1
|
Liu J, Zhang WG, Rao ZM. Transcriptional regulator-based biosensors for biomanufacturing in Corynebacterium glutamicum. Microbiol Res 2025; 297:128169. [PMID: 40209574 DOI: 10.1016/j.micres.2025.128169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Intracellular biosensors based on transcriptional regulators have become essential instruments in biomanufacturing, extensively employed for the semi-quantitative assessment of intracellular metabolites, high-throughput screening of production strains, and the directed evolution of enzymes. Corynebacterium glutamicum serves as an industrial chassis for the production of amino acids and a variety of high-value-added chemicals. This paper discusses the varieties and modes of action of transcriptional regulators employed in the construction of intracellular biosensors in C. glutamicum. It also reviews the design principles and progress in the application of transcriptional regulator-based biosensors. Furthermore, measures designed to improve the efficacy of these biosensors are delineated. The challenges and future prospects of biosensors based on transcriptional regulators in practical applications are analyzed. This review seeks to offer theoretical direction for the systematic design and development of transcriptional regulator-based biosensors and to aid researchers in enhancing the growth and productivity of microbial production strains.
Collapse
Affiliation(s)
- Jie Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, 18# Beijing Middle Road, WuHu 241000, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, PR China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, PR China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, PR China
| |
Collapse
|
2
|
Mishra A, Jackson AE, Wang X, Kearns DB. The SinR·SlrR Heteromer Attenuates Transcription of a Long Operon of Flagellar Genes in Bacillus subtilis. J Mol Biol 2025; 437:169123. [PMID: 40187681 PMCID: PMC12077376 DOI: 10.1016/j.jmb.2025.169123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
During growth, Bacillus subtilis differentiates into subpopulations of motile individuals and non-motile chains, associated with dispersal and biofilm formation, respectively. The two cell types are dictated by the activity of the alternative sigma factor SigD encoded as the penultimate gene of the 27-kb long fla/che flagellar operon. The frequency of SigD-ON motile cells is increased by the heteromeric transcription factor SwrA·DegU that activates the fla/che promoter. Conversely, the frequency of motile cells is decreased by the heteromeric transcription factor SinR·SlrR, but the mechanism and location of inhibition is poorly understood. Here, using ChIP-Seq analysis, we determine the binding sites of the SinR·SlrR heteromer on the genome. We identified two sites within the fla/che operon that were necessary and sufficient to attenuate transcript abundance by causing premature termination upstream of the gene that encodes SigD. Thus, cell motility and the transition to biofilm formation depend on the expression of a long operon governed by two opposing heteromeric transcription factors that operate at two different stages of the transcription cycle. More broadly, our study serves as a model for transcription factors that control transcriptional elongation and the regulation of long operons in bacteria.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
A Farrugia M, Rajagopalan R, Kroos L. Transcriptomic analysis of Myxococcus xanthus csgA, fruA, and mrpC mutants reveals extensive and diverse roles of key regulators in the multicellular developmental process. BMC Genomics 2025; 26:355. [PMID: 40200151 PMCID: PMC11980068 DOI: 10.1186/s12864-025-11417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The bacterium Myxococcus xanthus provides an important multicellular model for understanding stress responses. The regulatory proteins CsgA, FruA, and MrpC are essential to survive prolonged starvation by forming fruiting bodies, which are mounds containing hardy round spores formed from vegetative rods, but the genome-wide pathways affected by these proteins remain poorly understood. Only a fruA mutant transcriptome and MrpC ChIP-seq have been reported. We describe RNA-seq transcriptome analysis of csgA, fruA, and mrpC mutants relative to a wild-type laboratory strain midway during the starvation-induced developmental process, when mounds, but not spores, have formed. RESULTS We show that CsgA, FruA, and MrpC broadly impact developmental gene expression, with over 60% of the genes differentially expressed in one or more mutants. Building upon previous investigations, we found that strongly regulated genes in the mrpC mutant correlate with MrpC DNA-binding sites located ~ 80 bp upstream of transcriptional start sites. We also confirmed that FruA directly or indirectly regulates many genes negatively, as well as many others positively. CsgA regulates indirectly and its strongest effects are positive. MrpC strongly stimulates fruA transcription and FruA accumulation, impacting many genes, but our results reveal that MrpC is also a strong negative or positive regulator of hundreds of genes independently of FruA. Indeed, we observed nearly every possible pattern of coregulation, unique regulation, and counterregulation by comparing the wild-type and mutant transcriptomes, indicating diverse roles of CsgA, FruA, and MrpC in the developmental gene regulatory network. The genes most strongly regulated were coregulated in two or three of the mutants. Each set of genes exhibiting differential expression in one or more mutants was analyzed for enrichment of gene ontology (GO) terms or KEGG pathways, and predicted protein-protein interactions. These analyses highlighted enrichment of pathways involved in cellular signaling, protein synthesis, energetics, and envelope function. In particular, we describe how CsgA, FruA, and MrpC control production of ribosomes, lipid signals, and peptidoglycan intermediates during development. CONCLUSIONS By comparing wild-type and mutant transcriptomes midway in development, this study documents individual and coordinate regulation of crucial pathways by CsgA, FruA, and MrpC, providing a valuable resource for future investigations.
Collapse
Affiliation(s)
- Mark A Farrugia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ramya Rajagopalan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, GA, USA.
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Bai Y, Liang T, Zhao J, Lin Y, Lu Q, Zhou X, Yang M, Zhong X. The Two-Component System TtrRS Regulates the Expression of the 05890-05900 Operon that Promotes the Sulfur Metabolism of Vibrio parahaemolyticus. Curr Microbiol 2025; 82:136. [PMID: 39953365 DOI: 10.1007/s00284-025-04115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
The marine bacterium Vibrio parahaemolyticus is responsible for the seafood-borne gastroenteritis in humans. Two-component system (TCS) TtrRS plays important roles in host colonization and works as an important regulator in V. parahaemolyticus. However, the mechanisms by which TtrRS regulates the downstream genes, as well as the function of their target genes, remain largely unknown. In this study, we performed a Find Individual Motif Occurrences (FIMO) analysis using the ttrR box to scan the V. parahaemolyticus genome and identified 68 potential binding sites harboring the ttrR box. Thereinto, a ttrR box exists in the promoter region of the 05890-05900 operon. We further demonstrated that TtrR directly regulates the expression of the 05890-05900 operon by binding to the ttrR box. In addition, another TCS, 05905/05910, could assist in the regulation of TtrR to the 05890-05900 operon. Subsequent study showed that the 05890-05900 operon promotes the sulfur metabolism of V. parahaemolyticus at the early growth stage. Our results suggested that TtrRS and their target genes generate a complex regulatory pathway to better control sulfur metabolism in V. parahaemolyticus.Please check and confirm the edit made in the article title and amend if necessary.It's OK.
Collapse
Affiliation(s)
- Yameng Bai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Tianqi Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jie Zhao
- Nanjing Dr. Vet Health Management Co., Ltd, Nanjing, China
| | - Yawen Lin
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Qian Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiujuan Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China.
| | - Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China.
| |
Collapse
|
5
|
Shi J, Feng Z, Song Q, Wen A, Liu T, Xu L, Ye Z, Xu S, Gao F, Xiao L, Zhu J, Das K, Zhao G, Li J, Feng Y, Lin W. Structural insights into transcription regulation of the global OmpR/PhoB family regulator PhoP from Mycobacterium tuberculosis. Nat Commun 2025; 16:1573. [PMID: 39948061 PMCID: PMC11825685 DOI: 10.1038/s41467-025-56697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
As a global transcription activator or repressor, the representative OmpR/PhoB family response regulator PhoP plays a crucial role in regulating bacterial pathogenicity and stress adaptation. However, the molecular mechanisms underlying the transcriptional regulation that define its differential functions remain largely unclear. In the present study, we determine three cryo-EM structures of Mycobacterium tuberculosis (Mtb) PhoP-dependent transcription activation complexes (PhoP-TACs) and build one preliminary cryo-EM structure model of Mtb PhoP-dependent transcription repression complex (PhoP-TRC). In PhoP-TACs, tandem PhoP dimers cooperatively recognize various types of promoters through conserved PhoP-PHO box interactions, which displace the canonical interactions between the -35 element and σAR4 of RNA polymerase (RNAP), unraveling complex transcription activation mechanisms of PhoP. In PhoP-TRC, one PhoP dimer binds and significantly distorts the upstream PHO box of the promoter cross-talked with the global nitrogen regulator GlnR through the PhoP-PHO box, PhoP-GlnR and αCTD-DNA interactions. This unique binding of PhoP creates steric hindrances that prevent additional GlnR binding, positioning PhoP within a unique 'competitive occluding model', as supported by prior biochemical observations. Collectively, these findings reveal the dual molecular mechanisms of PhoP-dependent transcription regulation, and offer valuable insights for further exploration of the enormous PhoP-like OmpR/PhoB family response regulators.
