1
|
Diaz Arenas C, Alvarez M, Wilson RH, Shakhnovich EI, Ogbunugafor CB. Protein Quality Control is a Master Modulator of Molecular Evolution in Bacteria. Genome Biol Evol 2025; 17:evaf010. [PMID: 39837347 PMCID: PMC11789785 DOI: 10.1093/gbe/evaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Maristella Alvarez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Robert H Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Xu Y, Liu Y, Yi Y, Liu J. Genome-Wide Identification and Characterization of HSP70 Gene Family in Tausch's Goatgrass ( Aegilops tauschii). Genes (Basel) 2024; 16:19. [PMID: 39858565 PMCID: PMC11764848 DOI: 10.3390/genes16010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Aegilops tauschii, a winter annual grass weed native to Eastern Europe and Western Asia, has become a widespread invasive species in the wheat-growing regions of China due to its high environmental adaptability. This study aims to explore the molecular mechanisms underlying the stress resistance of Tausch's goatgrass, focusing on the HSP70 gene family. METHODS A genome-wide analysis was conducted to identify and characterize the HSP70 gene family in A. tauschii. Afterward, their physicochemical properties, phylogenetic relationships, gene structures, and chromosomal distributions were analyzed. Additionally, cis-acting regulatory elements were predicted to understand their potential role in stress resistance. RESULTS A total of 19 identified HSP70 family genes were classified into four subfamilies and distributed across all chromosomes. The syntenic analysis revealed extensive homology between Tausch's goatgrass and wheat HSP70 genes. Segmental duplication was found to play a crucial role in the expansion of the HSP70 gene family. The prediction of cis-acting elements suggested that these genes are involved in stress resistance to various environmental conditions. CONCLUSIONS This study provides a comprehensive overview of the HSP70 gene family in A. tauschii, offering insights into their role in stress resistance and their potential application in understanding invasive species behavior and improving wheat resilience. Further research is needed to validate their functional roles in stress adaptation.
Collapse
Affiliation(s)
- Yongmei Xu
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanjun Yi
- Haidu College Qingdao Agricultural University, Qingdao 266603, China
| | - Jiajia Liu
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
3
|
Shriya S, Paul R, Singh N, Afza F, Jain BP. Bioinformatics analysis and alternative polyadenylation in Heat Shock Proteins 70 (HSP70) family members. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:138-151. [PMID: 39850245 PMCID: PMC11751548 DOI: 10.62347/cwpe7813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/21/2024] [Indexed: 01/25/2025]
Abstract
OBJECTIVE The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections. Their primary role is preventing protein aggregation, refolding misfolded proteins, and targeted degradation of irreparably damaged proteins. Given their involvement in fundamental cellular processes and stress responses, HSP70 proteins are critical for cell survival and modulating disease outcomes in cancer, neurodegeneration, and other pathologies. The present study aims to understand domain architecture, physicochemical properties, phosphorylation, ubiquitination, and alternative polyadenylation site prediction in various HSP70 members. METHOD SMART and InterProScan software were used for domain analysis. EXPASY Protparam, NetPhos 3.1 server DTU, and MUbisiDa were used for physicochemical analysis, phosphorylation, and ubiquitination site analysis, respectively. Alternative polyadenylation was studied using the EST database. RESULT Domain analysis shows that coiled-coil and nucleotide-binding domains are present in some of the HSP70 members. Five HSP70 family members have alternate polyadenylation sites in their 3'UTR. CONCLUSION The present work has provided valuable insights into their structure, functions, interactome, and polyadenylation patterns. Studying their therapeutic potential in diseases like cancer can be helpful.
