1
|
Liang Y, Li M. A deep learning model for prediction of lysine crotonylation sites by fusing multi-features based on multi-head self-attention mechanism. Sci Rep 2025; 15:18940. [PMID: 40442183 PMCID: PMC12122789 DOI: 10.1038/s41598-025-04058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025] Open
Abstract
Lysine crotonylation (Kcr) is an important post-translational modification, which is present in both histone and non-histone proteins, and plays a key role in a variety of biological processes such as metabolism and cell differentiation. Therefore, rapid and accurate identification of this modification has become a key task to study its biological effects. In the past few years, some calculation methods have been developed, but there is room for improvement in prediction performance. In this paper, we propose an effective model named DeepMM-Kcr, which is based on multiple features and an innovative deep learning framework. Multiple features are extracted from natural language processing features and hand-crafted features, where natural language processing features include token embedding and positional embedding encoded by transformer, and hand-crafted features include one-hot, amino acid index and position-weighted amino acid composition, and encoded by bidirectional long short-term memory network. Then natural language processing features and hand-crafted features are fusing by multi-head self-attention mechanism. Finally, a deep learning framework is constructed based on convolutional neural network, bidirectional gated recurrent unit and multilayer perceptron for robust prediction of Kcr sites. On the independent test set, the accuracy of DeepMM-Kcr is highest among the existing models. The experimental results show that our model has very good performance in predicting Kcr sites. The source datasets and codes (in Python) are publicly available at https://github.com/yunyunliang88/DeepMM-Kcr .
Collapse
Affiliation(s)
- Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| | - Minwei Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| |
Collapse
|
2
|
Lei R, Jia J, Qin L. im7G-DCT: A two-branch strategy model based on improved DenseNet and transformer for m7G site prediction. Comput Biol Chem 2025; 118:108473. [PMID: 40245811 DOI: 10.1016/j.compbiolchem.2025.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
N-7 methylguanosine (m7G) is an important RNA modification that plays a key role in regulating gene expression and cellular physiological functions. Medical research has shown that m7G is closely associated with the development of a variety of diseases, including cancer, neurodegenerative diseases and viral infections. Therefore, accurate identification of m7G sites in mRNA is important for clinical applications and development of therapeutic strategies. With the rapid development of computational methods, deep learning prediction models are widely used in the field of m7G site. We developed a model called im7G-DCT based on the improved Densely Connected Convolutional Network and Transformer, which employs a two-branching strategy to extract local and global features from the original feature code in parallel. We found that this innovative strategy can mine the potential feature information of m7G locus sequences in a deeper way, which enhances the richness of features and improves the accuracy of prediction. As an innovative deep learning method, the im7G-DCT model shows important research value in the field of bioinformatics and has broad application prospects. In the results of independent test experiments, the im7G-DCT model achieved 81.68 %, 90.52 %, 86.10 %, and 72.48 % in sensitivity, specificity, accuracy, and Matthews' correlation coefficient, respectively. The im7G-DCT model performs well in all evaluation metrics and it significantly outperforms other existing prediction models.
Collapse
Affiliation(s)
- Rufeng Lei
- School of Mathematics, Northwest University, Xi'an 710127, China
| | - Jian Jia
- School of Mathematics, Northwest University, Xi'an 710127, China.
| | - Lulu Qin
- School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
3
|
Phan LT, Rakkiyappan R, Manavalan B. REMED-T2D: A robust ensemble learning model for early detection of type 2 diabetes using healthcare dataset. Comput Biol Med 2025; 187:109771. [PMID: 39914204 DOI: 10.1016/j.compbiomed.2025.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/31/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Early diagnosis and timely treatment of diabetes are critical for effective disease management and the prevention of complications. Undiagnosed diabetes can lead to an increased risk of several health issues. Although numerous machine learning (ML) models have been designed to detect diabetes, many exhibit unsatisfactory performance, are not publicly available, and lack validation on external datasets. To address these limitations, we have developed REMED-T2D, an advanced ensemble ML approach that enhances predictive accuracy and robustness through the integration of diverse ML algorithms. Our approach involves a rigorous data preprocessing process and systematic evaluation of 20 different algorithms, encompassing both conventional ML and deep learning for diabetes prediction. Firstly, we applied an under-sampling approach to an imbalanced Pima Indian Diabetes dataset and generated five balanced datasets. Using these datasets, we investigated various computational strategies to select the optimal model for accurate diabetes classification. Our results demonstrate that REMED-T2D outperformed state-of-the-art methods on the training dataset, with notable improvements in ACC (1.40-4.60%) and MCC (3.50-9.80%). Extensive external validations revealed that the model trained on a five-feature subset achieved ACC of 92.61 % and 92.26 % on the RTML1 and Pabna datasets, respectively. Moreover, a model based on a seven-feature subset improved ACC by 2.80 % and MCC by 13.27 % on the RTML2 dataset. These results suggest the potential of REMED-T2D to predict diabetes in Asian females. Notably, this is the first study to conduct such a comprehensive analysis using the Pima dataset, incorporating a diverse set of ML algorithms. Furthermore, we have developed a publicly accessible web server (https://balalab-skku.org/REMED-T2D/) to facilitate self-monitoring and timely medical interventions. We believe REMED-T2D will assist healthcare professionals in detecting diabetes earlier and implementing preventive measures, ultimately improving health outcomes for those at risk.
Collapse
Affiliation(s)
- Le Thi Phan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16149, Gyeonggi-do, Republic of Korea
| | - Rajan Rakkiyappan
- Department of Mathematics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16149, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
4
|
Wu CY, Xu ZX, Li N, Qi DY, Wu HY, Ding H, Jin YT. Predicting cyclins based on key features and machine learning methods. Methods 2025; 234:112-119. [PMID: 39694304 DOI: 10.1016/j.ymeth.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024] Open
Abstract
Cyclins are a group of proteins that regulate the cell cycle process by modulating various stages of cell division to ensure correct cell proliferation, differentiation, and apoptosis. Research on cyclins is crucial for understanding the biological functions and pathological states of cells. However, current research on cyclin identification based on machine learning only focuses on accuracy ignoring the interpretability of features. Therefore, in this study, we pay more attention to the interpretation and analysis of key features associated with cyclins. Firstly, we developed an SVM-based model for identifying cyclins with an accuracy of 92.8% through 5-fold. Then we analyzed the physicochemical properties of the 14 key features used in the model construction and identified the G and charged C1 features that are critical for distinguishing cyclins from non-cyclins. Furthermore, we constructed an SVM-based model using only these two features with an accuracy of 81.3% through the leave-one-out cross-validation. Our study shows that cyclins differ from non-cyclins in their physicochemical properties and that using only two features can achieve good prediction accuracy.
Collapse
Affiliation(s)
- Cheng-Yan Wu
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teachers College, Baotou 014010, China.
| | - Zhi-Xue Xu
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teachers College, Baotou 014010, China.
| | - Nan Li
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teachers College, Baotou 014010, China.
| | - Dan-Yang Qi
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teachers College, Baotou 014010, China.
| | - Hong-Ye Wu
- Key Laboratory of Magnetism and Magnetic Materials at Universities of Inner Mongolia Autonomous Region, Baotou Teachers College, Baotou 014010, China.
| | - Hui Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
5
|
Basith S, Manavalan B, Lee G. AntiT2DMP-Pred: Leveraging feature fusion and optimization for superior machine learning prediction of type 2 diabetes mellitus. Methods 2025; 234:264-274. [PMID: 39798942 DOI: 10.1016/j.ymeth.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025] Open
Abstract
Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Synthetic inhibitors of carbohydrate-digesting enzymes are used to manage T2DM but may harm organ function over time. Bioactive peptides offer a safer alternative, avoiding such adverse effects. Computational methods for predicting antidiabetic peptides (ADPs) can significantly reduce the time and cost of experimental testing. While machine learning (ML) has been applied to identify ADPs, advancements in data analysis and algorithms continue to drive progress in the field. To address this, we developed AntiT2DMP-Pred, the first ML-based tool specifically designed for predicting type 2 antidiabetic peptides (T2ADPs). This tool employs a feature fusion strategy, combining ten highly discriminative feature descriptors chosen from a pool of 32 descriptors and eight ML algorithms, tested across a range of baseline models. AntiT2DMP-Pred demonstrated excellent performance, surpassing both baseline and feature-optimized models, with an accuracy (ACC) and Matthews' correlation coefficient (MCC) of 0.976 and 0.953 on the training dataset, and an ACC and MCC of 0.957 and 0.851 on the independent dataset. The web server (https://balalab-skku.org/AntiT2DMP-Pred) is freely accessible, enabling researchers worldwide to utilize it in their experimental workflows and contribute to the discovery and understanding of T2ADPs, ultimately supporting peptide-based therapeutic development for diabetes management.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499 Republic of Korea.
