGase F. To meet this demand, we have developed a spontaneous and site-specific way to immobilize PNGase F onto magnetic nanoparticles via Spy chemistry. The magnetic nanoparticles were synthesized and modified with SpyTag as a solid surface. The PNGase F fused with SpyCatcher can then be site-specifically and covalently immobilized onto this solid phase, forming a firm isopeptide bond via self-catalysis between the SpyTag peptide and SpyCatcher. Importantly, the immobilization process mediated by mild spy chemistry does not result in PNGase F inactivation; and allows immobilized PNGase F to rapidly release various types of glycans (high-mannose, sialylated, and hybrid) from glycoproteins. Moreover, the immobilized PNGase F exhibited good deglycosylation activity and facilitated good reusability in consecutive reactions. Deglycosylation of clinical samples was completed by the immobilized PNGase F as fast as several minutes.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University Wuhan 430079 China
| | - Wenhui Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Yueqin Yang
- Exercise Immunology Center, Wuhan Sports University Wuhan 430079 China
| | - Xiang Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430016 China
| | - Wenjie Zhu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Lingrui Pi
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University Wuhan 430079 China
| |
Collapse
|
7
|
Ligezka AN, Budhraja R, Nishiyama Y, Fiesel FC, Preston G, Edmondson A, Ranatunga W, Van Hove JLK, Watzlawik JO, Springer W, Pandey A, Morava E, Kozicz T. Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG. Genes (Basel) 2023; 14:1585. [PMID: 37628636 PMCID: PMC10454768 DOI: 10.3390/genes14081585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.
Collapse
Affiliation(s)
- Anna N. Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Yurika Nishiyama
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Edmondson
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Johan L. K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80309, USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biophysics, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Anatomy, University of Pecs Medical School, 7624 Pecs, Hungary
| |
Collapse
|
8
|
Zhang H, Zhang J, Dong H, Kong Y, Guan Y. Emerging field: O-GlcNAcylation in ferroptosis. Front Mol Biosci 2023; 10:1203269. [PMID: 37251080 PMCID: PMC10213749 DOI: 10.3389/fmolb.2023.1203269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In 2012, researchers proposed a non-apoptotic, iron-dependent form of cell death caused by lipid peroxidation called ferroptosis. During the past decade, a comprehensive understanding of ferroptosis has emerged. Ferroptosis is closely associated with the tumor microenvironment, cancer, immunity, aging, and tissue damage. Its mechanism is precisely regulated at the epigenetic, transcriptional, and post-translational levels. O-GlcNAc modification (O-GlcNAcylation) is one of the post-translational modifications of proteins. Cells can modulate cell survival in response to stress stimuli, including apoptosis, necrosis, and autophagy, through adaptive regulation by O-GlcNAcylation. However, the function and mechanism of these modifications in regulating ferroptosis are only beginning to be understood. Here, we review the relevant literature within the last 5 years and present the current understanding of the regulatory function of O-GlcNAcylation in ferroptosis and the potential mechanisms that may be involved, including antioxidant defense system-controlled reactive oxygen species biology, iron metabolism, and membrane lipid peroxidation metabolism. In addition to these three areas of ferroptosis research, we examine how changes in the morphology and function of subcellular organelles (e.g., mitochondria and endoplasmic reticulum) involved in O-GlcNAcylation may trigger and amplify ferroptosis. We have dissected the role of O-GlcNAcylation in regulating ferroptosis and hope that our introduction will provide a general framework for those interested in this field.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Xuefei Y, Dongyan L, Tianming L, Hejuan Z, Jianhua F. O-linked N-acetylglucosamine affects mitochondrial homeostasis by regulating Parkin-dependent mitophagy in hyperoxia-injured alveolar type II cells injury. Respir Res 2023; 24:16. [PMID: 36647045 PMCID: PMC9841680 DOI: 10.1186/s12931-022-02287-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The level of linked N-acetylglucosamine (O-GlcNAc) has been proved to be a sensor of cell state, but its relationship with hyperoxia-induced alveolar type 2 epithelial cells injure and bronchopulmonary dysplasia (BPD) has not been clarified. In this study, we evaluated if these effects ultimately led to functional damage in hyperoxia-induced alveolar cells. METHODS We treated RLE-6TN cells at 85% hyperoxia for 0, 24 and 48 h with Thiamet G (TG), an OGA inhibitor; OSMI-1 (OS), an OGT inhibitor; or with UDP-GlcNAc, which is involved in synthesis of O-GlcNAc as a donor. The metabolic rerouting, cell viability and apoptosis resulting from the changes in O-GlcNAc glycosyltransferase levels were evaluated in RLE-6TN cells after hyperoxia exposure. We constructed rat Park2 overexpression and knockdown plasmmids for in vitro verification and Co-immunoprecipitation corroborated the binding of Parkin and O-GlcNAc. Finally, we assessed morphological detection in neonatal BPD rats with TG and OS treatment. RESULTS We found a decrease in O-GlcNAc content and levels of its metabolic enzymes in RLE-6TN cells under hyperoxia. However, the inhibition of OGT function with OSMI-1 ameliorated hyperoxia-induced lung epithelial cell injury, enhanced cell metabolism and viability, reduced apoptosis, and accelerated the cell proliferation. Mitochondrial homeostasis was affected by O-GlcNAc and regulated Parkin. CONCLUSION The results revealed that the decreased O-GlcNAc levels and increased O-GlcNAcylation of Parkin might cause hyperoxia-induced alveolar type II cells injurys.