Collapse
Affiliation(s)
- Jing Shi
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China.
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenzhen Feng
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Qian Song
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu Liu
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Liqiao Xu
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zonghang Ye
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Simin Xu
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Fei Gao
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Liuxiang Xiao
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jiapeng Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Kalyan Das
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Li
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China.
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Lin
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China.
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
6
|
Al-Tohamy A, Grove A. Targeting bacterial transcription factors for infection control: opportunities and challenges. Transcription 2025; 16:141-168. [PMID: 38126125 PMCID: PMC11970743 DOI: 10.1080/21541264.2023.2293523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The rising threat of antibiotic resistance in pathogenic bacteria emphasizes the need for new therapeutic strategies. This review focuses on bacterial transcription factors (TFs), which play crucial roles in bacterial pathogenesis. We discuss the regulatory roles of these factors through examples, and we outline potential therapeutic strategies targeting bacterial TFs. Specifically, we discuss the use of small molecules to interfere with TF function and the development of transcription factor decoys, oligonucleotides that compete with promoters for TF binding. We also cover peptides that target the interaction between the bacterial TF and other factors, such as RNA polymerase, and the targeting of sigma factors. These strategies, while promising, come with challenges, from identifying targets to designing interventions, managing side effects, and accounting for changing bacterial resistance patterns. We also delve into how Artificial Intelligence contributes to these efforts and how it may be exploited in the future, and we touch on the roles of multidisciplinary collaboration and policy to advance this research domain.Abbreviations: AI, artificial intelligence; CNN, convolutional neural networks; DTI: drug-target interaction; HTH, helix-turn-helix; IHF, integration host factor; LTTRs, LysR-type transcriptional regulators; MarR, multiple antibiotic resistance regulator; MRSA, methicillin resistant Staphylococcus aureus; MSA: multiple sequence alignment; NAP, nucleoid-associated protein; PROTACs, proteolysis targeting chimeras; RNAP, RNA polymerase; TF, transcription factor; TFD, transcription factor decoying; TFTRs, TetR-family transcriptional regulators; wHTH, winged helix-turn-helix.
Collapse
Affiliation(s)
- Ahmed Al-Tohamy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
7
|
Mishra A, Jackson A, Wang X, Kearns DB. The SinR•SlrR heteromer attenuates transcription of a long operon of flagellar genes in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631544. [PMID: 39829774 PMCID: PMC11741332 DOI: 10.1101/2025.01.06.631544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
During growth, Bacillus subtilis differentiates into subpopulations of motile individuals and non-motile chains, associated with dispersal and biofilm formation respectively. The two cell types are dictated by the activity of the alternative sigma factor SigD encoded as the penultimate gene of the 27 kb long fla/che flagellar operon. The frequency of SigD-ON motile cells is increased by the heteromeric transcription factor SwrA•DegU that activates the fla/che promoter. Conversely, the frequency of motile cells is decreased by the heteromeric transcription factor SinR•SlrR, but the mechanism and location of inhibition is poorly understood. Here, using ChIP-Seq analysis, we determine the binding sites of the SinR•SlrR heteromer on the genome. We identified two sites within the fla/che operon that were both necessary and sufficient to attenuate transcript abundance by causing premature termination upstream of the gene that encodes SigD. Thus, cell motility and the transition to biofilm formation depend on the expression of a long operon governed by two opposing heteromeric transcription factors that operate at two different stages of the transcription cycle. More broadly, our study serves as a model for transcription factors that control transcriptional elongation and the regulation of long operons in bacteria.
Collapse
|
8
|
Busby SJW, Browning DF. Transcription activation in Escherichia coli and Salmonella. EcoSal Plus 2024; 12:eesp00392020. [PMID: 38345370 PMCID: PMC11636354 DOI: 10.1128/ecosalplus.esp-0039-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 12/13/2024]
Abstract
Promoter-specific activation of transcript initiation provides an important regulatory device in Escherichia coli and Salmonella. Here, we describe the different mechanisms that operate, focusing on how they have evolved to manage the "housekeeping" bacterial transcription machinery. Some mechanisms involve assisting the bacterial DNA-dependent RNA polymerase or replacing or remodeling one of its subunits. Others are directed to chromosomal DNA, improving promoter function, or relieving repression. We discuss how different activators work together at promoters and how the present complex network of transcription factors evolved.
Collapse
Affiliation(s)
- Stephen J. W. Busby
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Douglas F. Browning
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
9
|
Lestin L, Villemur R. The bacterial strains JAM1 T and GP59 of the species Methylophaga nitratireducenticrescens differ in their expression profiles of denitrification genes in oxic and anoxic cultures. PeerJ 2024; 12:e18361. [PMID: 39484211 PMCID: PMC11526790 DOI: 10.7717/peerj.18361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/29/2024] [Indexed: 11/03/2024] Open
Abstract
Background Strain JAM1T and strain GP59 of the methylotrophic, bacterial species Methylophaga nitratireducenticrescens were isolated from a microbial community of the biofilm that developed in a fluidized-bed, methanol-fed, marine denitrification system. Despite of their common origin, both strains showed distinct physiological characters towards the dynamics of nitrate (NO 3 - ) reduction. Strain JAM1T can reduceNO 3 - to nitrite (NO 2 - ) but notNO 2 - to nitric oxide (NO) as it lacks a NO-formingNO 2 - reductase. Strain GP59 on the other hand can carry the complete reduction ofNO 3 - to N2. Strain GP59 cultured under anoxic conditions shows a 24-48h lag phase beforeNO 3 - reduction occurs. In strain JAM1T cultures,NO 3 - reduction begins immediately with accumulation ofNO 2 - . Furthermore,NO 3 - is reduced under oxic conditions in strain JAM1T cultures, which does not appear in strain GP59 cultures. These distinct characters suggest differences in the regulation pathways impacting the expression of denitrification genes, and ultimately growth. Methods Both strains were cultured under oxic conditions either with or withoutNO 3 - , or under anoxic conditions withNO 3 - . Transcript levels of selected denitrification genes (nar1 and nar2 encodingNO 3 - reductases, nirK encodingNO 2 - reductase, narK12f encodingNO 3 - /NO 2 - transporter) and regulatory genes (narXL and fnr) were determined by quantitative reverse transcription polymerase chain reaction. We also derived the transcriptomes of these cultures and determined their relative gene expression profiles. Results The transcript levels of nar1 were very low in strain GP59 cultured under oxic conditions withoutNO 3 - . These levels were 37 times higher in strain JAM1T cultured under the same conditions, suggesting that Nar1 was expressed at sufficient levels in strain JAM1T before the inoculation of the oxic and anoxic cultures to carryNO 3 - reduction with no lag phase. Transcriptomic analysis revealed that each strain had distinct relative gene expression profiles, and oxygen had high impact on these profiles. Among denitrification genes and regulatory genes, the nnrS3 gene encoding factor involved in NO-response function had its relative gene transcript levels 5 to 10 times higher in strain GP59 cultured under oxic conditions withNO 3 - than those in both strains cultured under oxic conditions withoutNO 3 - . Since NnrS senses NO, these results suggest that strain GP59 reducedNO 3 - to NO under oxic conditions, but because of the oxic environment, NO is oxidized back toNO 3 - by flavohemoproteins (NO dioxygenase; Hmp), explaining whyNO 3 - reduction is not observed in strain GP59 cultured under oxic conditions. Conclusions Understanding how these two strains manage the regulation of the denitrification pathway provided some clues on how they response to environmental changes in the original biofilm community, and, by extension, how this community adapts in providing efficient denitrifying activities.
