1
|
Wu X, Zhan L, Storey KB, Zhang J, Yu D. Differential Mitochondrial Genome Expression of Four Skink Species Under High-Temperature Stress and Selection Pressure Analyses in Scincidae. Animals (Basel) 2025; 15:999. [PMID: 40218392 PMCID: PMC11988152 DOI: 10.3390/ani15070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
As ectotherms highly sensitive to environmental temperature fluctuations, skinks (a small lizard) are increasingly vulnerable to population instability due to global heatwaves. A clade model analysis of four Chinese skink species (Plestiodon capito, Plestiodon chinensis, Sphenomorphus indicus, and Scincella modesta) revealed positive selection acting on the ND6 gene in Sp. indicus. This species exhibits codon alterations in ND6, shifts its expression pathway and potentially decouples ND6 from high-temperature stress response mechanisms. To validate these findings, transcriptomic profiling was conducted to assess mitochondrial protein-coding gene (PCG) expression patterns under thermal stress. Using RT-qPCR, liver mitochondrial PCG transcript levels were compared between high-temperature (34 °C) and control (25 °C) groups in skink populations from distinct latitudes. Low-latitude species (P. chinensis and Sc. modesta) exhibited metabolic downregulation, characterized by a significant suppression of mitochondrial gene expression. Specifically, P. chinensis showed the downregulation of six mitochondrial genes (COII, COIII, ATP6, ND2, ND4, ND6) while upregulating one (ND1). By contrast, Sc. modesta showed the downregulation of nine genes (COI, COII, COIII, ATP8, ND1, ND3, ND4, ND4L, CYTB) and upregulated two (ND5, ND6). By contrast, high-latitude species exhibited divergent patterns: P. capito downregulated four genes (COI, COII, COIII, ND4L) and upregulated four others (ND1, ND2, ND3, ND4), whereas Sp. indicus downregulated six genes (COI, COII, ND2, ND3, ND4, ND4L) and upregulated one (ND5). These regulatory disparities suggest that low-latitude skinks have a greater capacity for metabolic depression to cope with chronic stress, whereas their high-latitude counterparts exhibit different adaptations. The findings provide valuable insights into assessing the adaptive potential of species in warming environments, particularly for ectotherms with limited thermoregulatory capacities.
Collapse
Affiliation(s)
- Xuxiang Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Cazeneuve C, Couret D, Lebeau G, Viranaicken W, Mathieu ME, Chouchou F. Protective Effect of Daily Physical Activity Against COVID-19 in a Young Adult Population on Reunion Island. Med Sci (Basel) 2025; 13:28. [PMID: 40137448 PMCID: PMC11944067 DOI: 10.3390/medsci13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
The global fight against pandemics is a major public health issue. Epidemiological studies showed a reduced risk of the coronavirus disease 2019 (COVID-19) severity with the practice of regular physical activity (PA) in clinical populations. Here, we investigated the effect of PA against COVID-19 in a young general population. Methods: Two hundred ninety volunteers over 18 years old from Reunion Island responded to an online survey concerning sociodemographic, lifestyle and clinical information. Daily PA was studied using the International Physical Activity Questionnaire short version (IPAQ) and classified by overall score and intensities of PA. Results: Among 290 responders [179 women, median age = 27.5 years (interquartile range = 21.3 years)], 141 (48.6%) reported COVID-19 infection. Multivariate logistic analysis adjusted for age, sex, body mass index, chronic disease and alcohol consumption showed that the number of days per week of regular intense PA was independently associated with a low risk of COVID-19 infection [odds ratio (OR) 0.86; 95% confidence interval (CI) 0.24 to 0.99; p = 0.030], while regular moderate PA was not [OR 1.10; 95%CI 0.97 to 1.23; p = 0.137]. Conclusions: In a population of young adults, regular intense PA could offer a protective effect against COVID-19. Additional research is required to confirm this association in various viral infections and elucidate the fundamental mechanisms involved.
Collapse
Affiliation(s)
- Camille Cazeneuve
- Laboratoire d’IngéniéRIe de la Santé, du Sport et de l’Environnement (IRISSE, EA4075), UFR des Sciences de l’Homme et de l’Environnement, Université de La Réunion, 117 rue du General Ailleret, 97430 Le Tampon, La Réunion, France
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), Inserm UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - David Couret
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), Inserm UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Gregorie Lebeau
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), Inserm UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Wildriss Viranaicken
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), Inserm UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Marie-Eve Mathieu
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Centre de recherche Azrieli, CHU Saint-Justine, Montréal, QC H3T 1C5, Canada
| | - Florian Chouchou
- Laboratoire d’IngéniéRIe de la Santé, du Sport et de l’Environnement (IRISSE, EA4075), UFR des Sciences de l’Homme et de l’Environnement, Université de La Réunion, 117 rue du General Ailleret, 97430 Le Tampon, La Réunion, France
| |
Collapse
|
3
|
Chen Y, Lin Q, Cheng H, Xiang Q, Zhou W, Wu J, Wang X. Immunometabolic shifts in autoimmune disease: Mechanisms and pathophysiological implications. Autoimmun Rev 2025; 24:103738. [PMID: 39743123 DOI: 10.1016/j.autrev.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune diseases occur when the immune system abnormally attacks the body's normal tissues, causing inflammation and damage. Each disease has unique immune and metabolic dysfunctions during pathogenesis. In rheumatoid arthritis (RA), immune cells have different metabolic patterns and mitochondrial/lysosomal dysfunctions at different disease stages. In systemic lupus erythematosus (SLE), type I interferon (IFN) causes immune cell metabolic dysregulation, linking activation to metabolic shifts that may worsen the disease. In systemic sclerosis (SSc), mitochondrial changes affect fibroblast metabolism and the immune response. Idiopathic inflammatory myopathies (IIMs) patients have mitochondrial and metabolic issues. In primary Sjögren's syndrome (pSS), immune cell metabolism is imbalanced and mitochondrial damage can lead to cell/tissue damage. Metabolic reprogramming links cellular energy needs and immune dysfunctions, causing inflammation, damage, and symptoms in these diseases. It also affects immune cell functions like differentiation, proliferation, and secretion. This review discusses the potential of targeting metabolic pathways to restore immune balance, offering directions for future autoimmune disease research and treatment.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Lin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Hui Cheng
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyu Xiang
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Frandsen JR, Yuan Z, Bedi B, Prasla Z, Choi SR, Narayanasamy P, Sadikot RT. PGC-1α activation to enhance macrophage immune function in mycobacterial infections. PLoS One 2025; 20:e0310908. [PMID: 39913377 PMCID: PMC11801632 DOI: 10.1371/journal.pone.0310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/09/2024] [Indexed: 02/09/2025] Open
Abstract
Nontuberculous Mycobacteria (NTM) are a heterogeneous group of environmental microorganisms with distinct human pathogenesis. Their incidence and prevalence are rising worldwide, due in part to elevated antimicrobial resistance which complicates treatment and potential successful outcomes. Although information exists on the clinical significance of NTMs, little is known about host immune response to infection. NTM infections alter macrophage mitochondrial capacity and decrease ATP production, efficient immune response, and bacterial clearance. Transcription factor peroxisome proliferator activated receptor (PPAR) γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis, influencing metabolism, mitochondrial pathways, and antioxidant response. Mitochondrial transcription factor A (TFAM) is a protein essential for mitochondrial DNA (mtDNA) genome stability, integrity, and metabolism. Both PGC-1α and TFAM regulate mitochondrial biogenesis and activity, and their disruption is linked to inflammatory signaling and altered macrophage function. We show that NTM causes macrophage mitochondrial damage and disrupted bioenergetics. Mechanistically we show that this is related to attenuation of expression of PGC-1α and TFAM in infected macrophages. Importantly, rescuing expression of PGC-1α and TFAM using pharmacologic approaches restored macrophage immune function. Our results suggest that pharmacologic approaches to enhance mitochondrial function provide a novel approach to target macrophage immune function and means to combat NTM infections.
