1
|
Souza PCT, Borges-Araújo L, Brasnett C, Moreira RA, Grünewald F, Park P, Wang L, Razmazma H, Borges-Araújo AC, Cofas-Vargas LF, Monticelli L, Mera-Adasme R, Melo MN, Wu S, Marrink SJ, Poma AB, Thallmair S. GōMartini 3: From large conformational changes in proteins to environmental bias corrections. Nat Commun 2025; 16:4051. [PMID: 40307210 PMCID: PMC12043922 DOI: 10.1038/s41467-025-58719-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Coarse-grained modeling has become an important tool to supplement experimental measurements, allowing access to spatio-temporal scales beyond all-atom based approaches. The GōMartini model combines structure- and physics-based coarse-grained approaches, balancing computational efficiency and accurate representation of protein dynamics with the capabilities of studying proteins in different biological environments. This paper introduces an enhanced GōMartini model, which combines a virtual-site implementation of Gō models with Martini 3. The implementation has been extensively tested by the community since the release of the reparametrized version of Martini. This work demonstrates the capabilities of the model in diverse case studies, ranging from protein-membrane binding to protein-ligand interactions and AFM force profile calculations. The model is also versatile, as it can address recent inaccuracies reported in the Martini protein model. Lastly, the paper discusses the advantages, limitations, and future perspectives of the Martini 3 protein model and its combination with Gō models.
Collapse
Affiliation(s)
- Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
| | - Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Rodrigo A Moreira
- NEIKER, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, Spain
| | - Fabian Grünewald
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Peter Park
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Liguo Wang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Hafez Razmazma
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex, France
| | - Ana C Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Luis Fernando Cofas-Vargas
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
| | - Raúl Mera-Adasme
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Sangwook Wu
- PharmCADD, Busan, Republic of Korea
- Department of Physics, Pukyong National University, Busan, Republic of Korea
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands.
| | - Adolfo B Poma
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland.
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Hedger G, Yen HY. The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations. J Mol Biol 2025; 437:168937. [PMID: 39793883 PMCID: PMC7617384 DOI: 10.1016/j.jmb.2025.168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions. More recently, in silico approaches such as molecular dynamics simulations have proven to be an asset in prospectively identifying, characterising, explaining the structural basis of these interactions, and in the best cases providing atomic level testable hypotheses on how such interactions control the function of a given membrane protein. This review details a number of recent seminal discoveries in phosphoinositide biology, enabled by advanced biomolecular simulation, and its integration with molecular biology, biophysical, and structural biology approaches. The results of the simulation studies agree well with experimental work, and in a number of notable cases have arrived at the key conclusion several years in advance of the experimental structures. SUMMARY: Hedger and Yen review developments in simulations of phosphoinositides and membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
3
|
Yu Q, Zou W, Liu K, Sun J, Chao Y, Sun M, Zhang Q, Wang X, Wang X, Ge L. Lipid transport protein ORP2A promotes glucose signaling by facilitating RGS1 degradation. PLANT PHYSIOLOGY 2023; 192:3170-3188. [PMID: 37073508 DOI: 10.1093/plphys/kiad238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Heterotrimeric GTP-binding proteins (G proteins) are a group of regulators essential for signal transmission into cells. Regulator of G protein signaling 1 (AtRGS1) possesses intrinsic GTPase-accelerating protein (GAP) activity and could suppress G protein and glucose signal transduction in Arabidopsis (Arabidopsis thaliana). However, how AtRGS1 activity is regulated is poorly understood. Here, we identified a knockout mutant of oxysterol binding protein-related protein 2A, orp2a-1, which exhibits similar phenotypes to the arabidopsis g-protein beta 1-2 (agb1-2) mutant. Transgenic lines overexpressing ORP2A displayed short hypocotyls, a hypersensitive response to sugar, and lower intracellular AtRGS1 levels than the control. Consistently, ORP2A interacted with AtRGS1 in vitro and in vivo. Tissue-specific expression of 2 ORP2A alternative splicing isoforms implied functions in controlling organ size and shape. Bioinformatic data and phenotypes of orp2a-1, agb1-2, and the orp2a-1 agb1-2 double mutant revealed the genetic interactions between ORP2A and Gβ in the regulation of G protein signaling and sugar response. Both alternative protein isoforms of ORP2A localized in the endoplasmic reticulum (ER), plasma membrane (PM), and ER-PM contact sites and interacted with vesicle-associated membrane protein-associated protein 27-1 (VAP27-1) in vivo and in vitro through their two phenylalanines in an acidic track-like motif. ORP2A also displayed differential phosphatidyl phosphoinositide binding activity mediated by the pleckstrin homology domain in vitro. Taken together, the Arabidopsis membrane protein ORP2A interacts with AtRGS1 and VAP27-1 to positively regulate G protein and sugar signaling by facilitating AtRGS1 degradation.
Collapse
Affiliation(s)
- Qian Yu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenjiao Zou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Kui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jialu Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanru Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Mengyao Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianqian Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaofei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Lei Ge
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Buhr J, Franz F, Gräter F. Intrinsically disordered region of talin's FERM domain functions as an initial PIP 2 recognition site. Biophys J 2023; 122:1277-1286. [PMID: 36814383 PMCID: PMC10111347 DOI: 10.1016/j.bpj.2023.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Focal adhesions (FAs) mediate the interaction of the cytoskeleton with the extracellular matrix in a highly dynamic fashion. Talin is a central regulator, adaptor protein, and mechano-sensor of FA complexes. For recruitment and firm attachment at FAs, talin's N-terminal FERM domain binds to phosphatidylinositol 4,5-bisphosphate (PIP2)-enriched membranes. A newly published autoinhibitory structure of talin-1, where the known PIP2 interaction sites are covered up, lead us to hypothesize that a hitherto less examined loop insertion of the FERM domain acts as an additional and initial site of contact. We evaluated direct interactions of talin-1 with a PIP2 membrane by means of atomistic molecular dynamics simulations. We show that this unstructured, 33-residue-long loop strongly interacts with PIP2 and can facilitate further membrane contacts, including the canonical PIP2 interactions, by serving as a flexible membrane anchor. Under force as present at FAs, the extensible FERM loop ensures talin maintains membrane contacts when pulled away from the membrane by up to 7 nm. We identify key basic residues of the anchor mediating the highly dynamic talin-membrane interaction. Our results put forward an intrinsically disordered loop as a key and highly adaptable PIP2 recognition site of talin and potentially other PIP2-binding mechano-proteins.