Collapse
Affiliation(s)
- Livie Lestin
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Richard Villemur
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
10
|
Pavlin A, Fornelos N, Popović M, Praček N, Bajc G, Salas M, Butala M. Autoregulation ensures vertical transmission of the linear prophage GIL01. Commun Biol 2024; 7:1388. [PMID: 39455843 PMCID: PMC11511902 DOI: 10.1038/s42003-024-07082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Betatectiviruses are prophages consisting of linear extrachromosomal genomes without obvious plasmid modules. It remains unclear how betatectiviruses are maintained in low-copy numbers in host cells and how they are vertically transmitted. Phage GIL01 is a model betatectivirus that infects the mosquito pathogen Bacillus thuringiensis serovar israelensis. Previous studies identified two closely spaced promoters, P1 and P2, responsible for the expression of GIL01 genes required for prophage replication and the switch from the lysogenic to lytic cycle. Here, we report that the GIL01-encoded 58-amino acid long gp1 protein forms a large nucleoprotein complex that represses its transcription from the strong promoter P2. Notably, ectopic expression of gp1 resulted in the loss of GIL01 in exponential cultures and immunized cells against infection with GIL01, indicating that gp1 plays a repressive role in the phage cycle. This finding is consistent with mutations in gp1 committing GIL01 to the lytic cycle and we show that maintenance of this phage variant in the bacterial population is contingent on the accumulation of deletions in the P1-P2 region. The fact that gp1 is conserved across most sequenced betatectiviruses suggests that the regulatory mechanism of gp1 that controls prophage maintenance is widespread among these bacteriophages.
Collapse
Affiliation(s)
- Anja Pavlin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadine Fornelos
- Harvard Medical School, Office for Research Initiatives and Global Programs, Boston, MA, 02115, USA
| | - Maja Popović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Praček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Margarita Salas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049, Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Chauvier A, Walter NG. Beyond ligand binding: Single molecule observation reveals how riboswitches integrate multiple signals to balance bacterial gene regulation. Curr Opin Struct Biol 2024; 88:102893. [PMID: 39067113 DOI: 10.1016/j.sbi.2024.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Riboswitches are specialized RNA structures that orchestrate gene expression in response to sensing specific metabolite or ion ligands, mostly in bacteria. Upon ligand binding, these conformationally dynamic RNA motifs undergo structural changes that control critical gene expression processes such as transcription termination and translation initiation, thereby enabling cellular homeostasis and adaptation. Because RNA folds rapidly and co-transcriptionally, riboswitches make use of the low complexity of RNA sequences to adopt alternative, transient conformations on the heels of the transcribing RNA polymerase (RNAP), resulting in kinetic partitioning that defines the regulatory outcome. This review summarizes single molecule microscopy evidence that has begun to unveil a sophisticated network of dynamic, kinetically balanced interactions between riboswitch architecture and the gene expression machinery that, together, integrate diverse cellular signals.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA. https://twitter.com/adrienchauvier
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Medvedev KE, Zhang J, Schaeffer RD, Kinch LN, Cong Q, Grishin NV. Structure classification of the proteins from Salmonella enterica pangenome revealed novel potential pathogenicity islands. Sci Rep 2024; 14:12260. [PMID: 38806511 PMCID: PMC11133325 DOI: 10.1038/s41598-024-60991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Salmonella enterica is a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins from Salmonella enterica pangenome. We classified 17,238 domains from 13,147 proteins from 79,758 Salmonella enterica strains and studied in detail domains of 272 proteins from 14 characterized Salmonella pathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within the Salmonella genome, suggesting their potential contribution to the bacterium's virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied.
Collapse
Affiliation(s)
- Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa N Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
13
|
Gu Y, Liu Y, Mao W, Peng Y, Han X, Jin H, Xu J, Chang L, Hou Y, Shen X, Liu X, Yang Y. Functional versatility of Zur in metal homeostasis, motility, biofilm formation, and stress resistance in Yersinia pseudotuberculosis. Microbiol Spectr 2024; 12:e0375623. [PMID: 38534119 PMCID: PMC11064496 DOI: 10.1128/spectrum.03756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. Yersinia pseudotuberculosis is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in Y. pseudotuberculosis. In this study, a comparative transcriptomics analysis between a ∆zur mutant and the wild-type (WT) strain of Y. pseudotuberculosis was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium in vivo. There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆zur mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in Y. pseudotuberculosis. IMPORTANCE Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. Y. pseudotuberculosis is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in Y. pseudotuberculosis. The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of Y. pseudotuberculosis was emphasized.
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yongde Liu
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd, Qingyang, China
| | - Wei Mao
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd, Qingyang, China
| | - Ying Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jingling Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Liyang Chang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yixin Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xingyu Liu
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Xu X, Liu F, Qiao W, Dong Y, Yang H, Liu F, Xu H, Qiao M. A Point Mutation in Cassette Relieves the Repression Regulation of CcpA Resulting in an Increase in the Degradation of 2,3-Butanediol in Lactococcus lactis. Microorganisms 2024; 12:773. [PMID: 38674718 PMCID: PMC11051896 DOI: 10.3390/microorganisms12040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
In lactic acid bacteria, the global transcriptional regulator CcpA regulates carbon metabolism by repressing and activating the central carbon metabolism pathway, thus decreasing or increasing the yield of certain metabolites to maximize carbon flow. However, there are no reports on the deregulation of the inhibitory effects of CcpA on the metabolism of secondary metabolites. In this study, we identified a single-base mutant strain of Lactococcus lactis N8-2 that is capable of metabolizing 2,3-butanediol. It has been established that CcpA dissociates from the catabolite responsive element (cre) site due to a mutation, leading to the activation of derepression and expression of the 2,3-butanediol dehydrogenase gene cluster (butB and butA). Transcriptome analysis and quantitative polymerase chain reaction (Q-PCR) results showed significant upregulation of transcription of butB and butA compared to the unmutated strain. Furthermore, micro-scale thermophoresis experiments confirmed that CcpA did not bind to the mutated cre. Furthermore, in a bacterial two-plasmid fluorescent hybridization system, it was similarly confirmed that the dissociation of CcpA from cre eliminated the repressive effect of CcpA on downstream genes. Finally, we investigated the differing catalytic capacities of the 2,3-butanediol dehydrogenase gene cluster in L. lactis N8-1 and L. lactis N8-2 for 2,3-butanediol. This led to increased expression of butB and butA, which were deregulated by CcpA repression. This is the first report on the elimination of the deterrent effect of CcpA in lactic acid bacteria, which changes the direction of enzymatic catalysis and alters the direction of carbon metabolism. This provides new perspectives and strategies for metabolizing 2,3-butanediol using bacteria in synthetic biology.