Collapse
Affiliation(s)
- Joel R. Frandsen
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zhihong Yuan
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Brahmchetna Bedi
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Zohra Prasla
- Pulmonology and Critical Care Department, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ruxana T. Sadikot
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
5
|
Zhang L, Li J, Li C, Wu Y, Liu S, Li Q, Qi S. Role of Microglial Mitophagy in Alleviating Postoperative Cognitive Dysfunction: a Mechanistic Study. Mol Neurobiol 2025; 62:2376-2395. [PMID: 39110392 DOI: 10.1007/s12035-024-04405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/28/2024] [Indexed: 01/04/2025]
Abstract
Postoperative cognitive dysfunction (POCD), a common complication following anesthesia and surgery, is influenced by hippocampal neuroinflammation and microglial activation. Mitophagy, a process regulating inflammatory responses by limiting the accumulation of damaged mitochondria, plays a significant role. This study aimed to determine whether regulating microglial mitophagy and the cGAS-STING pathway could alleviate cognitive decline after surgery. Exploratory laparotomy was performed to establish a POCD model using mice. Western blotting, immunofluorescence staining, transmission electron microscopy, and mt-Keima assays were used to examine microglial mitophagy and the cGAS-STING pathway. Quantitative polymerase chain reaction (qPCR) was used to detect inflammatory mediators and cytosolic mitochondrial DNA (mtDNA) levels in BV2 cells. Exploratory laparotomy triggered mitophagy and enhanced the cGAS-STING pathway in mice hippocampi. Pharmacological treatment reduced microglial activation, neuroinflammation, and cognitive impairment after surgery. Mitophagy suppressed the cGAS-STING pathway in mice hippocampi. In vitro, microglia-induced inflammation was mediated by mitophagy and the cGAS-STING pathway. Small interfering RNA (siRNA) of PINK1 hindered mitophagy activation and facilitated the cytosolic release of mtDNA, resulting in the initiation of the cGAS-STING pathway and innate immune response. Microglial mitophagy inhibited inflammatory responses via the mtDNA-cGAS-STING pathway inducing microglial mitophagy and inhibiting the mtDNA-cGAS-STING pathway may be an effective therapeutic approach for patients with POCD.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Jiaying Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Chenglong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Yujin Wu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Shuai Liu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Qi Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
6
|
Wang H, Tang R, Pan Q, Yin Q, Feng J, Deng L. Mitochondria dysfunction: A trigger for cardiovascular diseases in systemic lupus erythematosus. Int Immunopharmacol 2025; 144:113722. [PMID: 39622131 DOI: 10.1016/j.intimp.2024.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Cardiovascular disease (CVD), including pericarditis, myocarditis, sudden cardiac death, coronary heart disease, and stroke, are leading contributors to morbidity and mortality in systemic lupus erythematosus (SLE) patients. Emerging evidence highlights mitochondrial dysfunction as a key driver of cardiovascular pathology in SLE, with impaired oxidative phosphorylation, altered membrane potential, and disrupted metabolic processes promoting oxidative stress, inflammatory activation, and endothelial dysfunction. This review critically examines mitochondrial contributions to CVD in SLE, comparing these mechanisms with those in non-SLE CVD to highlight SLE-specific mitochondrial vulnerabilities. Furthermore, we discuss preclinical and clinical findings supporting mitochondrial pathways as potential therapeutic targets, aiming to bridge gaps in current understanding and outline future research directions. By synthesizing current knowledge of mitochondrial dysregulation, this review proposes therapeutic strategies to improve cardiovascular outcomes and advance patient care in SLE.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinyu Pan
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyan Yin
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Li Y, Wang X, Zhao L, Pan B, Xu X, Zhu D. Dehydrocostus Lactone Ameliorates LPS-Induced Acute Lung Injury by Inhibiting PFKFB3-Mediated Glycolysis. J Cell Biochem 2024; 125:e30639. [PMID: 39148265 DOI: 10.1002/jcb.30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Acute lung injury (ALI) is a destructive respiratory disease characterized by alveolar structural destruction and excessive inflammation responses. Aerobic glycolysis of macrophages plays a crucial role in the pathophysiology of ALI. Previous studies have shown that the expression of the key rate-limiting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in inflammatory cells is significantly increased, which promotes an increase in the rate of glycolysis in inflammatory cells. However, little is known about the biological functions of PFKFB3 in macrophage inflammation and ALI. In this study, we identified that PFKFB3 is markedly increased in lipopolysaccharide (LPS)-induced ALI mice and macrophages. Knockdown of pfkfb3 attenuated LPS-induced glycolytic flux, decreased the release of pro-inflammatory cytokines, and inactivated NF-κB signaling pathway in macrophages. Subsequently, we found that dehydrocostus lactone (DL), a natural sesquiterpene lactone, significantly decreased both the mRNA and protein levels of PFKFB3. Furthermore, it reduced the release of inflammatory cytokines and inactivated NF-κB pathways in vitro. Accordingly, DL alleviated LPS-induced pulmonary edema and reduced the infiltration of inflammatory cells in mouse lung tissue. In summary, our study reveals the vital role of PFKFB3 in LPS-induced inflammation and discovers a novel molecular mechanism underlying DL's protective effects on ALI.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xinrui Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lirong Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Boyu Pan
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiao Xu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongrong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
8
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Deng W, He Q, Zhang W. Analysis of the mechanism of curcumin against osteoarthritis using metabolomics and transcriptomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3313-3329. [PMID: 37938371 PMCID: PMC11074044 DOI: 10.1007/s00210-023-02785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
Curcumin, a polyphenolic compound derived from the turmeric plant (Curcuma longa), has been extensively studied for its anti-inflammatory and anti-proliferative properties. The safety and efficacy of curcumin have been thoroughly validated. Nevertheless, the underlying mechanism for treating osteoarthritis remains ambiguous. This study aims to reveal the potential mechanism of curcumin in treating osteoarthritis by using metabolomics and transcriptomics. Firstly, we validated the effect of curcumin on inflammatory factors in human articular chondrocytes. Secondly, we explored the cellular metabolism mechanism of curcumin against osteoarthritis using cell metabolomics. Thirdly, we assessed the differences in gene expression of human articular chondrocytes through transcriptomics. Lastly, to evaluate the essential targets and elucidate the potential mechanism underlying the therapeutic effects of curcumin in osteoarthritis, we conducted a screening of the proteins within the shared pathway of metabolomics and transcriptomics. Our results demonstrated that curcumin significantly decreased the levels of inflammatory markers, such as IL-β, IL-6, and TNF-α, in human articular chondrocytes. Cell metabolomics identified 106 differential metabolites, including beta-aminopropionitrile, 3-amino-2-piperidone, pyrrole-2-carboxaldehyde, and various other components. The transcriptomic analysis yielded 1050 differential mRNAs. Enrichment analysis showed that the differential metabolites and mRNAs were significantly enriched in seven pathways, including glycine, serine, and threonine metabolism; pentose and glucuronate interconversions; glycerolipid metabolism; histidine metabolism; mucin-type o-glycan biosynthesis; inositol phosphate metabolism; and cysteine and methionine metabolism. A total of 23 key targets were identified to be involved in these pathways. We speculate that curcumin may alleviate osteoarthritis by targeting key proteins involved in glycine, serine, and threonine metabolism; inhibiting pyruvate production; and modulating glycolysis.