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419 Republic of Korea.
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499 Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499 Republic of Korea.
| |
Collapse
|
6
|
Wu Q, Fu X, Liu G, He X, Li Y, Ou C. N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential. J Hematol Oncol 2025; 18:12. [PMID: 39881381 PMCID: PMC11780989 DOI: 10.1186/s13045-025-01665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression. On one hand, m7G modification-associated modulate tumour progression and affect malignant biological characteristics, including sustained proliferation signalling, resistance to cell death, activation of invasion and metastasis, reprogramming of energy metabolism, genome instability, and immune evasion. This suggests that they may be novel therapeutic targets for cancer treatment. On the other hand, the aberrant expression of m7G modification-associated molecules is linked to clinicopathological characteristics, including tumour staging, lymph node metastasis, and unfavourable prognoses in patients with cancer, indicating their potential as tumour biomarkers. This review consolidates the discovery, identification, detection methodologies, and functional roles of m7G modification, analysing the mechanisms by which m7G modification-associated molecules contribute to tumour development, and exploring their potential clinical applications in cancer diagnostics and therapy, thereby providing innovative strategies for tumour identification and targeted treatment.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guoqian Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Chunlin Ou
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Liang Y, Cao M, Zhang S. NeuroPred-ResSE: Predicting neuropeptides by integrating residual block and squeeze-excitation attention mechanism. Anal Biochem 2024; 695:115648. [PMID: 39154878 DOI: 10.1016/j.ab.2024.115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Neuropeptides play crucial roles in regulating neurological function acting as signaling molecules, which provide new opportunity for developing drugs for the treatment of neurological diseases. Therefore, it is very necessary to develop a rapid and accurate prediction model for neuropeptides. Although a few prediction tools have been developed, there is room for improvement in prediction accuracy by using deep learning approach. In this paper, we establish the NeuroPred-ResSE model based on residual block and squeeze-excitation attention mechanism. Firstly, we extract multi-features by using one-hot coding based on the NT5CT5 sequence, dipeptide deviation from expected mean and natural vector. Then, we integrate residual block and squeeze-excitation attention mechanism, which can capture and identify the most relevant attribute features. Finally, the accuracies of the training set and test set are 97.16 % and 96.60 % based on the 5-fold cross-validation and independent test, respectively, and other evaluation metrics have also obtained satisfactory results. The experimental results show that the performance of the NeuroPred-ResSE model outperforms those of existing state-of-the-art models, and our model is an effective, intelligent and robust prediction tool. The datasets and source codes are available at https://github.com/yunyunliang88/NeuroPred-ResSE.
Collapse
Affiliation(s)
- Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| | - Mengyi Cao
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| |
Collapse
|
8
|
Basith S, Sangaraju VK, Manavalan B, Lee G. mHPpred: Accurate identification of peptide hormones using multi-view feature learning. Comput Biol Med 2024; 183:109297. [PMID: 39442438 DOI: 10.1016/j.compbiomed.2024.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Peptide hormones were first used in medicine in the early 20th century, with the pivotal event being the isolation and purification of insulin in 1921. These hormones are integral to a sophisticated system that emerged early in evolution to regulate growth, development, and homeostasis. They serve as targeted signaling molecules that transfer specific information between cells and organs, ensuring coordinated and precise physiological responses. While experimental methods for identifying peptide hormones present challenges such as low abundance, stability issues, and complexity, computational methods offer promising alternatives. Advances in machine learning and bioinformatics have facilitated the prediction of peptide hormones, further enhancing their therapeutic potential. In this study, we explored three different computational frameworks for peptide hormone identification and determined that the meta-approach was the most suitable. Firstly, we evaluated the discriminative power of 26 feature descriptors using a series of baseline models and identified seven feature descriptors with high predictive potential. Through a systematic approach, we then selected the top 20 performing baseline models and integrated their predicted probabilities to train a meta-model, leveraging the strengths of multiple prediction strategies. Our final light gradient boosting-based meta-model, mHPpred, significantly outperformed the existing method, HOPPred, on both benchmarking and independent datasets. Notably, mHPpred also demonstrated superior performance compared to the hybrid and integrative framework approaches employed in this study. This superiority demonstrates the effectiveness of our multi-view feature learning strategy in capturing discriminative features and providing a more accurate prediction model for peptide hormones. mHPpred is publicly accessible at: https://balalab-skku.org/mHPpred.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Vinoth Kumar Sangaraju
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
9
|
Li C, Wang H, Wen Y, Yin R, Zeng X, Li K. GenoM7GNet: An Efficient N 7-Methylguanosine Site Prediction Approach Based on a Nucleotide Language Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2258-2268. [PMID: 39302806 DOI: 10.1109/tcbb.2024.3459870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
N-methylguanosine (m7G), one of the mainstream post-transcriptional RNA modifications, occupies an exceedingly significant place in medical treatments. However, classic approaches for identifying m7G sites are costly both in time and equipment. Meanwhile, the existing machine learning methods extract limited hidden information from RNA sequences, thus making it difficult to improve the accuracy. Therefore, we put forward to a deep learning network, called "GenoM7GNet," for m7G site identification. This model utilizes a Bidirectional Encoder Representation from Transformers (BERT) and is pretrained on nucleotide sequences data to capture hidden patterns from RNA sequences for m7G site prediction. Moreover, through detailed comparative experiments with various deep learning models, we discovered that the one-dimensional convolutional neural network (CNN) exhibits outstanding performance in sequence feature learning and classification. The proposed GenoM7GNet model achieved 0.953in accuracy, 0.932in sensitivity, 0.976in specificity, 0.907in Matthews Correlation Coefficient and 0.984in Area Under the receiver operating characteristic Curve on performance evaluation. Extensive experimental results further prove that our GenoM7GNet model markedly surpasses other state-of-the-art models in predicting m7G sites, exhibiting high computing performance.
Collapse
|
10
|
Ahmed Z, Shahzadi K, Temesgen SA, Ahmad B, Chen X, Ning L, Zulfiqar H, Lin H, Jin YT. A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins. Int J Biol Macromol 2024; 277:134146. [PMID: 39067723 DOI: 10.1016/j.ijbiomac.2024.134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.68% and 89.67%, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
Collapse
Affiliation(s)
- Zahoor Ahmed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Kiran Shahzadi
- Department of Biotechnology, Women University of Azad Jammu and Kashmir, Bagh, Azad Kashmir, Pakistan.
| | - Sebu Aboma Temesgen
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Basharat Ahmad
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Xiang Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Lin Ning
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China; School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China.
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| |
Collapse
|
11
|
Jin YT, Tan Y, Gan ZH, Hao YD, Wang TY, Lin H, Tang B. Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors. Methods 2024; 229:125-132. [PMID: 38964595 DOI: 10.1016/j.ymeth.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
DNase I hypersensitive sites (DHSs) are chromatin regions highly sensitive to DNase I enzymes. Studying DHSs is crucial for understanding complex transcriptional regulation mechanisms and localizing cis-regulatory elements (CREs). Numerous studies have indicated that disease-related loci are often enriched in DHSs regions, underscoring the importance of identifying DHSs. Although wet experiments exist for DHSs identification, they are often labor-intensive. Therefore, there is a strong need to develop computational methods for this purpose. In this study, we used experimental data to construct a benchmark dataset. Seven feature extraction methods were employed to capture information about human DHSs. The F-score was applied to filter the features. By comparing the prediction performance of various classification algorithms through five-fold cross-validation, random forest was proposed to perform the final model construction. The model could produce an overall prediction accuracy of 0.859 with an AUC value of 0.837. We hope that this model can assist scholars conducting DNase research in identifying these sites.