Collapse
Affiliation(s)
- Yu Xuefei
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| | - Liu Dongyan
- grid.412467.20000 0004 1806 3501Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Li Tianming
- grid.412467.20000 0004 1806 3501Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning China
| | - Zheng Hejuan
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| | - Fu Jianhua
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004 People’s Republic of China
| |
Collapse
|
10
|
Rottner AK, Ye Y, Navarro-Guerrero E, Rajesh V, Pollner A, Bevacqua RJ, Yang J, Spigelman AF, Baronio R, Bautista A, Thomsen SK, Lyon J, Nawaz S, Smith N, Wesolowska-Andersen A, Fox JEM, Sun H, Kim SK, Ebner D, MacDonald PE, Gloyn AL. A genome-wide CRISPR screen identifies CALCOCO2 as a regulator of beta cell function influencing type 2 diabetes risk. Nat Genet 2023; 55:54-65. [PMID: 36543916 PMCID: PMC9839450 DOI: 10.1038/s41588-022-01261-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Identification of the genes and processes mediating genetic association signals for complex diseases represents a major challenge. As many of the genetic signals for type 2 diabetes (T2D) exert their effects through pancreatic islet-cell dysfunction, we performed a genome-wide pooled CRISPR loss-of-function screen in a human pancreatic beta cell line. We assessed the regulation of insulin content as a disease-relevant readout of beta cell function and identified 580 genes influencing this phenotype. Integration with genetic and genomic data provided experimental support for 20 candidate T2D effector transcripts including the autophagy receptor CALCOCO2. Loss of CALCOCO2 was associated with distorted mitochondria, less proinsulin-containing immature granules and accumulation of autophagosomes upon inhibition of late-stage autophagy. Carriers of T2D-associated variants at the CALCOCO2 locus further displayed altered insulin secretion. Our study highlights how cellular screens can augment existing multi-omic efforts to support mechanistic understanding and provide evidence for causal effects at genome-wide association studies loci.
Collapse
Affiliation(s)
- Antje K Rottner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yingying Ye
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Elena Navarro-Guerrero
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Alina Pollner
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Centre, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Jing Yang
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Roberta Baronio
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - James Lyon
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nancy Smith
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Centre, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel Ebner
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Centre, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Zhang Y, Yao E, Liu Y, Zhang Y, Ding M, Liu J, Chen X, Fan S. FUT2 Facilitates Autophagy and Suppresses Apoptosis via p53 and JNK Signaling in Lung Adenocarcinoma Cells. Cells 2022; 11:cells11244031. [PMID: 36552800 PMCID: PMC9776918 DOI: 10.3390/cells11244031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common cancer with high morbidity and mortality worldwide. Our previous studies showed that fucosyltransferase 2 (FUT2) is highly expressed in lung adenocarcinoma (LUAD) and plays a vital role in the tumorigenesis of LUAD. However, the underlying mechanism is not fully understood. Autophagy has recently attracted increasing attention due to its pro-survival role in cancer progression and metastasis. Here, we found that FUT2 was up-regulated and had an AUC (Area Under Curve) value of 0.964 in lung adenocarcinoma based on the TCGA dataset. Knockdown of FUT2 weakened the autophagy response, as evidenced by a degradation of LC3-II and Beclin1. The phosphorylation levels of AMPK, ULK1, and PI3K III were significantly reduced by FUT2 knockdown. FUT2 promoted the translocation of p53 from the cytoplasm into the nucleus, which triggered the DRAM1 pathway and enhanced autophagy. Meanwhile, the knockdown of FUT2 increased the phosphorylation of JNK and promoted mitochondrial-mediated apoptosis. Furthermore, the knockdown of FUT2 inhibited the autophagy induced by Z-VAD-FMK and promoted the apoptosis suppressed by rapamycin. The autophagy and apoptosis regulated by FUT2 antagonized each other. Taken together, these findings provide a mechanistic understanding of how FUT2 mediated the crosstalk between autophagy and apoptosis, which determine lung cancer cell death and survival, leading to the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Clinical Genetics, Northwest Women’s and Children’s Hospital, Xi’an 710061, China
| | - Enze Yao
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Laboratory, Zhoukou Central Hospital, Zhoukou 466000, China
| | - Yijing Liu
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yining Zhang
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mengyang Ding
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingyu Liu
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence: (X.C.); (S.F.); Tel.: +86-577-86689690 (X.C.); Fax: +86-577-86689717 (X.C.)
| | - Sairong Fan
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence: (X.C.); (S.F.); Tel.: +86-577-86689690 (X.C.); Fax: +86-577-86689717 (X.C.)