Collapse
Affiliation(s)
- Wenxiang Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qinghu He
- Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Wenan Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| |
Collapse
|
10
|
Lubawy J, Chowański SP, Colinet H, Słocińska M. Mitochondrial metabolism and oxidative stress in the tropical cockroach under fluctuating thermal regimes. J Exp Biol 2023; 226:jeb246287. [PMID: 37589559 DOI: 10.1242/jeb.246287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The cockroach Gromphadorhina coquereliana can survive at low temperatures under extensive periods of cold stress. To assess energy management and insect adaptation in response to cold, we measured mitochondrial activity and oxidative stress in muscle and fat body tissues from G. coquereliana under a fluctuating thermal regime (FTR; stressed at 4°C for 3 h on 3 consecutive days, with or without 24 h recovery). Compared with our earlier work showing that a single exposure to cold significantly affects mitochondrial parameters, here, repeated exposure to cold triggered an acclimatory response, resulting in unchanged mitochondrial bioenergetics. Immediately after cold exposure, we observed an increase in the overall pool of ATP and a decrease in typical antioxidant enzyme activity. We also observed decreased activity of uncoupling protein 4 in muscle mitochondria. After 24 h of recovery, we observed an increase in expression of antioxidant enzymes in muscles and the fat body and a significant increase in the expression of UCP4 and HSP70 in the latter. This indicates that processes related to energy conversion and disturbance under cold stress may trigger different protective mechanisms in these tissues, and that these mechanisms must be activated to restore insect homeostasis. The mitochondrial parameters and enzymatic assays suggest that mitochondria are not affected during FTR but oxidative stress markers are decreased, and a 24 h recovery period allows for the restoration of redox and energy homeostasis, especially in the fat body. This confirms the crucial role of the fat body in intermediary metabolism and energy management in insects and in the response to repeated thermal stress.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Szymon P Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Hervé Colinet
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes 35042, France
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
11
|
Li X, Shen H, Zhang M, Teissier V, Huang EE, Gao Q, Tsubosaka M, Toya M, Kushioka J, Maduka CV, Contag CH, Chow SKH, Zhang N, Goodman SB. Glycolytic reprogramming in macrophages and MSCs during inflammation. Front Immunol 2023; 14:1199751. [PMID: 37675119 PMCID: PMC10477714 DOI: 10.3389/fimmu.2023.1199751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
Background Dysregulated inflammation is associated with many skeletal diseases and disorders, such as osteolysis, non-union of fractures, osteonecrosis, osteoarthritis and orthopaedic infections. We previously showed that continuous infusion of lipopolysaccharide (LPS) contaminated polyethylene particles (cPE) caused prolonged inflammation and impaired bone formation. However, the metabolic and bioenergetic processes associated with inflammation of bone are unknown. Mitochondria are highly dynamic organelles that modulate cell metabolism and orchestrate the inflammatory responses that involve both resident and recruited cells. Glycolytic reprogramming, the shift from oxidative phosphorylation (OXPHOS) to glycolysis causes inappropriate cell activation and function, resulting in dysfunctional cellular metabolism. We hypothesized that impaired immunoregulation and bone regeneration from inflammatory states are associated with glycolytic reprogramming and mitochondrial dysfunction in macrophages (Mφ) and mesenchymal stromal cells (MSCs). Methods We used the Seahorse XF96 analyzer and real-time qPCR to study the bioenergetics of Mφ and MSCs exposed to cPE. To understand the oxygen consumption rate (OCR), we used Seahorse XF Cell Mito Stress Test Kit with Seahorse XF96 analyzer. Similarly, Seahorse XF Glycolytic Rate Assay Kit was used to detect the extracellular acidification rate (ECAR) and Seahorse XF Real-Time ATP Rate Assay kit was used to detect the real-time ATP production rates from OXPHOS and glycolysis. Real-time qPCR was performed to analyze the gene expression of key enzymes in glycolysis and mitochondrial biogenesis. We further detected the gene expression of proinflammatory cytokines in Mφ and genes related to cell differentiation in MSC during the challenge of cPE. Results Our results demonstrated that the oxidative phosphorylation of Mφ exposed to cPE was significantly decreased when compared with the control group. We found reduced basal, maximal and ATP-production coupled respiration rates, and decreased proton leak in Mφ during challenge with cPE. Meanwhile, Mφ showed increased basal glycolysis and proton efflux rates (PER) when exposed to cPE. The percentage (%) of PER from glycolysis was higher in Mφ exposed to cPE, indicating that the contribution of the glycolytic pathway to total extracellular acidification was elevated during the challenge of cPE. In line with the results of OCR and ECAR, we found Mφ during cPE challenge showed higher glycolytic ATP (glycoATP) production rates and lower mitochondrial ATP (mitoATP) production rates which is mainly from OXPHOS. Interestingly, MSCs showed enhanced glycolysis during challenge with cPE, but no significant changes in oxygen consumption rates (OCR). In accordance, seahorse assay of real-time ATP revealed glycoATP rates were elevated while mitoATP rates showed no significant differences in MSC during challenge with cPE. Furthermore, Mφ and MSCs exposed to cPE showed upregulated gene expression levels of glycolytic regulators and Mφ exposed to cPE expressed higher levels of pro-inflammatory cytokines. Conclusion This study demonstrated the dysfunctional bioenergetic activity of bone marrow-derived Mφ and MSCs exposed to cPE, which could impair the immunoregulatory properties of cells in the bone niche. The underlying molecular defect related to disordered mitochondrial function could represent a potential therapeutic target during the resolution of inflammation.
Collapse
Affiliation(s)
- Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mao Zhang
- Cardiovascular Institute Operations, Stanford University School of Medicine, Stanford, CA, United States
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ejun Elijah Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Chima V. Maduka
- Departments of Biomedical Engineering and Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Christopher H. Contag
- Departments of Biomedical Engineering and Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
San-Millán I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12040782. [PMID: 37107158 PMCID: PMC10135185 DOI: 10.3390/antiox12040782] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer's disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non-communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an "intervention". However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non-communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the "metabolic rehabilitation" of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
A lncRNA-encoded mitochondrial micropeptide exacerbates microglia-mediated neuroinflammation in retinal ischemia/reperfusion injury. Cell Death Dis 2023; 14:126. [PMID: 36792584 PMCID: PMC9932084 DOI: 10.1038/s41419-023-05617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
As a common pathology of many ocular disorders such as diabetic retinopathy and glaucoma, retinal ischemia/reperfusion (IR) triggers inflammation and microglia activation that lead to irreversible retinal damage. The detailed molecular mechanism underlying retinal IR injury, however, remains poorly understood at present. Here we report the bioinformatic identification of a lncRNA 1810058I24Rik (181-Rik) that was shown to encode a mitochondrion-located micropeptide Stmp1. Its deficiency in mice protected retinal ganglion cells from retinal IR injury by attenuating the activation of microglia and the Nlrp3 inflammasome pathway. Moreover, its genetic knockout in mice or knockdown in primary microglia promoted mitochondrial fusion, impaired mitochondrial membrane potential, and reactive oxygen species (ROS) production, diminished aerobic glycolysis, and ameliorated inflammation. It appears that 181-Rik may trigger the Nlrp3 inflammasome activation by controlling mitochondrial functions through inhibiting expression of the metabolic sensor uncoupling protein 2 (Ucp2) and activating expression of the Ca2+ sensors S100a8/a9. Together, our findings shed new light on the molecular pathogenesis of retinal IR injury and may provide a fresh therapeutic target for IR-associated neurodegenerative diseases.
Collapse
|
14
|
Proteome analysis of monocytes implicates altered mitochondrial biology in adults reporting adverse childhood experiences. Transl Psychiatry 2023; 13:31. [PMID: 36720844 PMCID: PMC9889346 DOI: 10.1038/s41398-023-02320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
The experience of adversity in childhood has been associated with poor health outcomes in adulthood. In search of the biological mechanisms underlying these effects, research so far focused on alterations of DNA methylation or shifts in transcriptomic profiles. The level of protein, however, has been largely neglected. We utilized mass spectrometry to investigate the proteome of CD14+ monocytes in healthy adults reporting childhood adversity and a control group before and after psychosocial stress exposure. Particular proteins involved in (i) immune processes, such as neutrophil-related proteins, (ii) protein metabolism, or (iii) proteins related to mitochondrial biology, such as those involved in energy production processes, were upregulated in participants reporting exposure to adversity in childhood. This functional triad was further corroborated by protein interaction- and co-expression analyses, was independent of stress exposure, i.e. observed at both pre- and post-stress time points, and became evident especially in females. In line with the mitochondrial allostatic load model, our findings provide evidence for the long-term effects of childhood adversity on mitochondrial biology.
Collapse
|
15
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
16
|
Shi X, Zhou H, Wei J, Mo W, Li Q, Lv X. The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biol 2022; 58:102553. [PMID: 36459716 PMCID: PMC9713374 DOI: 10.1016/j.redox.2022.102553] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Endogenous small molecules are metabolic regulators of cell function. Itaconate is a key molecule that accumulates in cells when the Krebs cycle is disrupted. Itaconate is derived from cis-aconitate decarboxylation by cis-aconitate decarboxylase (ACOD1) in the mitochondrial matrix and is also known as immune-responsive gene 1 (IRG1). Studies have demonstrated that itaconate plays an important role in regulating signal transduction and posttranslational modification through its immunoregulatory activities. Itaconate is also an important bridge among metabolism, inflammation, oxidative stress, and the immune response. This review summarizes the structural characteristics and classical pathways of itaconate, its derivatives, and the compounds that release itaconate. Here, the mechanisms of itaconate action, including its transcriptional regulation of ATF3/IκBζ axis and type I IFN, its protein modification regulation of KEAP1, inflammasome, JAK1/STAT6 pathway, TET2, and TFEB, and succinate dehydrogenase and glycolytic enzyme metabolic action, are presented. Moreover, the roles of itaconate in diseases related to inflammation and oxidative stress induced by autoimmune responses, viruses, sepsis and IRI are discussed in this review. We hope that the information provided in this review will help increase the understanding of cellular immune metabolism and improve the clinical treatment of diseases related to inflammation and oxidative stress.
Collapse
|
17
|
Habeichi NJ, Tannous C, Yabluchanskiy A, Altara R, Mericskay M, Booz GW, Zouein FA. Insights into the modulation of the interferon response and NAD + in the context of COVID-19. Int Rev Immunol 2022; 41:464-474. [PMID: 34378474 DOI: 10.1080/08830185.2021.1961768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in dramatic worldwide mortality. Along with developing vaccines, the medical profession is exploring new strategies to curb this pandemic. A better understanding of the molecular consequences of SARS-CoV-2 cellular infection could lead to more effective and safer treatments. This review discusses the potential underlying impact of SARS-CoV-2 in modulating interferon (IFN) secretion and in causing mitochondrial NAD+ depletion that could be directly linked to COVID-19's deadly manifestations. What is known or surmised about an imbalanced innate immune response and mitochondrial dysfunction post-SARS-CoV-2 infection, and the potential benefits of well-timed IFN treatments and NAD+ boosting therapies in the context of the COVID-19 pandemic are discussed.