Collapse
Affiliation(s)
- Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Yang Tan
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Zhong-Hua Gan
- Department of Pathology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu-Duo Hao
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Tian-Yu Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Bo Tang
- Department of Pathology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Zhao Y, Jin J, Gao W, Qiao J, Wei L. Moss-m7G: A Motif-Based Interpretable Deep Learning Method for RNA N7-Methlguanosine Site Prediction. J Chem Inf Model 2024; 64:6230-6240. [PMID: 39011571 DOI: 10.1021/acs.jcim.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
N-7methylguanosine (m7G) modification plays a crucial role in various biological processes and is closely associated with the development and progression of many cancers. Accurate identification of m7G modification sites is essential for understanding their regulatory mechanisms and advancing cancer therapy. Previous studies often suffered from insufficient research data, underutilization of motif information, and lack of interpretability. In this work, we designed a novel motif-based interpretable method for m7G modification site prediction, called Moss-m7G. This approach enables the analysis of RNA sequences from a motif-centric perspective. Our proposed word-detection module and motif-embedding module within Moss-m7G extract motif information from sequences, transforming the raw sequences from base-level into motif-level and generating embeddings for these motif sequences. Compared with base sequences, motif sequences contain richer contextual information, which is further analyzed and integrated through the Transformer model. We constructed a comprehensive m7G data set to implement the training and testing process to address the data insufficiency noted in prior research. Our experimental results affirm the effectiveness and superiority of Moss-m7G in predicting m7G modification sites. Moreover, the introduction of the word-detection module enhances the interpretability of the model, providing insights into the predictive mechanisms.
Collapse
Affiliation(s)
- Yanxi Zhao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Junru Jin
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Wenjia Gao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Jianbo Qiao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
- School of Informatics, Xiamen University, Xiamen 361104, China
| |
Collapse
|
13
|
Bortoletto E, Rosani U. Bioinformatics for Inosine: Tools and Approaches to Trace This Elusive RNA Modification. Genes (Basel) 2024; 15:996. [PMID: 39202357 PMCID: PMC11353476 DOI: 10.3390/genes15080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Inosine is a nucleotide resulting from the deamination of adenosine in RNA. This chemical modification process, known as RNA editing, is typically mediated by a family of double-stranded RNA binding proteins named Adenosine Deaminase Acting on dsRNA (ADAR). While the presence of ADAR orthologs has been traced throughout the evolution of metazoans, the existence and extension of RNA editing have been characterized in a more limited number of animals so far. Undoubtedly, ADAR-mediated RNA editing plays a vital role in physiology, organismal development and disease, making the understanding of the evolutionary conservation of this phenomenon pivotal to a deep characterization of relevant biological processes. However, the lack of direct high-throughput methods to reveal RNA modifications at single nucleotide resolution limited an extended investigation of RNA editing. Nowadays, these methods have been developed, and appropriate bioinformatic pipelines are required to fully exploit this data, which can complement existing approaches to detect ADAR editing. Here, we review the current literature on the "bioinformatics for inosine" subject and we discuss future research avenues in the field.
Collapse
Affiliation(s)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
14
|
Basith S, Pham NT, Manavalan B, Lee G. SEP-AlgPro: An efficient allergen prediction tool utilizing traditional machine learning and deep learning techniques with protein language model features. Int J Biol Macromol 2024; 273:133085. [PMID: 38871100 DOI: 10.1016/j.ijbiomac.2024.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Allergy is a hypersensitive condition in which individuals develop objective symptoms when exposed to harmless substances at a dose that would cause no harm to a "normal" person. Most current computational methods for allergen identification rely on homology or conventional machine learning using limited set of feature descriptors or validation on specific datasets, making them inefficient and inaccurate. Here, we propose SEP-AlgPro for the accurate identification of allergen protein from sequence information. We analyzed 10 conventional protein-based features and 14 different features derived from protein language models to gauge their effectiveness in differentiating allergens from non-allergens using 15 different classifiers. However, the final optimized model employs top 10 feature descriptors with top seven machine learning classifiers. Results show that the features derived from protein language models exhibit superior discriminative capabilities compared to traditional feature sets. This enabled us to select the most discriminatory baseline models, whose predicted outputs were aggregated and used as input to a deep neural network for the final allergen prediction. Extensive case studies showed that SEP-AlgPro outperforms state-of-the-art predictors in accurately identifying allergens. A user-friendly web server was developed and made freely available at https://balalab-skku.org/SEP-AlgPro/, making it a powerful tool for identifying potential allergens.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| | - Nhat Truong Pham
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
15
|
Pham NT, Terrance AT, Jeon YJ, Rakkiyappan R, Manavalan B. ac4C-AFL: A high-precision identification of human mRNA N4-acetylcytidine sites based on adaptive feature representation learning. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102192. [PMID: 38779332 PMCID: PMC11108997 DOI: 10.1016/j.omtn.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
RNA N4-acetylcytidine (ac4C) is a highly conserved RNA modification that plays a crucial role in controlling mRNA stability, processing, and translation. Consequently, accurate identification of ac4C sites across the genome is critical for understanding gene expression regulation mechanisms. In this study, we have developed ac4C-AFL, a bioinformatics tool that precisely identifies ac4C sites from primary RNA sequences. In ac4C-AFL, we identified the optimal sequence length for model building and implemented an adaptive feature representation strategy that is capable of extracting the most representative features from RNA. To identify the most relevant features, we proposed a novel ensemble feature importance scoring strategy to rank features effectively. We then used this information to conduct the sequential forward search, which individually determine the optimal feature set from the 16 sequence-derived feature descriptors. Utilizing these optimal feature descriptors, we constructed 176 baseline models using 11 popular classifiers. The most efficient baseline models were identified using the two-step feature selection approach, whose predicted scores were integrated and trained with the appropriate classifier to develop the final prediction model. Our rigorous cross-validations and independent tests demonstrate that ac4C-AFL surpasses contemporary tools in predicting ac4C sites. Moreover, we have developed a publicly accessible web server at https://balalab-skku.org/ac4C-AFL/.
Collapse
Affiliation(s)
- Nhat Truong Pham
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Annie Terrina Terrance
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Rajan Rakkiyappan
- Department of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
16
|
Li F, Zhang J, Li K, Peng Y, Zhang H, Xu Y, Yu Y, Zhang Y, Liu Z, Wang Y, Huang L, Zhou F. GANSamples-ac4C: Enhancing ac4C site prediction via generative adversarial networks and transfer learning. Anal Biochem 2024; 689:115495. [PMID: 38431142 DOI: 10.1016/j.ab.2024.115495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
RNA modification, N4-acetylcytidine (ac4C), is enzymatically catalyzed by N-acetyltransferase 10 (NAT10) and plays an essential role across tRNA, rRNA, and mRNA. It influences various cellular functions, including mRNA stability and rRNA biosynthesis. Wet-lab detection of ac4C modification sites is highly resource-intensive and costly. Therefore, various machine learning and deep learning techniques have been employed for computational detection of ac4C modification sites. The known ac4C modification sites are limited for training an accurate and stable prediction model. This study introduces GANSamples-ac4C, a novel framework that synergizes transfer learning and generative adversarial network (GAN) to generate synthetic RNA sequences to train a better ac4C modification site prediction model. Comparative analysis reveals that GANSamples-ac4C outperforms existing state-of-the-art methods in identifying ac4C sites. Moreover, our result underscores the potential of synthetic data in mitigating the issue of data scarcity for biological sequence prediction tasks. Another major advantage of GANSamples-ac4C is its interpretable decision logic. Multi-faceted interpretability analyses detect key regions in the ac4C sequences influencing the discriminating decision between positive and negative samples, a pronounced enrichment of G in this region, and ac4C-associated motifs. These findings may offer novel insights for ac4C research. The GANSamples-ac4C framework and its source code are publicly accessible at http://www.healthinformaticslab.org/supp/.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Jiale Zhang
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| | - Yu Peng
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Haotian Zhang
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Yiping Xu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yue Yu
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Yuteng Zhang
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Zewen Liu
- College of Software, Jilin University, Changchun, Jilin, 130012, China
| | - Ying Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
17
|
Luo Y, Deng L. DPMGCDA: Deciphering circRNA-Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder. J Chem Inf Model 2024; 64:4359-4372. [PMID: 38745420 DOI: 10.1021/acs.jcim.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Accumulating evidence has indicated that the expression of circular RNAs (circRNAs) can affect the cellular sensitivity to drugs and significantly influence drug efficacy. However, traditional experimental approaches for validating these associations are resource-intensive and time-consuming. To address this challenge, we propose a computational framework termed DPMGCDA leveraging dual perspective learning and path-masked graph autoencoder to predict circRNA-drug sensitivity associations. Initially, we construct circRNA-circRNA fusion similarity networks and drug-drug fusion similarity networks using similarity network fusion, ensuring a comprehensive integration of information. Based on the above, we built the circRNA homogeneous graph, the drug homogeneous graph, and the circRNA-drug heterogeneous graph. Next, we form the initial node features in the circRNA-drug heterogeneous graph from the homogeneous graph-level perspective and the combined feature-level perspective and complete the prediction of potential associations using the path-masked graph autoencoder in both perspectives. The predictions under both perspectives are finally combined to obtain the final prediction score. Transductive setting experiments and inductive setting experiments all demonstrate that our method, DPMGCDA, outperforms state-of-the-art approaches. Additionally, we verify the necessity of employing dual perspective learning through ablation tests and analyze the effective encoding capability of the path-masked graph autoencoder for features through embedding visualization. Moreover, case studies on four drugs corroborate DPMGCDA's ability to identify potential circRNAs associated with new drugs.