Collapse
Affiliation(s)
- Jannik Buhr
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Florian Franz
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Shariatifar H, Farasat A. Affinity enhancement of CR3022 binding to RBD; in silico site directed mutagenesis using molecular dynamics simulation approaches. J Biomol Struct Dyn 2023; 41:81-90. [PMID: 34796779 DOI: 10.1080/07391102.2021.2004230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a disease which caused by a novel beta coronavirus. Structural and non-structural proteins are expressed by the virus gene fragments. The RBD of the S1 protein of the virus has the ability to interact with potent antibodies including CR3022, which was characterized to target the S protein of the virus which can efficiently neutralize the SARS-CoV in vitro and in vivo. In current study, we aimed to design CR3022 based antibody with high affinity compared with wild-type CR3022 using MD simulation method. Two variants were designed based on the amino acid binding conformation and the free binding energy of the critical amino acids which involved in CR3022-RBD interactions were evaluated. In this study three complexes were evaluated; CR3022-RBD, V1-RBD and V2-RBD using molecular dynamics simulations carried out for 100 ns in each case. Then, all the complexes were simulated for 100 ns. In the next step, to calculate the free binding affinity of the wild CR3022 and mutant antibody (V1 and V2) with RBD, the PMF method was performed. The RMSD profile demonstrated that all three complexes were equilibrated after 85 ns. Furthermore, the free binding energy results indicated that the V2-RBD complex has the higher binding affinity than V1-RBD and CR3022-RBD complexes. It should be noted that in above variants, the electrostatic energy and the number of H-bonds between the antibody and RBD increased. Thus, it is suggested that both designed antibodies could be considered as appropriate candidates for covid-19 disease treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hanifeh Shariatifar
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
6
|
Moutoussamy E, Khan HM, Roberts MF, Gershenson A, Chipot C, Reuter N. Standard Binding Free Energy and Membrane Desorption Mechanism for a Phospholipase C. J Chem Inf Model 2022; 62:6602-6613. [PMID: 35343689 PMCID: PMC9795555 DOI: 10.1021/acs.jcim.1c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein-ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein-membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of -8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (-6.6 ± 0.2 kcal/mol). In light of the 2.3-μs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.
Collapse
Affiliation(s)
- Emmanuel
E. Moutoussamy
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Hanif M. Khan
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Mary F. Roberts
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Anne Gershenson
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Christophe Chipot
- Laboratoire
International Associé Centre National de la Recherche Scientifique
et University of Illinois at Urbana−Champaign, Unité
Mixte de Recherche n 7019, Université
de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy cedex, France,Department
of Physics, University of Illinois, Urbana, Illinois 61801, United States
| | - Nathalie Reuter
- Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway,Department
of Chemistry, University of Bergen, N-5020 Bergen, Norway,
| |
Collapse
|
7
|
Prakaash D, Fagnen C, Cook GP, Acuto O, Kalli AC. Molecular dynamics simulations reveal membrane lipid interactions of the full-length lymphocyte specific kinase (Lck). Sci Rep 2022; 12:21121. [PMID: 36476673 PMCID: PMC9729596 DOI: 10.1038/s41598-022-25603-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The membrane-bound lymphocyte-specific protein-tyrosine kinase (Lck) triggers T cell antigen receptor signalling to initiate adaptive immune responses. Despite many structure-function studies, the mode of action of Lck and the potential role of plasma membrane lipids in regulating Lck's activity remains elusive. Advances in molecular dynamics simulations of membrane proteins in complex lipid bilayers have opened a new perspective in gathering such information. Here, we have modelled the full-length Lck open and closed conformations using data available from different crystalographic studies and simulated its interaction with the inner leaflet of the T cell plasma membrane. In both conformations, we found that the unstructured unique domain and the structured domains including the kinase interacted with the membrane with a preference for PIP lipids. Interestingly, our simulations suggest that the Lck-SH2 domain interacts with lipids differently in the open and closed Lck conformations, demonstrating that lipid interaction can potentially regulate Lck's conformation and in turn modulate T cell signalling. Additionally, the Lck-SH2 and kinase domain residues that significantly contacted PIP lipids are found to be conserved among the Src family of kinases, thereby potentially representing similar PIP interactions within the family.
Collapse
Affiliation(s)
- Dheeraj Prakaash
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Charline Fagnen
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Graham P Cook
- School of Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Antreas C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Tubiana T, Sillitoe I, Orengo C, Reuter N. Dissecting peripheral protein-membrane interfaces. PLoS Comput Biol 2022; 18:e1010346. [PMID: 36516231 PMCID: PMC9797079 DOI: 10.1371/journal.pcbi.1010346] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/28/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral membrane proteins (PMPs) include a wide variety of proteins that have in common to bind transiently to the chemically complex interfacial region of membranes through their interfacial binding site (IBS). In contrast to protein-protein or protein-DNA/RNA interfaces, peripheral protein-membrane interfaces are poorly characterized. We collected a dataset of PMP domains representative of the variety of PMP functions: membrane-targeting domains (Annexin, C1, C2, discoidin C2, PH, PX), enzymes (PLA, PLC/D) and lipid-transfer proteins (START). The dataset contains 1328 experimental structures and 1194 AphaFold models. We mapped the amino acid composition and structural patterns of the IBS of each protein in this dataset, and evaluated which were more likely to be found at the IBS compared to the rest of the domains' accessible surface. In agreement with earlier work we find that about two thirds of the PMPs in the dataset have protruding hydrophobes (Leu, Ile, Phe, Tyr, Trp and Met) at their IBS. The three aromatic amino acids Trp, Tyr and Phe are a hallmark of PMPs IBS regardless of whether they protrude on loops or not. This is also the case for lysines but not arginines suggesting that, unlike for Arg-rich membrane-active peptides, the less membrane-disruptive lysine is preferred in PMPs. Another striking observation was the over-representation of glycines at the IBS of PMPs compared to the rest of their surface, possibly procuring IBS loops a much-needed flexibility to insert in-between membrane lipids. The analysis of the 9 superfamilies revealed amino acid distribution patterns in agreement with their known functions and membrane-binding mechanisms. Besides revealing novel amino acids patterns at protein-membrane interfaces, our work contributes a new PMP dataset and an analysis pipeline that can be further built upon for future studies of PMPs properties, or for developing PMPs prediction tools using for example, machine learning approaches.
