1
|
Romanowicz GE, Zhang L, Bolger MW, Lynch M, Kohn DH. Beyond bone volume: Understanding tissue-level quality in healing of maxillary vs. femoral defects. Acta Biomater 2024; 187:409-421. [PMID: 39214162 PMCID: PMC11890190 DOI: 10.1016/j.actbio.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Currently, principles of tissue engineering and implantology are uniformly applied to all bone sites, disregarding inherent differences in collagen, mineral composition, and healing rates between craniofacial and long bones. These differences could potentially influence bone quality during the healing process. Evaluating bone quality during healing is crucial for understanding local mechanical properties in regeneration and implant osseointegration. However, site-specific changes in bone quality during healing remain poorly understood. In this study, we assessed newly formed bone quality in sub-critical defects in the maxilla and femur, while impairing collagen cross-linking using β-aminopropionitrile (BAPN). Our findings revealed that femoral healing bone exhibited a 73 % increase in bone volume but showed significantly greater viscoelastic and collagen changes compared to surrounding bone, leading to increased deformation during long-term loading and poorer bone quality in early healing. In contrast, the healing maxilla maintained equivalent hardness and viscoelastic constants compared to surrounding bone, with minimal new bone formation and consistent bone quality. However, BAPN-impaired collagen cross-linking induced viscoelastic changes in the healing maxilla, with no further changes observed in the femur. These results challenge the conventional belief that increased bone volume correlates with enhanced tissue-level bone quality, providing crucial insights for tissue engineering and site-specific implant strategies. The observed differences in bone quality between sites underscore the need for a nuanced approach in assessing the success of regeneration and implant designs and emphasize the importance of exploring site-specific tissue engineering interventions. STATEMENT OF SIGNIFICANCE: Accurate measurement of bone quality is crucial for tissue engineering and implant therapies. Bone quality varies between craniofacial and long bones, yet it's often overlooked in the healing process. Our study is the first to comprehensively analyze bone quality during healing in both the maxilla and femur. Surprisingly, despite significant volume increase, femur healing bone had poorer quality compared to the surrounding bone. Conversely, maxilla healing bone maintained consistent quality despite minimal bone formation. Impaired collagen diminished maxillary healing bone quality, but had no further effect on femur bone quality. These findings challenge the notion that more bone volume equals better quality, offering insights for improving tissue engineering and implant strategies for different bone sites.
Collapse
Affiliation(s)
- Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Lizhong Zhang
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA.
| |
Collapse
|
2
|
Ghazaleh L, Hoseini Y, Masoomi F, Taghi Karimi M. Ground reaction force analysis in flexible and rigid flatfoot subjects. J Bodyw Mov Ther 2024; 39:441-446. [PMID: 38876666 DOI: 10.1016/j.jbmt.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 12/01/2023] [Accepted: 02/25/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Flatfoot is a structural and functional deformity of the foot that might change ground reaction force variables of gait. Evaluating the components of ground reaction force in three dimensions during gait is considered clinically important. This study aimed to investigate the components of ground reaction force, impulse, and loading rate during gait in people with flexible and rigid flatfoot compared to healthy subjects. 20 young women with flatfoot in two experimental groups (10 with rigid flatfoot and 10 with flexible flatfoot) and 10 healthy women in the control group participated in this study. Ground reaction force components during gait were measured using two force plates. The peak of ground reaction forces, impulse, and loading rate were then extracted. Data were processed and analyzed using MATLAB and SPSS software. One-way ANOVA with a significant level (P˂0.05) was used for statistical analysis. The results showed that peak braking force was higher in the rigid flatfoot group than in the control group (p = 0.016) and the flexible flatfoot group (p = 0.003). The posterior force loading rate was significantly higher in the rigid flatfoot group than in the flexible flatfoot group (P = 0.04). There was no significant difference in vertical loading rate between groups (P˃0.05). Since the maximal posterior ground reaction force was higher in the subjects with rigid flatfoot than in those with flexible flatfoot and healthy subjects, the increase in posterior ground reaction force is associated with an increase in anterior shear force at the knee.
Collapse
Affiliation(s)
- Leila Ghazaleh
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran.
| | - Yasin Hoseini
- Department of Sport Science, Faculty of Human Science, Malayer University, Malayer, Hamedan, Iran.
| | - Faezeh Masoomi
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran.
| | - Mohammad Taghi Karimi
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Kulić M, Bagavac P, Bekić M, Krstulović-Opara L. Ex Vivo Biomechanical Bone Testing of Pig Femur as an Experimental Model. Bioengineering (Basel) 2024; 11:572. [PMID: 38927808 PMCID: PMC11200541 DOI: 10.3390/bioengineering11060572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigates the mechanical behavior of femur bones under loading conditions, focusing on the transition from elastic to plastic deformation and eventual fracture. The force-displacement curves reveal distinct phases of deformation, with an initial linear relationship indicating elastic behavior, followed by deviation from linearity marking the onset of plastic deformation. Fracture occurs beyond a critical load, leading to a sharp drop in the force-displacement curve. The maximum fracture force varies among specimens and is influenced by bone geometry, size, cross-sectional area, and cortical thickness. Post-failure analysis highlights additional insights into fracture mechanics and bone material toughness. Reinforcing bones with screws enhances their strength, which is evident in the higher fracture forces observed in force-displacement diagrams. Fixation procedures following fractures further increase bone strength. Comparing specimens with and without strengthening underscores the effectiveness of reinforcement methods in improving bone mechanical properties. After analyzing the results, it is evident that femur bones with reinforcement can withstand greater loads, and they can also absorb higher impact energies while remaining in the elastic deformation range and without suffering permanent plastic damage. This study provides valuable insights into bone biomechanics and the efficacy of reinforcement techniques in enhancing bone strength and fracture resistance.
Collapse
Affiliation(s)
| | - Petra Bagavac
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia;
| | - Marijo Bekić
- Dubrovnik County Hospital, 20000 Dubrovnik, Croatia;
| | - Lovre Krstulović-Opara
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia;
| |
Collapse
|
4
|
Tuncer C, Güden M, Orhan M, Sarıkaya MK, Taşdemirci A. Quasi-static and dynamic Brazilian testing and failure analysis of a deer antler in the transverse to the osteon growth direction. J Mech Behav Biomed Mater 2023; 138:105648. [PMID: 36610280 DOI: 10.1016/j.jmbbm.2023.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The transverse tensile strength of a naturally fallen red deer antler (Cervus Elaphus) was determined through indirect Brazilian tests using dry disc-shape specimens at quasi-static and high strain rates. Dynamic Brazilian tests were performed in a compression Split-Hopkinson Pressure Bar. Quasi-static tensile and indirect Brazilian tests were also performed along the osteon growth direction for comparison. The quasi-static transverse tensile strength ranged 31.5-44.5 MPa. The strength increased to 83 MPa on the average in the dynamic Brazilian tests, proving a rate sensitive transverse strength. The quasi-static tensile strength in the osteon growth direction was however found comparably higher, 192 MPa. A Weibull analysis indicated a higher tensile ductility in the osteon growth direction than in the transverse to the osteon growth direction. The microscopic analysis of the quasi-static Brazilian test specimens (tensile strain along the osteon growth direction) revealed a micro-cracking mechanism operating by the crack deflection/twisting at the lacunae in the concentric lamellae region and at the interface between concentric lamellae and interstitial lamellae. On the other side, the specimens in the transverse direction fractured in a more brittle manner by the separation/delamination of the concentric lamellae and pulling of the interstitial lamellae. The detected increase in the transverse strength in the high strain rate tests was further ascribed to the pull and fracture of the visco-plastic collagen fibers in the interstitial lamellae. This was also confirmed microscopically; the dynamically tested specimens exhibited flatter fracture surfaces.