| |
Collapse
|
12
|
Shedding Light on the Role of Phosphorylation in Plant Autophagy. FEBS Lett 2022; 596:2172-2185. [DOI: 10.1002/1873-3468.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
|
13
|
Deneubourg C, Ramm M, Smith LJ, Baron O, Singh K, Byrne SC, Duchen MR, Gautel M, Eskelinen EL, Fanto M, Jungbluth H. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy 2022; 18:496-517. [PMID: 34130600 PMCID: PMC9037555 DOI: 10.1080/15548627.2021.1943177] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Primary dysfunction of autophagy due to Mendelian defects affecting core components of the autophagy machinery or closely related proteins have recently emerged as an important cause of genetic disease. This novel group of human disorders may present throughout life and comprises severe early-onset neurodevelopmental and more common adult-onset neurodegenerative disorders. Early-onset (or congenital) disorders of autophagy often share a recognizable "clinical signature," including variable combinations of neurological, neuromuscular and multisystem manifestations. Structural CNS abnormalities, cerebellar involvement, spasticity and peripheral nerve pathology are prominent neurological features, indicating a specific vulnerability of certain neuronal populations to autophagic disturbance. A typically biphasic disease course of late-onset neurodegeneration occurring on the background of a neurodevelopmental disorder further supports a role of autophagy in both neuronal development and maintenance. Additionally, an associated myopathy has been characterized in several conditions. The differential diagnosis comprises a wide range of other multisystem disorders, including mitochondrial, glycogen and lysosomal storage disorders, as well as ciliopathies, glycosylation and vesicular trafficking defects. The clinical overlap between the congenital disorders of autophagy and these conditions reflects the multiple roles of the proteins and/or emerging molecular connections between the pathways implicated and suggests an exciting area for future research. Therapy development for congenital disorders of autophagy is still in its infancy but may result in the identification of molecules that target autophagy more specifically than currently available compounds. The close connection with adult-onset neurodegenerative disorders highlights the relevance of research into rare early-onset neurodevelopmental conditions for much more common, age-related human diseases.Abbreviations: AC: anterior commissure; AD: Alzheimer disease; ALR: autophagic lysosomal reformation; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ASD: autism spectrum disorder; ATG: autophagy related; BIN1: bridging integrator 1; BPAN: beta-propeller protein associated neurodegeneration; CC: corpus callosum; CHMP2B: charged multivesicular body protein 2B; CHS: Chediak-Higashi syndrome; CMA: chaperone-mediated autophagy; CMT: Charcot-Marie-Tooth disease; CNM: centronuclear myopathy; CNS: central nervous system; DNM2: dynamin 2; DPR: dipeptide repeat protein; DVL3: disheveled segment polarity protein 3; EPG5: ectopic P-granules autophagy protein 5 homolog; ER: endoplasmic reticulum; ESCRT: homotypic fusion and protein sorting complex; FIG4: FIG4 phosphoinositide 5-phosphatase; FTD: frontotemporal dementia; GBA: glucocerebrosidase; GD: Gaucher disease; GRN: progranulin; GSD: glycogen storage disorder; HC: hippocampal commissure; HD: Huntington disease; HOPS: homotypic fusion and protein sorting complex; HSPP: hereditary spastic paraparesis; LAMP2A: lysosomal associated membrane protein 2A; MEAX: X-linked myopathy with excessive autophagy; mHTT: mutant huntingtin; MSS: Marinesco-Sjoegren syndrome; MTM1: myotubularin 1; MTOR: mechanistic target of rapamycin kinase; NBIA: neurodegeneration with brain iron accumulation; NCL: neuronal ceroid lipofuscinosis; NPC1: Niemann-Pick disease type 1; PD: Parkinson disease; PtdIns3P: phosphatidylinositol-3-phosphate; RAB3GAP1: RAB3 GTPase activating protein catalytic subunit 1; RAB3GAP2: RAB3 GTPase activating non-catalytic protein subunit 2; RB1: RB1-inducible coiled-coil protein 1; RHEB: ras homolog, mTORC1 binding; SCAR20: SNX14-related ataxia; SENDA: static encephalopathy of childhood with neurodegeneration in adulthood; SNX14: sorting nexin 14; SPG11: SPG11 vesicle trafficking associated, spatacsin; SQSTM1: sequestosome 1; TBC1D20: TBC1 domain family member 20; TECPR2: tectonin beta-propeller repeat containing 2; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; UBQLN2: ubiquilin 2; VCP: valosin-containing protein; VMA21: vacuolar ATPase assembly factor VMA21; WDFY3/ALFY: WD repeat and FYVE domain containing protein 3; WDR45: WD repeat domain 45; WDR47: WD repeat domain 47; WMS: Warburg Micro syndrome; XLMTM: X-linked myotubular myopathy; ZFYVE26: zinc finger FYVE-type containing 26.