Collapse
Affiliation(s)
- Thibault Tubiana
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Ian Sillitoe
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Thallmair V, Schultz L, Zhao W, Marrink SJ, Oliver D, Thallmair S. Two cooperative binding sites sensitize PI(4,5)P 2 recognition by the tubby domain. SCIENCE ADVANCES 2022; 8:eabp9471. [PMID: 36070381 PMCID: PMC9451155 DOI: 10.1126/sciadv.abp9471] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 05/22/2023]
Abstract
Phosphoinositides (PIs) are lipid signaling molecules that operate by recruiting proteins to cellular membranes via PI recognition domains. The dominant PI of the plasma membrane is phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. One of only two PI(4,5)P2 recognition domains characterized in detail is the tubby domain. It is essential for targeting proteins into cilia involving reversible membrane association. However, the PI(4,5)P2 binding properties of tubby domains have remained enigmatic. Here, we used coarse-grained molecular dynamics simulations to explore PI(4,5)P2 binding by the prototypic tubby domain. The comparatively low PI(4,5)P2 affinity of the previously described canonical binding site is underpinned in a cooperative manner by a previously unknown, adjacent second binding site. Mutations in the previously unknown site impaired PI(4,5)P2-dependent plasma membrane localization in living cells and PI(4,5)P2 interaction in silico, emphasizing its importance for PI(4,5)P2 affinity. The two-ligand binding mode may serve to sharpen the membrane association-dissociation cycle of tubby-like proteins that underlies delivery of ciliary cargo.
Collapse
Affiliation(s)
- Veronika Thallmair
- Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Marburg, Germany
| | - Lea Schultz
- Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Marburg, Germany
| | - Wencai Zhao
- Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Marburg, Germany
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Marburg, Germany
- Corresponding author. (S.T.); (D.O.)
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
- Corresponding author. (S.T.); (D.O.)
| |
Collapse
|
10
|
Le Huray KIP, Wang H, Sobott F, Kalli AC. Systematic simulation of the interactions of pleckstrin homology domains with membranes. SCIENCE ADVANCES 2022; 8:eabn6992. [PMID: 35857458 PMCID: PMC9258823 DOI: 10.1126/sciadv.abn6992] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Pleckstrin homology (PH) domains can recruit proteins to membranes by recognition of phosphatidylinositol phosphate (PIP) lipids. Several family members are linked to diseases including cancer. We report the systematic simulation of the interactions of 100 mammalian PH domains with PIP-containing membranes. The observed PIP interaction hotspots recapitulate crystallographic binding sites and reveal a number of insights: (i) The β1 and β2 strands and their connecting loop constitute the primary PIP interaction site but are typically supplemented by interactions at the β3-β4 and β5-β6 loops; (ii) we reveal exceptional cases such as the Exoc8 PH domain; (iii) PH domains adopt different membrane-bound orientations and induce clustering of anionic lipids; and (iv) beyond family-level insights, our dataset sheds new light on individual PH domains, e.g., by providing molecular detail of secondary PIP binding sites. This work provides a global view of PH domain/membrane association involving multivalent association with anionic lipids.
Collapse
Affiliation(s)
- Kyle I. P. Le Huray
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - He Wang
- School of Computing, University of Leeds, Leeds, UK
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antreas C. Kalli
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Boyd RJ, Olson TL, Zook JD, Stein D, Aceves M, Lin WH, Craciunescu FM, Hansen DT, Anastasiadis PZ, Singharoy A, Fromme P. Characterization and computational simulation of human Syx, a RhoGEF implicated in glioblastoma. FASEB J 2022; 36:e22378. [PMID: 35639414 PMCID: PMC9262375 DOI: 10.1096/fj.202101808rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
Structural discovery of guanine nucleotide exchange factor (GEF) protein complexes is likely to become increasingly relevant with the development of new therapeutics targeting small GTPases and development of new classes of small molecules that inhibit protein‐protein interactions. Syx (also known as PLEKHG5 in humans) is a RhoA GEF implicated in the pathology of glioblastoma (GBM). Here we investigated protein expression and purification of ten different human Syx constructs and performed biophysical characterizations and computational studies that provide insights into why expression of this protein was previously intractable. We show that human Syx can be expressed and isolated and Syx is folded as observed by circular dichroism (CD) spectroscopy and actively binds to RhoA as determined by co‐elution during size exclusion chromatography (SEC). This characterization may provide critical insights into the expression and purification of other recalcitrant members of the large class of oncogenic—Diffuse B‐cell lymphoma (Dbl) homology GEF proteins. In addition, we performed detailed homology modeling and molecular dynamics simulations on the surface of a physiologically realistic membrane. These simulations reveal novel insights into GEF activity and allosteric modulation by the plekstrin homology (PH) domain. These newly revealed interactions between the GEF PH domain and the membrane embedded region of RhoA support previously unexplained experimental findings regarding the allosteric effects of the PH domain from numerous activity studies of Dbl homology GEF proteins. This work establishes new hypotheses for structural interactivity and allosteric signal modulation in Dbl homology RhoGEFs.
Collapse
Affiliation(s)
- Ryan J Boyd
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Tien L Olson
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - James D Zook
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Derek Stein
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Manuel Aceves
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Felicia M Craciunescu
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA.,Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, USA
| | | | - Abhishek Singharoy
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
12
|
Expression of the GFP-mammalian pleckstrin homology (PH) domain of the phospholipase C δ1 in Saccharomyces cerevisiae BY4741. Mol Biol Rep 2022; 49:4123-4128. [DOI: 10.1007/s11033-022-07414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
13
|
Larsen A, John L, Sansom M, Corey R. Specific interactions of peripheral membrane proteins with lipids: what can molecular simulations show us? Biosci Rep 2022; 42:BSR20211406. [PMID: 35297484 PMCID: PMC9008707 DOI: 10.1042/bsr20211406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral membrane proteins (PMPs) can reversibly and specifically bind to biological membranes to carry out functions such as cell signalling, enzymatic activity, or membrane remodelling. Structures of these proteins and of their lipid-binding domains are typically solved in a soluble form, sometimes with a lipid or lipid headgroup at the binding site. To provide a detailed molecular view of PMP interactions with the membrane, computational methods such as molecular dynamics (MD) simulations can be applied. Here, we outline recent attempts to characterise these binding interactions, focusing on both intracellular proteins, such as phosphatidylinositol phosphate (PIP)-binding domains, and extracellular proteins such as glycolipid-binding bacterial exotoxins. We compare methods used to identify and analyse lipid-binding sites from simulation data and highlight recent work characterising the energetics of these interactions using free energy calculations. We describe how improvements in methodologies and computing power will help MD simulations to continue to contribute to this field in the future.
Collapse
Affiliation(s)
| | - Laura H. John
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | | | - Robin A. Corey
- Department of Biochemistry, University of Oxford, Oxford, U.K
| |
Collapse
|
14
|
Srinivasan S, Vanni S. Computational Approaches to Investigate and Design Lipid-binding Domains for Membrane Biosensing. Chimia (Aarau) 2021; 75:1031-1036. [PMID: 34920773 DOI: 10.2533/chimia.2021.1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Association of proteins with cellular membranes is critical for signaling and membrane trafficking processes. Many peripheral lipid-binding domains have been identified in the last few decades and have been investigated for their specific lipid-sensing properties using traditional in vivo and in vitro studies. However, several knowledge gaps remain owing to intrinsic limitations of these methodologies. Thus, novel approaches are necessary to further our understanding in lipid-protein biology. This review briefly discusses lipid-binding domains that act as specific lipid biosensors and provides a broad perspective on the computational approaches such as molecular dynamics (MD) simulations and machine learning (ML)-based techniques that can be used to study protein-membrane interactions. We also highlight the need for de novo design of proteins that elicit specific lipid-binding properties.