Collapse
Affiliation(s)
- Srishti Shriya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| | - Ramakrushna Paul
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| | - Neha Singh
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| | - Farhat Afza
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India
| |
Collapse
|
4
|
Rukes V, Rebeaud ME, Perrin LW, De Los Rios P, Cao C. Single-molecule evidence of Entropic Pulling by Hsp70 chaperones. Nat Commun 2024; 15:8604. [PMID: 39379347 PMCID: PMC11461734 DOI: 10.1038/s41467-024-52674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Hsp70 chaperones are central components of the cellular network that ensures the structural quality of proteins. Despite crucial roles in processes such as protein disaggregation and protein translocation into organelles, their physical mechanism of action has remained hotly debated. To the best of our knowledge, no experimental data has directly proven any of the models proposed to date (Power Stroke, Brownian Ratchet, or Entropic Pulling) due to a lack of suitable methods. Here, we use nanopores, a powerful single-molecule tool, to investigate the mechanism of Hsp70s. We demonstrate that Hsp70s extract trapped polypeptide substrates from the nanopore by generating strong forces (equivalent to 46 pN over distances of 1 nm), that rely on the size of Hsp70. The findings provide unambiguous evidence of the Entropic Pulling mechanism, thus solving a long-standing debate, and proposing a potentially universal principle governing diverse cellular processes. Additionally, these results highlight the utility of biological nanopores for protein studies.
Collapse
Affiliation(s)
- Verena Rukes
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland
| | - Mathieu E Rebeaud
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland
| | - Louis W Perrin
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland.
| | - Chan Cao
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland.
| |
Collapse
|
5
|
Masse MM, Guzman-Luna V, Varela AE, Mahfuza Shapla U, Hutchinson RB, Srivastava A, Wei W, Fuchs AM, Cavagnero S. Nascent chains derived from a foldable protein sequence interact with specific ribosomal surface sites near the exit tunnel. Sci Rep 2024; 14:12324. [PMID: 38811604 PMCID: PMC11137106 DOI: 10.1038/s41598-024-61274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
In order to become bioactive, proteins must be translated and protected from aggregation during biosynthesis. The ribosome and molecular chaperones play a key role in this process. Ribosome-bound nascent chains (RNCs) of intrinsically disordered proteins and RNCs bearing a signal/arrest sequence are known to interact with ribosomal proteins. However, in the case of RNCs bearing foldable protein sequences, not much information is available on these interactions. Here, via a combination of chemical crosslinking and time-resolved fluorescence-anisotropy, we find that nascent chains of the foldable globin apoHmp1-140 interact with ribosomal protein L23 and have a freely-tumbling non-interacting N-terminal compact region comprising 63-94 residues. Longer RNCs (apoHmp1-189) also interact with an additional yet unidentified ribosomal protein, as well as with chaperones. Surprisingly, the apparent strength of RNC/r-protein interactions does not depend on nascent-chain sequence. Overall, foldable nascent chains establish and expand interactions with selected ribosomal proteins and chaperones, as they get longer. These data are significant because they reveal the interplay between independent conformational sampling and nascent-protein interactions with the ribosomal surface.
Collapse
Affiliation(s)
- Meranda M Masse
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Angela E Varela
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ummay Mahfuza Shapla
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Aniruddha Srivastava
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McGaw Medical Center, Northwestern University, Chicago, IL, 60611, USA
| | - Wanting Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- AIDS Vaccine Research Laboratory, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Andrew M Fuchs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Mistry AC, Chowdhury D, Chakraborty S, Haldar S. Elucidating the novel mechanisms of molecular chaperones by single-molecule technologies. Trends Biochem Sci 2024; 49:38-51. [PMID: 37980187 DOI: 10.1016/j.tibs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.
Collapse
Affiliation(s)
- Ayush Chandrakant Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India; Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India; Department of Chemistry, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
7
|
Choudhary D, Mediani L, Avellaneda MJ, Bjarnason S, Alberti S, Boczek EE, Heidarsson PO, Mossa A, Carra S, Tans SJ, Cecconi C. Human Small Heat Shock Protein B8 Inhibits Protein Aggregation without Affecting the Native Folding Process. J Am Chem Soc 2023. [PMID: 37411010 PMCID: PMC10360156 DOI: 10.1021/jacs.3c02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Small Heat Shock Proteins (sHSPs) are key components of our Protein Quality Control system and are thought to act as reservoirs that neutralize irreversible protein aggregation. Yet, sHSPs can also act as sequestrases, promoting protein sequestration into aggregates, thus challenging our understanding of their exact mechanisms of action. Here, we employ optical tweezers to explore the mechanisms of action of the human small heat shock protein HSPB8 and its pathogenic mutant K141E, which is associated with neuromuscular disease. Through single-molecule manipulation experiments, we studied how HSPB8 and its K141E mutant affect the refolding and aggregation processes of the maltose binding protein. Our data show that HSPB8 selectively suppresses protein aggregation without affecting the native folding process. This anti-aggregation mechanism is distinct from previous models that rely on the stabilization of unfolded polypeptide chains or partially folded structures, as has been reported for other chaperones. Rather, it appears that HSPB8 selectively recognizes and binds to aggregated species formed at the early stages of aggregation, preventing them from growing into larger aggregated structures. Consistently, the K141E mutation specifically targets the affinity for aggregated structures without impacting native folding, and hence impairs its anti-aggregation activity.