Collapse
Affiliation(s)
- Xian Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Fulu Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| | - Yujie Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Huan Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Fengming Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| |
Collapse
|
15
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
16
|
Schubert C, Unden G. Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule. Microb Physiol 2024; 34:108-120. [PMID: 38432210 DOI: 10.1159/000538095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION C4-dicarboxylates (C4-DC) have emerged as significant growth substrates and signaling molecules for various Enterobacteriaceae during their colonization of mammalian hosts. Particularly noteworthy is the essential role of fumarate respiration during colonization of pathogenic bacteria. To investigate the regulation of aerobic C4-DC metabolism, the study explored the transcriptional control of the main aerobic C4-DC transporter, dctA, under different carbohydrate conditions. In addition, mutants related to carbon catabolite repression (CCR) and C4-DC regulation (DcuS-DcuR) were examined to better understand the regulatory integration of aerobic C4-DC metabolism into CCR. For initial insight into posttranslational regulation, the interaction between the aerobic C4-DC transporter DctA and EIIAGlc from the glucose-specific phosphotransferase system was investigated. METHODS The expression of dctA was characterized in the presence of various carbohydrates and regulatory mutants affecting CCR. This was accomplished by fusing the dctA promoter (PdctA) to the lacZ reporter gene. Additionally, the interaction between DctA and EIIAGlc of the glucose-specific phosphotransferase system was examined in vivo using a bacterial two-hybrid system. RESULTS The dctA promoter region contains a class I cAMP-CRP-binding site at position -81.5 and a DcuR-binding site at position -105.5. DcuR, the response regulator of the C4-DC-activated DcuS-DcuR two-component system, and cAMP-CRP stimulate dctA expression. The expression of dctA is subject to the influence of various carbohydrates via cAMP-CRP, which differently modulate cAMP levels. Here we show that EIIAGlc of the glucose-specific phosphotransferase system strongly interacts with DctA, potentially resulting in the exclusion of C4-DCs when preferred carbon substrates, such as sugars, are present. In contrast to the classical inducer exclusion known for lactose permease LacY, inhibition of C4-DC uptake into the cytoplasm affects only its role as a substrate, but not as an inducer since DcuS detects C4-DCs in the periplasmic space ("substrate exclusion"). The work shows an interplay between cAMP-CRP and the DcuS-DcuR regulatory system for the regulation of dctA at both transcriptional and posttranslational levels. CONCLUSION The study highlights a hierarchical interplay between global (cAMP-CRP) and specific (DcuS-DcuR) regulation of dctA at the transcriptional and posttranslational levels. The integration of global and specific transcriptional regulation of dctA, along with the influence of EIIAGlc on DctA, fine-tunes C4-DC catabolism in response to the availability of other preferred carbon sources. It attributes DctA a central role in the control of aerobic C4-DC catabolism and suggests a new role to EIIAGlc on transporters (control of substrate uptake by substrate exclusion).
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany,
| |
Collapse
|
17
|
Kompaniiets D, He L, Wang D, Zhou W, Yang Y, Hu Y, Liu B. Structural basis for transcription activation by the nitrate-responsive regulator NarL. Nucleic Acids Res 2024; 52:1471-1482. [PMID: 38197271 PMCID: PMC10853779 DOI: 10.1093/nar/gkad1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription activation is a crucial step of regulation during transcription initiation and a classic check point in response to different stimuli and stress factors. The Escherichia coli NarL is a nitrate-responsive global transcription factor that controls the expression of nearly 100 genes. However, the molecular mechanism of NarL-mediated transcription activation is not well defined. Here we present a cryo-EM structure of NarL-dependent transcription activation complex (TAC) assembled on the yeaR promoter at 3.2 Å resolution. Our structure shows that the NarL dimer binds at the -43.5 site of the promoter DNA with its C-terminal domain (CTD) not only binding to the DNA but also making interactions with RNA polymerase subunit alpha CTD (αCTD). The key role of these NarL-mediated interactions in transcription activation was further confirmed by in vivo and in vitro transcription assays. Additionally, the NarL dimer binds DNA in a different plane from that observed in the structure of class II TACs. Unlike the canonical class II activation mechanism, NarL does not interact with σ4, while RNAP αCTD is bound to DNA on the opposite side of NarL. Our findings provide a structural basis for detailed mechanistic understanding of NarL-dependent transcription activation on yeaR promoter and reveal a potentially novel mechanism of transcription activation.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lina He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei JiangXia Laboratory, Wuhan 430071, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
18
|
Boudreau BA, Hustmyer CM, Kotlajich MV, Landick R. In Vitro Transcription Assay to Quantify Effects of H-NS Filaments on RNA Chain Elongation by RNA Polymerase. Methods Mol Biol 2024; 2819:381-419. [PMID: 39028516 DOI: 10.1007/978-1-0716-3930-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial chromosomal DNA is structured and compacted by proteins known as bacterial chromatin proteins (i.e., nucleoid-associated proteins or NAPs). DNA-dependent RNA polymerase (RNAP) must frequently interact with bacterial chromatin proteins because they often bind DNA genome-wide. In some cases, RNAP must overcome barriers bacterial chromatin proteins impose on transcription. One key bacterial chromatin protein in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS. H-NS binds to DNA and forms nucleoprotein filaments. To investigate the effect of H-NS filaments on RNAP elongation, we developed an in vitro transcription assay to monitor RNAP progression on a DNA template bound by H-NS. In this method, initiation and elongation by RNAP are uncoupled by first initiating transcription in the presence of only three ribonucleoside triphosphates (rNTPs) to halt elongation just downstream of the promoter. Before elongation is restarted by addition of the fourth NTP, an H-NS filament is formed on the DNA so that transcript elongation occurs on an H-NS nucleoprotein filament template. Here, we provide detailed protocols for performing in vitro transcription through H-NS filaments, analysis of the transcription products, and visualization of H-NS filament formation on DNA by electrophoretic mobility shift assay (EMSA). These methods enable insight into how H-NS affects RNAP transcript elongation and provide a starting point to determine effects of other bacterial chromatin proteins on RNAP elongation.
Collapse
Affiliation(s)
- Beth A Boudreau
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Christine M Hustmyer
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Matthew V Kotlajich
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Robert Landick
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA.
- Departments of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Vasilyev N, Liu MMJ, Epshtein V, Shamovsky I, Nudler E. General transcription factor from Escherichia coli with a distinct mechanism of action. Nat Struct Mol Biol 2024; 31:141-149. [PMID: 38177674 PMCID: PMC10803263 DOI: 10.1038/s41594-023-01154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
Gene expression in Escherichia coli is controlled by well-established mechanisms that activate or repress transcription. Here, we identify CedA as an unconventional transcription factor specifically associated with the RNA polymerase (RNAP) σ70 holoenzyme. Structural and biochemical analysis of CedA bound to RNAP reveal that it bridges distant domains of β and σ70 subunits to stabilize an open-promoter complex. CedA does so without contacting DNA. We further show that cedA is strongly induced in response to amino acid starvation, oxidative stress and aminoglycosides. CedA provides a basal level of tolerance to these clinically relevant antibiotics, as well as to rifampicin and peroxide. Finally, we show that CedA modulates transcription of hundreds of bacterial genes, which explains its pleotropic effect on cell physiology and pathogenesis.
Collapse
Affiliation(s)
- Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Mengjie M J Liu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
García-Tomsig NI, García-Rodriguez FM, Guedes-García SK, Millán V, Becker A, Robledo M, Jiménez-Zurdo JI. A double-negative feedback loop between NtrBC and a small RNA rewires nitrogen metabolism in legume symbionts. mBio 2023; 14:e0200323. [PMID: 37850753 PMCID: PMC10746234 DOI: 10.1128/mbio.02003-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Root nodule endosymbioses between diazotrophic rhizobia and legumes provide the largest input of combined N to the biosphere, thus representing an alternative to harmful chemical fertilizers for sustainable crop production. Rhizobia have evolved intricate strategies to coordinate N assimilation for their own benefit with N2 fixation to sustain plant growth. The rhizobial N status is transduced by the NtrBC two-component system, the seemingly ubiquitous form of N signal transduction in Proteobacteria. Here, we show that the regulatory sRNA NfeR1 (nodule formation efficiency RNA) of the alfalfa symbiont Sinorhizobium meliloti is transcribed from a complex promoter repressed by NtrC in a N-dependent manner and feedback silences ntrBC by complementary base-pairing. These findings unveil a more prominent role of NtrC as a transcriptional repressor than hitherto anticipated and a novel RNA-based mechanism for NtrBC regulation. The NtrBC-NfeR1 double-negative feedback loop accurately rewires symbiotic S. meliloti N metabolism and is likely conserved in α-rhizobia.