Collapse
Affiliation(s)
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland;,
| |
Collapse
|
15
|
Palmere RD, Case DA, Nieuwkoop AJ. Simulations of Kindlin-2 PIP binding domains reveal protonation-dependent membrane binding modes. Biophys J 2021; 120:5504-5512. [PMID: 34813727 DOI: 10.1016/j.bpj.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Kindlin-2, a member of the Kindlin family of peripheral membrane proteins, is important for integrin activation and stabilization of epidermal growth factor receptor. It associates with the cytoplasmic face of the plasma membrane via dedicated phosphatidylinositol phosphate binding domains located in the N-terminal F0 and Pleckstrin Homology domains. These domains have binding affinity for phosphatidylinositol 4,5-bisphosphate and, to a greater degree, phosphatidylinositol 3,4,5-trisphosphate. The biological significance of the differential binding of these phosphatidylinositol phosphates to Kindlin-2 and the mechanism by which they activate Kindlin-2 are not well understood. Recently, ssNMR identified the predominant protonation states of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate near physiological pH in the presence of anionic lipids. Here, we perform atomistic simulation of the bound state of the Pleckstrin Homology and F0 domains of Kindlin-2 at membranes containing phosphatidylinositol 4,5-bisphosphate/phosphatidylinositol 3,4,5-trisphosphate with differing protonation states. This computational approach demonstrates that these two phosphatidylinositol phosphates differently modulate Kindlin-2 subdomain binding in a protonation-state-dependent manner. We speculate these variations in binding mode provide a mechanism for intracellular pH and Ca2+ influx to control the membrane binding behavior and activity of Kindlin-2.
Collapse
Affiliation(s)
- Robert D Palmere
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey
| | - David A Case
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey.
| |
Collapse
|
16
|
Larsen AH, Tata L, John LH, Sansom MSP. Membrane-binding mechanism of the EEA1 FYVE domain revealed by multi-scale molecular dynamics simulations. PLoS Comput Biol 2021; 17:e1008807. [PMID: 34555023 PMCID: PMC8491906 DOI: 10.1371/journal.pcbi.1008807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/05/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Early Endosomal Antigen 1 (EEA1) is a key protein in endosomal trafficking and is implicated in both autoimmune and neurological diseases. The C-terminal FYVE domain of EEA1 binds endosomal membranes, which contain phosphatidylinositol-3-phosphate (PI(3)P). Although it is known that FYVE binds PI(3)P specifically, it has not previously been described of how FYVE attaches and binds to endosomal membranes. In this study, we employed both coarse-grained (CG) and atomistic (AT) molecular dynamics (MD) simulations to determine how FYVE binds to PI(3)P-containing membranes. CG-MD showed that the dominant membrane binding mode resembles the crystal structure of EEA1 FYVE domain in complex with inositol-1,3-diphospate (PDB ID 1JOC). FYVE, which is a homodimer, binds the membrane via a hinge mechanism, where the C-terminus of one monomer first attaches to the membrane, followed by the C-terminus of the other monomer. The estimated total binding energy is ~70 kJ/mol, of which 50-60 kJ/mol stems from specific PI(3)P-interactions. By AT-MD, we could partition the binding mode into two types: (i) adhesion by electrostatic FYVE-PI(3)P interaction, and (ii) insertion of amphipathic loops. The AT simulations also demonstrated flexibility within the FYVE homodimer between the C-terminal heads and coiled-coil stem. This leads to a dynamic model whereby the 200 nm long coiled coil attached to the FYVE domain dimer can amplify local hinge-bending motions such that the Rab5-binding domain at the other end of the coiled coil can explore an area of 0.1 μm2 in the search for a second endosome with which to interact.
Collapse
Affiliation(s)
| | - Lilya Tata
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Laura H. John
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Larsen AH, Sansom MSP. Binding of Ca 2+-independent C2 domains to lipid membranes: A multi-scale molecular dynamics study. Structure 2021; 29:1200-1213.e2. [PMID: 34081910 PMCID: PMC8507603 DOI: 10.1016/j.str.2021.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023]
Abstract
C2 domains facilitate protein interactions with lipid bilayers in either a Ca2+-dependent or -independent manner. We used molecular dynamics (MD) simulations to explore six Ca2+-independent C2 domains, from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2. In coarse-grained MD simulations these C2 domains formed transient interactions with zwitterionic bilayers, compared with longer-lived interactions with anionic bilayers containing phosphatidylinositol bisphosphate (PIP2). Type I C2 domains bound non-canonically via the front, back, or side of the β sandwich, whereas type II C2 domains bound canonically, via the top loops. C2 domains interacted strongly with membranes containing PIP2, causing bound anionic lipids to cluster around the protein. Binding modes were refined via atomistic simulations. For PTEN and SHIP2, CG simulations of their phosphatase plus C2 domains with PIP2-containing bilayers were also performed, and the roles of the two domains in membrane localization compared. These studies establish a simulation protocol for membrane-recognition proteins. Binding of Ca2+-independent C2 domains to membranes was explored by MD simulation C2 domains from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2 were compared C2 domains formed longer-lived interactions with lipid bilayers containing PIP2 For PTEN and SHIP2, simulations of their phosphatase plus C2 domains were performed
Collapse
Affiliation(s)
- Andreas Haahr Larsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
18
|
Baratam K, Jha K, Srivastava A. Flexible pivoting of dynamin pleckstrin homology domain catalyzes fission: insights into molecular degrees of freedom. Mol Biol Cell 2021; 32:1306-1319. [PMID: 33979205 PMCID: PMC8351549 DOI: 10.1091/mbc.e20-12-0794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The neuronal dynamin1 functions in the release of synaptic vesicles by orchestrating the process of GTPase-dependent membrane fission. Dynamin1 associates with the plasma membrane–localized phosphatidylinositol-4,5-bisphosphate (PIP2) through the centrally located pleckstrin homology domain (PHD). The PHD is dispensable as fission (in model membranes) can be managed, even when the PHD-PIP2 interaction is replaced by a generic polyhistidine- or polylysine-lipid interaction. However, the absence of the PHD renders a dramatic dampening of the rate of fission. These observations suggest that the PHD-PIP2–containing membrane interaction could have evolved to expedite fission to fulfill the requirement of rapid kinetics of synaptic vesicle recycling. Here, we use a suite of multiscale modeling approaches to explore PHD–membrane interactions. Our results reveal that 1) the binding of PHD to PIP2-containing membranes modulates the lipids toward fission-favoring conformations and softens the membrane, and 2) PHD associates with membrane in multiple orientations using variable loops as pivots. We identify a new loop (VL4), which acts as an auxiliary pivot and modulates the orientation flexibility of PHD on the membrane—a mechanism that we believe may be important for high-fidelity dynamin collar assembly. Together, these insights provide a molecular-level understanding of the catalytic role of PHD in dynamin-mediated membrane fission.