Collapse
Affiliation(s)
- Celine Deneubourg
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Mauricio Ramm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Luke J. Smith
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Olga Baron
- Wolfson Centre for Age-Related Diseases, King’s College London, London, UK
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Susan C. Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Hsieh SL, Li JH, Dong CD, Chen CW, Wu CC. Carnosine suppresses human colorectal cancer cell proliferation by inducing necroptosis and autophagy and reducing angiogenesis. Oncol Lett 2022; 23:44. [PMID: 34976156 PMCID: PMC8674876 DOI: 10.3892/ol.2021.13162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is found in beef and fish. The present study aimed to investigate the effects of carnosine on the cell proliferation of human colorectal cancer cells. After human colorectal cancer HCT-116 cells were treated carnosine for 72 or 96 h, the cell proliferation, apoptosis, autophagy, necroptosis, angiogenesis and the expression of related regulatory molecules were detected using MTT assays, fluorescence image analysis and RT-qPCR in this study. Treatment of HCT-116 cells with 5, 10 or 15 mM carnosine for 72 or 96 h significantly decreased cell viability (P<0.05). The mRNA expression of β-catenin and transcription factor 4 (Tcf-4) was significantly reduced by 15–23% and 11–80%, respectively (P<0.05). When HCT-116 cells were treated with 15 mM carnosine, the mRNA levels of 1A/1B-light chain 3 and phosphatidylinositol 3-kinase were significantly increased by 235% and 249%, respectively (P<0.05). The mRNA level of Beclin-1 and autophagy levels were significantly increased by 137–141% in HCT-116 cells treated with 5, 10 or 15 mM carnosine (P<0.05). Carnosine (15 mM) also increased reactive oxygen species levels and mixed lineage kinase domain-like protein mRNA expression and depleted ATP levels (P<0.05). The angiogenesis-regulating molecules vascular endothelial growth factor, epidermal growth factor receptor and hypoxia-inducible factor 1-α were all significantly decreased by 10 or 15 mM carnosine treatment. These results showed that carnosine could suppress human colorectal cell proliferation by reducing β-catenin/Tcf-4 signaling, inducing autophagy and necroptosis and inhibiting angiogenesis. It was demonstrated that carnosine is a potential compound from dietary food for the future clinical treatment and/or prevention of colorectal cancer.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Jia-Huei Li
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Cheng-Di Dong
- Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Chiu-Wen Chen
- Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan, R.O.C
| |
Collapse
|
15
|
Deglycosylated EpCAM regulates proliferation by enhancing autophagy of breast cancer cells via PI3K/Akt/mTOR pathway. Aging (Albany NY) 2022; 14:316-329. [PMID: 34983878 PMCID: PMC8791205 DOI: 10.18632/aging.203795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Autophagy is an important regulator of cellular homeostasis and its dysregulation often results in cancer. Aberrant glycosylation induced by oncogenic transformation contributes to tumor invasion and metastasis. In a previous study, we have demonstrated that EpCAM, a glycosylation protein, is associated with cell growth and metastasis in breast cancer. But the effect of EpCAM glycosylation on autophagy is not clear. the precise mechanism of regulation remains largely unknown. In this study, breast cancer cells were transfected with N-glycosylation mutation EpCAM plasmid to express deglycosylated EpCAM. The result showed that deglycosylated EpCAM promoted autophagy in breast cancer cells. We further confirmed this conclusion with the activator (Rapamycin, RAP) and inhibitor (Wortmannin) of autophagy. We also found that deglycosylated EpCAM promoted apoptosis and inhibited proliferation through activating autophagy by suppressing Akt/mTOR signaling pathway in breast cancer cells. These findings represent a novel mechanism by which deglycosylated EpCAM inhibits proliferation by enhancing autophagy of breast cancer cells via PI3K/Akt/mTOR pathway. In conclusion, the combination of autophagy modulation and EpCAM targeted therapy is a promising therapeutic strategy in the treatment of breast cancer.
Collapse
|
16
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
17
|
Bisnett BJ, Condon BM, Linhart NA, Lamb CH, Huynh DT, Bai J, Smith TJ, Hu J, Georgiou GR, Boyce M. Evidence for nutrient-dependent regulation of the COPII coat by O-GlcNAcylation. Glycobiology 2021; 31:1102-1120. [PMID: 34142147 PMCID: PMC8457363 DOI: 10.1093/glycob/cwab055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic form of intracellular glycosylation common in animals, plants and other organisms. O-GlcNAcylation is essential in mammalian cells and is dysregulated in myriad human diseases, such as cancer, neurodegeneration and metabolic syndrome. Despite this pathophysiological significance, key aspects of O-GlcNAc signaling remain incompletely understood, including its impact on fundamental cell biological processes. Here, we investigate the role of O-GlcNAcylation in the coat protein II complex (COPII), a system universally conserved in eukaryotes that mediates anterograde vesicle trafficking from the endoplasmic reticulum. We identify new O-GlcNAcylation sites on Sec24C, Sec24D and Sec31A, core components of the COPII system, and provide evidence for potential nutrient-sensitive pathway regulation through site-specific glycosylation. Our work suggests a new connection between metabolism and trafficking through the conduit of COPII protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Noah A Linhart