Collapse
Affiliation(s)
- Natalia I. García-Tomsig
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Fernando M. García-Rodriguez
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sabina K. Guedes-García
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Vicenta Millán
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Marta Robledo
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José I. Jiménez-Zurdo
- Structure, Dynamics and Function of Rhizobacterial Genomes (RhizoRNA Lab), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
21
|
Sharma PV, Jain S, Sen R. Peptides designed from a bacteriophage capsid protein function as synthetic transcription repressors. J Biol Chem 2023; 299:105373. [PMID: 37865318 PMCID: PMC10692717 DOI: 10.1016/j.jbc.2023.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The bacteriophage capsid protein, Psu (polarity suppression), inhibits the bacterial transcription terminator, Rho. In an effort to find nontraditional antibacterial agents, we previously designed peptides from the Psu C terminus that function as inhibitors of Rho. Here, we demonstrated that these peptides have positive surface-charge densities, and they downregulate many genes in Escherichia coli. We hypothesized that these peptides could bind to nucleic acids and repress gene expression. One of these peptides, peptide 33, represses in vitro transcription from the T7A1 and Plac promoters efficiently by blocking the access of RNA polymerase to the promoter, a mode of transcription repression akin to many bacterial repressors. In vivo, expressions of the peptides reduce the total RNA level as well as transcription from Plac and Posm promoters significantly. However, they are less efficient in repressing transcription from the rRNA promoters with a very high turnover of RNA polymerase. The peptide 33 binds to both single and dsDNA as well as to RNA with dissociation constants ranging from 1 to 5 μM exhibiting preferences for the single-stranded DNA and RNAs. These interactions are salt-resistant and not sequence-specific. Interactions with dsDNA are entropy-driven, while it is enthalpy-driven for the ssDNA. This mode of interaction with nucleic acids is similar to many nonspecific ssDNA-binding proteins. Expression of peptide 33 induces cell elongation and impaired cell division, possibly due to the dislodging of the DNA-binding proteins. Overall, we surmised that these synthetic transcription repressors would function like bacterial nucleoid-associated proteins.
Collapse
Affiliation(s)
- Pankaj V Sharma
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sriyans Jain
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
22
|
Trouillon J, Doubleday PF, Sauer U. Genomic footprinting uncovers global transcription factor responses to amino acids in Escherichia coli. Cell Syst 2023; 14:860-871.e4. [PMID: 37820729 DOI: 10.1016/j.cels.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Our knowledge of transcriptional responses to changes in nutrient availability comes primarily from few well-studied transcription factors (TFs), often lacking an unbiased genome-wide perspective. Leveraging recent advances allowing bacterial genomic footprinting, we comprehensively mapped the genome-wide regulatory responses of Escherichia coli to exogenous leucine, methionine, alanine, and lysine. The global TF Lrp was found to individually sense three amino acids and mount three different target gene responses. Overall, 531 genes had altered RNA polymerase occupancy, and 32 TFs responded directly or indirectly to the presence of amino acids, including regulators of membrane and osmotic pressure homeostasis. About 70% of the detected TF-DNA interactions had not been reported before. We thus identified 682 previously unknown TF-binding locations, for a subset of which the involved TFs were identified by affinity purification. This comprehensive map of amino acid regulation illustrates the incompleteness of the known transcriptional regulation network, even in E. coli.
Collapse
Affiliation(s)
- Julian Trouillon
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter F Doubleday
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
23
|
Perez-Rueda E, Schellhorn HE, Kumar S. Editorial: Role of transcription factors and sigma factors in bacterial stress physiology. Front Microbiol 2023; 14:1291172. [PMID: 37869661 PMCID: PMC10588465 DOI: 10.3389/fmicb.2023.1291172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Affiliation(s)
- Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | | | - Santosh Kumar
- Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Shepherd MJ, Reynolds M, Pierce AP, Rice AM, Taylor TB. Transcription factor expression levels and environmental signals constrain transcription factor innovation. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001378. [PMID: 37584667 PMCID: PMC10482368 DOI: 10.1099/mic.0.001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adaptation varies between different regulators, even when they are closely related. To identify factors influencing propensity for innovation, we utilise a Pseudomonas fluorescens SBW25 strain rendered incapable of flagellar mediated motility in soft-agar plates via deletion of the flagellar master regulator (fleQ ). This bacterium can evolve to rescue flagellar motility via gene regulatory network rewiring of an alternative transcription factor to rescue activity of FleQ. Previously, we have identified two members (out of 22) of the RpoN-dependent enhancer binding protein (RpoN-EBP) family of transcription factors (NtrC and PFLU1132) that are capable of innovating in this way. These two transcription factors rescue motility repeatably and reliably in a strict hierarchy – with NtrC the only route in a ∆fleQ background, and PFLU1132 the only route in a ∆fleQ ∆ntrC background. However, why other members in the same transcription factor family have not been observed to rescue flagellar activity is unclear. Previous work shows that protein homology cannot explain this pattern within the protein family (RpoN-EBPs), and mutations in strains that rescued motility suggested high levels of transcription factor expression and activation drive innovation. We predict that mutations that increase expression of the transcription factor are vital to unlock evolutionary potential for innovation. Here, we construct titratable expression mutant lines for 11 of the RpoN-EBPs in P. fluorescens . We show that in five additional RpoN-EBPs (FleR, HbcR, GcsR, DctD, AauR and PFLU2209), high expression levels result in different mutations conferring motility rescue, suggesting alternative rewiring pathways. Our results indicate that expression levels (and not protein homology) of RpoN-EBPs are a key constraining factor in determining evolutionary potential for innovation. This suggests that transcription factors that can achieve high expression through few mutational changes, or transcription factors that are active in the selective environment, are more likely to innovate and contribute to adaptive gene regulatory network evolution.
Collapse
Affiliation(s)
- Matthew J. Shepherd
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Mitchell Reynolds
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Aidan P. Pierce
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Alan M. Rice
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
25
|
Abstract
Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.
Collapse
Affiliation(s)
- Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Phillip Sweet
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| | - Aparna Anantharaman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Lydia Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
26
|
Wu X, Yu C, Mu W, Gu Z, Feng Y, Zhang Y. The structural mechanism for transcription activation by Caulobacter crescentus GcrA. Nucleic Acids Res 2023; 51:1960-1970. [PMID: 36715319 PMCID: PMC9976885 DOI: 10.1093/nar/gkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C. crescentus GcrA-bound transcription activation complexes, GcrA TACU and GcrA TACD, which comprise GcrA, RNAP, σ70 and promoter DNA with GcrA cis elements at either the upstream or downstream of TSS at 3.6 and 3.8 Å, respectively. In the GcrA-TACU structure, GcrA makes bipartite interactions with both σ70 domain 2 (σ702) and its cis element, while in the GcrA-TACD structure, GcrA retains interaction with σ702 but loses the interaction with its cis element. Our results suggest that GcrA likely forms a functionally specialized GcrA-RNAP-σA holoenzyme, in which GcrA first locates its cis element and then facilitates RNAP to load on core promoter at its proximal region. The sequence-specific interaction of GcrA and DNA is disrupted either at the stage of RPo formation or promoter escape depending on the location of GcrA cis elements relative to TSS.
Collapse
Affiliation(s)
- Xiaoxian Wu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengzhi Yu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Mu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhanxi Gu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Wen S, Yin F, Liu C, Dang Y, Sun D, Li P. Integrated analysis of transcriptomic and protein-protein interaction data reveals cadmium stress response in Geobacter sulfurreducens. ENVIRONMENTAL RESEARCH 2023; 218:115063. [PMID: 36528045 DOI: 10.1016/j.envres.2022.115063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Bacteria have evolved several mechanisms to resist Cd toxicity, which are crucial for Cd detoxication and have the potential to be used for bioremediation of Cd. Geobacter species are widely found in anaerobic environments and play important roles in natural biogeochemical cycles. However, the transcriptomic response of Geobacter sulfurreducens under Cd stress have not been fully elucidated. Through integrated analysis of transcriptomic and protein-protein interaction (PPI) data, we uncovered a global view of mRNA changes in Cd-induced cellular processes in this study. We identified 182 differentially expressed genes (|log2(fold change)| > 1, adjusted P < 0.05) in G. sulfurreducens exposed to 0.1 mM CdCl2 using RNA sequencing (RNA-seq). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that CdCl2 significantly affected sulfur compound metabolic processes. In addition, through PPI network analysis, hub genes related to molecular chaperones were identified to play important role in Cd stress response. We also identified a Cd-responsive transcriptional regulator ArsR2 (coded by GSU2149) and verified the function of ArsR2-ParsR2 regulatory circuit in Escherichia coli. This study provides new insight into Cd stress response in G. sulfurreducens, and identified a potential sensor element for Cd detection.