Collapse
Affiliation(s)
- Yue Luo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
18
|
Gu ZF, Hao YD, Wang TY, Cai PL, Zhang Y, Deng KJ, Lin H, Lv H. Prediction of blood-brain barrier penetrating peptides based on data augmentation with Augur. BMC Biol 2024; 22:86. [PMID: 38637801 PMCID: PMC11027412 DOI: 10.1186/s12915-024-01883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The blood-brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood-brain barrier. Among these, blood-brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for blood-brain barrier penetrating peptides, their performance has often been hampered by issue of limited positive data. RESULTS In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood-brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set. CONCLUSIONS This newly developed Augur model demonstrates superior performance in predicting blood-brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.
Collapse
Affiliation(s)
- Zhi-Feng Gu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Yu-Duo Hao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Tian-Yu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Pei-Ling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, PR China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Ke-Jun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Hao Lin
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| | - Hao Lv
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| |
Collapse
|
19
|
Wang M, Ali H, Xu Y, Xie J, Xu S. BiPSTP: Sequence feature encoding method for identifying different RNA modifications with bidirectional position-specific trinucleotides propensities. J Biol Chem 2024; 300:107140. [PMID: 38447795 PMCID: PMC10997841 DOI: 10.1016/j.jbc.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
RNA modification, a posttranscriptional regulatory mechanism, significantly influences RNA biogenesis and function. The accurate identification of modification sites is paramount for investigating their biological implications. Methods for encoding RNA sequence into numerical data play a crucial role in developing robust models for predicting modification sites. However, existing techniques suffer from limitations, including inadequate information representation, challenges in effectively integrating positional and sequential information, and the generation of irrelevant or redundant features when combining multiple approaches. These deficiencies hinder the effectiveness of machine learning models in addressing the performance challenges associated with predicting RNA modification sites. Here, we introduce a novel RNA sequence feature representation method, named BiPSTP, which utilizes bidirectional trinucleotide position-specific propensities. We employ the parameter ξ to denote the interval between the current nucleotide and its adjacent forward or backward dinucleotide, enabling the extraction of positional and sequential information from RNA sequences. Leveraging the BiPSTP method, we have developed the prediction model mRNAPred using support vector machine classifier to identify multiple types of RNA modification sites. We evaluate the performance of our BiPSTP method and mRNAPred model across 12 distinct RNA modification types. Our experimental results demonstrate the superiority of the mRNAPred model compared to state-of-art models in the domain of RNA modification sites identification. Importantly, our BiPSTP method enhances the robustness and generalization performance of prediction models. Notably, it can be applied to feature extraction from DNA sequences to predict other biological modification sites.
Collapse
Affiliation(s)
- Mingzhao Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Haider Ali
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yandi Xu
- School of Computer Science, Shaanxi Normal University, Xi'an, China; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an, China.
| | - Shengquan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
20
|
Zhang HQ, Liu SH, Li R, Yu JW, Ye DX, Yuan SS, Lin H, Huang CB, Tang H. MIBPred: Ensemble Learning-Based Metal Ion-Binding Protein Classifier. ACS OMEGA 2024; 9:8439-8447. [PMID: 38405489 PMCID: PMC10882704 DOI: 10.1021/acsomega.3c09587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
In biological organisms, metal ion-binding proteins participate in numerous metabolic activities and are closely associated with various diseases. To accurately predict whether a protein binds to metal ions and the type of metal ion-binding protein, this study proposed a classifier named MIBPred. The classifier incorporated advanced Word2Vec technology from the field of natural language processing to extract semantic features of the protein sequence language and combined them with position-specific score matrix (PSSM) features. Furthermore, an ensemble learning model was employed for the metal ion-binding protein classification task. In the model, we independently trained XGBoost, LightGBM, and CatBoost algorithms and integrated the output results through an SVM voting mechanism. This innovative combination has led to a significant breakthrough in the predictive performance of our model. As a result, we achieved accuracies of 95.13% and 85.19%, respectively, in predicting metal ion-binding proteins and their types. Our research not only confirms the effectiveness of Word2Vec technology in extracting semantic information from protein sequences but also highlights the outstanding performance of the MIBPred classifier in the problem of metal ion-binding protein types. This study provides a reliable tool and method for the in-depth exploration of the structure and function of metal ion-binding proteins.
Collapse
Affiliation(s)
- Hong-Qi Zhang
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Shang-Hua Liu
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Rui Li
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Jun-Wen Yu
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Dong-Xin Ye
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Shi-Shi Yuan
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Hao Lin
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School
of Computer Science and Technology, Aba Teachers University, Aba 623002, China
| | - Hua Tang
- School
of Basic Medical Sciences, Southwest Medical
University, Luzhou 646000, China
- Central
Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
21
|
Ma X, Liang Y, Zhang S. iAVPs-ResBi: Identifying antiviral peptides by using deep residual network and bidirectional gated recurrent unit. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:21563-21587. [PMID: 38124610 DOI: 10.3934/mbe.2023954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Human history is also the history of the fight against viral diseases. From the eradication of viruses to coexistence, advances in biomedicine have led to a more objective understanding of viruses and a corresponding increase in the tools and methods to combat them. More recently, antiviral peptides (AVPs) have been discovered, which due to their superior advantages, have achieved great impact as antiviral drugs. Therefore, it is very necessary to develop a prediction model to accurately identify AVPs. In this paper, we develop the iAVPs-ResBi model using k-spaced amino acid pairs (KSAAP), encoding based on grouped weight (EBGW), enhanced grouped amino acid composition (EGAAC) based on the N5C5 sequence, composition, transition and distribution (CTD) based on physicochemical properties for multi-feature extraction. Then we adopt bidirectional long short-term memory (BiLSTM) to fuse features for obtaining the most differentiated information from multiple original feature sets. Finally, the deep model is built by combining improved residual network and bidirectional gated recurrent unit (BiGRU) to perform classification. The results obtained are better than those of the existing methods, and the accuracies are 95.07, 98.07, 94.29 and 97.50% on the four datasets, which show that iAVPs-ResBi can be used as an effective tool for the identification of antiviral peptides. The datasets and codes are freely available at https://github.com/yunyunliang88/iAVPs-ResBi.
Collapse
Affiliation(s)
- Xinyan Ma
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| |
Collapse
|
22
|
Pham NT, Rakkiyapan R, Park J, Malik A, Manavalan B. H2Opred: a robust and efficient hybrid deep learning model for predicting 2'-O-methylation sites in human RNA. Brief Bioinform 2023; 25:bbad476. [PMID: 38180830 PMCID: PMC10768780 DOI: 10.1093/bib/bbad476] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
2'-O-methylation (2OM) is the most common post-transcriptional modification of RNA. It plays a crucial role in RNA splicing, RNA stability and innate immunity. Despite advances in high-throughput detection, the chemical stability of 2OM makes it difficult to detect and map in messenger RNA. Therefore, bioinformatics tools have been developed using machine learning (ML) algorithms to identify 2OM sites. These tools have made significant progress, but their performances remain unsatisfactory and need further improvement. In this study, we introduced H2Opred, a novel hybrid deep learning (HDL) model for accurately identifying 2OM sites in human RNA. Notably, this is the first application of HDL in developing four nucleotide-specific models [adenine (A2OM), cytosine (C2OM), guanine (G2OM) and uracil (U2OM)] as well as a generic model (N2OM). H2Opred incorporated both stacked 1D convolutional neural network (1D-CNN) blocks and stacked attention-based bidirectional gated recurrent unit (Bi-GRU-Att) blocks. 1D-CNN blocks learned effective feature representations from 14 conventional descriptors, while Bi-GRU-Att blocks learned feature representations from five natural language processing-based embeddings extracted from RNA sequences. H2Opred integrated these feature representations to make the final prediction. Rigorous cross-validation analysis demonstrated that H2Opred consistently outperforms conventional ML-based single-feature models on five different datasets. Moreover, the generic model of H2Opred demonstrated a remarkable performance on both training and testing datasets, significantly outperforming the existing predictor and other four nucleotide-specific H2Opred models. To enhance accessibility and usability, we have deployed a user-friendly web server for H2Opred, accessible at https://balalab-skku.org/H2Opred/. This platform will serve as an invaluable tool for accurately predicting 2OM sites within human RNA, thereby facilitating broader applications in relevant research endeavors.