Collapse
Affiliation(s)
- Can Tuncer
- Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Mustafa Güden
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Mehmet Orhan
- Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey.
| | - Mustafa Kemal Sarıkaya
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Alper Taşdemirci
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| |
Collapse
|
5
|
Mouloodi S, Rahmanpanah H, Burvill C, Martin C, Gohery S, Davies HMS. How Artificial Intelligence and Machine Learning Is Assisting Us to Extract Meaning from Data on Bone Mechanics? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1356:195-221. [PMID: 35146623 DOI: 10.1007/978-3-030-87779-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dramatic advancements in interdisciplinary research with the fourth paradigm of science, especially the implementation of computer science, nourish the potential for artificial intelligence (AI), machine learning (ML), and artificial neural network (ANN) algorithms to be applied to studies concerning mechanics of bones. Despite recent enormous advancement in techniques, gaining deep knowledge to find correlations between bone shape, material, mechanical, and physical responses as well as properties is a daunting task. This is due to both complexity of the material itself and the convoluted shapes that this complex material forms. Moreover, many uncertainties and ambiguities exist concerning the use of traditional computational techniques that hinders gaining a full comprehension of this advanced biological material. This book chapter offers a review of literature on the use of AI, ML, and ANN in the study of bone mechanics research. A main question as to why to implement AI and ML in the mechanics of bones is fully addressed and explained. This chapter also introduces AI and ML and elaborates on the main features of ML algorithms such as learning paradigms, subtypes, main ideas with examples, performance metrics, training algorithms, and training datasets. As a frequently employed ML algorithm in bone mechanics, feedforward ANNs are discussed to make their taxonomy and working principles more readily comprehensible to researchers. A summary as well as detailed review of papers that employed ANNs to learn from collected data on bone mechanics are presented. Reviewing literature on the use of these data-driven tools is essential since their wider application has the potential to: improve clinical assessments enabling real-time simulations; avoid and/or minimize injuries; and, encourage early detection of such injuries in the first place.
Collapse
Affiliation(s)
- Saeed Mouloodi
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Hadi Rahmanpanah
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia
| | - Colin Burvill
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia
| | | | - Scott Gohery
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia
| | - Helen M S Davies
- Department of Veterinary Biosciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Mouloodi S, Rahmanpanah H, Gohari S, Burvill C, Davies HM. Feedforward backpropagation artificial neural networks for predicting mechanical responses in complex nonlinear structures: A study on a long bone. J Mech Behav Biomed Mater 2022; 128:105079. [DOI: 10.1016/j.jmbbm.2022.105079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/19/2021] [Accepted: 01/08/2022] [Indexed: 11/29/2022]
|
7
|
Uniyal P, Sihota P, Kumar N. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone. J Mech Behav Biomed Mater 2021; 125:104910. [PMID: 34700105 DOI: 10.1016/j.jmbbm.2021.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
The organic matrix phase of bone plays important role in its mechanical performance, especially in the post-yield regime. Also, the organic phase influences loading rate-dependent behaviour of bone which is relevant during the high-speed loading events. Many diseases, as well as aging, affect the matrix phase of bone which causes compromised mechanical properties. Improved understanding of alterations in the organic matrix phase on mechanical response of bone will be helpful in the mitigation of fractures associated with inferior matrix quality. In the present work, effect of alteration in organic matrix of cortical bone on its strain-rate dependent behaviour was investigated. To produce different amounts of collagen denaturation, bovine cortical bones were heated at the temperature of 180 °C and 240 °C. Further, compression testing was performed at quasi-static strain rates of 10-4 s-1 to 10-2 s-1 using a conventional testing machine whereas a modified Split Hopkinson Pressure Bar (SHPB) was used for high strain rate (∼103) testing. Thermal treatment-induced changes in the mineral and organic phases of bone were assessed using X-ray diffraction (XRD) and Fourier-transform infrared-attenuated total reflection (FTIR-ATR) techniques respectively. Compression test results show that thermal treatment of bone up to 180 °C did not affect mechanical properties significantly whereas treating at 240 °C significantly reduced elastic modulus, failure stress and failure strain. Also, thermal denaturation of collagen reduced the strain rate sensitivity of cortical bone at high strain rates. Similar to the compression test observations, nanoindentation results show a significant reduction in elastic modulus and hardness of denatured samples. Further, FTIR results revealed that with the heat treatment of bone, collagen structure undergoes conformational changes at the molecular level. The initial helix structure breakdowns into unordered/random coil structures which subsequently reduced the mechanical competence of bone. The present study provides insight into the effect of organic matrix modification on mechanical behaviour of cortical bone which could be helpful in understanding bone disorders associated with organic matrix phase and development of therapeutic interventions.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Navin Kumar
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India.
| |
Collapse
|
8
|
Hoon QJ, Wang T, Hall E, Walsh WR, Johnson KA. Influence of Screw-Hole Defect Size on the Biomechanical Properties of Feline Femora in an Ex Vivo Model. Vet Comp Orthop Traumatol 2021; 35:33-46. [PMID: 34488233 DOI: 10.1055/s-0041-1735551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The study aims to evaluate the biomechanical properties of feline femora with craniocaudal screw-hole defects of increasing diameter, subjected to three-point bending and torsion to failure at two different loading rates. STUDY DESIGN Eighty femoral pairs were harvested from adult cat cadavers. For each bending and torsional experiment, there were five groups (n = 8 pairs) of increasing craniocaudal screw-hole defects (intact, 1.5 mm, 2.0 mm, 2.4 mm, 2.7mm). Mid-diaphyseal bicortical defects were created with an appropriate pilot drill-hole and tapped accordingly. Left and right femora of each pair were randomly assigned to a destructive loading protocol at low (10 mm/min; 0.5 degrees/s) or high rates (3,000 mm/min; 90 degrees/s) respectively. Stiffness, load/torque-to-failure, energy-to-failure and fracture morphology were recorded. RESULTS Defect size to bone diameter ratio was significantly different between defect groups within bending and torsional experiments respectively (intact [0%; 0%], 1.5 mm [17.8%; 17.1%], 2.0 mm [22.8%; 23.5%], 2.4 mm [27.8%; 27.6%], 2.7 mm [31.1%; 32.4%]) (p < 0.001). No significant differences in stiffness and load/torque-to-failure were noted with increasing deficit sizes in all loading conditions. Screw-hole (2.7 mm) defects up to 33% bone diameter had a maximum of 20% reduction in bending and torsional strength compared with intact bone at both loading rates. Stiffness and load/torque-to-failure in both bending and torsion were increased in bones subjected to higher loading rates (p < 0.001). CONCLUSION Screw-hole defects up to 2.7 mm did not significantly reduce feline bone failure properties in this ex vivo femoral study. These findings support current screw-size selection guidelines of up to 33% bone diameter as appropriate for use in feline fracture osteosynthesis.