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Caitlin H Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Duc T Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingyi Bai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - George R Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
18
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
19
|
Sun J, Ren J, Hu X, Hou Y, Yang Y. Therapeutic effects of Chinese herbal medicines and their extracts on diabetes. Biomed Pharmacother 2021; 142:111977. [PMID: 34364042 DOI: 10.1016/j.biopha.2021.111977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
With the improvement of people's living standards and changes in the environment, the incidence of diabetes has increased rapidly. It has gradually become one of the main diseases threatening the health and life of modern people, bringing a great burden to the society. Although the existing treatment methods can effectively control the symptoms of diabetes and delay its progression, they have not brought satisfactory improvement in the quality of life and treatment of patients. Traditional Chinese herbal medicines and their extracts combine thousands of years of experience and the scientific basis provided by modern experimental research, which is expected to bring a qualitative leap in the clinical management of diabetes. Therefore, this article systematically reviews studies on the effects of Chinese herbal medicine and its extracts on diabetes and its complications, and aims to bring new ideas and options for the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Jie Sun
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jiangong Ren
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Xuejian Hu
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yuanhua Hou
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yan Yang
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
20
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
21
|
Liao C, An J, Tan Z, Xu F, Liu J, Wang Q. Changes in Protein Glycosylation in Head and Neck Squamous Cell Carcinoma. J Cancer 2021; 12:1455-1466. [PMID: 33531990 PMCID: PMC7847636 DOI: 10.7150/jca.51604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is an important posttranslational modification of proteins, and it has a profound influence on diverse life processes. An abnormal polysaccharide structure and mutation of the glycosylation pathway are closely correlated with human cancer progression. Glycoproteins such as EGFR, E-cadherin, CD44, PD-1/PD-L1, B7-H3 and Muc1 play important roles in the progression of head and neck squamous cell carcinoma (HNSCC), and their levels of glycosylation and changes in glycosyl structure are closely linked to HNSCC progression and malignant transformation. The regulation of protein glycosylation in HNSCC provides potential strategies to control cancer stem cell (CSC) subgroup expansion, epithelial-mesenchymal transition (EMT), tumor-related immunity escape and autophagy. Glycoproteins with altered glycosylation can be used as biomarkers for the early diagnosis, monitoring and prognostication of HNSCC. However, the glycobiology of cancer is still a new field that needs to be deeply studied, especially in HNSCC.
Collapse
Affiliation(s)
- Chengcheng Liao
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Fangping Xu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
22
|
Greville G, Llop E, Huang C, Creagh-Flynn J, Pfister S, O'Flaherty R, Madden SF, Peracaula R, Rudd PM, McCann A, Saldova R. Hypoxia Alters Epigenetic and N-Glycosylation Profiles of Ovarian and Breast Cancer Cell Lines in-vitro. Front Oncol 2020; 10:1218. [PMID: 32850359 PMCID: PMC7405916 DOI: 10.3389/fonc.2020.01218] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Glycosylation is one of the most fundamental post-translational modifications. Importantly, glycosylation is altered in many cancers. These alterations have been proven to impact on tumor progression and to promote tumor cell survival. From the literature, it is known that there is a clear link between chemoresistance and hypoxia, hypoxia and epigenetics and more recently glycosylation and epigenetics. Methods and Results: Our objective was to investigate these differential parameters, in an in vitro model of ovarian and breast cancer. Ovarian (A2780, A2780cis, PEO1, PEO4) and triple negative breast cancer (TNBC) (MDA-MB-231 and MDA-MB-436) cells were exposed to differential hypoxic conditions (0.5-2% O2) and compared to normoxia (21% O2). Results demonstrated that in hypoxic conditions some significant changes in glycosylation on the secreted N-glycans from the ovarian and breast cancer cell lines were observed. These included, alterations in oligomannosylated, bisected glycans, glycans with polylactosamine extensions, in branching, galactosylation and sialylation in all cell lines except for PEO1. In general, hypoxia exposed ovarian and TNBC cells also displayed increased epithelial to mesenchymal transition (EMT) and migration, with a greater effect seen in the 0.5% hypoxia exposed samples compared to 1 and 2% hypoxia (p ≤ 0.05). SiRNA transient knock down of GATA2/3 transcription factors resulted in a decrease in the expression of glycosyltransferases ST3GAL4 and MGAT5, which are responsible for sialylation and branching, respectively. Conclusions: These glycan changes are known to be integral to cancer cell survival and metastases, suggesting a possible mechanism of action, linking GATA2 and 3, and invasiveness of both ovarian and TNBC cells in vitro.