Collapse
Affiliation(s)
- Nhat Truong Pham
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Rajan Rakkiyapan
- Department of Mathematics, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Jongsun Park
- InfoBoss inc. and InfoBoss Research Center, Gangnam-gu, Seoul 06278, Republic of Korea
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
23
|
Pham NT, Phan LT, Seo J, Kim Y, Song M, Lee S, Jeon YJ, Manavalan B. Advancing the accuracy of SARS-CoV-2 phosphorylation site detection via meta-learning approach. Brief Bioinform 2023; 25:bbad433. [PMID: 38058187 PMCID: PMC10753650 DOI: 10.1093/bib/bbad433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis. Currently, available computational tools for predicting these sites lack accuracy and effectiveness. In this study, we designed an innovative meta-learning model, Meta-Learning for Serine/Threonine Phosphorylation (MeL-STPhos), to precisely identify protein phosphorylation sites. We initially performed a comprehensive assessment of 29 unique sequence-derived features, establishing prediction models for each using 14 renowned machine learning methods, ranging from traditional classifiers to advanced deep learning algorithms. We then selected the most effective model for each feature by integrating the predicted values. Rigorous feature selection strategies were employed to identify the optimal base models and classifier(s) for each cell-specific dataset. To the best of our knowledge, this is the first study to report two cell-specific models and a generic model for phosphorylation site prediction by utilizing an extensive range of sequence-derived features and machine learning algorithms. Extensive cross-validation and independent testing revealed that MeL-STPhos surpasses existing state-of-the-art tools for phosphorylation site prediction. We also developed a publicly accessible platform at https://balalab-skku.org/MeL-STPhos. We believe that MeL-STPhos will serve as a valuable tool for accelerating the discovery of serine/threonine phosphorylation sites and elucidating their role in post-translational regulation.
Collapse
Affiliation(s)
- Nhat Truong Pham
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Le Thi Phan
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jimin Seo
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Yeonwoo Kim
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Minkyung Song
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
24
|
Zou X, Ren L, Cai P, Zhang Y, Ding H, Deng K, Yu X, Lin H, Huang C. Accurately identifying hemagglutinin using sequence information and machine learning methods. Front Med (Lausanne) 2023; 10:1281880. [PMID: 38020152 PMCID: PMC10644030 DOI: 10.3389/fmed.2023.1281880] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Hemagglutinin (HA) is responsible for facilitating viral entry and infection by promoting the fusion between the host membrane and the virus. Given its significance in the process of influenza virus infestation, HA has garnered attention as a target for influenza drug and vaccine development. Thus, accurately identifying HA is crucial for the development of targeted vaccine drugs. However, the identification of HA using in-silico methods is still lacking. This study aims to design a computational model to identify HA. Methods In this study, a benchmark dataset comprising 106 HA and 106 non-HA sequences were obtained from UniProt. Various sequence-based features were used to formulate samples. By perform feature optimization and inputting them four kinds of machine learning methods, we constructed an integrated classifier model using the stacking algorithm. Results and discussion The model achieved an accuracy of 95.85% and with an area under the receiver operating characteristic (ROC) curve of 0.9863 in the 5-fold cross-validation. In the independent test, the model exhibited an accuracy of 93.18% and with an area under the ROC curve of 0.9793. The code can be found from https://github.com/Zouxidan/HA_predict.git. The proposed model has excellent prediction performance. The model will provide convenience for biochemical scholars for the study of HA.
Collapse
Affiliation(s)
- Xidan Zou
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ding
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Yu
- School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengbing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| |
Collapse
|
25
|
Liu B, Yang Z, Liu Q, Zhang Y, Ding H, Lai H, Li Q. Computational prediction of allergenic proteins based on multi-feature fusion. Front Genet 2023; 14:1294159. [PMID: 37928245 PMCID: PMC10622758 DOI: 10.3389/fgene.2023.1294159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Allergy is an autoimmune disorder described as an undesirable response of the immune system to typically innocuous substance in the environment. Studies have shown that the ability of proteins to trigger allergic reactions in susceptible individuals can be evaluated by bioinformatics tools. However, developing computational methods to accurately identify new allergenic proteins remains a vital challenge. This work aims to propose a machine learning model based on multi-feature fusion for predicting allergenic proteins efficiently. Firstly, we prepared a benchmark dataset of allergenic and non-allergenic protein sequences and pretested on it with a machine-learning platform. Then, three preferable feature extraction methods, including amino acid composition (AAC), dipeptide composition (DPC) and composition of k-spaced amino acid pairs (CKSAAP) were chosen to extract protein sequence features. Subsequently, these features were fused and optimized by Pearson correlation coefficient (PCC) and principal component analysis (PCA). Finally, the most representative features were picked out to build the optimal predictor based on random forest (RF) algorithm. Performance evaluation results via 5-fold cross-validation showed that the final model, called iAller (https://github.com/laihongyan/iAller), could precisely distinguish allergenic proteins from non-allergenic proteins. The prediction accuracy and AUC value for validation dataset achieved 91.4% and 0.97%, respectively. This model will provide guide for users to identify more allergenic proteins.
Collapse
Affiliation(s)
- Bin Liu
- Department of Anesthesiology, The Fourth People’s Hospital of Sichuan Province, Chengdu, Sichuan, China
| | - Ziman Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyan Lai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
26
|
Chen XG, Yang X, Li C, Lin X, Zhang W. Non-coding RNA identification with pseudo RNA sequences and feature representation learning. Comput Biol Med 2023; 165:107355. [PMID: 37639767 DOI: 10.1016/j.compbiomed.2023.107355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/16/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Distinguishing non-coding RNAs (ncRNAs) from coding RNAs is very important in bioinformatics. Although many methods have been proposed for solving this task, it remains highly challenging to further improve the accuracy of ncRNA identification. In this paper, we propose a coding potential predictor using feature representation learning based on pseudo RNA sequences named CPPFLPS. In this method, we use the pseudo RNA sequences generated by simulating RNA sequence mutations as new samples for data augmentation, and six string operations simulating RNA sequence mutations are considered: base replacement, base insertion, base deletion, subsequence reversion, subsequence repetition and subsequence deletion. In the feature representation learning framework, different types of pseudo RNA sequences are added to the training set to form new training sets that can be used to train baseline classifiers, thus obtaining baseline models. The resulting labels of these baseline models are used as feature vectors to represent RNA sequences, and the resulting feature vectors acquired after feature selection are used to train a predictive model for distinguishing ncRNAs from coding RNAs. Our method achieves better performance compared with that of existing state-of-the-art methods. The implementation of the proposed method is available at https://github.com/chenxgscuec/CPPFLPS.
Collapse
Affiliation(s)
- Xian-Gan Chen
- School of Biomedical Engineering, South-Central Minzu University, Wuhan, 430074, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Cognitive Science(South-Central Minzu University), State Ethnic Affairs Commission, Wuhan, 430074, China.
| | - Xiaofei Yang
- School of Biomedical Engineering, South-Central Minzu University, Wuhan, 430074, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Cognitive Science(South-Central Minzu University), State Ethnic Affairs Commission, Wuhan, 430074, China.
| | - Chenhong Li
- School of Biomedical Engineering, South-Central Minzu University, Wuhan, 430074, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Cognitive Science(South-Central Minzu University), State Ethnic Affairs Commission, Wuhan, 430074, China.
| | - Xianguang Lin
- School of Biomedical Engineering, South-Central Minzu University, Wuhan, 430074, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Cognitive Science(South-Central Minzu University), State Ethnic Affairs Commission, Wuhan, 430074, China.