Collapse
Affiliation(s)
- QiCai Jason Hoon
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Tian Wang
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Randwick, New South Wales, Australia
| | - Evelyn Hall
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - William R Walsh
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Randwick, New South Wales, Australia
| | - Kenneth A Johnson
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Bandyopadhyay A, Traxel KD, Bose S. Nature-inspired materials and structures using 3D Printing. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 145:100609. [PMID: 33986582 PMCID: PMC8112572 DOI: 10.1016/j.mser.2021.100609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulating the unique combination of structural, compositional, and functional gradation in natural materials is exceptionally challenging. Many natural structures have proved too complex or expensive to imitate using traditional processing techniques despite recent advances. Recent innovations within the field of additive manufacturing (AM) or 3D Printing (3DP) have shown the ability to create structures that have variations in material composition, structure, and performance, providing a new design-for-manufacturing platform for the imitation of natural materials. AM or 3DP techniques are capable of manufacturing structures that have significantly improved properties and functionality over what could be traditionally-produced, giving manufacturers an edge in their ability to realize components for highly-specialized applications in different industries. To this end, the present work reviews fundamental advances in the use of naturally-inspired design enabled through 3DP / AM, how these techniques can be further exploited to reach new application areas, and the challenges that lie ahead for widespread implementation. An example of how these techniques can be applied towards a total hip arthroplasty application is provided to spur further innovation in this area.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Kellen D. Traxel
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
10
|
Milazzo M, David A, Jung GS, Danti S, Buehler MJ. Molecular origin of viscoelasticity in mineralized collagen fibrils. Biomater Sci 2021; 9:3390-3400. [PMID: 33949363 PMCID: PMC8323817 DOI: 10.1039/d0bm02003f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 11/21/2022]
Abstract
Bone is mineralized tissue constituting the skeletal system, supporting and protecting the body's organs and tissues. In addition to such fundamental mechanical functions, bone also plays a remarkable role in sound conduction. From a mechanical standpoint, bone is a composite material consisting of minerals and collagen arranged in multiple hierarchical structures, with a complex anisotropic viscoelastic response, capable of transmitting and dissipating energy. At the molecular level, mineralized collagen fibrils are the basic building blocks of bone tissue, and hence, understanding bone properties down to fundamental tissue structures enables better identification of the mechanisms of structural failures and damage. While efforts have focused on the study of micro- and macro-scale viscoelasticity related to bone damage and healing based on creep, mineralized collagen has not been explored at the molecular level. We report a study that aims at systematically exploring the viscoelasticity of collagenous fibrils with different mineralization levels. We investigate the dynamic mechanical response upon cyclic and impulsive loads to observe the viscoelastic phenomena from either shear or extensional strains via molecular dynamics. We perform a sensitivity analysis with several key benchmarks: intrafibrillar mineralization percentage, hydration state, and external load amplitude. Our results show an increase of the dynamic moduli with an increase of the mineral percentage, pronounced at low strains. When intrafibrillar water is present, the material softens the elastic component, but considerably increases its viscosity, especially at high frequencies. This behavior is confirmed from the material response upon impulsive loads, in which water drastically reduces the relaxation times throughout the input velocity range by one order of magnitude, with respect to the dehydrated counterparts. We find that, upon transient loads, water has a major impact on the mechanics of mineralized fibrillar collagen, being able to improve the capability of the tissue to passively and effectively dissipate energy, especially after fast and high-amplitude external loads. Our study provides knowledge of bone mechanics in relation to pathologies deriving from dehydration or traumas. Moreover, these findings show the potential for being used in designing new bioinspired materials not limited to tissue engineering applications, in which passive mechanisms for dissipating energy can prevent structural failures.
Collapse
Affiliation(s)
- Mario Milazzo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), USA. and The BioRobotics Institute, Scuola Superiore Sant'Anna, Italy
| | - Alessio David
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics (LAMM), USA. and Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Serena Danti
- Laboratory for Atomistic and Molecular Mechanics (LAMM), USA. and The BioRobotics Institute, Scuola Superiore Sant'Anna, Italy and Department of Civil and Industrial Engineering, University of Pisa, Italy
| | | |
Collapse
|
11
|
OZTURK BURHAN, INAL SERMET, DULGEROGLU TCIHAN, UZUMCUGIL AOKTAR, DEGER AYSENUR, KUYUBASI SNUMAN, KARAYEL HBASRI, GOK KADIR. HISTOPATHOLOGICAL AND BIOMECHANICAL INVESTIGATION OF THE EFFECT OF MOMORDICA CHARANTIA ON FRACTURE HEALING, KIDNEY, AND LIVER: AN EXPERIMENTAL RAT MODEL. J MECH MED BIOL 2021; 21:2150019. [DOI: 10.1142/s0219519421500196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Momordica charantia (MC) is a plant belonging to the family Cucurbitaceae. MC has antidiabetic, antibacterial, antioxidant, antimutagenic, antiulcerative, antiinflammatory and antilipidemic effects. However, information on the effect of MC on fracture union is lacking. This study aimed to examine the effect of MC on fracture union histopathologically and biomechanically. A total of 42 male Wistar-Albino rats were randomly divided into 3 groups, 14 in each group. A diaphyseal fracture was created on the right tibia of all rats. All fractures were fixed with a Kirschner (K) wire. The rats in Group I did not undergo any further procedures (Control group). Group II rats were treated with 0.9% saline oral gavage at a dose of [Formula: see text]L/day for 28 days [Saline (S) group]. The rats in Group III were given 300[Formula: see text]mg/kg MC extract per day, dissolved in [Formula: see text]L 0.9% saline by oral gavage for 28 days [MC (Extract) group]. After 28 days, all rats were sacrificed. Each group was randomly divided into two subgroups. The histopathological examination was performed on the right tibia of rats in the first subgroup and the biomechanical examination in the second subgroup. The kidneys and livers of all rats were evaluated histopathologically. Fracture union was significantly better in the Extract group compared with the Control and S groups histopathologically. The fracture inflammation values were lower in the Extract group than in the other groups. No statistically significant difference was found between the groups in terms of possible side effects to kidneys and livers. In terms of biomechanics, fracture union was significantly better in the Extract group compared with the Control and S groups except yield displacement values. MC had a positive effect on fracture union histopathologically and biomechanically.