Collapse
Affiliation(s)
| | - Kirtika Jha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
19
|
de Jong F, Munnik T. Attracted to membranes: lipid-binding domains in plants. PLANT PHYSIOLOGY 2021; 185:707-723. [PMID: 33793907 PMCID: PMC8133573 DOI: 10.1093/plphys/kiaa100] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 05/18/2023]
Abstract
Membranes are essential for cells and organelles to function. As membranes are impermeable to most polar and charged molecules, they provide electrochemical energy to transport molecules across and create compartmentalized microenvironments for specific enzymatic and cellular processes. Membranes are also responsible for guided transport of cargoes between organelles and during endo- and exocytosis. In addition, membranes play key roles in cell signaling by hosting receptors and signal transducers and as substrates and products of lipid second messengers. Anionic lipids and their specific interaction with target proteins play an essential role in these processes, which are facilitated by specific lipid-binding domains. Protein crystallography, lipid-binding studies, subcellular localization analyses, and computer modeling have greatly advanced our knowledge over the years of how these domains achieve precision binding and what their function is in signaling and membrane trafficking, as well as in plant development and stress acclimation.
Collapse
Affiliation(s)
- Femke de Jong
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Teun Munnik
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Palukaitis P, Kim S. Resistance to Turnip Mosaic Virus in the Family Brassicaceae. THE PLANT PATHOLOGY JOURNAL 2021; 37:1-23. [PMID: 33551693 PMCID: PMC7847761 DOI: 10.5423/ppj.rw.09.2020.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women’s University, Seoul 0797, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| | - Su Kim
- Institute of Plant Analysis Technology Development, The Saeron Co., Suwon 16648, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| |
Collapse
|
21
|
Ahmadi K, Farasat A, Rostamian M, Johari B, Madanchi H. Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: an in silico drug repurposing study. J Biomol Struct Dyn 2021; 40:5566-5576. [PMID: 33438525 PMCID: PMC7814568 DOI: 10.1080/07391102.2021.1871958] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regarding the urgency of therapeutic measures for coronavirus disease 2019 (COVID-19) pandemic, the use of available drugs with FDA approval is preferred because of the less time and cost required for their development. In silico drug repurposing is an accurate way to speed up the screening of the existing FDA-approved drugs to find a therapeutic option for COVID-19. The similarity in SARS-CoV-2 and HIV-1 fusion mechanism to host cells can be a key point for Inhibit SARS-CoV-2 entry into host cells by HIV fusion inhibitors. Accordingly, in this study, an HIV-1 fusion inhibitor called Enfuvirtide (Enf) was selected. The affinity and essential residues involving in the Enf binding to the S2 protein of SARS-CoV-2, HIV-1 gp41 protein and angiotensin-converting enzyme 2 (ACE-2) as a negative control, was evaluated using molecular docking. Eventually, Enf-S2 and Enf-gp41 protein complexes were simulated by molecular dynamics (MD) in terms of binding affinity and stability. Based on the most important criteria such as docking score, cluster size, energy and dissociation constant, the strongest interaction was observed between Enf with the S2 protein. In addition, MD results confirmed that Enf-S2 protein interaction was remarkably stable and caused the S2 protein residues to undergo the fewest fluctuations. In conclusion, it can be stated that Enf can act as a strong SARS-CoV-2 fusion inhibitor and demonstrates the potential to enter the clinical trial phase of COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
23
|
Pipatpolkai T, Corey RA, Proks P, Ashcroft FM, Stansfeld PJ. Evaluating inositol phospholipid interactions with inward rectifier potassium channels and characterising their role in disease. Commun Chem 2020; 3:147. [PMID: 36703430 PMCID: PMC9814360 DOI: 10.1038/s42004-020-00391-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/17/2020] [Indexed: 01/29/2023] Open
Abstract
Membrane proteins are frequently modulated by specific protein-lipid interactions. The activation of human inward rectifying potassium (hKir) channels by phosphoinositides (PI) has been well characterised. Here, we apply a coarse-grained molecular dynamics free-energy perturbation (CG-FEP) protocol to capture the energetics of binding of PI lipids to hKir channels. By using either a single- or multi-step approach, we establish a consistent value for the binding of PIP2 to hKir channels, relative to the binding of the bulk phosphatidylcholine phospholipid. Furthermore, by perturbing amino acid side chains on hKir6.2, we show that the neonatal diabetes mutation E179K increases PIP2 affinity, while the congenital hyperinsulinism mutation K67N results in a reduced affinity. We show good agreement with electrophysiological data where E179K exhibits a reduction in neomycin sensitivity, implying that PIP2 binds more tightly E179K channels. This illustrates the application of CG-FEP to compare affinities between lipid species, and for annotating amino acid residues.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, OX1 3PT, UK
| | - Robin A Corey
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter Proks
- Department of Physiology Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, OX1 3PT, UK
| | - Frances M Ashcroft
- Department of Physiology Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, OX1 3PT, UK.
| | - Phillip J Stansfeld
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, OX1 3PT, UK.