Collapse
Affiliation(s)
- Su Wen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fei Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chunmao Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
28
|
Chakraborty S, Singh P, Seshasayee ASN. Understanding the Genome-Wide Transcription Response To Various cAMP Levels in Bacteria Using Phenomenological Models. mSystems 2022; 7:e0090022. [PMID: 36409084 PMCID: PMC9765429 DOI: 10.1128/msystems.00900-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Attempts to understand gene regulation by global transcription factors have largely been limited to expression studies under binary conditions of presence and absence of the transcription factor. Studies addressing genome-wide transcriptional responses to changing transcription factor concentration at high resolution are lacking. Here, we create a data set containing the entire Escherichia coli transcriptome in Luria-Bertani (LB) broth as it responds to 10 different cAMP concentrations spanning the biological range. We use the Hill's model to accurately summarize individual gene responses into three intuitively understandable parameters, Emax, n, and k, reflecting the sensitivity, nonlinearity, and midpoint of the dynamic range. Our data show that most cAMP-regulated genes have an n of >2, with their k values centered around the wild-type concentration of cAMP. Additionally, cAMP receptor protein (CRP) affinity to a promoter is correlated with Emax but not k, hinting that a high-affinity CRP promoter need not ensure transcriptional activation at lower cAMP concentrations and instead affects the magnitude of the response. Finally, genes belonging to different functional classes are tuned to have different k, n, and Emax values. We demonstrate that phenomenological models are a better alternative for studying gene expression trends than classical clustering methods, with the phenomenological constants providing greater insights into how genes are tuned in a regulatory network. IMPORTANCE Different genes may follow different trends in response to various transcription factor concentrations. In this study, we ask two questions: (i) what are the trends that different genes follow in response to changing transcription factor concentrations and (ii) what methods can be used to extract information from the gene trends so obtained. We demonstrate a method to analyze transcription factor concentration-dependent genome-wide expression data using phenomenological models. Conventional clustering methods and principal-component analysis (PCA) can be used to summarize trends in data but have limited interpretability. The use of phenomenological models greatly enhances the interpretability and thus utility of conventional clustering. Transformation of dose-response data into phenomenological constants opens up avenues to ask and answer many different kinds of question. We show that the phenomenological constants obtained from the model fits can be used to generate insights about network topology and allows integration of other experimental data such as chromatin immunoprecipitation sequencing (ChIP-seq) to understand the system in greater detail.
Collapse
Affiliation(s)
- Shweta Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | | | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
29
|
Zhong X, Ma J, Bai Q, Zhu Y, Zhang Y, Gu Q, Pan Z, Liu G, Wu Z, Yao H. Identification of the RNA-binding domain-containing protein RbpA that acts as a global regulator of the pathogenicity of Streptococcus suis serotype 2. Virulence 2022; 13:1304-1314. [PMID: 35903019 PMCID: PMC9341378 DOI: 10.1080/21505594.2022.2103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2), an emerging zoonotic pathogen, causes swine diseases and human cases of streptococcal toxic shock syndrome. RNA-binding proteins (RBPs) can modulate gene expression through post-transcriptional regulation. In this study, we identified an RBP harbouring an S1 domain, named RbpA, which facilitated SS2 adhesion to host epithelial cells and contributed to bacterial pathogenicity. Comparative proteomic analysis identified 145 proteins that were expressed differentially between ΔrbpA strain and wild-type strain, including several virulence-associated factors, such as the extracellular protein factor (EF), SrtF pilus, IgA1 protease, SBP2 pilus, and peptidoglycan-binding LysM’ proteins. The mechanisms underlying the regulatory effects of RbpA on their encoding genes were explored, and it was found that RbpA regulates gene expression through diverse mechanisms, including post-transcriptional regulation, and thus acts as a global regulator. These results partly reveal the pathogenic mechanism mediated by RbpA, improving our understanding of the regulatory systems of S. suis and providing new insights into bacterial pathogenicity.
Collapse
Affiliation(s)
- Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Jiale Ma
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yinchu Zhu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qibing Gu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zihao Pan
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Duarte-Velázquez I, de la Mora J, Ramírez-Prado JH, Aguillón-Bárcenas A, Tornero-Gutiérrez F, Cordero-Loreto E, Anaya-Velázquez F, Páramo-Pérez I, Rangel-Serrano Á, Muñoz-Carranza SR, Romero-González OE, Cardoso-Reyes LR, Rodríguez-Ojeda RA, Mora-Montes HM, Vargas-Maya NI, Padilla-Vaca F, Franco B. Escherichia coli transcription factors of unknown function: sequence features and possible evolutionary relationships. PeerJ 2022; 10:e13772. [PMID: 35880217 PMCID: PMC9308461 DOI: 10.7717/peerj.13772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Organisms need mechanisms to perceive the environment and respond accordingly to environmental changes or the presence of hazards. Transcription factors (TFs) are required for cells to respond to the environment by controlling the expression of genes needed. Escherichia coli has been the model bacterium for many decades, and still, there are features embedded in its genome that remain unstudied. To date, 58 TFs remain poorly characterized, although their binding sites have been experimentally determined. This study showed that these TFs have sequence variation at the third codon position G+C content but maintain the same Codon Adaptation Index (CAI) trend as annotated functional transcription factors. Most of these transcription factors are in areas of the genome where abundant repetitive and mobile elements are present. Sequence divergence points to groups with distinctive sequence signatures but maintaining the same type of DNA binding domain. Finally, the analysis of the promoter sequences of the 58 TFs showed A+T rich regions that agree with the features of horizontally transferred genes. The findings reported here pave the way for future research of these TFs that may uncover their role as spare factors in case of lose-of-function mutations in core TFs and trace back their evolutionary history.
Collapse
Affiliation(s)
- Isabel Duarte-Velázquez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Javier de la Mora
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City, México
| | | | - Alondra Aguillón-Bárcenas
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Fátima Tornero-Gutiérrez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Eugenia Cordero-Loreto
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Fernando Anaya-Velázquez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Itzel Páramo-Pérez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Ángeles Rangel-Serrano
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | | | | | - Luis Rafael Cardoso-Reyes
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | | | - Héctor Manuel Mora-Montes
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Naurú Idalia Vargas-Maya
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Felipe Padilla-Vaca
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Bernardo Franco
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| |
Collapse
|
31
|
Anderssen S, Naômé A, Jadot C, Brans A, Tocquin P, Rigali S. AURTHO: Autoregulation of transcription factors as facilitator of cis-acting element discovery. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194847. [PMID: 35901946 DOI: 10.1016/j.bbagrm.2022.194847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Transcriptional regulation is key in bacteria for providing an adequate response in time and space to changing environmental conditions. However, despite decades of research, the binding sites and therefore the target genes and the function of most transcription factors (TFs) remain unknown. Filling this gap in knowledge through conventional methods represents a colossal task which we demonstrate here can be significantly facilitated by a widespread feature in transcriptional control: the autoregulation of TFs implying that the yet unknown transcription factor binding site (TFBS) is neighboring the TF itself. In this work, we describe the "AURTHO" methodology (AUtoregulation of oRTHOlogous transcription factors), consisting of analyzing upstream regions of orthologous TFs in order to uncover their associated TFBSs. AURTHO enabled the de novo identification of novel TFBSs with an unprecedented improvement in terms of quantity and reliability. DNA-protein interaction studies on a selection of candidate cis-acting elements yielded an >90 % success rate, demonstrating the efficacy of AURTHO at highlighting true TF-TFBS couples and confirming the identification in a near future of a plethora of TFBSs across all bacterial species.