Collapse
Affiliation(s)
- BURHAN OZTURK
- Department of Orthopaedics and Traumatology, Kutahya Health Sciences University Evliya Çelebi, Education and Research Hospital, Kutahya, Turkey
| | - SERMET INAL
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - T. CIHAN DULGEROGLU
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - A. OKTAR UZUMCUGIL
- Department of Orthopaedics and Traumatology, Park Hayat Hospital, Kutahya, Turkey
| | - AYSENUR DEGER
- Department of Pathology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - S. NUMAN KUYUBASI
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - H. BASRI KARAYEL
- Department of Medicinal and Aromatic Plants, Vocational School, Dumlupinar University, Gediz, Turkey
| | - KADIR GOK
- Department of Biomedical Engineering, Faculty of Engineering And Architecture, Izmir Bakırçay University, İzmir, Turkey
| |
Collapse
|
12
|
Mancia L, Yang J, Spratt JS, Sukovich JR, Xu Z, Colonius T, Franck C, Johnsen E. Acoustic cavitation rheometry. SOFT MATTER 2021; 17:2931-2941. [PMID: 33587083 DOI: 10.1039/d0sm02086a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Characterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J. Mech. Phys. Solids, 2018, 112, 291-317] combines laser-induced cavitation measurements with a model for the bubble dynamics to measure local properties of polyacrylamide hydrogel under high strain-rates from 103 to 108 s-1. While promising, laser-induced cavitation involves plasma formation and optical breakdown during nucleation, a process that could alter local material properties before measurements are obtained. In the present study, we extend the IMR method to another means to generate cavitation, namely high-amplitude focused ultrasound, and apply the resulting acoustic-cavitation-based IMR to characterize the mechanical properties of agarose hydrogels. Material properties including viscosity, elastic constants, and a stress-free bubble radius are inferred from bubble radius histories in 0.3% and 1% agarose gels. An ensemble-based data assimilation is used to further help interpret the obtained estimates. The resulting parameter distributions are consistent with available measurements of agarose gel properties and with expected trends related to gel concentration and high strain-rate loading. Our findings demonstrate the utility of applying IMR and data assimilation methods with single-bubble acoustic cavitation data for measurement of viscoelastic properties.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Sanz-Herrera JA, Mora-Macías J, Ayensa-Jiménez J, Reina-Romo E, Doweidar MH, Domínguez J, Doblaré M. Data-Driven Computational Simulation in Bone Mechanics. Ann Biomed Eng 2020; 49:407-419. [PMID: 32681405 DOI: 10.1007/s10439-020-02550-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/16/2020] [Indexed: 01/05/2023]
Abstract
The data-driven approach was formally introduced in the field of computational mechanics just a few years ago, but it has gained increasing interest and application as disruptive technology in many other fields of physics and engineering. Although the fundamental bases of the method have been already settled, there are still many challenges to solve, which are often inherently linked to the problem at hand. In this paper, the data-driven methodology is applied to a particular problem in tissue biomechanics, a context where this approach is particularly suitable due to the difficulty in establishing accurate and general constitutive models, due to the intrinsic intra and inter-individual variability of the microstructure and associated mechanical properties of biological tissues. The problem addressed here corresponds to the characterization and mechanical simulation of a piece of cortical bone tissue. Cortical horse bone tissue was mechanically tested using a biaxial machine. The displacement field was obtained by means of digital image correlation and then transformed into strains by approximating the displacement derivatives in the bone virtual geometric image. These results, together with the approximated stress state, assumed as uniform in the small pieces tested, were used as input in the flowchart of the data-driven methodology to solve several numerical examples, which were compared with the corresponding classical model-based fitted solution. From these results, we conclude that the data-driven methodology is a useful tool to directly simulate problems of biomechanical interest without the imposition (model-free) of complex spatial and individually-varying constitutive laws. The presented data-driven approach recovers the natural spatial variation of the solution, resulting from the complex structure of bone tissue, i.e. heterogeneity, microstructural hierarchy and multifactorial architecture, making it possible to add the intrinsic stochasticity of biological tissues into the data set and into the numerical approach.
Collapse
Affiliation(s)
- J A Sanz-Herrera
- School of Engineering, University of Seville, Camino de los descubrimientos s/n, 41092, Seville, Spain.
| | | | - J Ayensa-Jiménez
- Mechanical Engineering Department, Aragón Institute of Engineering Research (I3A), Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), University of Zaragoza, Zaragoza, Spain
| | - E Reina-Romo
- School of Engineering, University of Seville, Camino de los descubrimientos s/n, 41092, Seville, Spain
| | - M H Doweidar
- Mechanical Engineering Department, Aragón Institute of Engineering Research (I3A), Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), University of Zaragoza, Zaragoza, Spain
| | - J Domínguez
- School of Engineering, University of Seville, Camino de los descubrimientos s/n, 41092, Seville, Spain
| | - M Doblaré
- Mechanical Engineering Department, Aragón Institute of Engineering Research (I3A), Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
14
|
Mouloodi S, Rahmanpanah H, Burvill C, Davies HMS. Prediction of load in a long bone using an artificial neural network prediction algorithm. J Mech Behav Biomed Mater 2019; 102:103527. [PMID: 31879267 DOI: 10.1016/j.jmbbm.2019.103527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/09/2019] [Accepted: 11/10/2019] [Indexed: 11/18/2022]
Abstract
The hierarchical nature of bone makes it a difficult material to fully comprehend. The equine third metacarpal (MC3) bone experiences nonuniform surface strains, which are a measure of displacement induced by loads. This paper investigates the use of an artificial neural network expert system to quantify MC3 bone loading. Previous studies focused on determining the response of bone using load, bone geometry, mechanical properties, and constraints as input parameters. This is referred to as a forward problem and is generally solved using numerical techniques such as finite element analysis (FEA). Conversely, an inverse problem has to be solved to quantify load from the measurements of strain and displacement. Commercially available FEA packages, without manipulating their underlying algebraic formulae, are incapable of completing a solution to the inverse problem. In this study, an artificial neural network (ANN) was employed to quantify the load required to produce the MC3 displacement and surface strains determined experimentally. Nine hydrated MC3 bones from thoroughbred horses were loaded in compression in an MTS machine. Ex-vivo experiments measured strain readings from one three-gauge rosette and three distinct single-element gauges at different locations on the MC3 midshaft, associated displacement, and load exposure time. Horse age and bone side (left or right limb) were also recorded for each MC3 bone. This information was used to construct input variables for the ANN model. The ability of this expert system to predict the MC3 loading was investigated. The ANN prediction offered excellent reliability for the prediction of load in the MC3 bones investigated, i.e. R2 ≥ 0.98.
Collapse
Affiliation(s)
- Saeed Mouloodi
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia; Department of Veterinary Biosciences, The University of Melbourne, Melbourne, Australia.
| | - Hadi Rahmanpanah
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia
| | - Colin Burvill
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia
| | - Helen M S Davies
- Department of Veterinary Biosciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomater 2019; 97:74-92. [PMID: 31400521 DOI: 10.1016/j.actbio.2019.08.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
Abstract
Viscoelasticity of living tissues plays a critical role in tissue homeostasis and regeneration, and its implication in disease development and progression is being recognized recently. In this review, we first explored the state of knowledge regarding the potential application of tissue viscoelasticity in disease diagnosis. In order to better characterize viscoelasticity with local resolution and non-invasiveness, emerging characterization methods have been developed with the potential to be supplemented to existing facilities. To understand cellular responses to matrix viscoelastic behaviors in vitro, hydrogels made of natural polymers have been developed and the relationships between their molecular structure and viscoelastic behaviors, are elucidated. Moreover, how cells perceive the viscoelastic microenvironment and cellular responses including cell attachment, spreading, proliferation, differentiation and matrix production, have been discussed. Finally, some future perspective on an integrated mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses and biomaterial design are highlighted. STATEMENT OF SIGNIFICANCE: Tissue- or organ-scale viscoelastic behavior is critical for homeostasis, and the molecular basis and cellular responses of viscoelastic materials at micro- or nano-scale are being recognized recently. We summarized the potential applications of viscoelasticity in disease diagnosis enabled by emerging non-invasive characterization technologies, and discussed the underlying mechanism of viscoelasticity of hydrogels and current understandings of cell regulatory functions of them. With a growing understanding of the molecular basis of hydrogel viscoelasticity and recognition of its regulatory functions on cell behaviors, it is important to bring the clinical insights on how these characterization technologies and engineered materials may contribute to disease diagnosis and treatment. This review explains the basics in characterizing viscoelasticity with our hope to bridge the gap between basic research and clinical applications.