- Department of Chemistry, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
24
|
Banerjee S, Kane PM. Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Front Cell Dev Biol 2020; 8:510. [PMID: 32656214 PMCID: PMC7324685 DOI: 10.3389/fcell.2020.00510] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Luminal pH and the distinctive distribution of phosphatidylinositol phosphate (PIP) lipids are central identifying features of organelles in all eukaryotic cells that are also critical for organelle function. V-ATPases are conserved proton pumps that populate and acidify multiple organelles of the secretory and the endocytic pathway. Complete loss of V-ATPase activity causes embryonic lethality in higher animals and conditional lethality in yeast, while partial loss of V-ATPase function is associated with multiple disease states. On the other hand, many cancer cells increase their virulence by upregulating V-ATPase expression and activity. The pH of individual organelles is tightly controlled and essential for function, but the mechanisms for compartment-specific pH regulation are not completely understood. There is substantial evidence indicating that the PIP content of membranes influences organelle pH. We present recent evidence that PIPs interact directly with subunit isoforms of the V-ATPase to dictate localization of V-ATPase subpopulations and participate in their regulation. In yeast cells, which have only one set of organelle-specific V-ATPase subunit isoforms, the Golgi-enriched lipid PI(4)P binds to the cytosolic domain of the Golgi-enriched a-subunit isoform Stv1, and loss of PI(4)P binding results in mislocalization of Stv1-containing V-ATPases from the Golgi to the vacuole/lysosome. In contrast, levels of the vacuole/lysosome-enriched signaling lipid PI(3,5)P2 affect assembly and activity of V-ATPases containing the Vph1 a-subunit isoform. Mutations in the Vph1 isoform that disrupt the lipid interaction increase sensitivity to stress. These studies have decoded “zip codes” for PIP lipids in the cytosolic N-terminal domain of the a-subunit isoforms of the yeast V-ATPase, and similar interactions between PIP lipids and the V-ATPase subunit isoforms are emerging in higher eukaryotes. In addition to direct effects on the V-ATPase, PIP lipids are also likely to affect organelle pH indirectly, through interactions with other membrane transporters. We discuss direct and indirect effects of PIP lipids on organelle pH, and the functional consequences of the interplay between PIP lipid content and organelle pH.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
25
|
Khan HM, Souza PCT, Thallmair S, Barnoud J, de Vries AH, Marrink SJ, Reuter N. Capturing Choline-Aromatics Cation-π Interactions in the MARTINI Force Field. J Chem Theory Comput 2020; 16:2550-2560. [PMID: 32096995 PMCID: PMC7175457 DOI: 10.1021/acs.jctc.9b01194] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Cation−π
interactions play an important
role in biomolecular recognition, including interactions between membrane
phosphatidylcholine lipids and aromatic amino acids of peripheral
proteins. While molecular mechanics coarse grain (CG) force fields
are particularly well suited to simulate membrane proteins in general,
they are not parameterized to explicitly reproduce cation−π
interactions. We here propose a modification of the polarizable MARTINI
coarse grain (CG) model enabling it to model membrane binding events
of peripheral proteins whose aromatic amino acid interactions with
choline headgroups are crucial for their membrane binding. For this
purpose, we first collected and curated a dataset of eight peripheral
proteins from different families. We find that the MARTINI CG model
expectedly underestimates aromatics–choline interactions and
is unable to reproduce membrane binding of the peripheral proteins
in our dataset. Adjustments of the relevant interactions in the polarizable
MARTINI force field yield significant improvements in the observed
binding events. The orientation of each membrane-bound protein is
comparable to reference data from all-atom simulations and experimental
binding data. We also use negative controls to ensure that choline–aromatics
interactions are not overestimated. We finally check that membrane
properties, transmembrane proteins, and membrane translocation potential
of mean force (PMF) of aromatic amino acid side-chain analogues are
not affected by the new parameter set. This new version “MARTINI
2.3P” is a significant improvement over its predecessors and
is suitable for modeling membrane proteins including peripheral membrane
binding of peptides and proteins.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway.,Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway.,Department of Chemistry, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
26
|
Corey RA, Stansfeld PJ, Sansom MS. The energetics of protein-lipid interactions as viewed by molecular simulations. Biochem Soc Trans 2020; 48:25-37. [PMID: 31872229 PMCID: PMC7054751 DOI: 10.1042/bst20190149] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Membranes are formed from a bilayer containing diverse lipid species with which membrane proteins interact. Integral, membrane proteins are embedded in this bilayer, where they interact with lipids from their surroundings, whilst peripheral membrane proteins bind to lipids at the surface of membranes. Lipid interactions can influence the function of membrane proteins, either directly or allosterically. Both experimental (structural) and computational approaches can reveal lipid binding sites on membrane proteins. It is, therefore, important to understand the free energies of these interactions. This affords a more complete view of the engagement of a particular protein with the biological membrane surrounding it. Here, we describe many computational approaches currently in use for this purpose, including recent advances using both free energy and unbiased simulation methods. In particular, we focus on interactions of integral membrane proteins with cholesterol, and with anionic lipids such as phosphatidylinositol 4,5-bis-phosphate and cardiolipin. Peripheral membrane proteins are exemplified via interactions of PH domains with phosphoinositide-containing membranes. We summarise the current state of the field and provide an outlook on likely future directions of investigation.
Collapse
Affiliation(s)
- Robin A. Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
27
|
Yamamoto E, Domański J, Naughton FB, Best RB, Kalli AC, Stansfeld PJ, Sansom MSP. Multiple lipid binding sites determine the affinity of PH domains for phosphoinositide-containing membranes. SCIENCE ADVANCES 2020; 6:eaay5736. [PMID: 32128410 PMCID: PMC7030919 DOI: 10.1126/sciadv.aay5736] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 05/19/2023]
Abstract
Association of peripheral proteins with lipid bilayers regulates membrane signaling and dynamics. Pleckstrin homology (PH) domains bind to phosphatidylinositol phosphate (PIP) molecules in membranes. The effects of local PIP enrichment on the interaction of PH domains with membranes is unclear. Molecular dynamics simulations allow estimation of the binding energy of GRP1 PH domain to PIP3-containing membranes. The free energy of interaction of the PH domain with more than two PIP3 molecules is comparable to experimental values, suggesting that PH domain binding involves local clustering of PIP molecules within membranes. We describe a mechanism of PH binding proceeding via an encounter state to two bound states which differ in the orientation of the protein relative to the membrane, these orientations depending on the local PIP concentration. These results suggest that nanoscale clustering of PIP molecules can control the strength and orientation of PH domain interaction in a concentration-dependent manner.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Jan Domański
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Fiona B. Naughton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Antreas C. Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
28
|
Gheibi N, Ghorbani M, Shariatifar H, Farasat A. In silico assessment of human Calprotectin subunits (S100A8/A9) in presence of sodium and calcium ions using Molecular Dynamics simulation approach. PLoS One 2019; 14:e0224095. [PMID: 31622441 PMCID: PMC6797115 DOI: 10.1371/journal.pone.0224095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Calprotectin is a heterodimeric protein complex which consists of two subunits including S100A8 and S100A9. This protein has a major role in different inflammatory disease and various types of cancers. In current study we aimed to evaluate the structural and thermodynamic changes of the subunits and the complex in presence of sodium and calcium ions using molecular dynamics (MD) simulation. Therefore, the residue interaction network (RIN) was visualized in Cytoscape program. In next step, to measure the binding free energy, the potential of mean force (PMF) method was performed. Finally, the molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method was applied as an effective tool to calculate the molecular model affinities. The MD simulation results of the subunits represented their structural changes in presence of Ca2+. Moreover, the RIN and Hydrogen bond analysis demonstrated that cluster interactions between Calprotectin subunits in presence of Ca2+ were greater in comparison with Na+. Our findings indicated that the binding free energy of the subunits in presence of Ca2+ was significantly greater than Na+. The results revealed that Ca2+ has the ability to induce structural changes in subunits in comparison with Na+ which lead to create stronger interactions between. Hence, studying the physical characteristics of the human proteins could be considered as a powerful tool in theranostics and drug design purposes.