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Zhang M, Zhao J, Wu J, Wang Y, Zhuang M, Zou L, Mao R, Jiang B, Liu J, Song X. In-depth characterization and identification of translatable lncRNAs. Comput Biol Med 2023; 164:107243. [PMID: 37453378 DOI: 10.1016/j.compbiomed.2023.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Long non-coding RNAs (LncRNAs) are non-protein coding transcripts more than 200 nucleotides in length. Deep sequencing technologies have unveiled lncRNAs can harbor translatable short open reading frames (sORFs). Yet the regulatory mechanisms governing lncRNA translation events remain poorly understood. Here, we exhaustively detected the sequence, functional element, and structure features relevant to lncRNA translation in human. Extensive identification and analysis reveal that translatable lncRNAs contain richer protein-coding related sequence features, cap-dependent and cap-independent translation initiation mechanisms, and more stable secondary structures, as compared to untranslatable lncRNAs. These findings strongly support lncRNAs serve as a repository for the production of new small peptides. Based on the feature fusion affecting translation and the extreme gradient boosting (XGBoost) algorithm, we developed the first computational tool that dedicated for predicting translatable lncRNAs, named TransLncPred. Benchmark experimental results show that our method outperforms several state-of-the-art RNA coding potential prediction tools on the same training and testing datasets. The 100-time 10-fold cross-validation tests also demonstrate that regulatory element-derived features, especially N7-methylguanosine (m7G) and internal ribosome entry site (IRES), contribute to the improvement in predictive performance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minhui Zhuang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Renlong Mao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
28
|
Momanyi BM, Zulfiqar H, Grace-Mercure BK, Ahmed Z, Ding H, Gao H, Liu F. CFNCM: Collaborative filtering neighborhood-based model for predicting miRNA-disease associations. Comput Biol Med 2023; 163:107165. [PMID: 37315383 DOI: 10.1016/j.compbiomed.2023.107165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
MicroRNAs have a significant role in the emergence of various human disorders. Consequently, it is essential to understand the existing interactions between miRNAs and diseases, as this will help scientists better study and comprehend the diseases' biological mechanisms. Findings can be employed as biomarkers or drug targets to advance the detection, diagnosis, and treatment of complex human disorders by foretelling possible disease-related miRNAs. This study proposed a computational model for predicting potential miRNA-disease associations called the Collaborative Filtering Neighborhood-based Classification Model (CFNCM), in light of the shortcomings of conventional and biological experiments, which are expensive and time-consuming. The model generated integrated miRNA and disease similarity matrices using the validated associations and miRNA and disease similarity information and used them as the input features for CFNCM. To produce class labels, we first determined the association scores for brand-new pairs using user-based collaborative filtering. With zero as the threshold, the associations with scores >0 were labelled 1, indicating a potential positive association, otherwise, it is marked as 0. Then, we developed classification models using various machine-learning algorithms. By comparison, we discovered that the support vector machine (SVM) produced the best AUC of 0.96 with 10-fold cross-validation through the GridSearchCV technique for identifying optimal parameter values. In addition, the models were evaluated and verified by analyzing the top 50 breast and lung neoplasms-related miRNAs, of which 46 and 47 associations were verified in two authoritative databases, dbDEMC and miR2Disease.
Collapse
Affiliation(s)
- Biffon Manyura Momanyi
- School of Computer Science and Engineering, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hasan Zulfiqar
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zahoor Ahmed
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
| | - Hui Ding
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Hui Gao
- School of Computer Science and Engineering, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fen Liu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China.
| |
Collapse
|
29
|
Liu S, Liang Y, Li J, Yang S, Liu M, Liu C, Yang D, Zuo Y. Integrating reduced amino acid composition into PSSM for improving copper ion-binding protein prediction. Int J Biol Macromol 2023:124993. [PMID: 37307968 DOI: 10.1016/j.ijbiomac.2023.124993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Copper ion-binding proteins play an essential role in metabolic processes and are critical factors in many diseases, such as breast cancer, lung cancer, and Menkes disease. Many algorithms have been developed for predicting metal ion classification and binding sites, but none have been applied to copper ion-binding proteins. In this study, we developed a copper ion-bound protein classifier, RPCIBP, which integrating the reduced amino acid composition into position-specific score matrix (PSSM). The reduced amino acid composition filters out a large number of useless evolutionary features, improving the operational efficiency and predictive ability of the model (feature dimension from 2900 to 200, ACC from 83 % to 85.1 %). Compared with the basic model using only three sequence feature extraction methods (ACC in training set between 73.8 %-86.2 %, ACC in test set between 69.3 %-87.5 %), the model integrating the evolutionary features of the reduced amino acid composition showed higher accuracy and robustness (ACC in training set between 83.1 %-90.8 %, ACC in test set between 79.1 %-91.9 %). Best copper ion-binding protein classifiers filtered by feature selection progress were deployed in a user-friendly web server (http://bioinfor.imu.edu.cn/RPCIBP). RPCIBP can accurately predict copper ion-binding proteins, which is convenient for further structural and functional studies, and conducive to mechanism exploration and target drug development.
Collapse
Affiliation(s)
- Shanghua Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia International Mongolian Hospital, Hohhot 010065, China
| | - Yuchao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot 010010, China
| | - Jinzhao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Ming Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Chengfang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Dezhi Yang
- Inner Mongolia International Mongolian Hospital, Hohhot 010065, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia International Mongolian Hospital, Hohhot 010065, China; Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot 010010, China.
| |
Collapse
|
30
|
Su W, Qian X, Yang K, Ding H, Huang C, Zhang Z. Recognition of outer membrane proteins using multiple feature fusion. Front Genet 2023; 14:1211020. [PMID: 37351347 PMCID: PMC10284346 DOI: 10.3389/fgene.2023.1211020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Outer membrane proteins are crucial in maintaining the structural stability and permeability of the outer membrane. Outer membrane proteins exhibit several functions such as antigenicity and strong immunogenicity, which have potential applications in clinical diagnosis and disease prevention. However, wet experiments for studying OMPs are time and capital-intensive, thereby necessitating the use of computational methods for their identification. Methods: In this study, we developed a computational model to predict outer membrane proteins. The non-redundant dataset consists of a positive set of 208 outer membrane proteins and a negative set of 876 non-outer membrane proteins. In this study, we employed the pseudo amino acid composition method to extract feature vectors and subsequently utilized the support vector machine for prediction. Results and Discussion: In the Jackknife cross-validation, the overall accuracy and the area under receiver operating characteristic curve were observed to be 93.19% and 0.966, respectively. These results demonstrate that our model can produce accurate predictions, and could serve as a valuable guide for experimental research on outer membrane proteins.