Collapse
|
16
|
Abd-Alla A, Abo-Dahab S, Ateeq R, Khder MA. Effect of rotation on wave propagation through a poroelastic wet bone with cavity. MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES 2019; 16:53-72. [DOI: 10.1108/mmms-02-2019-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Purpose
The purpose of this paper is to investigate the wave propagation of wave in an infinite poroelastic cylindrical bone. The dynamic behavior of a wet long bone that has been modeled as a piezoelectric hollow cylinder of crystal class 6 is investigated.
Design/methodology/approach
An exact closed form solution is presented by employing an analytical procedure. The frequency equation for poroelastic bone is obtained when the boundaries are stress free and is examined numerically.
Findings
The study of wave propagation over a continuous medium is of practical importance in the field of engineering, medicine and bio-engineering. Application of the poroelastic materials in medicinal fields such as orthopedics, dental and cardiovascular is well known. In orthopedics, wave propagation over bone is used in monitoring the rate of fracture healing. There are two types of osseous tissue, such as cancellous or trabecular and compact or cortical bone, which are of different materials, with respect to their mechanical behavior.
Originality/value
The frequencies are calculated for poroelastic bone for various values for different values of rotation, angular velocity and density. In wet bone little velocity dispersion was observed, in contrast to the results of earlier studies on wet bone. Large values of attenuation were observed. Such a model would in particular be useful in large-scale parametric studies of bone mechanical response.
Collapse
|
17
|
Zhai X, Guo Z, Gao J, Kedir N, Nie Y, Claus B, Sun T, Xiao X, Fezzaa K, Chen WW. High-speed X-ray visualization of dynamic crack initiation and propagation in bone. Acta Biomater 2019; 90:278-286. [PMID: 30926579 DOI: 10.1016/j.actbio.2019.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 11/29/2022]
Abstract
The initiation and propagation of physiological cracks in porcine cortical and cancellous bone under high rate loading were visualized using high-speed synchrotron X-ray phase-contrast imaging (PCI) to characterize their fracture behaviors under dynamic loading conditions. A modified Kolsky compression bar was used to apply dynamic three-point flexural loadings on notched specimens and images of the fracture processes were recorded using a synchronized high-speed synchrotron X-ray imaging set-up. Three-dimensional synchrotron X-ray tomography was conducted to examine the initial microstructure of the bone before high-rate experiments. The experimental results showed that the locations of fracture initiations were not significantly different between the two types of bone. However, the crack velocities in cortical bone were higher than in cancellous bone. Crack deflections at osteonal cement lines, a prime toughening mechanism in bone at low rates, were observed in the cortical bone under dynamic loading in this study. Fracture toughening mechanisms, such as uncracked ligament bridging and bridging in crack wake were also observed for the two types of bone. The results also revealed that the fracture toughness of cortical bone was higher than cancellous bone. The crack was deflected to some extent at osteon cement line in cortical bone instead of comparatively penetrating straight through the microstructures in cancellous bone. STATEMENT OF SIGNIFICANCE: Fracture toughness is with great importance to study for crack risk prediction in bone. For those cracks in bone, most of them are associated with impact events, such as sport accidents. Consequently, we visualized, in real-time, the entire processes of dynamic fractures in notched cortical bone and cancellous bone specimens using synchrotron X-ray phase contrast imaging. The onset location of crack initiation was found independent on the bone type. We also found that, although the extent was diminished, crack deflections at osteon cement lines, a major toughening mechanism in transversely orientated cortical bone at quasi-static rate, were still played a role in resisting cracking in dynamically loaded specimen. These finding help researchers to understand the dynamic fracture behaviors in bone.
Collapse
Affiliation(s)
- Xuedong Zhai
- School of Aeronautics and Astronautics, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA.
| | - Zherui Guo
- School of Aeronautics and Astronautics, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jinling Gao
- School of Aeronautics and Astronautics, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Nesredin Kedir
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Yizhou Nie
- School of Aeronautics and Astronautics, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Ben Claus
- School of Aeronautics and Astronautics, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Tao Sun
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Xianghui Xiao
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Kamel Fezzaa
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Weinong W Chen
- School of Aeronautics and Astronautics, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA; School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Gauthier R, Langer M, Follet H, Olivier C, Gouttenoire PJ, Helfen L, Rongiéras F, Mitton D, Peyrin F. Influence of loading condition and anatomical location on human cortical bone linear micro-cracks. J Biomech 2019; 85:59-66. [PMID: 30686510 DOI: 10.1016/j.jbiomech.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Human cortical bone fracture toughness depends on the anatomical locations under quasi-static loading. Recent results also showed that under fall-like loading, cortical bone fracture toughness is similar at different anatomical locations in the same donor. While cortical bone toughening mechanisms are known to be dependent on the tissue architecture under quasi-static loading, the fracture mechanisms during a fall are less studied. In the current study, the structural parameters of eight paired femoral diaphyses, femoral necks and radial diaphyses were mechanically tested under quasi-static and fall-like loading conditions (female donors, 70 ± 14 y.o., [50-91 y.o.]). Synchrotron radiation micro-CT imaging was used to quantify the amount of micro-cracks formed during loading. The volume fraction of these micro-cracks was significantly higher within the specimens loaded under a quasi-static condition than under a loading representative of a fall. Under fall-like loading, there was no difference in crack volume fraction between the different paired anatomical locations. This result shows that the micro-cracking toughening mechanism depends both on the anatomical location and on the loading condition.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - Cécile Olivier
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France; European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France
| | - Pierre-Jean Gouttenoire
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France; European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France
| | - Lukas Helfen
- European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France; Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Frédéric Rongiéras
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Service Chirurgie Orthopédique et Traumatologie - Hôpital Desgenettes, 69003 Lyon, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France; European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France.
| |
Collapse
|
19
|
Rahman N, Ur Rahman W, Khan R. Effect of orientation and age on the crack propagation in cortical bone. Biomed Mater Eng 2018; 29:601-610. [DOI: 10.3233/bme-181011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
The influence of aluminium, steel and polyurethane shoeing systems and of the unshod hoof on the injury risk of a horse kick. An ex vivo experimental study. Vet Comp Orthop Traumatol 2017; 30:339-345. [PMID: 28763524 DOI: 10.3415/vcot-17-01-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To evaluate the damage inflicted by an unshod hoof and by the various horseshoe materials (steel, aluminium and polyurethane) on the long bones of horses after a simulated kick. METHODS Sixty-four equine radii and tibiae were evaluated using a drop impact test setup. An impactor with a steel, aluminium, polyurethane, or hoof horn head was dropped onto prepared bones. An impactor velocity of 8 m/s was initially used with all four materials and then testing was repeated with a velocity of 12 m/s with the polyurethane and hoof horn heads. The impact process was analysed using a high-speed camera, and physical parameters, including peak contact force and impact duration, were calculated. RESULTS At 8 m/s, the probability of a fracture was 75% for steel and 81% for aluminium, whereas polyurethane and hoof horn did not damage the bones. At 12 m/s, the probability of a fracture was 25% for polyurethane and 12.5% for hoof horn. The peak contact force and impact duration differed significantly between 'hard materials' (aluminium and steel) and 'soft materials' (polyurethane and hoof horn). CLINICAL SIGNIFICANCE The observed bone injuries were similar to those seen in analogous experimental studies carried out previously and comparable to clinical fracture cases suggesting that the simulated kick was realistic. The probability of fracture was significantly higher for steel and aluminium than for polyurethane and hoof horn, which suggests that the horseshoe material has a significant influence on the risk of injury for humans or horses kicked by a horse.