Collapse
Affiliation(s)
- Nada J Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.,Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Cynthia Tannous
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
18
|
Ju S, Chen H, Wang S, Lin J, Ma Y, Aroian RV, Peng D, Sun M. C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens. Commun Biol 2022; 5:643. [PMID: 35773333 PMCID: PMC9246835 DOI: 10.1038/s42003-022-03589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.
Collapse
Affiliation(s)
- Shouyong Ju
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqiao Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanli Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School Worcester, Worcester, MA, 01605-2377, USA
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Peng J, Pan J, Wang H, Mo J, Lan L, Peng Y. Morphine-induced microglial immunosuppression via activation of insufficient mitophagy regulated by NLRX1. J Neuroinflammation 2022; 19:87. [PMID: 35414088 PMCID: PMC9006625 DOI: 10.1186/s12974-022-02453-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic morphine exposure induces immunosuppression in the peripheral and central nervous system, resulting in susceptibility of patients to invading pathogens. Mitophagy is a crucial regulator of inflammation, and dysregulated mitophagy may cause immunosuppression, but whether mitophagy is linked with morphine-induced immunosuppression in the brain remains unknown. NLRX1 is the only mitochondrially localized NOD family receptor protein which serves as a critical regulator in immunity and mitophagy activation, but it remains an enigma how NLRX1 functions in the crosstalk between microglial inflammatory defense and mitophagy in the presence of morphine. Methods Primary microglia and astrocytes, BV2 and MA cell lines were utilized. Mice were stimulated with repeated morphine treatment to mimic chronic morphine exposure, and activation of mitophagy, lysosomal functions, and inflammation were assayed in specific brain regions and immune organs with or without NLRX1-silencing. Results Morphine induced microglial mitophagy in a LC3 (microtubule-associated proteins light chain 3)-dependent manner, which was mediated by NLRX1. Contrastingly, morphine impaired lysosomal functions, including generation, acidification and mitophagosome–lysosome fusion, thus leading to insufficient mitophagy activation in microglia. NLRX1-silencing inhibited mitophagy activity and rescued lysosomal functions including generation and acidification in microglia. The NLRX1-mediated incomplete mitophagy in microglial cells contributed to immunosuppression and vulnerability towards pathogenic challenge after morphine treatment. In vivo, NLRX1-mediated microglial mitophagy activation by morphine was mainly located in the murine brain cortex, striatum, and cerebellum, where NLRX1 functioned as a negative immune regulator and facilitated septic shock. Collectively, microglial immune responses to septic shock were amenable to NLRX1 silencing in the brain with morphine treatment. Conclusion Morphine activated insufficient mitophagy in microglia which was regulated by NLRX1, ultimately leading to host immunosuppression and susceptible conditions in the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02453-7.
Collapse
Affiliation(s)
- Jialing Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Jingrui Pan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Jingjing Mo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Lihuan Lan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
20
|
Liu Q, Li F, Liu W, Huang B, Li L, Wang X, Sang X, Dong J, Ma J, Chen J, Wei L, Liu Y, Zhang M, Han Y, Wang X. Transcriptional expression analysis reveals multiple effects of nonylphenol exposure on scallop immune system. FISH & SHELLFISH IMMUNOLOGY 2022; 123:290-297. [PMID: 35306177 DOI: 10.1016/j.fsi.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Nonylphenol (NP) is an endocrine disruptor and environmental hormone representing alkylphenol compounds. Marine mollusks are an important source of protein for people worldwide. Many researchers have begun to study the effect of NP on marine mollusks immune system in view of its toxicity; however, the underlying molecular mechanisms require in-depth analysis. In this study, we focused on the transcriptional expression change of immune-related genes and antioxidant enzymes activities variation after NP exposure in a marine bivalve mollusk, Chlamys farreri, to explore the immunomodulatory capacity of NP in marine mollusks. We identified MAVS (Mitochondrial antiviral signaling protein), a key adaptor molecule in the RLR (RIG-I like receptor) pathway, and studied the expression of multiple immune-related genes in response to different concentrations of NP. The key genes involved in RLR/TLR (Toll like receptor) innate immune pathway, apoptosis, and cellular antioxidation mechanism were investigated. Changes in the enzymatic activities of scallop antioxidant enzymes after NP exposure were also examined. The results revealed that the genes expression and the antioxidant enzymes activities show significant changes, thus proving that NP stimulation affects the scallop immune system. Our research results demonstrate the immunomodulatory capacity of NP in marine bivalve mollusks and lay the foundation for further in-depth analysis of the molecular mechanism of NP toxicity.
Collapse
Affiliation(s)
- Qian Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Fangshu Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Ocean School, Yantai University, Yantai, 264005, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiuxiu Sang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Juan Dong
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
21
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
22
|
Xu Y, Xu Y, Biby S, Bai P, Liu Y, Zhang C, Wang C, Zhang S. Novel Positron Emission Tomography Radiotracers for Imaging Mitochondrial Complex I. ACS Chem Neurosci 2021; 12:4491-4499. [PMID: 34812607 PMCID: PMC10071493 DOI: 10.1021/acschemneuro.1c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial dysfunction has been indicated in neurodegenerative and other disorders. The mitochondrial complex I (MC-I) of the electron transport chain (ETC) on the inner membrane is the electron entry point of the ETC and is essential for the production of reactive oxygen species. Based on a recently identified β-keto-amide type MC-I modulator from our laboratory, an 18F-labeled positron emission tomography (PET) tracer, 18F-2, was prepared. PET/CT imaging studies demonstrated that 18F-2 exhibited rapid brain uptake without significant wash out during the 60 min scanning time. In addition, the binding of 18F-2 was higher in the regions of the brain stem, cerebellum, and midbrain. The uptake of 18F-2 can be significantly blocked by its parent compound. Collectively, the results strongly suggest successful development of MC-I PET tracers from this chemical scaffold that can be used in future mitochondrial dysfunction studies of the central nervous system.
Collapse
Affiliation(s)
- Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yiming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Savannah Biby
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
23
|
Pribožič L, Žerjav Tanšek M, Herga P, Osredkar D, Rajtar Osredkar S, Vidmar I, Repič Lampret B, Klemenčič S, Bratina N, Battelino T, Groselj U. Reye Syndrome with Severe Hyperammonemia and a Good Neurological Outcome. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e932864. [PMID: 34629460 PMCID: PMC8522526 DOI: 10.12659/ajcr.932864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patient: Male, 4-year-old
Final Diagnosis: Reye syndrome
Symptoms: Hypoglycemia • disturbance of consciousness • diarrhoea • signs of respiratory infection • vomiting and nausea
Medication: —
Clinical Procedure: —
Specialty: Critical Care Medicine • Endocrinology and Metabolic • Pediatrics and Neonatology
Collapse
Affiliation(s)
- Lucija Pribožič
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Mojca Žerjav Tanšek
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Herga
- Department of Pediatric Surgery and Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Damjan Osredkar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department for Pediatric Neurology, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Simona Rajtar Osredkar
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ivan Vidmar
- Department of Pediatric Surgery and Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbka Repič Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Simona Klemenčič
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Nataša Bratina
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
25
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
26
|
St John JC. Epigenetic Regulation of the Nuclear and Mitochondrial Genomes: Involvement in Metabolism, Development, and Disease. Annu Rev Anim Biosci 2021; 9:203-224. [PMID: 33592161 DOI: 10.1146/annurev-animal-080520-083353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our understanding of the interactions between the nuclear and mitochondrial genomes is becoming increasingly important as they are extensively involved in establishing early development and developmental progression. Evidence from various biological systems indicates the interdependency between the genomes, which requires a high degree of compatibility and synchrony to ensure effective cellular function throughout development and in the resultant offspring. During development, waves of DNA demethylation, de novo methylation, and maintenance methylation act on the nuclear genome and typify oogenesis and pre- and postimplantation development. At the same time, significant changes in mitochondrial DNA copy number influence the metabolic status of the developing organism in a typically cell-type-specific manner. Collectively, at any given stage in development, these actions establish genomic balance that ensures each developmental milestone is met and that the organism's program for life is established.