Collapse
Affiliation(s)
- Gordon Greville
- GlycoScience Group, The National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin, Ireland
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.,Biochemistry of Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Chengnan Huang
- GlycoScience Group, The National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
| | - Jack Creagh-Flynn
- UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin, Ireland
| | - Stephanie Pfister
- UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin, Ireland
| | - Roisin O'Flaherty
- GlycoScience Group, The National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, Division of Population Health Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.,Biochemistry of Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Pauline M Rudd
- GlycoScience Group, The National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland.,Analytics Group, Bioprocessing Technology Institute, Astar, Singapore
| | - Amanda McCann
- UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - Radka Saldova
- GlycoScience Group, The National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
23
|
Qualitative and quantitative alterations in intracellular and membrane glycoproteins maintain the balance between cellular senescence and human aging. Aging (Albany NY) 2019; 10:2190-2208. [PMID: 30157474 PMCID: PMC6128432 DOI: 10.18632/aging.101540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Glycans are associated with and serve as biomarkers for various biological functions. We previously reported that cell surface sialylated glycoproteins of dermal fibroblasts decreased with cellular senescence and human aging. There is little information on the changes in glycoprotein expression and subcellular localization during the aging process. Here, we examined intracellular glycan profiles of fibroblasts undergoing cellular senescence and those derived from aging human subjects using lectin microarray analysis. We found a sequential change of the intracellular glycan profiles was little during cellular senescence. The intracellular glycans of cells derived from aged fetus and from elderly subjects showed similar localized patterns while repeating unsteady changes. The ratio of α2-3/2-6sialylated intracellular glycoproteins in total cell extracts increased, except for a part of α2-3sialylated O-glycans. These findings are in contrast to those for membrane glycoprotein, which decreased with aging. Interestingly, the ratio of increasing sialylated glycoproteins in the fetus-derived cells showing cellular senescence was similar to that in cells derived from the elderly. Thus, intracellular glycans may maintain cellular functions such as ubiquitin/proteasome-mediated degradation and/or autophagy during aging by contributing to the accumulation of intracellular glycosylated proteins. Our findings provide novel mechanistic insight into the molecular changes that occur during aging.
Collapse
|
24
|
Nascimento APM, Wolin IA, Welter PG, Heinrich IA, Zanotto-Filho A, Osterne VJ, Lossio CF, Silva MT, Nascimento KS, Cavada BS, Leal RB. Lectin from Dioclea violacea induces autophagy in U87 glioma cells. Int J Biol Macromol 2019; 134:660-672. [DOI: 10.1016/j.ijbiomac.2019.04.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
|
25
|
Meng JM, Cao SY, Wei XL, Gan RY, Wang YF, Cai SX, Xu XY, Zhang PZ, Li HB. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants (Basel) 2019; 8:E170. [PMID: 31185622 PMCID: PMC6617012 DOI: 10.3390/antiox8060170] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus has become a serious and growing public health concern. It has high morbidity and mortality because of its complications, such as diabetic nephropathy, diabetic cardiovascular complication, diabetic neuropathy, diabetic retinopathy, and diabetic hepatopathy. Epidemiological studies revealed that the consumption of tea was inversely associated with the risk of diabetes mellitus and its complications. Experimental studies demonstrated that tea had protective effects against diabetes mellitus and its complications via several possible mechanisms, including enhancing insulin action, ameliorating insulin resistance, activating insulin signaling pathway, protecting islet β-cells, scavenging free radicals, and decreasing inflammation. Moreover, clinical trials also confirmed that tea intervention is effective in patients with diabetes mellitus and its complications. Therefore, in order to highlight the importance of tea in the prevention and management of diabetes mellitus and its complications, this article summarizes and discusses the effects of tea against diabetes mellitus and its complications based on the findings from epidemiological, experimental, and clinical studies, with the special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuan-Feng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Shu-Xian Cai
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea ( Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019; 11:nu11020474. [PMID: 30813433 PMCID: PMC6412948 DOI: 10.3390/nu11020474] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Tea is one of the most widely consumed beverages worldwide, and is available in various forms. Green tea is richer in antioxidants compared to other forms of tea. Tea is composed of polyphenols, caffeine, minerals, and trace amounts of vitamins, amino acids, and carbohydrates. The composition of the tea varies depending on the fermentation process employed to produce it. The phytochemicals present in green tea are known to stimulate the central nervous system and maintain overall health in humans. Skin aging is a complex process mediated by intrinsic factors such as senescence, along with extrinsic damage induced by external factors such as chronic exposure to ultraviolet (UV) irradiation—A process known as photoaging—Which can lead to