Collapse
|
21
|
Jafarnezhadgero AA, Majlesi M, Azadian E. Gait ground reaction force characteristics in deaf and hearing children. Gait Posture 2017; 53:236-240. [PMID: 28219845 DOI: 10.1016/j.gaitpost.2017.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 02/02/2023]
Abstract
The link between gait parameters and hearing loss is not well understood. The objective of this study was to investigate the effects of the gait ground reaction forces, their time to peak, vertical loading rate, impulses and free moment during gait in deaf and hearing children. Thirty male children were equally divided into a healthy group and a group with hearing loss problems (Deaf group). Ground reaction forces were analyzed during barefoot walking. MANOVA test was used for between group comparisons. The significance level was set at p<0.05 for all analyses. Hearing loss was associated with increased propulsion lateral-medial ground reaction force (p=0.031), its time to peak (p=0.008), and lateral- medial impulse (p=0.018). Similar vertical reaction forces were observed in both groups (p>0.05). Positive peak of free moments in the healthy group was significantly greater than that in the deaf group (p=0.004). In conclusion, the results reveal that gait ground reaction force components in deaf children may have clinical values for rehabilitation of these subjects.
Collapse
Affiliation(s)
- Amir Ali Jafarnezhadgero
- Department of Physical Education and Sport Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Mahdi Majlesi
- Department of Sport Biomechanics, Faculty of Humanities, Islamic Azad University, Hamedan Branch, Hamedan, Iran.
| | - Elaheh Azadian
- Department of Motor Behavior, Faculty of Humanities, Islamic Azad University, Hamedan Branch, Hamedan, Iran.
| |
Collapse
|
22
|
Lescun TB, Hoffseth K, Yang HT, Hansma PK, Kopeikin HS, Chandrasekar S. Effect of various testing conditions on results for a handheld reference point indentation instrument in horses. Am J Vet Res 2016; 77:39-49. [PMID: 26709935 DOI: 10.2460/ajvr.77.1.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare results obtained with a handheld reference point indentation instrument for bone material strength index (BMSi) measurements in the equine third metacarpal bone for various testing conditions. SAMPLE 24 third metacarpal bones. PROCEDURES Third metacarpal bones from both forelimbs of 12 horses were obtained. The dorsal surface of each bone was divided into 6 testing regions. In vivo and ex vivo measurements of BMSi were obtained through the skin and on exposed bone, respectively, to determine effects of each testing condition. Difference plots were used to assess agreement between BMSi obtained for various conditions. Linear regression analysis was used to assess effects of age, sex, and body weight on BMSi. A mixed-model ANOVA was used to assess effects of age, sex, limb, bone region, and testing condition on BMSi values. RESULTS Indentation measurements were performed on standing sedated and recumbent anesthetized horses and on cadaveric bone. Regional differences in BMSi values were detected in adult horses. A significant linear relationship (r(2) = 0.71) was found between body weight and BMSi values. There was no difference between in vivo and ex vivo BMSi values. A small constant bias was detected between BMSi obtained through the skin, compared with values obtained directly on bone. CONCLUSIONS AND CLINICAL RELEVANCE Reference point indentation can be used for in vivo assessment of the resistance of bone tissue to microfracture in horses. Testing through the skin should account for a small constant bias, compared with results for testing directly on exposed bone.
Collapse
|
23
|
Prot M, Cloete T, Saletti D, Laporte S. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime. J Biomech 2016; 49:1050-1057. [DOI: 10.1016/j.jbiomech.2016.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/17/2022]
|
24
|
Li F, Li J, Kou H, Huang T, Zhou L. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:233. [PMID: 26384823 DOI: 10.1007/s10856-015-5565-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Porous titanium and its alloys are believed to be promising materials for bone implant applications, since they can reduce the "stress shielding" effect by tailoring porosity and improve fixation of implant through bone ingrowth. In the present work, porous Ti6Al4V alloys for biomedical application were fabricated by diffusion bonding of alloy meshes. Compressive mechanical behavior and compatibility in the range of physiological strain rate were studied under quasi-static and dynamic conditions. The results show that porous Ti6Al4V alloys possess anisotropic structure with elongated pores in the out-of-plane direction. For porous Ti6Al4V alloys with 60-70 % porosity, more than 40 % pores are in the range of 200-500 μm which is the optimum pore size suited for bone ingrowth. Quasi-static Young's modulus and yield stress of porous Ti6Al4V alloys with 30-70 % relative density are in the range of 6-40 GPa and 100-500 MPa, respectively. Quasi-static compressive properties can be quantitatively tailored by porosity to match those of cortical bone. Strain rate sensitivity of porous Ti6Al4V alloys is related to porosity. Porous Ti6Al4V alloys with porosity higher than 50 % show enhanced strain rate sensitivity, which is originated from that of base materials and micro-inertia effect. Porous Ti6Al4V alloys with 60-70 % porosity show superior compressive mechanical compatibility in the range of physiological strain rate for cortical bone implant applications.
Collapse
Affiliation(s)
- Fuping Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jinshan Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
- National & Local Joint Engineering Research Center for Precision Thermalforming Technology of Advanced Metal Materials, Xi'an, 710072, People's Republic of China
| | - Hongchao Kou
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- National & Local Joint Engineering Research Center for Precision Thermalforming Technology of Advanced Metal Materials, Xi'an, 710072, People's Republic of China.
| | - Tingting Huang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lian Zhou
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
25
|
Beadle N, Burnett TL, Hoyland JA, Sherratt MJ, Freemont AJ. A novel ex vivo model of compressive immature rib fractures at pathophysiological rates of loading. J Mech Behav Biomed Mater 2015; 51:154-62. [PMID: 26253206 DOI: 10.1016/j.jmbbm.2015.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/19/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Compressive rib fractures are considered to be indicative of non-accidental injury (NAI) in infants, which is a significant and growing issue worldwide. The diagnosis of NAI is often disputed in a legal setting, and as a consequence there is a need to model such injuries ex vivo in order to characterise the forces required to produce non-accidental rib fractures. However, current models are limited by type of sample, loading method and rate of loading. Here, we aimed to: i) develop a loading system for inducing compressive fractures in whole immature ribs that is more representative of the physiological conditions and mechanism of injury employed in NAI and ii) assess the influence of loading rate and rib geometry on the mechanical performance of the tissue. METHODS Porcine ribs (5-6 weeks of age) from 12 animals (n=8 ribs/animal) were subjected to axial compressive load directed through the anterior-posterior rib axis at loading rates of 1, 30, 60 or 90 mm/s. Key mechanical parameters (including peak load, load and percentage deformation to failure and effective stiffness) were quantified from the load-displacement curves. Measurements of the rib length, thickness at midpoint, distance between anterior and posterior extremities, rib curvature and fracture location were determined from radiographs. RESULTS This loading method typically produced incomplete fractures around the midpoint of the ribs, with 87% failing in this manner; higher loads and less deformation were required for ribs to completely fracture through both cortices. Loading rate, within the range of 1-90 mm/s, did not significantly affect any key mechanical parameters of the ribs. Load-displacement curves displaying characteristic and quantifiable features were produced for 90% of the ribs tested, and multiple regression analyses indicate that, in addition to the geometrical variables, there are other factors such as the micro- and nano-structure that influence the measured mechanical data. CONCLUSIONS A reproducible method of inducing fractures in a consistent location in immature porcine ribs has been successfully developed. Fracture appearance may be indicative of the amount of load and deformation that produced the fracture, which is an important finding for NAI, where knowledge of the aetiology of fractures is vital. Characteristic rib behaviour independent of loading rate and, to an extent, rib geometry has been demonstrated, allowing further investigation into how the complex micro- and nano-structure of immature ribs influences the mechanical performance under compressive load. This research will ultimately enable improved characterisation of the loading pattern involved in non-accidental rib fractures.