Collapse
Affiliation(s)
- Dhawal Choudhary
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Mario J Avellaneda
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Edgar E Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Alessandro Mossa
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
- INFN Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Sander J Tans
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
8
|
Rief M, Žoldák G. Single-molecule mechanical studies of chaperones and their clients. BIOPHYSICS REVIEWS 2022; 3:041301. [PMID: 38505517 PMCID: PMC10903372 DOI: 10.1063/5.0098033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/12/2022] [Indexed: 03/21/2024]
Abstract
Single-molecule force spectroscopy provides access to the mechanics of biomolecules. Recently, magnetic and laser optical tweezers were applied in the studies of chaperones and their interaction with protein clients. Various aspects of the chaperone-client interactions can be revealed based on the mechanical probing strategies. First, when a chaperone is probed under load, one can examine the inner workings of the chaperone while it interacts with and works on the client protein. Second, when protein clients are probed under load, the action of chaperones on folding clients can be studied in great detail. Such client folding studies have given direct access to observing actions of chaperones in real-time, like foldase, unfoldase, and holdase activity. In this review, we introduce the various single molecule mechanical techniques and summarize recent single molecule mechanical studies on heat shock proteins, chaperone-mediated folding on the ribosome, SNARE folding, and studies of chaperones involved in the folding of membrane proteins. An outlook on significant future developments is given.
Collapse
Affiliation(s)
- Matthias Rief
- Center for Functional Protein Assemblies (CPA), Physik Department, Technische Universität München, Ernst-Otto-Fischer-Str., 8, D-85748 Garching, Germany
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
9
|
Žoldák G. Protein Nanomechanics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3524. [PMID: 36234652 PMCID: PMC9565256 DOI: 10.3390/nano12193524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
For a comprehensive understanding of protein function and dynamics, it is crucial to study their mechanical properties [...].
Collapse
Affiliation(s)
- Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
10
|
Yusof NA, Masnoddin M, Charles J, Thien YQ, Nasib FN, Wong CMVL, Abdul Murad AM, Mahadi NM, Bharudin I. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress? Polar Biol 2022. [DOI: 10.1007/s00300-022-03006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe Antarctic Peninsula is one of the fastest-warming places on Earth. Elevated sea water temperatures cause glacier and sea ice melting. When icebergs melt into the ocean, it “freshens” the saltwater around them, reducing its salinity. The oceans absorb excess anthropogenic carbon dioxide (CO2) causing decline in ocean pH, a process known as ocean acidification. Many marine organisms are specifically affected by ocean warming, freshening and acidification. Due to the sensitivity of Antarctica to global warming, using biomarkers is the best way for scientists to predict more accurately future climate change and provide useful information or ecological risk assessments. The 70-kilodalton (kDa) heat shock protein (HSP70) chaperones have been used as biomarkers of stress in temperate and tropical environments. The induction of the HSP70 genes (Hsp70) that alter intracellular proteins in living organisms is a signal triggered by environmental temperature changes. Induction of Hsp70 has been observed both in eukaryotes and in prokaryotes as response to environmental stressors including increased and decreased temperature, salinity, pH and the combined effects of changes in temperature, acidification and salinity stress. Generally, HSP70s play critical roles in numerous complex processes of metabolism; their synthesis can usually be increased or decreased during stressful conditions. However, there is a question as to whether HSP70s may serve as excellent biomarkers in the Antarctic considering the long residence time of Antarctic organisms in a cold polar environment which appears to have greatly modified the response of heat responding transcriptional systems. This review provides insight into the vital roles of HSP70 that make them ideal candidates as biomarkers for identifying resistance and resilience in response to abiotic stressors associated with climate change, which are the effects of ocean warming, freshening and acidification in Antarctic organisms.