Collapse
Affiliation(s)
- Justin C St John
- Mitochondrial Genetics Group, Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia;
| |
Collapse
|
27
|
Bielik V, Grendar M, Kolisek M. A Possible Preventive Role of Physically Active Lifestyle during the SARS-CoV-2 Pandemic; Might Regular Cold-Water Swimming and Exercise Reduce the Symptom Severity of COVID-19? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137158. [PMID: 34281096 PMCID: PMC8297290 DOI: 10.3390/ijerph18137158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022]
Abstract
The objective of this study was to investigate the incidence and course of COVID-19 and the risk of an upper respiratory tract infection in a group of people with physically active lifestyles. Data were collected anonymously using an online survey platform during December 2020. The age of participants ranged from 18 to 65 years. Out of 2343 participants, 11.5% overcame COVID-19 infection. Relative to the control group (CTRL), physically active, cold-water swimmers (PACW) did not exhibit a lower risk of incidence for COVID-19 (RR 1.074, CI 95% (0.710–1.625). However, PACW had a higher chance of having an asymptomatic course of COVID-19 (RR 2.321, CI 95% (0.836–6.442); p < 0.05) and a higher chance of only having an acute respiratory infection once or less per year than CTRL (RR 1.923, CI 95% (1.1641–2.253); p < 0.01). Furthermore, PACW exhibited a lower incidence of acute respiratory infection occurring more than twice per year (RR 0.258, CI 95% (0.138–0.483); p < 0.01). Cold-water swimming and physical activity may not lessen the risk of COVID-19 in recreational athletes. However, a physically active lifestyle might have a positive effect on the rate of incidence of acute respiratory infection and on the severity of COVID-19 symptoms.
Collapse
Affiliation(s)
- Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69 Bratislava, Slovakia
- Correspondence:
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.G.); (M.K.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.G.); (M.K.)
| |
Collapse
|
28
|
Rodríguez-Tomàs E, Iftimie S, Castañé H, Baiges-Gaya G, Hernández-Aguilera A, González-Viñas M, Castro A, Camps J, Joven J. Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach. Antioxidants (Basel) 2021; 10:antiox10060991. [PMID: 34205807 PMCID: PMC8234277 DOI: 10.3390/antiox10060991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 infection produces a response of the innate immune system causing oxidative stress and a strong inflammatory reaction termed ‘cytokine storm’ that is one of the leading causes of death. Paraoxonase-1 (PON1) protects against oxidative stress by hydrolyzing lipoperoxides. Alterations in PON1 activity have been associated with pro-inflammatory mediators such as the chemokine (C-C motif) ligand 2 (CCL2), and the glycoprotein galectin-3. We aimed to investigate the alterations in the circulating levels of PON1, CCL2, and galectin-3 in 126 patients with COVID-19 and their interactions with clinical variables and analytical parameters. A machine learning approach was used to identify predictive markers of the disease. For comparisons, we recruited 45 COVID-19 negative patients and 50 healthy individuals. Our approach identified a synergy between oxidative stress, inflammation, and fibrogenesis in positive patients that is not observed in negative patients. PON1 activity was the parameter with the greatest power to discriminate between patients who were either positive or negative for COVID-19, while their levels of CCL2 and galectin-3 were similar. We suggest that the measurement of serum PON1 activity may be a useful marker for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - María González-Viñas
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
- Correspondence: ; Tel.: +34-977-310-300
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| |
Collapse
|
29
|
Declerck K, Novo CP, Grielens L, Van Camp G, Suter A, Vanden Berghe W. Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences. BMC Complement Med Ther 2021; 21:141. [PMID: 33980308 PMCID: PMC8114977 DOI: 10.1186/s12906-021-03310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections. Methods Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes. Results Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections. Conclusions Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03310-5.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Claudina Perez Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Lisa Grielens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp (UA) and University Hospital Antwerp (UZA), Antwerp, Belgium
| | | | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium.
| |
Collapse
|
30
|
Sato Y, Yoshino H, Kashiwakura I, Tsuruga E. DAP3 Is Involved in Modulation of Cellular Radiation Response by RIG-I-Like Receptor Agonist in Human Lung Adenocarcinoma Cells. Int J Mol Sci 2021; 22:E420. [PMID: 33401559 PMCID: PMC7795940 DOI: 10.3390/ijms22010420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) mediate anti-viral response through mitochondria. In addition, RLR activation induces anti-tumor effects on various cancers. We previously reported that the RLR agonist Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) enhanced radiosensitivity and that cotreatment with Poly(I:C) and ionizing radiation (IR) more than additively increased cell death in lung adenocarcinoma cells, indicating that Poly(I:C) modulates the cellular radiation response. However, it remains unclear how mitochondria are involved in the modulation of this response. Here, we investigated the involvement of mitochondrial dynamics and mitochondrial ribosome protein death-associated protein 3 (DAP3) in the modulation of cellular radiation response by Poly(I:C) in A549 and H1299 human lung adenocarcinoma cell lines. Western blotting revealed that Poly(I:C) decreased the expression of mitochondrial dynamics-related proteins and DAP3. In addition, siRNA experiments showed that DAP3, and not mitochondrial dynamics, is involved in the resistance of lung adenocarcinoma cells to IR-induced cell death. Finally, we revealed that a more-than-additive effect of cotreatment with Poly(I:C) and IR on increasing cell death was diluted by DAP3-knockdown because of an increase in cell death induced by IR alone. Together, our findings suggest that RLR agonist Poly(I:C) modulates the cellular radiation response of lung adenocarcinoma cells by downregulating DAP3 expression.
Collapse
Affiliation(s)
| | - Hironori Yoshino
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan; (Y.S.); (I.K.); (E.T.)
| | | | | |
Collapse
|
31
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
32
|
Bickler SW, Prieto JM, Cauvi DM, De Cos V, Nasamran C, Ameh E, Amin S, Nicholson S, Din H, Mocumbi AO, Noormahomed EV, Tellez-Isaias G, Fisch KM, De Maio A. Differential expression of nuclear genes encoding mitochondrial proteins from urban and rural populations in Morocco. Cell Stress Chaperones 2020; 25:847-856. [PMID: 32319023 PMCID: PMC7591688 DOI: 10.1007/s12192-020-01108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Urbanization in low-income countries represents an important inflection point in the epidemiology of disease, with rural populations experiencing high rates of chronic and recurrent infections and urban populations displaying a profile of noncommunicable diseases. To investigate if urbanization alters the expression of genes encoding mitochondrial proteins, we queried gene microarray data from rural and urban populations living in Morocco (GSE17065). The R Bioconductor packages edgeR and limma were used to identify genes with different expression. The experimental design was modeled upon location and sex. Nuclear genes encoding mitochondrial proteins were identified from the MitoCarta2.0 database. Of the 1158 genes listed in the MitoCarta2.0 database, 847 genes (73%) were available for analysis in the Moroccan dataset. The urban-rural comparison with the greatest environmental differences showed that 76.5% of the MitoCarta2.0 genes were differentially expressed, with 97% of the genes having an increased expression in the urban area. Enrichment analysis revealed 367 significantly enriched pathways (adjusted p value < 0.05), with oxidative phosphorylation, insulin secretion and glucose regulations (adj.p values = 6.93E-16) being the top three. Four significantly perturbed KEGG disease pathways were associated with urbanization-three degenerative neurological diseases (Huntington's, Alzheimer's, and Parkinson's diseases) and herpes simplex infection (false discover rate corrected p value (PGFdr) < 0.2). Mitochondrial RNA metabolic processing and translational elongation were the biological processes that had the greatest enrichment (enrichment ratios 14.0 and 14.8, respectively, FDR < 0.5). Our study links urbanization in Morocco with changes in the expression of the nuclear genes encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Stephen W. Bickler
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
| | - James M. Prieto
- Department of Surgery, Naval Medical Center San Diego, San Diego, CA USA
| | - David M. Cauvi
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
| | - Victor De Cos
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Chanond Nasamran
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093 USA
| | - Emmanuel Ameh
- Department of Pediatric Surgery, National Hospital, Abuja, Nigeria
| | - Said Amin
- Department of Histopathology, National Hospital, Abuja, Nigeria
| | - Sneha Nicholson
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Hena Din
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Ana Olga Mocumbi
- Instituto Nacional de Saúde, Maputo, Mozambique
- Department of Microbiology, Faculty of Medicine, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | | | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093 USA
| | - Antonio De Maio
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
33
|
Louis F, Rocher B, Barjhoux I, Bultelle F, Dedourge-Geffard O, Gaillet V, Bonnard I, Delahaut L, Pain-Devin S, Geffard A, Paris-Palacios S, David E. Seasonal monitoring of cellular energy metabolism in a sentinel species, Dreissena polymorpha (bivalve): Effect of global change? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138450. [PMID: 32298890 DOI: 10.1016/j.scitotenv.2020.138450] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Aquatic organisms such as bivalves are particularly sensitive to seasonal fluctuations associated with climate changes. Energy metabolism management is also closely related to environmental fluctuations. Changes in both biotic and abiotic conditions, such as the reproduction status and temperature respectively, may affect the organism energy status. A bivalve sentinel species, Dreissena polymorpha was sampled along its one-year reproduction cycle in situ (2018-2019) to study natural modulations on several markers of energy metabolism regarding seasonal variations in situ. A panel of different processes involved in energy metabolism was monitored through different functions such as energy balance regulation, mitochondrial density, and aerobic/anaerobic metabolism. The typical schema expected was observed in a major part of measured responses. However, the monitored population of D. polymorpha showed signs of metabolism disturbances caused by an external stressor from April 2019. Targeting a major part of energy metabolism functions, a global analysis of responses suggested a putative impact on the mitochondrial respiratory chain due to potential pollution. This study highlighted also the particular relevance of in situ monitoring to investigate the impacts of environmental change on sentinel species.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France.