Collapse
Affiliation(s)
- Nicola Beadle
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair and Manchester NIHR Musculoskeletal BRU, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, M13 9PT, United Kingdom
| | - Timothy L Burnett
- Materials Science Centre, University of Manchester, Oxford Road, M13 9PT, United Kingdom
| | - Judith A Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair and Manchester NIHR Musculoskeletal BRU, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, M13 9PT, United Kingdom
| | - Michael J Sherratt
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair and Manchester NIHR Musculoskeletal BRU, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, M13 9PT, United Kingdom
| | - Anthony J Freemont
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair and Manchester NIHR Musculoskeletal BRU, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, M13 9PT, United Kingdom.
| |
Collapse
|
26
|
Berteau JP, Oyen M, Shefelbine SJ. Permeability and shear modulus of articular cartilage in growing mice. Biomech Model Mechanobiol 2015; 15:205-12. [DOI: 10.1007/s10237-015-0671-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
|
27
|
Mahaffey CA, Peterson ML, Thomason JJ, McIlwraith CW. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials. Equine Vet J 2015; 48:97-102. [DOI: 10.1111/evj.12360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- C. A. Mahaffey
- Mechanical Engineering; University of Maine; Orono Maine USA
- Racing Surfaces Testing Laboratory; Orono Maine USA
| | - M. L. Peterson
- Mechanical Engineering; University of Maine; Orono Maine USA
- Racing Surfaces Testing Laboratory; Orono Maine USA
| | - J. J. Thomason
- Department of Biomedical Sciences; University of Guelph; Ontario Canada
| | - C. W. McIlwraith
- Department of Clinical Sciences; Colorado State University; Fort Collins USA
| |
Collapse
|
28
|
Effect of cyclic loading on the nanoscale deformation of hydroxyapatite and collagen fibrils in bovine bone. Biomech Model Mechanobiol 2014; 13:615-26. [PMID: 23958833 DOI: 10.1007/s10237-013-0522-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 08/07/2013] [Indexed: 01/15/2023]
Abstract
Cyclic compressive loading tests were carried out on bovine femoral bones at body temperature (37 °C), with varying mean stresses (-55 to -80 MPa) and loading frequencies (0.5-5 Hz). At various times, the cyclic loading was interrupted to carry out high-energy X-ray scattering measurements of the internal strains developing in the hydroxyapatite (HAP) platelets and the collagen fibrils. The residual strains upon unloading were always tensile in the HAP and compressive in the fibrils, and each increases in magnitude with loading cycles, which can be explained from damage at the HAP–collagen interface and accumulation of plastic deformation within the collagen phase. The samples tested at a higher mean stress and stress amplitude, and at lower loading frequencies exhibit greater plastic deformation and damage accumulation, which is attributed to greater contribution of creep. Synchrotron microcomputed tomography of some of the specimens showed that cracks are produced during cyclic loading and that they mostly occur concentric with Haversian canals.
Collapse
|
29
|
Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials 2014; 35:5472-81. [PMID: 24731707 DOI: 10.1016/j.biomaterials.2014.03.066] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/22/2014] [Indexed: 12/27/2022]
Abstract
While most fracture-mechanics investigations on bone have been performed at low strain rates, physiological fractures invariably occur at higher loading rates. Here, at strain rates from 10(-5) to 10(-1) s(-1), we investigate deformation and fracture in bone at small length-scales using in situ small-angle x-ray scattering (SAXS) to study deformation in the mineralized collagen fibrils and at the microstructural level via fracture-mechanics experiments to study toughening mechanisms generating toughness through crack-tip shielding. Our results show diminished bone toughness at increasing strain rates as cracks penetrate through the osteons at higher strain rates instead of deflecting at the cement lines, which is a prime toughening mechanism in bone at low strain rates. The absence of crack deflection mechanisms at higher strain rates is consistent with lower intrinsic bone matrix toughness. In the SAXS experiments, higher fibrillar strains at higher strain rates suggest less inelastic deformation and thus support a lower intrinsic toughness. The increased incidence of fracture induced by high strain rates can be associated with a loss in toughness in the matrix caused by a strain rate induced stiffening of the fibril ductility, i.e., a "locking-up" of the viscous sliding and sacrificial bonding mechanisms, which are the origin of inelastic deformation (and toughness) in bone at small length-scales.
Collapse
Affiliation(s)
| | - Bernd Gludovatz
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Schaible
- Experimental Systems Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Björn Busse
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
30
|
Cheung RT, Rainbow MJ. Landing pattern and vertical loading rates during first attempt of barefoot running in habitual shod runners. Hum Mov Sci 2014; 34:120-7. [DOI: 10.1016/j.humov.2014.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 11/26/2022]
|
31
|
Tüfekci K, Kayacan R, Kurbanoğlu C. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone. J Mech Behav Biomed Mater 2014; 34:231-42. [PMID: 24607761 DOI: 10.1016/j.jmbbm.2014.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/24/2014] [Accepted: 02/02/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Gamma radiation has been widely used for sterilization of bone allograft. However, sterilization by gamma radiation damages the material properties of bone which is a major clinical concern since bone allograft is used in load bearing applications. While the degree of this damage is well investigated for quasi-static and cyclic loading conditions, there does not appear any information on mechanical behavior of gamma-irradiated cortical bone at high speed loading conditions. In this study, the effects of gamma irradiation on high strain rate compressive behavior of equine cortical bone were investigated using a Split Hopkinson Pressure Bar (SHPB). Quasi-static compression testing was also performed. METHODS Equine cortical bone tissue from 8year old retired racehorses was divided into two groups: non-irradiated and gamma-irradiated at 30kGy. Quasi-static and high strain rate compression tests were performed at average strain rates of 0.0045/s and 725/s, respectively. RESULTS Agreeing with previous results on the embrittlement of cortical bone when gamma-irradiated, the quasi-static results showed that gamma-irradiation significantly decreased ultimate strength (9%), ultimate strain (27%) and toughness (41%), while not having significant effect on modulus of elasticity, yield strain and resilience. More importantly, contrary to what is typically observed in quasi-static loading, the gamma-irradiated bone under high speed loading showed significantly higher modulus of elasticity (45%), ultimate strength (24%) and toughness (26%) than those of non-irradiated bone, although the failure was at a similar strain. SIGNIFICANCE Under high speed loading, the mechanical properties of bone allografts were not degraded by irradiation, in contrast to the degradation measured in this and prior studies under quasi-static loading. This result calls into question the assumption that bone allograft is always degraded by gamma irradiation, regardless of loading conditions. However, it needs further investigation to be translated positively in a clinical setting.