Collapse
Affiliation(s)
- Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Ghorbani
- Department of Nanobiotechnology/ Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hanifeh Shariatifar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
29
|
Amos SBTA, Kalli AC, Shi J, Sansom MSP. Membrane Recognition and Binding by the Phosphatidylinositol Phosphate Kinase PIP5K1A: A Multiscale Simulation Study. Structure 2019; 27:1336-1346.e2. [PMID: 31204251 PMCID: PMC6688827 DOI: 10.1016/j.str.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 11/28/2022]
Abstract
Phosphatidylinositol phosphates (PIPs) are lipid signaling molecules that play key roles in many cellular processes. PIP5K1A kinase catalyzes phosphorylation of PI4P to form PIP2, which in turn interacts with membrane and membrane-associated proteins. We explore the mechanism of membrane binding by the PIP5K1A kinase using a multiscale molecular dynamics approach. Coarse-grained simulations show binding of monomeric PIP5K1A to a model cell membrane containing PI4P. PIP5K1A did not bind to zwitterionic or anionic membranes lacking PIP molecules. Initial encounter of kinase and bilayer was followed by reorientation to enable productive binding to the PI4P-containing membrane. The simulations suggest that unstructured regions may be important for the preferred orientation for membrane binding. Atomistic simulations indicated that the dimeric kinase could not bind to the membrane via both active sites at the same time, suggesting a conformational change in the protein and/or bilayer distortion may be needed for dual-site binding to occur. PIP5K1A kinase interacts with PIP-containing membranes via its activation loop PIP5K1A does not bind to zwitterionic or anionic membranes lacking PIP molecules Initial encounter of protein and bilayer is followed by reorientation and binding Dimeric PIP5K1A binds with membrane contacts via only one catalytic site at a time
Collapse
Affiliation(s)
- Sarah-Beth T A Amos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jiye Shi
- UCB Pharma, 208 Bath Road, Slough SL1 3WE, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
30
|
Nepal B, Leveritt J, Lazaridis T. Membrane Curvature Sensing by Amphipathic Helices: Insights from Implicit Membrane Modeling. Biophys J 2019; 114:2128-2141. [PMID: 29742406 DOI: 10.1016/j.bpj.2018.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023] Open
Abstract
Sensing and generation of lipid membrane curvature, mediated by the binding of specific proteins onto the membrane surface, play crucial roles in cell biology. A number of mechanisms have been proposed, but the molecular understanding of these processes is incomplete. All-atom molecular dynamics simulations have offered valuable insights but are extremely demanding computationally. Implicit membrane simulations could provide a viable alternative, but current models apply only to planar membranes. In this work, the implicit membrane model 1 is extended to spherical and tubular membranes. The geometric change from planar to curved shapes is straightforward but insufficient for capturing the full curvature effect, which includes changes in lipid packing. Here, these packing effects are taken into account via the lateral pressure profile. The extended implicit membrane model 1 is tested on the wild-types and mutants of the antimicrobial peptide magainin, the ALPS motif of arfgap1, α-synuclein, and an ENTH domain. In these systems, the model is in qualitative agreement with experiments. We confirm that favorable electrostatic interactions tend to weaken curvature sensitivity in the presence of strong hydrophobic interactions but may actually have a positive effect when those are weak. We also find that binding to vesicles is more favorable than binding to tubes of the same diameter and that the long helix of α-synuclein tends to orient along the axis of tubes, whereas shorter helices tend to orient perpendicular to it. Adoption of a specific orientation could provide a mechanism for coupling protein oligomerization to tubule formation.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York
| | - John Leveritt
- Department of Chemistry, Newman University, Wichita, Kansas
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York.
| |
Collapse
|
31
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Rubio B, Cosson P, Caballero M, Revers F, Bergelson J, Roux F, Schurdi-Levraud V. Genome-wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (TuMV) interactions in the field. THE NEW PHYTOLOGIST 2019; 221:2026-2038. [PMID: 30282123 DOI: 10.1111/nph.15507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 05/12/2023]
Abstract
The genetic architecture of plant response to viruses has often been studied in model nonnatural pathosystems under controlled conditions. There is an urgent need to elucidate the genetic architecture of the response to viruses in a natural setting. A field experiment was performed in each of two years. In total, 317 Arabidopsis thaliana accessions were inoculated with its natural Turnip mosaic virus (TuMV). The accessions were phenotyped for viral accumulation, frequency of infected plants, stem length and symptoms. Genome-wide association mapping was performed. Arabidopsis thaliana exhibits extensive natural variation in its response to TuMV in the field. The underlying genetic architecture reveals a more quantitative picture than in controlled conditions. Ten genomic regions were consistently identified across the two years. RTM3 (Restricted TEV Movement 3) is a major candidate for the response to TuMV in the field. New candidate genes include Dead box helicase 1, a Tim Barrel domain protein and the eukaryotic translation initiation factor eIF3b. To our knowledge, this study is the first to report the genetic architecture of quantitative response of A. thaliana to a naturally occurring virus in a field environment, thereby highlighting relevant candidate genes involved in plant virus interactions in nature.
Collapse
Affiliation(s)
- Bernadette Rubio
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Patrick Cosson
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Mélodie Caballero
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Frédéric Revers
- INRA, UMR 1202 BIOGECO, Université de Bordeaux, 69 Route d'Arcachon, 33612, Cestas Cedex, France
| | - Joy Bergelson
- Ecology & Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Fabrice Roux
- LIPM, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Valérie Schurdi-Levraud
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| |
Collapse
|
33
|
Mallikarjunaiah KJ, Kinnun JJ, Petrache HI, Brown MF. Flexible lipid nanomaterials studied by NMR spectroscopy. Phys Chem Chem Phys 2019; 21:18422-18457. [DOI: 10.1039/c8cp06179c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in solid-state nuclear magnetic resonance spectroscopy inform the emergence of material properties from atomistic-level interactions in membrane lipid nanostructures.