| | - Béatrice Rocher
- Université du Havre, INERIS, SEBIO UMR I-02, Le Havre, France
| | - Iris Barjhoux
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | | | | | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| | | | - Elise David
- Université de Reims Champagne-Ardenne, INERIS, SEBIO UMR I-02, Reims, France
| |
Collapse
|
34
|
Shah EJ, Gurdziel K, Ruden DM. Drosophila Exhibit Divergent Sex-Based Responses in Transcription and Motor Function After Traumatic Brain Injury. Front Neurol 2020; 11:511. [PMID: 32636795 PMCID: PMC7316956 DOI: 10.3389/fneur.2020.00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
Every year, millions of people in the US suffer brain damage from mild to severe traumatic brain injuries (TBI) that result from a sudden impact to the head. Despite TBI being a leading cause of death and disability worldwide, sex differences that contribute to varied outcomes post-injury are not extensively studied and therefore, poorly understood. In this study, we aimed to explore biological sex as a variable influencing response to TBI using Drosophila melanogaster as a model, since flies have been shown to exhibit symptoms commonly seen in other mammalian models of TBI. After inflicting TBI using the high-impact trauma device, we isolated w1118 fly brains and assessed gene transcription changes in male and female flies at control and 1, 2, and 4 hr after TBI. Our results suggest that overall, Drosophila females show more gene transcript changes than males. Females also exhibit upregulated expression changes in immune response and mitochondrial genes across all time-points. In addition, we looked at the impact of injury on mitochondrial health and motor function in both sexes before and after injury. Although both sexes report similar changes in mitochondrial oxidation and negative geotaxis, locomotor activity appears to be more impaired in males than females. These data suggest that sex-differences not only influence the response to TBI but also contribute to varied outcomes post-injury.
Collapse
Affiliation(s)
- Ekta J Shah
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Katherine Gurdziel
- Office of the Vice President for Research, Wayne State University, Detroit, MI, United States
| | - Douglas M Ruden
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States.,Office of the Vice President for Research, Wayne State University, Detroit, MI, United States.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
35
|
Liu D, Zuo X, Luo H, Zhu H. The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. Semin Arthritis Rheum 2020; 50:627-635. [PMID: 32502727 DOI: 10.1016/j.semarthrit.2020.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 11/29/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of heterogeneous autoimmune diseases characterized by muscle weakness, muscle inflammation and extramuscular manifestations. Despite extensive efforts, the mechanisms of IIMs remain largely unknown, and treatment is still a challenge for physicians. Metabolism changes have emerged as a crucial player in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, little is known about metabolism changes in IIMs. In this review, we focus on the alteration of metabolism profile in IIMs, and the relationships with clinical information. We highlight the potential roles of metabolism in the pathogenesis of IIMs and discuss future perspectives for metabolic checkpoint-based therapeutic interventions.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China.
| |
Collapse
|
36
|
Wang Z, Kong L, Tan S, Zhang Y, Song X, Wang T, Lin Q, Wu Z, Xiang P, Li C, Gao L, Liang X, Ma C. Zhx2 Accelerates Sepsis by Promoting Macrophage Glycolysis via Pfkfb3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2232-2241. [PMID: 32179636 DOI: 10.4049/jimmunol.1901246] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/12/2020] [Indexed: 01/03/2025]
Abstract
Sepsis is a life-threatening condition with limited therapeutic options, characterized as excessive systemic inflammation and multiple organ failure. Macrophages play critical roles in sepsis pathogenesis. Metabolism orchestrates homeostasis of macrophages. However, the precise mechanism of macrophage metabolism during sepsis remains poorly elucidated. In this study, we identified the key role of zinc fingers and homeoboxes (Zhx2), a ubiquitous transcription factor, in macrophage glycolysis and sepsis by enhancing 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3) expression. Mice with myeloid Zhx2-specific deletion (abbreviated as MKO) showed more resistance to cecal ligation and puncture and LPS-induced sepsis, exhibiting as prolonged survival, attenuated pulmonary injury, and reduced level of proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β. Interestingly, Zhx2 deletion conferred macrophage tolerance to LPS-induced glycolysis, accompanied by reduced proinflammatory cytokines and lactate. Consistently, treatment of glycolytic inhibitor 2-deoxyglucose almost completely abrogated the protection of mice from LPS-induced sepsis initiated by Zhx2 deletion in macrophages. RNA sequencing and chromatin immunoprecipitation assays confirmed that Zhx2 enhanced transcription of Pfkfb3, the glycolysis rate-limiting enzyme, via binding with Pfkfb3 promoter. Furthermore, Pfkfb3 overexpression not only rescued the reduction of macrophage glycolysis caused by Zhx2 deficiency, displaying as extracellular acidification rates and lactate production but also destroyed the resistance of mice to LPS-induced sepsis initiated by transfer of bone marrow-derived macrophages from MKO mice. These findings highlight the novel role of transcription factor Zhx2 in sepsis via regulating Pfkfb3 expression and reprogramming macrophage metabolism, which would shed new insights into the potential strategy to intervene sepsis.
Collapse
Affiliation(s)
- Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, People's Republic of China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Qinghai Lin
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Peng Xiang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, Shandong University School of Basic Medical Science, Jinan, Shandong 250012, People's Republic of China; and
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China;
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
37
|
Zhang CX, Wang HY, Yin L, Mao YY, Zhou W. Immunometabolism in the pathogenesis of systemic lupus erythematosus. J Transl Autoimmun 2020; 3:100046. [PMID: 32743527 PMCID: PMC7388408 DOI: 10.1016/j.jtauto.2020.100046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease characterized by chronic inflammation and pathogenic auto-antibodies. Apart from B cells, dysregulation of other immune cells also plays an essential role in the pathogenesis and development of the disease including CD4+T cells, dendritic cells, macrophages and neutrophils. Since metabolic programs control immune cell fate and function, they are critical checkpoints in an effective immune response and are involved in the etiology of autoimmune disease. In addition, mitochondria and oxidative stress are both involved in cellular metabolism and is also essential in immune response. In this review, apart from the disturbed immune system, we will discuss mitochondrial dysfunction, oxidative stress, abnormal metabolism (including glucose, lipid and amino acid metabolism) of immune cells as well as epigenetic control of metabolism reprogramming to elucidate the underlying pathogenic mechanisms of systemic lupus erythematosus. Mitochondria plays a vital role in cellular metabolism and is involved in immune response. There are alterations in glucose, lipid and amino acid metabolism of various immune cells in SLE patients. Epigenetic status is influenced by the presence of metabolic intermediates and certain autoimmunity-related genes are hypomethylated in CD4+T cells, CD19+ B cells as well as CD14+ monocytes of SLE.
Collapse
Affiliation(s)
- Chen-Xing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Hui-Yu Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149, Muenster, Germany
| | - Lei Yin
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - You-Ying Mao
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Wei Zhou
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| |
Collapse
|
38
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Mitochondria and Female Germline Stem Cells-A Mitochondrial DNA Perspective. Cells 2019; 8:cells8080852. [PMID: 31398797 PMCID: PMC6721711 DOI: 10.3390/cells8080852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria and mitochondrial DNA have important roles to play in development. In primordial germ cells, they progress from small numbers to populate the maturing oocyte with high numbers to support post-fertilization events. These processes take place under the control of significant changes in DNA methylation and other epigenetic modifiers, as well as changes to the DNA methylation status of the nuclear-encoded mitochondrial DNA replication factors. Consequently, the differentiating germ cell requires significant synchrony between the two genomes in order to ensure that they are fit for purpose. In this review, I examine these processes in the context of female germline stem cells that are isolated from the ovary and those derived from embryonic stem cells and reprogrammed somatic cells. Although our knowledge is limited in this respect, I provide predictions based on other cellular systems of what is expected and provide insight into how these cells could be used in clinical medicine.