Collapse
Affiliation(s)
- Sinaeda Anderssen
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium
| | - Aymeric Naômé
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium; HEDERA 22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium
| | - Cédric Jadot
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium
| | - Alain Brans
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium
| | - Pierre Tocquin
- HEDERA 22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium; InBioS - PhytoSystems, University of Liège, B-4000 Liège, Belgium
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium; HEDERA 22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium.
| |
Collapse
|
32
|
Taylor TB, Shepherd MJ, Jackson RW, Silby MW. Natural selection on crosstalk between gene regulatory networks facilitates bacterial adaptation to novel environments. Curr Opin Microbiol 2022; 67:102140. [DOI: 10.1016/j.mib.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
|
33
|
Abstract
Bacterial small RNAs (sRNAs) contribute to a variety of regulatory mechanisms that modulate a wide range of pathways, including metabolism, virulence, and antibiotic resistance. We investigated the involvement of sRNAs in rifampicin resistance in the opportunistic pathogen Staphylococcus aureus. Using a competition assay with an sRNA mutant library, we identified 6S RNA as being required for protection against low concentrations of rifampicin, an RNA polymerase (RNAP) inhibitor. This effect applied to rifabutin and fidaxomicin, two other RNAP-targeting antibiotics. 6S RNA is highly conserved in bacteria, and its absence in two other major pathogens, Salmonella enterica and Clostridioides difficile, also impaired susceptibility to RNAP inhibitors. In S. aureus, 6S RNA is produced from an autonomous gene and accumulates in stationary phase. In contrast to what was reported for Escherichia coli, S. aureus 6S RNA does not appear to play a critical role in the transition from exponential to stationary phase but affects σB-regulated expression in prolonged stationary phase. Nevertheless, its protective effect against rifampicin is independent of alternative sigma factor σB activity. Our results suggest that 6S RNA helps maintain RNAP-σA integrity in S. aureus, which could in turn help bacteria withstand low concentrations of RNAP inhibitors.
Collapse
|
34
|
Involvement of E. coli 6S RNA in Oxidative Stress Response. Int J Mol Sci 2022; 23:ijms23073653. [PMID: 35409013 PMCID: PMC8998176 DOI: 10.3390/ijms23073653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
6S RNA, a small non-coding RNA present in almost all bacteria, inhibits transcription via direct binding to RNA polymerase holoenzymes. The mechanism of 6S RNA action was investigated to a large extent in E. coli, however, lack of 6S RNA (ΔssrS) was demonstrated to be unfavorable but not essential for cell survival under various growth conditions. In the present study, we revealed, for the first time, a lethal phenotype of the ΔssrS strain in the presence of high concentrations of H2O2. This phenotype was rescued by complementation of the ssrS gene on a plasmid. We performed comparative qRT-PCR analyses on an enlarged set of mRNAs of genes associated with the oxidative stress response, allowing us to identify four genes known to be involved in this pathway (soxS, ahpC, sodA and tpx) that had decreased mRNA levels in the ΔssrS strain. Finally, we performed comparative proteomic analyses of the wild-type and ΔssrS strains, confirming that ΔssrS bacteria have reduced levels of the proteins AhpC and Tpx involved in H2O2 reduction. Our findings substantiate the crucial role of the riboregulator 6S RNA for bacterial coping with extreme stresses.
Collapse
|
35
|
Refactoring transcription factors for metabolic engineering. Biotechnol Adv 2022; 57:107935. [PMID: 35271945 DOI: 10.1016/j.biotechadv.2022.107935] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Due to the ability to regulate target metabolic pathways globally and dynamically, metabolic regulation systems composed of transcription factors have been widely used in metabolic engineering and synthetic biology. This review introduced the categories, action principles, prediction strategies, and related databases of transcription factors. Then, the application of global transcription machinery engineering technology and the transcription factor-based biosensors and quorum sensing systems are overviewed. In addition, strategies for optimizing the transcriptional regulatory tools' performance by refactoring transcription factors are summarized. Finally, the current limitations and prospects of constructing various regulatory tools based on transcription factors are discussed. This review will provide theoretical guidance for the rational design and construction of transcription factor-based metabolic regulation systems.
Collapse
|
36
|
Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. Int J Mol Sci 2022; 23:ijms23042179. [PMID: 35216300 PMCID: PMC8879271 DOI: 10.3390/ijms23042179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.
Collapse
|
37
|
Oliveira Monteiro LM, Saraiva JP, Brizola Toscan R, Stadler PF, Silva-Rocha R, Nunes da Rocha U. PredicTF: prediction of bacterial transcription factors in complex microbial communities using deep learning. ENVIRONMENTAL MICROBIOME 2022; 17:7. [PMID: 35135629 PMCID: PMC8822659 DOI: 10.1186/s40793-021-00394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Transcription factors (TFs) are proteins controlling the flow of genetic information by regulating cellular gene expression. A better understanding of TFs in a bacterial community context may open novel revenues for exploring gene regulation in ecosystems where bacteria play a key role. Here we describe PredicTF, a platform supporting the prediction and classification of novel bacterial TF in single species and complex microbial communities. PredicTF is based on a deep learning algorithm. RESULTS To train PredicTF, we created a TF database (BacTFDB) by manually curating a total of 11,961 TF distributed in 99 TF families. Five model organisms were used to test the performance and the accuracy of PredicTF. PredicTF was able to identify 24-62% of the known TFs with an average precision of 88% in our five model organisms. We demonstrated PredicTF using pure cultures and a complex microbial community. In these demonstrations, we used (meta)genomes for TF prediction and (meta)transcriptomes for determining the expression of putative TFs. CONCLUSION PredicTF demonstrated high accuracy in predicting transcription factors in model organisms. We prepared the pipeline to be easily implemented in studies profiling TFs using (meta)genomes and (meta)transcriptomes. PredicTF is an open-source software available at https://github.com/mdsufz/PredicTF .
Collapse
Affiliation(s)
- Lummy Maria Oliveira Monteiro
- Helmholtz Center for Environmental Research (UFZ), Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Universität Leipzig, Leipzig, Germany
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Prêto, Brazil
| | | | | | - Peter F. Stadler
- Bioinformatics Group, Institute of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Prêto, Brazil
| | | |
Collapse
|
38
|
Hao M, Ye F, Jovanovic M, Kotta‐Loizou I, Xu Q, Qin X, Buck M, Zhang X, Wang M. Structures of Class I and Class II Transcription Complexes Reveal the Molecular Basis of RamA-Dependent Transcription Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103669. [PMID: 34761556 PMCID: PMC8811837 DOI: 10.1002/advs.202103669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ70 , together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ70 form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ70 at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.
Collapse
Affiliation(s)
- Min Hao
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Fuzhou Ye
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Milija Jovanovic
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Qingqing Xu
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Xiaohua Qin
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Martin Buck
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Xiaodong Zhang
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Minggui Wang
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| |
Collapse
|
39
|
Zhang Y, Wang Y, Li J, Wang C, Du G, Kang Z. Construction of Strong Promoters by Assembling Sigma Factor Binding Motifs. Methods Mol Biol 2022; 2461:137-147. [PMID: 35727448 DOI: 10.1007/978-1-0716-2152-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Development of strong promoters is of growing interest in the field of biotechnology and synthetic biology. Here we present a protocol for the construction of strong prokaryotic promoters that can be recognized by designated multiple sigma factors by interlocking their cognate binding motifs on DNA strands. Strong and stress responsive promoters for Escherichia coli and Bacillus subtilis have been created following the presented protocol. Customized promoters could be easily developed for fine-tuning gene expression or overproducing enzymes with prokaryotic cell factories.