Collapse
|
11
|
Sorokina I, Mushegian AR, Koonin EV. Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? Int J Mol Sci 2022; 23:521. [PMID: 35008947 PMCID: PMC8745595 DOI: 10.3390/ijms23010521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.
Collapse
Affiliation(s)
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA 22314, USA;
- Clare Hall College, University of Cambridge, Cambridge CB3 9AL, UK
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
12
|
Huang M, Dong J, Guo H, Xiao M, Wang D. Identification of circular RNAs and corresponding regulatory networks reveals potential roles in the brains of honey bee workers exposed to dinotefuran. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104994. [PMID: 34955187 DOI: 10.1016/j.pestbp.2021.104994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Honey bees are important and highly efficient pollinators of agricultural crops and have been negatively affected by insecticides in recent years. Circular RNA (circRNA) plays an important role in the regulation of multiple biological and pathological processes; however, its role in the honey bee brain after exposure to dinotefuran is not well understood. Here, the expression profiles and potential modulation networks of circRNAs in the brains of workers (Apis mellifera) were comprehensively investigated using RNA sequencing and bioinformatics. In total, 33, 144, and 211 differentially expressed (DE) circRNAs were identified on the 1st, 5th and 10th days after exposure to dinotefuran, respectively. Enrichment analyses revealed that the host genes of DE circRNAs were enriched in the Hippo signaling pathway-fly, Wnt signaling pathway, and neuroactive ligand-receptor interaction. circ_0002266, circ_0005080, circ_0010239 and circ_0005415 were found to have translational potential due to the presence of an internal ribosome entry site (IRES). An integrated analysis of the DE circRNA-miRNA-mRNA networks suggest that circ_0008898 and circ_0001829 may participate in the immune response to dinotefuran exposure by acting as miRNA sponges. Our results provide invaluable basic data on A. mellifera brain circRNA patterns and a molecular basis for further study of the biological function of circRNAs in the development and immune response of honey bees.
Collapse
Affiliation(s)
- Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, No. 145 Shiqiao Road, Hangzhou 310021, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, No. 145 Shiqiao Road, Hangzhou 310021, China
| | - Haikun Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Hangzhou 310021, China
| | - Minghui Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, No. 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, No. 145 Shiqiao Road, Hangzhou 310021, China.
| |
Collapse
|
13
|
Banerjee S, Chakraborty S, Sreepada A, Banerji D, Goyal S, Khurana Y, Haldar S. Cutting-Edge Single-Molecule Technologies Unveil New Mechanics in Cellular Biochemistry. Annu Rev Biophys 2021; 50:419-445. [PMID: 33646813 DOI: 10.1146/annurev-biophys-090420-083836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule technologies have expanded our ability to detect biological events individually, in contrast to ensemble biophysical technologies, where the result provides averaged information. Recent developments in atomic force microscopy have not only enabled us to distinguish the heterogeneous phenomena of individual molecules, but also allowed us to view up to the resolution of a single covalent bond. Similarly, optical tweezers, due to their versatility and precision, have emerged as a potent technique to dissect a diverse range of complex biological processes, from the nanomechanics of ClpXP protease-dependent degradation to force-dependent processivity of motor proteins. Despite the advantages of optical tweezers, the time scales used in this technology were inconsistent with physiological scenarios, which led to the development of magnetic tweezers, where proteins are covalently linked with the glass surface, which in turn increases the observation window of a single biomolecule from minutes to weeks. Unlike optical tweezers, magnetic tweezers use magnetic fields to impose torque, which makes them convenient for studying DNA topology and topoisomerase functioning. Using modified magnetic tweezers, researchers were able to discover the mechanical role of chaperones, which support their substrate proteinsby pulling them during translocation and assist their native folding as a mechanical foldase. In this article, we provide a focused review of many of these new roles of single-molecule technologies, ranging from single bond breaking to complex chaperone machinery, along with the potential to design mechanomedicine, which would be a breakthrough in pharmacological interventions against many diseases.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Abhijit Sreepada
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Devshuvam Banerji
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shashwat Goyal
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Yajushi Khurana
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| |
Collapse
|
14
|
Hiller S. Molecular chaperones and their denaturing effect on client proteins. JOURNAL OF BIOMOLECULAR NMR 2021; 75:1-8. [PMID: 33136251 PMCID: PMC7897196 DOI: 10.1007/s10858-020-00353-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/23/2020] [Indexed: 05/05/2023]
Abstract
Advanced NMR methods combined with biophysical techniques have recently provided unprecedented insight into structure and dynamics of molecular chaperones and their interaction with client proteins. These studies showed that several molecular chaperones are able to dissolve aggregation-prone polypeptides in aqueous solution. Furthermore, chaperone-bound clients often feature fluid-like backbone dynamics and chaperones have a denaturing effect on clients. Interestingly, these effects that chaperones have on client proteins resemble the effects of known chaotropic substances. Following this analogy, chaotropicity could be a fruitful concept to describe, quantify and rationalize molecular chaperone function. In addition, the observations raise the possibility that at least some molecular chaperones might share functional similarities with chaotropes. We discuss these concepts and outline future research in this direction.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056, Basel, Switzerland.