Collapse
|
40
|
Dreier DA, Mello D, Meyer J, Martyniuk CJ. Linking Mitochondrial Dysfunction to Organismal and Population Health in the Context of Environmental Pollutants: Progress and Considerations for Mitochondrial Adverse Outcome Pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1625-1634. [PMID: 31034624 PMCID: PMC6961808 DOI: 10.1002/etc.4453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Mitochondria are key targets of many environmental contaminants, because specific chemicals can interact directly with mitochondrial proteins, lipids, and ribonucleic acids. These direct interactions serve as molecular initiating events that impede adenosine triphosphate production and other critical functions that mitochondria serve within the cell (e.g., calcium and metal homeostasis, apoptosis, immune signaling, redox balance). A limited but growing number of adverse outcome pathways (AOPs) have been proposed to associate mitochondrial dysfunction with effects at organismal and population levels. These pathways involve key events such as altered membrane potential, mitochondrial fission/fusion, and mitochondrial DNA damage, among others. The present critical review and analysis reveals current progress on AOPs involving mitochondrial dysfunction, and, using a network-based computational approach, identifies the localization of mitochondrial molecular initiating events and key events within multiple existing AOPs. We also present 2 case studies, the first examining the interaction between mitochondria and immunotoxicity, and the second examining the role of early mitochondrial dysfunction in the context of behavior (i.e., locomotor activity). We discuss limitations in our current understanding of mitochondrial AOPs and highlight opportunities for clarifying their details. Advancing our knowledge of key event relationships within the AOP framework will require high-throughput datasets that permit the development and testing of chemical-agnostic AOPs, as well as high-resolution research that will enhance the mechanistic testing and validation of these key event relationships. Given the wide range of chemicals that affect mitochondria, and the centrality of energy production and signaling to ecologically important outcomes such as pathogen defense, homeostasis, growth, and reproduction, a better understanding of mitochondrial AOPs is expected to play a significant, if not central, role in environmental toxicology. Environ Toxicol Chem 2019;38:1625-1634. © 2019 SETAC.
Collapse
Affiliation(s)
- David A. Dreier
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Danielle Mello
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328 USA
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328 USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
- University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611 USA
- Address correspondence to
| |
Collapse
|
41
|
Chu Q, Ding Y, Cai W, Liu L, Zhang H, Song J. Marek's Disease Virus Infection Induced Mitochondria Changes in Chickens. Int J Mol Sci 2019; 20:ijms20133150. [PMID: 31252692 PMCID: PMC6651546 DOI: 10.3390/ijms20133150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are crucial cellular organelles in eukaryotes and participate in many cell processes including immune response, growth development, and tumorigenesis. Marek’s disease (MD), caused by an avian alpha-herpesvirus Marek’s disease virus (MDV), is characterized with lymphomas and immunosuppression. In this research, we hypothesize that mitochondria may play roles in response to MDV infection. To test it, mitochondrial DNA (mtDNA) abundance and gene expression in immune organs were examined in two well-defined and highly inbred lines of chickens, the MD-susceptible line 72 and the MD-resistant line 63. We found that mitochondrial DNA contents decreased significantly at the transformation phase in spleen of the MD-susceptible line 72 birds in contrast to the MD-resistant line 63. The mtDNA-genes and the nucleus-genes relevant to mtDNA maintenance and transcription, however, were significantly up-regulated. Interestingly, we found that POLG2 might play a potential role that led to the imbalance of mtDNA copy number and gene expression alteration. MDV infection induced imbalance of mitochondrial contents and gene expression, demonstrating the indispensability of mitochondria in virus-induced cell transformation and subsequent lymphoma formation, such as MD development in chicken. This is the first report on relationship between virus infection and mitochondria in chicken, which provides important insights into the understanding on pathogenesis and tumorigenesis due to viral infection.
Collapse
Affiliation(s)
- Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Yi Ding
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Wentao Cai
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Lei Liu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
42
|
Abstract
Sepsis is a major health problem all over the world. Despite its existence since the time of Hippocrates (470 BC), sepsis is still a serious medical problem for physicians working in both pediatric and adult intensive care units. The most current US FDA-approved drug called recombinant human activated protein C or Drotrecogin-α is also failed in clinical trials and showed similar effects as placebo. The epidemiological data and studies have indicated sepsis as a major socioeconomic burden all over the world. Advances in immunology and genomic medicine have established different immunological mechanisms as major regulators of the pathogenesis of the sepsis. These immunological mechanisms come into action upon activation of several components of the immune system including innate and adaptive immunity. The activation of these immune cells in response to the pathogens or pathogen-associated molecular patterns (PAMPs) responsible for the onset of sepsis is regulated by the metabolic stage of the immune cells called immunometabolism. An alternation in the immunometabolism is responsible for the generation of dysregulated immune response during sepsis and plays a very important role in the process. Thus, it becomes vital to understand the immunometabolic reprograming during sepsis to design future target-based therapeutics depending on the severity. The current review is designed to highlight the importance of immune response and associated immunometabolism during sepsis and its targeting as a future therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Department of Paediatrics and Child Care, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
| |
Collapse
|
43
|
Sokolova I. Mitochondrial Adaptations to Variable Environments and Their Role in Animals' Stress Tolerance. Integr Comp Biol 2019; 58:519-531. [PMID: 29701785 DOI: 10.1093/icb/icy017] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are the key organelles involved in energy and redox homeostasis, cellular signaling, and survival. Animal mitochondria are exquisitely sensitive to environmental stress, and stress-induced changes in the mitochondrial integrity and function have major consequences for the organismal performance and fitness. Studies in the model organisms such as terrestrial mammals and insects showed that mitochondrial dysfunction is a major cause of injury during pathological conditions and environmental insults such as hypoxia, ischemia-reperfusion, and exposure to toxins. However, animals from highly stressful environments (such as the intertidal zone of the ocean) can maintain mitochondrial integrity and function despite intense and rapid fluctuations in abiotic conditions and associated changes in the intracellular milieu. Recent studies demonstrate that mitochondria of intertidal organisms (including mollusks, crustaceans, and fish) are capable of maintaining activity of mitochondrial electron transport system (ETS), ATP synthesis, and mitochondrial coupling in a broad range of temperature, osmolarity, and ion content. Mitochondria of intertidal organisms such as mollusks are also resistant to hypoxia-reoxygenation injury and show stability or even upregulation of the mitochondrial ETS activity and ATP synthesis capacity during intermittent hypoxia. In contrast, pH optima for mitochondrial ATP synthesis and respiration are relatively narrow in intertidal mollusks and may reflect adaptation to suppress metabolic rate during pH shifts caused by extreme stress. Sensitivity to anthropogenic pollutants (such as trace metals) in intertidal mollusks appears similar to that of other organisms (including mammals) and may reflect the lack of adaptation to these evolutionarily novel stressors. The mechanisms of the exceptional mitochondrial resilience to temperature, salinity, and hypoxic stress are not yet fully understood in intertidal organisms, yet recent studies demonstrate that they may involve rapid modulation of the ETS capacity (possibly due to post-translation modification of mitochondrial proteins), upregulation of antioxidant defenses in anticipation of oxidative stress, and high activity of mitochondrial proteases involved in degradation of damaged mitochondrial proteins. With rapidly developing molecular tools for non-model organisms, future studies of mitochondrial adaptations should pinpoint the molecular sites associated with the passive tolerance and/or active regulation of mitochondrial activity during stress exposures in intertidal organisms, investigate the roles of mitochondria in transduction of stress signals, and explore the interplay between bioenergetics and mitochondrial signaling in facilitating survival in these highly stressful environments.
Collapse
Affiliation(s)
- Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, A.-Einstein Str., 3, Rostock 18055, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
44
|
Singh K, Roy M, Prajapati P, Lipatova A, Sripada L, Gohel D, Singh A, Mane M, Godbole MM, Chumakov PM, Singh R. NLRX1 regulates TNF-α-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1460-1476. [PMID: 30802640 DOI: 10.1016/j.bbadis.2019.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
An increased level of proinflammatory cytokines, including TNF-α in tumor microenvironment regulates the bioenergetic capacity, immune evasion and survival of cancer cells. Emerging evidences suggest that mitochondrial immune signaling proteins modulates mitochondrial bioenergetic capacity, in addition to the regulation of innate immune response. The optimal oxidative phosphorylation (OxPhos) capacity is required for the maintenance of functional lysosomes and autophagy flux. NLRX1, a mitochondrial NOD family receptor protein, regulates mitochondrial function during apoptosis and tissue injury. However, its role in regulation of mitochondrial and lysosomal function to modulate autophagy flux during inflammatory conditions is not understood. In the current study, we investigated the role of NLRX1 in modulating TNF-α induced autophagy flux and mitochondrial turnover and its implication in regulating the invasive and metastatic capability of breast cancer cells. Expression analyses of clinical breast cancer samples and meta-analysis of multiple public databases revealed that NLRX1 expression is significantly increased in basal-like and metastatic breast carcinoma as compared to non-basal-like and primary breast cancer. Depletion of NLRX1 expression in triple-negative breast cancer cells, altered the organization and activity of OxPhos complexes in presence of TNF-α. NLRX1 depletion further impaired lysosomal function and hence the turnover of damaged mitochondria through mitophagy in presence of TNF-α. Importantly, loss of NLRX1 decreased OxPhos-dependent cell proliferation and migration ability of triple-negative breast cancer cells in presence of TNF-α. These evidences suggest an essential role of NLRX1 in maintaining the crosstalk of mitochondrial metabolism and lysosomal function to regulate invasion and metastasis capability of breast cancer cells.