Collapse
Affiliation(s)
- Wenxia Su
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Xiaojun Qian
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Hui Ding
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengbing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Zhaoyue Zhang
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
31
|
Lin Y, Sun M, Zhang J, Li M, Yang K, Wu C, Zulfiqar H, Lai H. Computational identification of promoters in Klebsiella aerogenes by using support vector machine. Front Microbiol 2023; 14:1200678. [PMID: 37250059 PMCID: PMC10215528 DOI: 10.3389/fmicb.2023.1200678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Promoters are the basic functional cis-elements to which RNA polymerase binds to initiate the process of gene transcription. Comprehensive understanding gene expression and regulation depends on the precise identification of promoters, as they are the most important component of gene expression. This study aimed to develop a machine learning-based model to predict promoters in Klebsiella aerogenes (K. aerogenes). In the prediction model, the promoter sequences in K. aerogenes genome were encoded by pseudo k-tuple nucleotide composition (PseKNC) and position-correlation scoring function (PCSF). Numerical features were obtained and then optimized using mRMR by combining with support vector machine (SVM) and 5-fold cross-validation (CV). Subsequently, these optimized features were inputted into SVM-based classifier to discriminate promoter sequences from non-promoter sequences in K. aerogenes. Results of 10-fold CV showed that the model could yield the overall accuracy of 96.0% and the area under the ROC curve (AUC) of 0.990. We hope that this model will provide help for the study of promoter and gene regulation in K. aerogenes.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Meili Sun
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Junjie Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingyan Li
- Chifeng Product Quality Inspection and Testing Centre, Chifeng, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Chengyan Wu
- Baotou Teacher’s College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| | - Hongyan Lai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
32
|
Zulfiqar H, Ahmed Z, Kissanga Grace-Mercure B, Hassan F, Zhang ZY, Liu F. Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique. Front Microbiol 2023; 14:1170785. [PMID: 37125199 PMCID: PMC10133480 DOI: 10.3389/fmicb.2023.1170785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Promotors are those genomic regions on the upstream of genes, which are bound by RNA polymerase for starting gene transcription. Because it is the most critical element of gene expression, the recognition of promoters is crucial to understand the regulation of gene expression. This study aimed to develop a machine learning-based model to predict promotors in Agrobacterium tumefaciens (A. tumefaciens) strain C58. In the model, promotor sequences were encoded by three different kinds of feature descriptors, namely, accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings. The obtained features were optimized by using correlation and the mRMR-based algorithm. These optimized features were inputted into a random forest (RF) classifier to discriminate promotor sequences from non-promotor sequences in A. tumefaciens strain C58. The examination of 10-fold cross-validation showed that the proposed model could yield an overall accuracy of 0.837. This model will provide help for the study of promoters in A. tumefaciens C58 strain.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zahoor Ahmed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Farwa Hassan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fen Liu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China
| |
Collapse
|
33
|
Yang YH, Ma CY, Gao D, Liu XW, Yuan SS, Ding H. i2OM: Toward a better prediction of 2'-O-methylation in human RNA. Int J Biol Macromol 2023; 239:124247. [PMID: 37003392 DOI: 10.1016/j.ijbiomac.2023.124247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
2'-O-methylation (2OM) is an omnipresent post-transcriptional modification in RNAs. It is important for the regulation of RNA stability, mRNA splicing and translation, as well as innate immunity. With the increase in publicly available 2OM data, several computational tools have been developed for the identification of 2OM sites in human RNA. Unfortunately, these tools suffer from the low discriminative power of redundant features, unreasonable dataset construction or overfitting. To address those issues, based on four types of 2OM (2OM-adenine (A), cytosine (C), guanine (G), and uracil (U)) data, we developed a two-step feature selection model to identify 2OM. For each type, the one-way analysis of variance (ANOVA) combined with mutual information (MI) was proposed to rank sequence features for obtaining the optimal feature subset. Subsequently, four predictors based on eXtreme Gradient Boosting (XGBoost) or support vector machine (SVM) were presented to identify the four types of 2OM sites. Finally, the proposed model could produce an overall accuracy of 84.3 % on the independent set. To provide a convenience for users, an online tool called i2OM was constructed and can be freely access at i2om.lin-group.cn. The predictor may provide a reference for the study of the 2OM.
Collapse
Affiliation(s)
- Yu-He Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cai-Yi Ma
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dong Gao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao-Wei Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shi-Shi Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hui Ding
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
34
|
Nithiyanandam S, Sangaraju VK, Manavalan B, Lee G. Computational prediction of protein folding rate using structural parameters and network centrality measures. Comput Biol Med 2023; 155:106436. [PMID: 36848800 DOI: 10.1016/j.compbiomed.2022.106436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 02/17/2023]
Abstract
Protein folding is a complex physicochemical process whereby a polymer of amino acids samples numerous conformations in its unfolded state before settling on an essentially unique native three-dimensional (3D) structure. To understand this process, several theoretical studies have used a set of 3D structures, identified different structural parameters, and analyzed their relationships using the natural logarithmic protein folding rate (ln(kf)). Unfortunately, these structural parameters are specific to a small set of proteins that are not capable of accurately predicting ln(kf) for both two-state (TS) and non-two-state (NTS) proteins. To overcome the limitations of the statistical approach, a few machine learning (ML)-based models have been proposed using limited training data. However, none of these methods can explain plausible folding mechanisms. In this study, we evaluated the predictive capabilities of ten different ML algorithms using eight different structural parameters and five different network centrality measures based on newly constructed datasets. In comparison to the other nine regressors, support vector machine was found to be the most appropriate for predicting ln(kf) with mean absolute differences of 1.856, 1.55, and 1.745 for the TS, NTS, and combined datasets, respectively. Furthermore, combining structural parameters and network centrality measures improves the prediction performance compared to individual parameters, indicating that multiple factors are involved in the folding process.
Collapse
Affiliation(s)
- Saraswathy Nithiyanandam
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon, 16499, South Korea
| | - Vinoth Kumar Sangaraju
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon, 16499, South Korea
| | - Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon, 16499, South Korea.
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon, 16499, South Korea; Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, South Korea.
| |
Collapse
|
35
|
Malik A, Shoombuatong W, Kim CB, Manavalan B. GPApred: The first computational predictor for identifying proteins with LPXTG-like motif using sequence-based optimal features. Int J Biol Macromol 2023; 229:529-538. [PMID: 36596370 DOI: 10.1016/j.ijbiomac.2022.12.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
The cell surface proteins of gram-positive bacteria are involved in many important biological functions, including the infection of host cells. Owing to their virulent nature, these proteins are also considered strong candidates for potential drug or vaccine targets. Among the various cell surface proteins of gram-positive bacteria, LPXTG-like proteins form a major class. These proteins have a highly conserved C-terminal cell wall sorting signal, which consists of an LPXTG sequence motif, a hydrophobic domain, and a positively charged tail. These surface proteins are targeted to the cell envelope by a sortase enzyme via transpeptidation. A variety of LPXTG-like proteins have been experimentally characterized; however, their number in public databases has increased owing to extensive bacterial genome sequencing without proper annotation. In the absence of experimental characterization, identifying and annotating these sequences is extremely challenging. Therefore, in this study, we developed the first machine learning-based predictor called GPApred, which can identify LPXTG-like proteins from their primary sequences. Using a newly constructed benchmark dataset, we explored different classifiers and five feature encodings and their hybrids. Optimal features were derived using the recursive feature elimination method, and these features were then trained using a support vector machine algorithm. The performance of different models was evaluated using independent datasets, and a final model (GPApred) was selected based on consistency during cross-validation and independent assessment. GPApred can be an effective tool for predicting LPXTG-like sequences and can be further employed for functional characterization or drug targeting. Availability: https://procarb.org/gpapred/.
Collapse
Affiliation(s)
- Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
36
|
Taguchi YH. Bioinformatic tools for epitranscriptomics. Am J Physiol Cell Physiol 2023; 324:C447-C457. [PMID: 36468841 DOI: 10.1152/ajpcell.00437.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
The epitranscriptome, defined as RNA modifications that do not involve alterations in the nucleotide sequence, is a popular topic in the genomic sciences. Because we need massive computational techniques to identify epitranscriptomes within individual transcripts, many tools have been developed to infer epitranscriptomic sites as well as to process datasets using high-throughput sequencing. In this review, we summarize recent developments in epitranscriptome spatial detection and data analysis and discuss their progression.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, Japan
| |
Collapse
|
37
|
PSRTTCA: A new approach for improving the prediction and characterization of tumor T cell antigens using propensity score representation learning. Comput Biol Med 2023; 152:106368. [PMID: 36481763 DOI: 10.1016/j.compbiomed.2022.106368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Despite the arsenal of existing cancer therapies, the ongoing recurrence and new cases of cancer pose a serious health concern that necessitates the development of new and effective treatments. Cancer immunotherapy, which uses the body's immune system to combat cancer, is a promising treatment option. As a result, in silico methods for identifying and characterizing tumor T cell antigens (TTCAs) would be useful for better understanding their functional mechanisms. Although few computational methods for TTCA identification have been developed, their lack of model interpretability is a major drawback. Thus, developing computational methods for the effective identification and characterization of TTCAs is a critical endeavor. PSRTTCA, a new machine learning (ML)-based approach for improving the identification and characterization of TTCAs based on their primary sequences, is proposed in this study. Specifically, we introduce a new propensity score representation learning algorithm that allows one to generate various sets of propensity scores of amino acids, dipeptides, and g-gap dipeptides to be TTCAs. To enhance the predictive performance, optimal sets of variant propensity scores were determined and fed into the final meta-predictor (PSRTTCA). Benchmarking results revealed that PSRTTCA was a more precise and promising tool for the identification and characterization of TTCAs than conventional ML classifiers and existing methods. Furthermore, PSR-derived propensities of amino acids in becoming TTCAs are used to reveal the relationship between TTCAs and their informative physicochemical properties in order to provide insights into TTCA characteristics. Finally, a user-friendly online computational platform of PSRTTCA is publicly available at http://pmlabstack.pythonanywhere.com/PSRTTCA. The PSRTTCA predictor is anticipated to facilitate community-wide efforts in accelerating the discovery of novel TTCAs for cancer immunotherapy and other clinical applications.