Collapse
Affiliation(s)
- K. J. Mallikarjunaiah
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| | - Jacob J. Kinnun
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Horia I. Petrache
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| |
Collapse
|
34
|
Janmey PA, Bucki R, Radhakrishnan R. Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms. Biochem Biophys Res Commun 2018; 506:307-314. [PMID: 30139519 DOI: 10.1016/j.bbrc.2018.07.155] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/21/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023]
Abstract
Actin cytoskeleton dynamics depend on a tight regulation of actin filament formation from an intracellular pool of monomers, followed by their linkage to each other or to cell membranes, followed by their depolymerization into a fresh pool of actin monomers. The ubiquitous requirement for continuous actin remodeling that is necessary for many cellular functions is orchestrated in large part by actin binding proteins whose affinity for actin is altered by inositol phospholipids, most prominently PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate). The kinetics of PI(4,5)P2 synthesis and hydrolysis, its lateral distribution within the lipid bilayer, and coincident detection of PI(4,5)P2 and another signal, all play a role in determining when and where a particular PI(4,5)P2-regulated protein is inactivated or activated to exert its effect on the actin cytoskeleton. This review summarizes a range of models that have been developed to explain how PI(4,5)P2 might function in the complex chemical and structural environment of the cell based on a combination of experiment and computational studies.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert Bucki
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Kalli AC, Reithmeier RAF. Interaction of the human erythrocyte Band 3 anion exchanger 1 (AE1, SLC4A1) with lipids and glycophorin A: Molecular organization of the Wright (Wr) blood group antigen. PLoS Comput Biol 2018; 14:e1006284. [PMID: 30011272 PMCID: PMC6080803 DOI: 10.1371/journal.pcbi.1006284] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/07/2018] [Accepted: 06/08/2018] [Indexed: 11/29/2022] Open
Abstract
The Band 3 (AE1, SLC4A1) membrane protein is found in red blood cells and in kidney where it functions as an electro-neutral chloride/bicarbonate exchanger. In this study, we have used molecular dynamics simulations to provide the first realistic model of the dimeric membrane domain of human Band 3 in an asymmetric lipid bilayer containing a full complement of phospholipids, including phosphatidylinositol 4,5–bisphosphate (PIP2) and cholesterol, and its partner membrane protein Glycophorin A (GPA). The simulations show that the annular layer in the inner leaflet surrounding Band 3 was enriched in phosphatidylserine and PIP2 molecules. Cholesterol was also enriched around Band 3 but also at the dimer interface. The interaction of these lipids with specific sites on Band 3 may play a role in the folding and function of this anion transport membrane protein. GPA associates with Band 3 to form the Wright (Wr) blood group antigen, an interaction that involves an ionic bond between Glu658 in Band 3 and Arg61 in GPA. We were able to recreate this complex by performing simulations to allow the dimeric transmembrane portion of GPA to interact with Band 3 in a model membrane. Large-scale simulations showed that the GPA dimer can bridge Band 3 dimers resulting in the dynamic formation of long strands of alternating Band 3 and GPA dimers. Human Band 3 (AE1, SLC4A1), an abundant 911 amino acid glycoprotein, catalyzes the exchange of bicarbonate and chloride across the red blood cell membrane, a process necessary for efficient respiration. Malfunction of Band 3 leads to inherited diseases such as Southeast Asian Ovalocytosis, hereditary spherocytosis and distal renal tubular acidosis. Despite much available structural and functional data about Band 3, key questions about the conformational changes associated with transport and the molecular details of its interaction with lipids and other proteins remain unanswered. In this study, we have used computer simulations to investigate the dynamics of Band 3 in lipid bilayers that resemble the red blood cell plasma membrane. Our results suggest that negatively charged phospholipids and cholesterol interact strongly with Band 3 forming an annulus around the protein. Glycophorin A (GPA) interacts with Band 3 to form the Wright (Wr) blood group antigen. We were able to recreate this complex and show that GPA promotes the clustering of Band 3 in red blood cell membranes. Understanding the molecular details of the interaction of Band 3 with GPA has provided new insights into the nature of the Wright blood group antigen.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | | |
Collapse
|
36
|
Chavent M, Karia D, Kalli AC, Domański J, Duncan AL, Hedger G, Stansfeld PJ, Seiradake E, Jones EY, Sansom MSP. Interactions of the EphA2 Kinase Domain with PIPs in Membranes: Implications for Receptor Function. Structure 2018; 26:1025-1034.e2. [PMID: 29887500 PMCID: PMC6039763 DOI: 10.1016/j.str.2018.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/15/2018] [Accepted: 05/08/2018] [Indexed: 11/29/2022]
Abstract
EphA2 is a member of the receptor tyrosine kinase family. Interactions of the cytoplasmic region of EphA2 with the cell membrane are functionally important and yet remain incompletely characterized. Molecular dynamics simulations combined with biochemical studies reveal the interactions of the transmembrane, juxtamembrane (JM), and kinase domains with the membrane. We describe how the kinase domain is oriented relative to the membrane and how the JM region can modulate this interaction. We highlight the role of phosphatidylinositol phosphates (PIPs) in mediating the interaction of the kinase domain with the membrane and, conversely, how positively charged patches at the kinase surface and in the JM region induce the formation of nanoclusters of PIP molecules in the membrane. Integration of these results with those from previous studies enable computational reconstitution of a near complete EphA2 receptor within a membrane, suggesting a role for receptor-lipid interactions in modulation of EphA2.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antreas C Kalli
- Leeds Institute of Cancer and Pathology, St James's University Hospital, University of Leeds, Leeds, UK
| | - Jan Domański
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - George Hedger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
37
|
Kerr D, Tietjen GT, Gong Z, Tajkhorshid E, Adams EJ, Lee KYC. Sensitivity of peripheral membrane proteins to the membrane context: A case study of phosphatidylserine and the TIM proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2126-2133. [PMID: 29920237 DOI: 10.1016/j.bbamem.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
There is a diverse class of peripheral membrane-binding proteins that specifically bind phosphatidylserine (PS), a lipid that signals apoptosis or cell fusion depending on the membrane context of its presentation. PS-receptors are specialized for particular PS-presenting pathways, indicating that they might be sensitive to the membrane context. In this review, we describe a combination of thermodynamic, structural, and computational techniques that can be used to investigate the mechanisms underlying this sensitivity. As an example, we focus on three PS-receptors of the T-cell Immunoglobulin and Mucin containing (TIM) protein family, which we have previously shown to differ in their sensitivity to PS surface density.
Collapse
Affiliation(s)
- Daniel Kerr
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Gregory T Tietjen
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Zhiliang Gong
- Department of Chemistry, The University of Chicago, Chicago, IL, United States of America
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology and Committee on Immunology, The University of Chicago, Chicago, IL, United States of America
| | - Ka Yee C Lee
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America; Department of Chemistry, The University of Chicago, Chicago, IL, United States of America; James Franck Institute, The University of Chicago, Chicago, IL, United States of America.
| |
Collapse
|