erythema, edema, sunburn, hyperplasia, premature aging, and the development of non-melanoma and melanoma skin cancers. UV can cause skin damage either directly, through absorption of energy by biomolecules, or indirectly, by increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Green tea phytochemicals are a potent source of exogenous antioxidant candidates that could nullify excess endogenous ROS and RNS inside the body, and thereby diminish the impact of photoaging. Several in vivo and in vitro studies suggest that green tea supplementation increases the collagen and elastin fiber content, and suppresses collagen degrading enzyme MMP-3 production in the skin, conferring an anti-wrinkle effect. The precise mechanism behind the anti-photoaging effect of green tea has not been explored yet. Studies using the worm model have suggested that green tea mediated lifespan extension depends on the DAF-16 pathway. Apart from this, green tea has been reported to have stress resistance and neuroprotective properties. Its ROS scavenging activity makes it a potent stress mediator, as it can also regulate the stress induced by metal ions. It is known that tea polyphenols can induce the expression of different antioxidant enzymes and hinder the DNA oxidative damage. Growing evidence suggests that green tea can also be used as a potential agent to mediate neurodegenerative diseases, including Alzheimer’s disease. EGCG, an abundant catechin in tea, was found to suppress the neurotoxicity induced by Aβ as it activates glycogen synthase kinase-3β (GSK-3β), along with inhibiting c-Abl/FE65—the cytoplasmic nonreceptor tyrosine kinase which is involved in the development of the nervous system and in nuclear translocation. Additionally, green tea polyphenols induce autophagy, thereby revitalizing the overall health of the organism consuming it. Green tea was able to activate autophagy in HL-60 xenographs by increasing the activity of PI3 kinase and BECLIN-1. This manuscript describes the reported anti-photoaging, stress resistance, and neuroprotective and autophagy properties of one of the most widely known functional foods—green tea.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
27
|
Anti-glioma properties of DVL, a lectin purified from Dioclea violacea. Int J Biol Macromol 2018; 120:566-577. [DOI: 10.1016/j.ijbiomac.2018.08.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
|
28
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Biwi J, Biot C, Guerardel Y, Vercoutter-Edouart AS, Lefebvre T. The Many Ways by Which O-GlcNAcylation May Orchestrate the Diversity of Complex Glycosylations. Molecules 2018; 23:molecules23112858. [PMID: 30400201 PMCID: PMC6278486 DOI: 10.3390/molecules23112858] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Unlike complex glycosylations, O-GlcNAcylation consists of the addition of a single N-acetylglucosamine unit to serine and threonine residues of target proteins, and is confined within the nucleocytoplasmic and mitochondrial compartments. Nevertheless, a number of clues tend to show that O-GlcNAcylation is a pivotal regulatory element of its complex counterparts. In this perspective, we gather the evidence reported to date regarding this connection. We propose different levels of regulation that encompass the competition for the nucleotide sugar UDP-GlcNAc, and that control the wide class of glycosylation enzymes via their expression, catalytic activity, and trafficking. We sought to better envision that nutrient fluxes control the elaboration of glycans, not only at the level of their structure composition, but also through sweet regulating actors.
Collapse
Affiliation(s)
- James Biwi
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | - Christophe Biot
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | - Yann Guerardel
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| | | | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR 8576, UGSF, 59000 Lille, France.
| |
Collapse
|
30
|
Zhou F, Yang X, Zhao H, Liu Y, Feng Y, An R, Lv X, Li J, Chen B. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Am J Cancer Res 2018; 8:5200-5212. [PMID: 30555541 PMCID: PMC6276088 DOI: 10.7150/thno.27806] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022] Open
Abstract
Cisplatin resistance significantly affects the survival rate of patients with ovarian cancer. However, the main mechanism underlying cisplatin resistance in ovarian cancer remains unclear. Methods: Immunohistochemistry was used to determine the expression of OGT, OGA and O-GlcNAc in chemoresistant and chemosensitive ovarian cancer tissues. Functional analyses (in vitro and in vivo) were performed to confirm the role of OGT in cisplatin resistance. Autophagy-related proteins were tested by western blot. Transmission electron microscopy and mRFP-GFP-LC3 adenovirus reporter were used for autophagy flux analysis. Immunoprecipitation assay was utilized to detect protein-protein interactions. Results: We found that O-GlcNAc and O-GlcNAc transferase (OGT) levels were significantly lower in chemoresistant ovarian cancer tissues than in chemosensitive tissues, whereas O-GlcNAcase (OGA) levels did not differ. The down-regulation of OGT increased cisplatin resistance in ovarian cancer cells but had no effect on the efficacy of paclitaxel. The down-regulation of OGT improved tumor resistance to cisplatin in a mouse xenograft tumor model. OGT knockdown enhanced cisplatin-induced autophagy, which reduced apoptotic cell death induced by cisplatin, and promoted autolysosome formation. A reduction in O-GlcNAcylated SNAP-29 levels caused by the down-regulation of OGT promoted the formation of the SNARE complex and autophagic flux. Conclusion: Our findings suggest that down-regulation of OGT enhances cisplatin-induced autophagy via SNAP-29, resulting in cisplatin-resistant ovarian cancer. OGT may represent a novel target for overcoming cisplatin resistance in ovarian cancer.