| |
Collapse
|
15
|
Sonar P, Bellucci L, Mossa A, Heidarsson PO, Kragelund BB, Cecconi C. Effects of Ligand Binding on the Energy Landscape of Acyl-CoA-Binding Protein. Biophys J 2020; 119:1821-1832. [PMID: 33080224 PMCID: PMC7677128 DOI: 10.1016/j.bpj.2020.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Binding of ligands is often crucial for function yet the effects of ligand binding on the mechanical stability and energy landscape of proteins are incompletely understood. Here, we use a combination of single-molecule optical tweezers and MD simulations to investigate the effect of ligand binding on the energy landscape of acyl-coenzyme A (CoA)-binding protein (ACBP). ACBP is a topologically simple and highly conserved four-α-helix bundle protein that acts as an intracellular transporter and buffer for fatty-acyl-CoA and is active in membrane assembly. We have previously described the behavior of ACBP under tension, revealing a highly extended transition state (TS) located almost halfway between the unfolded and native states. Here, we performed force-ramp and force-jump experiments, in combination with advanced statistical analysis, to show that octanoyl-CoA binding increases the activation free energy for the unfolding reaction of ACBP without affecting the position of the transition state along the reaction coordinate. It follows that ligand binding enhances the mechanical resistance and thermodynamic stability of the protein, without changing its mechanical compliance. Steered molecular dynamics simulations allowed us to rationalize the results in terms of key interactions that octanoyl-CoA establishes with the four α-helices of ACBP and showed that the unfolding pathway is marginally affected by the ligand. The results show that ligand-induced mechanical stabilization effects can be complex and may prove useful for the rational design of stabilizing ligands.
Collapse
Affiliation(s)
- Punam Sonar
- Physik-Department E22, Technische Universität München, Garching Germany
| | - Luca Bellucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Alessandro Mossa
- INFN Firenze, Sesto Fiorentino, Italy; Istituto Statale di Istruzione Superiore "Leonardo da Vinci", Firenze, Italy.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; Center S3, CNR Institute Nanoscience, Modena, Italy.
| |
Collapse
|
16
|
Gnuchikh EY, Manukhov IV, Zavilgelsky GB. DnaK Chaperone Takes Part in Folding but Not in Refolding of Thermal Inactivated Proteins in Bacillus subtilis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Shishido H, Yoon JS, Yang Z, Skach WR. CFTR trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates. Nat Commun 2020; 11:4258. [PMID: 32848127 PMCID: PMC7450043 DOI: 10.1038/s41467-020-18101-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/04/2020] [Indexed: 02/03/2023] Open
Abstract
Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
18
|
Deuerling E, Gamerdinger M, Kreft SG. Chaperone Interactions at the Ribosome. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033977. [PMID: 30833456 DOI: 10.1101/cshperspect.a033977] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The continuous refreshment of the proteome is critical to maintain protein homeostasis and to adapt cells to changing conditions. Thus, de novo protein biogenesis by ribosomes is vitally important to every cellular system. This process is delicate and error-prone and requires, besides cytosolic chaperones, the guidance by a specialized set of molecular chaperones that bind transiently to the translation machinery and the nascent protein to support early folding events and to regulate cotranslational protein transport. These chaperones include the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC), and the eukaryotic ribosome-associated complex (RAC). This review focuses on the structures, functions, and substrates of these ribosome-associated chaperones and highlights the most recent findings about their potential mechanisms of action.