Collapse
|
38
|
Su W, Deng S, Gu Z, Yang K, Ding H, Chen H, Zhang Z. Prediction of apoptosis protein subcellular location based on amphiphilic pseudo amino acid composition. Front Genet 2023; 14:1157021. [PMID: 36926588 PMCID: PMC10011625 DOI: 10.3389/fgene.2023.1157021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Apoptosis proteins play an important role in the process of cell apoptosis, which makes the rate of cell proliferation and death reach a relative balance. The function of apoptosis protein is closely related to its subcellular location, it is of great significance to study the subcellular locations of apoptosis proteins. Many efforts in bioinformatics research have been aimed at predicting their subcellular location. However, the subcellular localization of apoptotic proteins needs to be carefully studied. Methods: In this paper, based on amphiphilic pseudo amino acid composition and support vector machine algorithm, a new method was proposed for the prediction of apoptosis proteins\x{2019} subcellular location. Results and Discussion: The method achieved good performance on three data sets. The Jackknife test accuracy of the three data sets reached 90.5%, 93.9% and 84.0%, respectively. Compared with previous methods, the prediction accuracies of APACC_SVM were improved.
Collapse
Affiliation(s)
- Wenxia Su
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Shuyi Deng
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhifeng Gu
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Hui Ding
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Chen
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Zhaoyue Zhang
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
39
|
Identification of adaptor proteins using the ANOVA feature selection technique. Methods 2022; 208:42-47. [DOI: 10.1016/j.ymeth.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|
40
|
Wei W, Liu C, Wang C, Wang M, Jiang W, Zhou Y, Zhang S. Comprehensive pan-cancer analysis of N7-methylguanosine regulators: Expression features and potential implications in prognosis and immunotherapy. Front Genet 2022; 13:1016797. [PMID: 36339001 PMCID: PMC9633684 DOI: 10.3389/fgene.2022.1016797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Although immunotherapy has made great strides in cancer therapy, its effectiveness varies widely among individual patients as well as tumor types, and there is an urgent need to develop biomarkers for effectively assessing immunotherapy response. In recent years, RNA methylation regulators have demonstrated to be novel potential biomarkers for prognosis as well as immunotherapy of cancers, such as N6-methyladenine (m6A) and 5-methylcytosine (m5C). N7-methylguanosine (m7G) is a prevalent RNA modification in eukaryotes, but the relationship between m7G regulators and prognosis as well as tumor immune microenvironment is still unclear. In this study, a pan-cancer analysis of 26 m7G regulators across 17 cancer types was conducted based on the bioinformatics approach. On the one hand, a comprehensive analysis of expression features, genetic variations and epigenetic regulation of m7G regulators was carried out, and we found that the expression tendency of m7G regulators were different among tumors and their aberrant expression in cancers could be affected by single nucleotide variation (SNV), copy number variation (CNV), DNA methylation and microRNA (miRNA) separately or simultaneously. On the other hand, the m7Gscore was modeled based on single sample gene set enrichment analysis (ssGSEA) for evaluating the relationships between m7G regulators and cancer clinical features, hallmark pathways, tumor immune microenvironment, immunotherapy response as well as pharmacotherapy sensitivity, and we illustrated that the m7Gscore exhibited tight correlations with prognosis, several immune features, immunotherapy response and drug sensitivity in most cancers. In conclusion, our pan-cancer analysis revealed that m7G regulators may exert critical roles in the tumor progression and immune microenvironment, and have the potential as biomarkers for predicting prognosis, immunotherapy response as well as candidate drug compounds for cancer patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Caihong Wang
- Department of Pathology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaqian Zhou
- College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
41
|
Charoenkwan P, Schaduangrat N, Lio’ P, Moni MA, Shoombuatong W, Manavalan B. Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework. iScience 2022; 25:104883. [PMID: 36046193 PMCID: PMC9421381 DOI: 10.1016/j.isci.2022.104883] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Discovery of potential drugs requires rapid and precise identification of drug targets. Although traditional experimental methodologies can accurately identify drug targets, they are time-consuming and inappropriate for high-throughput screening. Computational approaches based on machine learning (ML) algorithms can expedite the prediction of druggable proteins; however, the performance of the existing computational methods remains unsatisfactory. This study proposes a computational tool, SPIDER, to enhance the accurate prediction of druggable proteins. SPIDER employs various feature descriptors pertaining to several aspects, including physicochemical properties, compositional information, and composition-transition-distribution information, coupled with well-known ML algorithms to facilitate the construction of the final meta-predictor. The experimental results showed that SPIDER enabled more precise and robust prediction of druggable proteins than the baseline models and current existing methods in terms of the independent test dataset. An online web server was established and made freely available online.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Pietro Lio’
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
| | - Mohammad Ali Moni
- Artificial Intelligence & Digital Health, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
42
|
Hasan MM, Tsukiyama S, Cho JY, Kurata H, Alam MA, Liu X, Manavalan B, Deng HW. Deepm5C: A deep-learning-based hybrid framework for identifying human RNA N5-methylcytosine sites using a stacking strategy. Mol Ther 2022; 30:2856-2867. [PMID: 35526094 PMCID: PMC9372321 DOI: 10.1016/j.ymthe.2022.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
As one of the most prevalent post-transcriptional epigenetic modifications, N5-methylcytosine (m5C) plays an essential role in various cellular processes and disease pathogenesis. Therefore, it is important accurately identify m5C modifications in order to gain a deeper understanding of cellular processes and other possible functional mechanisms. Although a few computational methods have been proposed, their respective models have been developed using small training datasets. Hence, their practical application is quite limited in genome-wide detection. To overcome the existing limitations, we propose Deepm5C, a bioinformatics method for identifying RNA m5C sites throughout the human genome. To develop Deepm5C, we constructed a novel benchmarking dataset and investigated a mixture of three conventional feature-encoding algorithms and a feature derived from word-embedding approaches. Afterward, four variants of deep-learning classifiers and four commonly used conventional classifiers were employed and trained with the four encodings, ultimately obtaining 32 baseline models. A stacking strategy is effectively utilized by integrating the predicted output of the optimal baseline models and trained with a one-dimensional (1D) convolutional neural network. As a result, the Deepm5C predictor achieved excellent performance during cross-validation with a Matthews correlation coefficient and an accuracy of 0.697 and 0.855, respectively. The corresponding metrics during the independent test were 0.691 and 0.852, respectively. Overall, Deepm5C achieved a more accurate and stable performance than the baseline models and significantly outperformed the existing predictors, demonstrating the effectiveness of our proposed hybrid framework. Furthermore, Deepm5C is expected to assist community-wide efforts in identifying putative m5Cs and to formulate the novel testable biological hypothesis.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| | - Sho Tsukiyama
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xiaowen Liu
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Korea.
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
43
|
An Effective Deep Learning-Based Architecture for Prediction of N7-Methylguanosine Sites in Health Systems. ELECTRONICS 2022. [DOI: 10.3390/electronics11121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N7-methylguanosine (m7G) is one of the most important epigenetic modifications found in rRNA, mRNA, and tRNA, and performs a promising role in gene expression regulation. Owing to its significance, well-equipped traditional laboratory-based techniques have been performed for the identification of N7-methylguanosine (m7G). Consequently, these approaches were found to be time-consuming and cost-ineffective. To move on from these traditional approaches to predict N7-methylguanosine sites with high precision, the concept of artificial intelligence has been adopted. In this study, an intelligent computational model called N7-methylguanosine-Long short-term memory (m7G-LSTM) is introduced for the prediction of N7-methylguanosine sites. One-hot encoding and word2vec feature schemes are used to express the biological sequences while the LSTM and CNN algorithms have been employed for classification. The proposed “m7G-LSTM” model obtained an accuracy value of 95.95%, a specificity value of 95.94%, a sensitivity value of 95.97%, and Matthew’s correlation coefficient (MCC) value of 0.919. The proposed predictive m7G-LSTM model has significantly achieved better outcomes than previous models in terms of all evaluation parameters. The proposed m7G-LSTM computational system aims to support the drug industry and help researchers in the fields of bioinformatics to enhance innovation for the prediction of the behavior of N7-methylguanosine sites.
Collapse
|
44
|
Computational Resources for Molecular Biology 2022. J Mol Biol 2022; 434:167625. [PMID: 35569508 DOI: 10.1016/j.jmb.2022.167625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|