Collapse
Affiliation(s)
- Yonglin Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China
| | - Chao Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, China.
| |
Collapse
|
40
|
Fang C, Zhang Y. Bacterial MerR family transcription regulators: activationby distortion. Acta Biochim Biophys Sin (Shanghai) 2021; 54:25-36. [PMID: 35130613 PMCID: PMC9909328 DOI: 10.3724/abbs.2021003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Transcription factors (TFs) modulate gene expression by regulating the accessibility of promoter DNA to RNA polymerases (RNAPs) in bacteria. The MerR family TFs are a large class of bacterial proteins unique in their physiological functions and molecular action: they function as transcription repressors under normal circumstances, but rapidly transform to transcription activators under various cellular triggers, including oxidative stress, imbalance of cellular metal ions, and antibiotic challenge. The promoters regulated by MerR TFs typically contain an abnormal long spacer between the -35 and -10 elements, where MerR TFs bind and regulate transcription activity through unique mechanisms. In this review, we summarize the function, ligand reception, DNA recognition, and molecular mechanism of transcription regulation of MerR-family TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yu Zhang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
41
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
42
|
Cazier AP, Blazeck J. Advances in promoter engineering: novel applications and predefined transcriptional control. Biotechnol J 2021; 16:e2100239. [PMID: 34351706 DOI: 10.1002/biot.202100239] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Synthetic biology continues to progress by relying on more robust tools for transcriptional control, of which promoters are the most fundamental component. Numerous studies have sought to characterize promoter function, determine principles to guide their engineering, and create promoters with stronger expression or tailored inducible control. In this review, we will summarize promoter architecture and highlight recent advances in the field, focusing on the novel applications of inducible promoter design and engineering towards metabolic engineering and cellular therapeutic development. Additionally, we will highlight how the expansion of new, machine learning techniques for modeling and engineering promoter sequences are enabling more accurate prediction of promoter characteristics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew P Cazier
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| |
Collapse
|
43
|
Freddolino PL, Amemiya HM, Goss TJ, Tavazoie S. Dynamic landscape of protein occupancy across the Escherichia coli chromosome. PLoS Biol 2021; 19:e3001306. [PMID: 34170902 PMCID: PMC8282354 DOI: 10.1371/journal.pbio.3001306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/15/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Free-living bacteria adapt to environmental change by reprogramming gene expression through precise interactions of hundreds of DNA-binding proteins. A predictive understanding of bacterial physiology requires us to globally monitor all such protein-DNA interactions across a range of environmental and genetic perturbations. Here, we show that such global observations are possible using an optimized version of in vivo protein occupancy display technology (in vivo protein occupancy display-high resolution, IPOD-HR) and present a pilot application to Escherichia coli. We observe that the E. coli protein-DNA interactome organizes into 2 distinct prototypic features: (1) highly dynamic condition-dependent transcription factor (TF) occupancy; and (2) robust kilobase scale occupancy by nucleoid factors, forming silencing domains analogous to eukaryotic heterochromatin. We show that occupancy dynamics across a range of conditions can rapidly reveal the global transcriptional regulatory organization of a bacterium. Beyond discovery of previously hidden regulatory logic, we show that these observations can be utilized to computationally determine sequence specificity models for the majority of active TFs. Our study demonstrates that global observations of protein occupancy combined with statistical inference can rapidly and systematically reveal the transcriptional regulatory and structural features of a bacterial genome. This capacity is particularly crucial for non-model bacteria that are not amenable to routine genetic manipulation.
Collapse
Affiliation(s)
- Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Haley M. Amemiya
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Thomas J. Goss
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| |
Collapse
|
44
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
45
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
46
|
Fang C, Philips SJ, Wu X, Chen K, Shi J, Shen L, Xu J, Feng Y, O’Halloran TV, Zhang Y. CueR activates transcription through a DNA distortion mechanism. Nat Chem Biol 2021; 17:57-64. [PMID: 32989300 PMCID: PMC9904984 DOI: 10.1038/s41589-020-00653-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023]
Abstract
The MerR-family transcription factors (TFs) are a large group of bacterial proteins responding to cellular metal ions and multiple antibiotics by binding within central RNA polymerase-binding regions of a promoter. While most TFs alter transcription through protein-protein interactions, MerR TFs are capable of reshaping promoter DNA. To address the question of which mechanism prevails, we determined two cryo-EM structures of transcription activation complexes (TAC) comprising Escherichia coli CueR (a prototype MerR TF), RNAP holoenzyme and promoter DNA. The structures reveal that this TF promotes productive promoter-polymerase association without canonical protein-protein contacts seen between other activator proteins and RNAP. Instead, CueR realigns the key promoter elements in the transcription activation complex by clamp-like protein-DNA interactions: these induce four distinct kinks that ultimately position the -10 element for formation of the transcription bubble. These structural and biochemical results provide strong support for the DNA distortion paradigm of allosteric transcriptional control by MerR TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven J. Philips
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juncao Xu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Thomas V. O’Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.,Corresponding author: (T.V.O.); (Y.F.); (Y.Z.)
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
47
|
Fang C, Li L, Zhao Y, Wu X, Philips SJ, You L, Zhong M, Shi X, O'Halloran TV, Li Q, Zhang Y. The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Nat Commun 2020; 11:6284. [PMID: 33293519 PMCID: PMC7722741 DOI: 10.1038/s41467-020-20134-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
The MerR-family proteins represent a unique family of bacteria transcription factors (TFs), which activate transcription in a manner distinct from canonical ones. Here, we report a cryo-EM structure of a B. subtilis transcription activation complex comprising B. subtilis six-subunit (2αββ'ωε) RNA Polymerase (RNAP) core enzyme, σA, a promoter DNA, and the ligand-bound B. subtilis BmrR, a prototype of MerR-family TFs. The structure reveals that RNAP and BmrR recognize the upstream promoter DNA from opposite faces and induce four significant kinks from the -35 element to the -10 element of the promoter DNA in a cooperative manner, which restores otherwise inactive promoter activity by shortening the length of promoter non-optimal -35/-10 spacer. Our structure supports a DNA-distortion and RNAP-non-contact paradigm of transcriptional activation by MerR TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linyu Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yihan Zhao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Steven J Philips
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingkang Zhong
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xiaojin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Thomas V O'Halloran
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Qunyi Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
48
|
Kędzierska B, Potrykus K, Szalewska-Pałasz A, Wodzikowska B. Insights into Transcriptional Repression of the Homologous Toxin-Antitoxin Cassettes yefM-yoeB and axe-txe. Int J Mol Sci 2020; 21:ijms21239062. [PMID: 33260607 PMCID: PMC7730913 DOI: 10.3390/ijms21239062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.
Collapse
|
49
|
Wang F, Shi J, He D, Tong B, Zhang C, Wen A, Zhang Y, Feng Y, Lin W. Structural basis for transcription inhibition by E. coli SspA. Nucleic Acids Res 2020; 48:9931-9942. [PMID: 32785630 PMCID: PMC7515715 DOI: 10.1093/nar/gkaa672] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Stringent starvation protein A (SspA) is an RNA polymerase (RNAP)-associated protein involved in nucleotide metabolism, acid tolerance and virulence of bacteria. Despite extensive biochemical and genetic analyses, the precise regulatory role of SspA in transcription is still unknown, in part, because of a lack of structural information for bacterial RNAP in complex with SspA. Here, we report a 3.68 Å cryo-EM structure of an Escherichia coli RNAP-promoter open complex (RPo) with SspA. Unexpectedly, the structure reveals that SspA binds to the E. coli σ70-RNAP holoenzyme as a homodimer, interacting with σ70 region 4 and the zinc binding domain of EcoRNAP β′ subunit simultaneously. Results from fluorescent polarization assays indicate the specific interactions between SspA and σ70 region 4 confer its σ selectivity, thereby avoiding its interactions with σs or other alternative σ factors. In addition, results from in vitro transcription assays verify that SspA inhibits transcription probably through suppressing promoter escape. Together, the results here provide a foundation for understanding the unique physiological function of SspA in transcription regulation in bacteria.
Collapse
Affiliation(s)
- Fulin Wang
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Jing Shi
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei He
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chao Zhang
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| |
Collapse
|
50
|
Mejía-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, Eilbeck K, Palsson BO, Galagan JE, Collado-Vides J. Redefining fundamental concepts of transcription initiation in bacteria. Nat Rev Genet 2020; 21:699-714. [PMID: 32665585 PMCID: PMC7990032 DOI: 10.1038/s41576-020-0254-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.
Collapse
Affiliation(s)
- Citlalli Mejía-Almonte
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | | | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jacques van Helden
- Aix-Marseille University, INSERM UMR S 1090, Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gary D Stormo
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|