Collapse
Affiliation(s)
- Elke Deuerling
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Gamerdinger
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan G Kreft
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
19
|
Abrusán G, Marsh JA. Ligand Binding Site Structure Shapes Folding, Assembly and Degradation of Homomeric Protein Complexes. J Mol Biol 2019; 431:3871-3888. [PMID: 31306664 PMCID: PMC6739599 DOI: 10.1016/j.jmb.2019.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Ligand binding site structure has profound consequences for the evolution of function of protein complexes, particularly in homomers—complexes comprising multiple copies of the same protein. Previously, we have shown that homomers with multichain binding sites (MBSs) are characterized by more conserved binding sites and quaternary structure, and qualitatively different allosteric pathways than homomers with single-chain binding sites (SBSs) or monomers. Here, using computational methods, we show that the folds of single-domain MBS and SBS homomers are different, and SBS homomers are likely to be folded cotranslationally, while MBS homomers are more likely to form post-translationally and rely on more advanced folding-assistance and quality control mechanisms, which include chaperonins. In addition, our findings demonstrate that MBS homomers are qualitatively different from monomers, while SBS homomers are much less distinct, supporting the hypothesis that the evolution of quaternary structure in SBS homomers is significantly influenced by stochastic processes.
Collapse
Affiliation(s)
- György Abrusán
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
20
|
Georgescauld F, Wales TE, Engen JR. Hydrogen deuterium exchange mass spectrometry applied to chaperones and chaperone-assisted protein folding. Expert Rev Proteomics 2019; 16:613-625. [DOI: 10.1080/14789450.2019.1633920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Florian Georgescauld
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique, Paris, France
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
21
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
22
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|
23
|
Hiller S. Chaperone-Bound Clients: The Importance of Being Dynamic. Trends Biochem Sci 2019; 44:517-527. [PMID: 30611607 DOI: 10.1016/j.tibs.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Several recent atomic-resolution studies have resolved how chaperones interact with their client proteins. In some cases, molecular chaperones recognize and bind their clients in conformational ensembles that are locally highly dynamic and interconvert, while in other cases clients bind in unique conformations. The presence of a locally dynamic client ensemble state has important consequences, both for the interpretation of experimental data and for the functionality of chaperones, as local dynamics facilitate rapid client release, folding on and from the chaperone surface, and client recognition without shape complementarity. Facilitated by the local dynamics, at least some chaperones appear to specifically recognize energetically frustrated sites of partially folded client proteins, such that the release of frustration contributes to the interaction affinity.
Collapse
|
24
|
Choudhary D, Kragelund BB, Heidarsson PO, Cecconi C. The Complex Conformational Dynamics of Neuronal Calcium Sensor-1: A Single Molecule Perspective. Front Mol Neurosci 2018; 11:468. [PMID: 30618617 PMCID: PMC6304440 DOI: 10.3389/fnmol.2018.00468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023] Open
Abstract
The human neuronal calcium sensor-1 (NCS-1) is a multispecific two-domain EF-hand protein expressed predominantly in neurons and is a member of the NCS protein family. Structure-function relationships of NCS-1 have been extensively studied showing that conformational dynamics linked to diverse ion-binding is important to its function. NCS-1 transduces Ca2+ changes in neurons and is linked to a wide range of neuronal functions such as regulation of neurotransmitter release, voltage-gated Ca2+ channels and neuronal outgrowth. Defective NCS-1 can be deleterious to cells and has been linked to serious neuronal disorders like autism. Here, we review recent studies describing at the single molecule level the structural and mechanistic details of the folding and misfolding processes of the non-myristoylated NCS-1. By manipulating one molecule at a time with optical tweezers, the conformational equilibria of the Ca2+-bound, Mg2+-bound and apo states of NCS-1 were investigated revealing a complex folding mechanism underlain by a rugged and multidimensional energy landscape. The molecular rearrangements that NCS-1 undergoes to transit from one conformation to another and the energetics of these reactions are tightly regulated by the binding of divalent ions (Ca2+ and Mg2+) to its EF-hands. At pathologically high Ca2+ concentrations the protein sometimes follows non-productive misfolding pathways leading to kinetically trapped and potentially harmful misfolded conformations. We discuss the significance of these misfolding events as well as the role of inter-domain interactions in shaping the energy landscape and ultimately the biological function of NCS-1. The conformational equilibria of NCS-1 are also compared to those of calmodulin (CaM) and differences and similarities in the behavior of these proteins are rationalized in terms of structural properties.