Collapse
|
31
|
Zhou H, Chen Y, Huang SW, Hu PF, Tang LJ. Regulation of autophagy by tea polyphenols in diabetic cardiomyopathy. J Zhejiang Univ Sci B 2018; 19:333-341. [PMID: 29732743 DOI: 10.1631/jzus.b1700415] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effect of tea polyphenols on cardiac function in rats with diabetic cardiomyopathy, and the mechanism by which tea polyphenols regulate autophagy in diabetic cardiomyopathy. METHODS Sixty Sprague-Dawley (SD) rats were randomly divided into six groups: a normal control group (NC), an obesity group (OB), a diabetic cardiomyopathy group (DCM), a tea polyphenol group (TP), an obesity tea polyphenol treatment group (OB-TP), and a diabetic cardiomyopathy tea polyphenol treatment group (DCM-TP). After successful modeling, serum glucose, cholesterol, and triglyceride levels were determined; cardiac structure and function were inspected by ultrasonic cardiography; myocardial pathology was examined by staining with hematoxylin-eosin; transmission electron microscopy was used to observe the morphology and quantity of autophagosomes; and expression levels of autophagy-related proteins LC3-II, SQSTM1/p62, and Beclin-1 were determined by Western blotting. RESULTS Compared to the NC group, the OB group had normal blood glucose and a high level of blood lipids; both blood glucose and lipids were increased in the DCM group; ultrasonic cardiograms showed that the fraction shortening was reduced in the DCM group. However, these were improved significantly in the DCM-TP group. Hematoxylin-eosin staining showed disordered cardiomyocytes and hypertrophy in the DCM group; however, no differences were found among the remaining groups. Transmission electron microscopy revealed that the numbers of autophagosomes in the DCM and OB-TP groups were obviously increased compared to the NC and OB groups; the number of autophagosomes in the DCM-TP group was reduced. Western blotting showed that the expression of LC3-II/I and Beclin-1 increased obviously, whereas the expression of SQSTM1/p62 was decreased in the DCM and OB-TP groups (P<0.05). CONCLUSIONS Tea polyphenols had an effect on diabetic cardiomyopathy in rat cardiac function and may alter the levels of autophagy to improve glucose and lipid metabolism in diabetes.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| | - Yan Chen
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| | - Shu-Wei Huang
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Peng-Fei Hu
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Li-Jiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou 310013, China
| |
Collapse
|
32
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
33
|
Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. J Neurochem 2017; 144:7-34. [PMID: 29049853 DOI: 10.1111/jnc.14242] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
Proteostasis is essential in the mammalian brain where post-mitotic cells must function for decades to maintain synaptic contacts and memory. The brain is dependent on glucose and other metabolites for proper function and is spared from metabolic deficits even during starvation. In this review, we outline how the nutrient-sensitive nucleocytoplasmic post-translational modification O-linked N-acetylglucosamine (O-GlcNAc) regulates protein homeostasis. The O-GlcNAc modification is highly abundant in the mammalian brain and has been linked to proteopathies, including neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. C. elegans, Drosophila, and mouse models harboring O-GlcNAc transferase- and O-GlcNAcase-knockout alleles have helped define the role O-GlcNAc plays in development as well as age-associated neurodegenerative disease. These enzymes add and remove the single monosaccharide from protein serine and threonine residues, respectively. Blocking O-GlcNAc cycling is detrimental to mammalian brain development and interferes with neurogenesis, neural migration, and proteostasis. Findings in C. elegans and Drosophila model systems indicate that the dynamic turnover of O-GlcNAc is critical for maintaining levels of key transcriptional regulators responsible for neurodevelopment cell fate decisions. In addition, pathways of autophagy and proteasomal degradation depend on a transcriptional network that is also reliant on O-GlcNAc cycling. Like the quality control system in the endoplasmic reticulum which uses a 'mannose timer' to monitor protein folding, we propose that cytoplasmic proteostasis relies on an 'O-GlcNAc timer' to help regulate the lifetime and fate of nuclear and cytoplasmic proteins. O-GlcNAc-dependent developmental alterations impact metabolism and growth of the developing mouse embryo and persist into adulthood. Brain-selective knockout mouse models will be an important tool for understanding the role of O-GlcNAc in the physiology of the brain and its susceptibility to neurodegenerative injury.
Collapse
Affiliation(s)
- Ilhan Akan
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Michelle R Bond
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Ng C, Nandha Premnath P, Guvench O. Rigidity and flexibility in the tetrasaccharide linker of proteoglycans from atomic-resolution molecular simulation. J Comput Chem 2017; 38:1438-1446. [PMID: 28101951 DOI: 10.1002/jcc.24738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 01/09/2023]
Abstract
Proteoglycans (PGs) are covalent conjugates between protein and carbohydrate (glycosaminoglycans). Certain classes of glycosaminoglycans such as chondroitin sulfate/dermatan sulfate and heparan sulfate utilize a specific tetrasaccharide linker for attachment to the protein component: GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser. Toward understanding the conformational preferences of this linker, the present work used all-atom explicit-solvent molecular dynamics (MD) simulations combined with Adaptive Biasing Force (ABF) sampling to determine high-resolution, high-precision conformational free energy maps ΔG(φ, ψ) for each glycosidic linkage between constituent disaccharides, including the variant where GlcA is substituted with IdoA. These linkages are characterized by single, predominant (> 97% occupancy), and broad (45° × 60° for ΔG(φ, ψ) < 1 kcal/mol) free-energy minima, while the Xyl-Ser linkage has two such minima similar in free-energy, and additional flexibility from the Ser sidechain dihedral. Conformational analysis of microsecond-scale standard MD on the complete tetrasaccharide-O-Ser conjugate is consistent with ABF data, suggesting (φ, ψ) probabilities are independent of the linker context, and that the tetrasaccharide acts as a relatively rigid unit whereas significant conformational heterogeneity exists with respect to rotation about bonds connecting Xyl to Ser. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cathy Ng
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, Maine, 04103
| | - Padmavathy Nandha Premnath
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, Maine, 04103
| | - Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, Maine, 04103.,Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, Maine, 04469
| |
Collapse
|
35
|
Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2016; 147:175-198. [DOI: 10.1007/s00418-016-1518-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
36
|
|