Collapse
Affiliation(s)
- Kritarth Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Paresh Prajapati
- SCoBIRC Department of Neuroscience, University of Kentucky, 741S.Limestone, BBSRB, Lexington, KY 40536, USA
| | - Anastasia Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Lakshmi Sripada
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Aru Singh
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Meenal Mane
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Madan M Godbole
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; Chumakov Institute of Poliomyelitis and Viral Encephalitis, Federal Scientific Center on Research and Development of Immunobiology Products, Russian Academy of Sciences, 142782 Moscow, Russia
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
45
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
46
|
Korimová A, Klusáková I, Hradilová-Svíženská I, Kohoutková M, Joukal M, Dubový P. Mitochondrial Damage-Associated Molecular Patterns of Injured Axons Induce Outgrowth of Schwann Cell Processes. Front Cell Neurosci 2018; 12:457. [PMID: 30542268 PMCID: PMC6277938 DOI: 10.3389/fncel.2018.00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023] Open
Abstract
Activated Schwann cells put out cytoplasmic processes that play a significant role in cell migration and axon regeneration. Following nerve injury, axonal mitochondria release mitochondrial damage-associated molecular patterns (mtDAMPs), including formylated peptides and mitochondrial DNA (mtDNA). We hypothesize that mtDAMPs released from disintegrated axonal mitochondria may stimulate Schwann cells to put out cytoplasmic processes. We investigated RT4-D6P2T schwannoma cells (RT4) in vitro treated with N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP) or cytosine-phospho-guanine oligodeoxynucleotide (CpG ODN) for 1, 6 and 24 h. We also used immunohistochemical detection to monitor the expression of formylpeptide receptor 2 (FPR2) and toll-like receptor 9 (TLR9), the canonical receptors for formylated peptides and mtDNA, in RT4 cells and Schwann cells distal to nerve injury. RT4 cells treated with fMLP put out a significantly higher number of cytoplasmic processes compared to control cells. Preincubation with PBP10, a selective inhibitor of FPR2 resulted in a significant reduction of cytoplasmic process outgrowth. A significantly higher number of cytoplasmic processes was also found after treatment with CpG ODN compared to control cells. Pretreatment with inhibitory ODN (INH ODN) resulted in a reduced number of cytoplasmic processes after subsequent treatment with CpG ODN only at 6 h, but 1 and 24 h treatment with CpG ODN demonstrated an additive effect of INH ODN on the development of cytoplasmic processes. Immunohistochemistry and western blot detected increased levels of tyrosine-phosphorylated paxillin in RT4 cells associated with cytoplasmic process outgrowth after fMLP or CpG ODN treatment. We found increased immunofluorescence of FPR2 and TLR9 in RT4 cells treated with fMLP or CpG ODN as well as in activated Schwann cells distal to the nerve injury. In addition, activated Schwann cells displayed FPR2 and TLR9 immunostaining close to GAP43-immunopositive regenerated axons and their growth cones after nerve crush. Increased FPR2 and TLR9 immunoreaction was associated with activation of p38 and NFkB, respectively. Surprisingly, the growth cones displayed also FPR2 and TLR9 immunostaining. These results present the first evidence that potential mtDAMPs may play a key role in the induction of Schwann cell processes. This reaction of Schwann cells can be mediated via FPR2 and TLR9 that are canonical receptors for formylated peptides and mtDNA. The possible role for FPR2 and TLR9 in growth cones is also discussed.
Collapse
Affiliation(s)
- Andrea Korimová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ilona Klusáková
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marcela Kohoutková
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
47
|
Lai JH, Luo SF, Ho LJ. Operation of mitochondrial machinery in viral infection-induced immune responses. Biochem Pharmacol 2018; 156:348-356. [PMID: 30172712 PMCID: PMC7092938 DOI: 10.1016/j.bcp.2018.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 01/05/2023]
Abstract
Mitochondria have been recognized as ancient bacteria that contain evolutionary endosymbionts. Metabolic pathways and inflammatory signals interact within mitochondria in response to different stresses, such as viral infections. In this commentary, we address several interesting questions, including (1) how do mitochondrial machineries participate in immune responses; (2) how do mitochondria mediate antiviral immunity; (3) what mechanisms involved in mitochondrial machinery, including the downregulation of mitochondrial DNA (mtDNA), disturbances of mitochondrial dynamics, and the induction of mitophagy and regulation of apoptosis, have been adopted by viruses to evade antiviral immunity; (4) what mechanisms involve the regulation of mitochondrial machineries in antiviral therapeutics; and (5) what are the potential challenges and perspectives in developing mitochondria-targeting antiviral treatments? This commentary provides a comprehensive review of the roles and mechanisms of mitochondrial machineries in immunity, viral infections and related antiviral therapeutics.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
48
|
Temporal Manipulation of Mitochondrial Function by Virulent Francisella tularensis To Limit Inflammation and Control Cell Death. Infect Immun 2018; 86:IAI.00044-18. [PMID: 29760217 DOI: 10.1128/iai.00044-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a highly pathogenic intracellular bacterium that suppresses host inflammation by impairing the metabolic shift from oxidative phosphorylation to glycolysis. Decreased mitochondrial metabolism is central to initiating a metabolic shift to glycolysis and regulating inflammation, but F. tularensis subsp. tularensis manipulation of host mitochondrial function has not been explored. We demonstrate, using extracellular flux analysis, that F. tularensis subsp. tularensis infection initially improves host macrophage mitochondrial bioenergetics in a capsule-dependent manner. Enhancement of mitochondrial function by F. tularensis subsp. tularensis allowed for modest replication and inhibition of apoptosis early after infection. However, using live cell imaging, we found that F. tularensis subsp. tularensis facilitated the loss of mitochondrial function at later time points during infection in a capsule-independent fashion. This loss of function was paired with oncosis and rapid bacterial replication. Inhibition of oncosis reduced intracellular bacterial numbers, underscoring the requirement for this process during F. tularensis subsp. tularensis infection. These findings establish that temporal mitochondrial manipulation by F. tularensis subsp. tularensis is critical for maintenance of a noninflammatory environment and subsequently aids in optimal replication and dissemination of this pathogenic organism.
Collapse
|
49
|
Nguyen Q, Shiva S. Moving mitochondria - Breathing new signaling into asthmatic airways. Redox Biol 2018; 18:244-245. [PMID: 30056272 PMCID: PMC6079482 DOI: 10.1016/j.redox.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Quyen Nguyen
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
50
|
Singh K, Sripada L, Lipatova A, Roy M, Prajapati P, Gohel D, Bhatelia K, Chumakov PM, Singh R. NLRX1 resides in mitochondrial RNA granules and regulates mitochondrial RNA processing and bioenergetic adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1260-1276. [PMID: 29932989 DOI: 10.1016/j.bbamcr.2018.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/10/2018] [Accepted: 06/17/2018] [Indexed: 12/26/2022]
Abstract
The role of mitochondria is emerging in regulation of innate immunity, inflammation and cell death beyond its primary role in energy metabolism. Mitochondria act as molecular platform for immune adaptor protein complexes, which participate in innate immune signaling. The mitochondrial localized immune adaptors are widely expressed in non-immune cells, however their role in regulation of mitochondrial function and metabolic adaption is not well understood. NLRX1, a member of NOD family receptor proteins, localizes to mitochondria and is a negative regulator of anti-viral signaling. However, the submitochondrial localization of NLRX1 and its implication in regulation of mitochondrial functions remains elusive. Here, we confirm that NLRX1 translocates to mitochondrial matrix and associates with mitochondrial FASTKD5 (Fas-activated serine-threonine kinase family protein-5), a bonafide component of mitochondrial RNA granules (MRGs). The association of NLRX1 with FASTKD5 negatively regulates the processing of mitochondrial genome encoded transcripts for key components of complex-I and complex-IV, to modulate its activity and supercomplexes formation. The evidences, here, suggest an important role of NLRX1 in regulating the post-transcriptional processing of mitochondrial RNA, which may have an important implication in bioenergetic adaptation during metabolic stress, oncogenic transformation and innate immunity.
Collapse
Affiliation(s)
- Kritarth Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Lakshmi Sripada
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Anastasia Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Paresh Prajapati
- SCoBIRC Department of Neuroscience, University of Kentucky, 741S.Limestone, BBSRB, Lexington, KY 40536, USA
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Khyati Bhatelia
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; Chumakov Institute of Poliomyelitis and Viral Encephalitides, Federal Scientific Center on Research and Development of Immunobiology Products, Russian Academy of Sciences, 142782 Moscow, Russia
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India.
| |
Collapse
|