Collapse
Affiliation(s)
- Dhawal Choudhary
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy.,Center S3, CNR Institute Nanoscience, Modena, Italy
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy.,Center S3, CNR Institute Nanoscience, Modena, Italy
| |
Collapse
|
25
|
Gestwicki JE, Shao H. Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 2018; 294:2151-2161. [PMID: 30213856 DOI: 10.1074/jbc.tm118.002813] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperones are central mediators of protein homeostasis. In that role, they engage in widespread protein-protein interactions (PPIs) with each other and with their "client" proteins. Together, these PPIs form the backbone of a network that ensures proper vigilance over the processes of protein folding, trafficking, quality control, and degradation. The core chaperones, such as the heat shock proteins Hsp60, Hsp70, and Hsp90, are widely expressed in most tissues, yet there is growing evidence that the PPIs among them may be re-wired in disease conditions. This possibility suggests that these PPIs, and perhaps not the individual chaperones themselves, could be compelling drug targets. Indeed, recent efforts have yielded small molecules that inhibit (or promote) a subset of inter-chaperone PPIs. These chemical probes are being used to study chaperone networks in a range of models, and the successes with these approaches have inspired a community-wide objective to produce inhibitors for a broader set of targets. In this Review, we discuss progress toward that goal and point out some of the challenges ahead.
Collapse
Affiliation(s)
- Jason E Gestwicki
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| | - Hao Shao
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
26
|
Xu L, Gong W, Zhang H, Perrett S, Jones GW. The same but different: the role of Hsp70 in heat shock response and prion propagation. Prion 2018; 12:170-174. [PMID: 30074427 DOI: 10.1080/19336896.2018.1507579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The Hsp70 chaperone machinery is a key component of the heat-shock response and a modulator of prion propagation in yeast. A major factor in optimizing Hsp70 function is the highly coordinated activities of the nucleotide-binding and substrate-binding domains of the protein. Hsp70 inter-domain communication occurs through a bidirectional allosteric interaction network between the two domains. Recent findings identified the β6/β7 region of the substrate-binding domain as playing a critical role in optimizing Hsp70 function in both the stress response and prion propagation and highlighted the allosteric interaction interface between the domains. Importantly, while functional changes in Hsp70 can result in phenotypic consequences for both the stress response and prion propagation, there can be significant differences in the levels of phenotypic impact that such changes illicit.
Collapse
Affiliation(s)
- Linan Xu
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| | - Weibin Gong
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Hong Zhang
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,c University of the Chinese Academy of Sciences , Beijing , China
| | - Sarah Perrett
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,c University of the Chinese Academy of Sciences , Beijing , China
| | - Gary W Jones
- d Centre for Biomedical Science Research, School of Clinical and Applied Sciences , Leeds Beckett University , Leeds , UK
| |
Collapse
|
27
|
Inhibiting the Catalytic Activity of Family GH11 Xylanases by Recombinant Rice Xylanase-Inhibiting Protein. Catal Letters 2018. [DOI: 10.1007/s10562-018-2431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Saio T, Kawagoe S, Ishimori K, Kalodimos CG. Oligomerization of a molecular chaperone modulates its activity. eLife 2018; 7:35731. [PMID: 29714686 PMCID: PMC5988418 DOI: 10.7554/elife.35731] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here, we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100 kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell.
Collapse
Affiliation(s)
- Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Soichiro Kawagoe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
29
|
Zhang Y, Ha T, Marqusee S. Editorial Overview: Single-Molecule Approaches up to Difficult Challenges in Folding and Dynamics. J Mol Biol 2018; 430:405-408. [PMID: 29288633 PMCID: PMC5858691 DOI: 10.1016/j.jmb.2017.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, United States.
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States; Department of Biophysics, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States; Department of Biomedical Engineering, Johns Hopkins University, Howard Hughes Medical Institute, Baltimore, MD 21205, United States.
| | - Susan Marqusee
- Department of Molecular & Cell Biology, Institute for Quantitative Biosciences (QB3)-Berkeley, University of California, Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|