Collapse
Affiliation(s)
- Kenan Tüfekci
- Department of Mechanical Engineering, Süleyman Demirel University, 32260 Isparta, Turkey.
| | - Ramazan Kayacan
- Department of Mechanical Engineering, Süleyman Demirel University, 32260 Isparta, Turkey.
| | - Cahit Kurbanoğlu
- Department of Mechanical Engineering, İstanbul Medeniyet University, Göztepe Kadıköy - İstanbul, Turkey.
| |
Collapse
|
32
|
Avery C, Bujtár P, Simonovics J, Dézsi T, Váradi K, Sándor GK, Pan J. A finite element analysis of bone plates available for prophylactic internal fixation of the radial osteocutaneous donor site using the sheep tibia model. Med Eng Phys 2013; 35:1421-30. [DOI: 10.1016/j.medengphy.2013.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 02/11/2013] [Accepted: 03/20/2013] [Indexed: 11/24/2022]
|
33
|
Vale AC, Faustino J, Reis L, Lopes A, Vidal B, Monteiro J, Fonseca JE, Canhão H, Vaz MF. Effect of the strain rate on the twisting of trabecular bone from women with hip fracture. J Biomech Eng 2013; 135:121005. [PMID: 24008777 DOI: 10.1115/1.4025322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Abstract
As one of the major functions of bone is to provide structural support for the musculoskeletal system, it is important to evaluate its mechanical strength. Bones may be subjected to multiaxial stresses due to bone pathologies, accidental loads which may lead to hip, wrist fracture, or to a prosthetic joint replacement. Twist loading may lead to fractures, especially involving long bones from lower limbs. The aim of this work was to study the effect of the strain rate on the shear properties of trabecular bone samples from women with hip fracture (from 65 to 100 years). Cylindrical samples were core drilled from human femoral heads along the primary trabecular direction. The cylinder's ends were polished and embedded in blocks of polymeric material which fit the grips of the testing device. Deformation rates of 0.005, 0.01, 0.015, and 0.05 s⁻¹ were applied. Twisting tests were conducted with or without an applied axial load of 500 N. From the torque-angular displacement curves, the shear stress-strain curves were obtained. The maximum shear strength and the shear modulus (i.e. the slope of the linear region) were determined. A large scatter of the results of the shear strength and the shear modulus was found, which is probably related to the heterogeneity of nonhealthy human bone samples. There is no significant effect of the strain rate on the maximum shear stress and the shear modulus, either in tests undertaken with or without the application of an axial load. The effect of strain rate on nonhealthy bone trabecular twisting properties did not follow the trend observed on the effect of strain rate in healthy bone, where an increase is detected.
Collapse
|
34
|
Kieser JA, Weller S, Swain MV, Neil Waddell J, Das R. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model. Leg Med (Tokyo) 2013; 15:193-201. [PMID: 23453778 DOI: 10.1016/j.legalmed.2013.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/06/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Despite numerous studies on high impact fractures of ribs, little is known about compressive rib injuries. We studied rib fractures from a biomechanical and morphological perspective using 15, 5th ribs of domestic pigs Sus scrofa, divided into two groups, desiccated (representing post-mortem trauma) and fresh ribs with intact periosteum (representing peri-mortem trauma). Ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and scanning electron microscopy (SEM). During axial compression, fresh ribs had slightly higher strength because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by relatively short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening, visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. In contrast, fresh bone showed buckling-like damage features on the compressive surface and cracking parallel to the axis of the bone. Morphologically, all dry ribs fractured precipitously, whereas all but one of the fresh ribs showed incomplete fracture. The mode of fracture, however, was remarkably similar for both groups, with butterfly fractures predominating (7/15, 46.6% dry and wet). Our study highlights the fact that under controlled loading, despite seemingly similar butterfly fracture morphology, fresh ribs (representing perimortem trauma) show a non-catastrophic response. While extensive strain softening observed for the fresh bone does show some additional micro-cracking damage, it appears that the periosteum may play a key role in imparting the observed pseudo-ductility to the ribs. The presence of fibrous pull-out and grooving of the outer tensile surface associated with periosteal stretching suggests that the periosteum under tension is able to sustain very high strain and bridge the mouth of the extending butterfly crack, thereby contributing to the observed strain-softening behaviour.
Collapse
Affiliation(s)
- Jules A Kieser
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
35
|
Nanomechanical Characterization of Canine Femur Bone for Strain Rate Sensitivity in the Quasistatic Range under Dry versus Wet Conditions. Int J Biomater 2012; 2012:415230. [PMID: 23365577 PMCID: PMC3540738 DOI: 10.1155/2012/415230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 12/03/2022] Open
Abstract
As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen, 254 ± 9 (mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (P < 0.001). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions (P < 0.001) and for the hardness measured at a rate of 10 μN/s under wet conditions (P < 0.001). Therefore, for a quasistatic test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under wet conditions at a loading/unloading rate of 100–1000 μN/s, so the reduced creep effect allows for a more accurate computation of mechanical properties.
Collapse
|
36
|
Singhal A, Almer J, Dunand D. Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone. Acta Biomater 2012; 8:2747-58. [PMID: 22465576 DOI: 10.1016/j.actbio.2012.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/10/2012] [Accepted: 03/21/2012] [Indexed: 11/27/2022]
Abstract
High-energy synchrotron X-ray diffraction is used to study in situ elastic strains in hydroxyapatite (HAP) for bovine femur cortical bone subjected to uniaxial compressive loading. Load-unload tests at room temperature (27°C) and body temperature (37°C) show that the load transfer to the stiff nanosized HAP platelets from the surrounding compliant protein matrix does not vary significantly (p<0.05) with temperature. This emphasizes that the stiffness of bone is controlled by the stiffness of the HAP phase, which remains unaffected by this change in temperature. Both the extent of hysteresis and the residual value of internal strains developed in HAP during load-unload cycling from 0 to -100 MPa increase significantly (p<0.05) with the number of loading cycles, indicative of strain energy dissipation and accumulation of permanent deformation. Monotonic loading tests, conducted at body temperature to determine the spatial variation of properties within the femur, illustrate that the HAP phase carries lower strain (and thus stresses) at the anterio-medial aspect of the femur than at the anterio-lateral aspect. This is correlated to higher HAP volume fractions in the former location (p<0.05). The Young's modulus of the bone is also found to correlate with the HAP volume fraction and porosity (p<0.05). Finally, samples with a primarily plexiform microstructure are found to be stiffer than those with a primarily Haversian microstructure (p<0.05).
Collapse
|
37
|
Ural A, Zioupos P, Buchanan D, Vashishth D. Evaluation of the influence of strain rate on Colles' fracture load. J Biomech 2012; 45:1854-7. [PMID: 22560644 DOI: 10.1016/j.jbiomech.2012.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/17/2022]
Abstract
Colles' fracture, a transverse fracture of the distal radius bone, is one of the most frequently observed osteoporotic fractures resulting from low energy or traumatic events, associated with low and high strain rates, respectively. Although experimental studies on Colles' fracture were carried out at various loading rates ranging from static to impact loadings, there is no systematic study in the literature that isolates the influence of strain rate on Colles' fracture load. In order to provide a better understanding of fracture risk, the current study combines experimental material property measurements under varying strain rates with computational modeling and presents new information on the effect of strain rate on Colles' fracture. The simulation results showed that Colles' fracture load decreased with increasing strain rate with a steeper change in lower strain rates. Specifically, strain rate values (0.29s(-1)) associated with controlled falling without fracture corresponded to a 3.7% reduction in the fracture load. On the other hand, the reduction in the fracture load was 34% for strain rate of 3.7s(-1) reported in fracture inducing impact cadaver experiments. Further increase in the strain rate up to 18s(-1) led to an additional 22% reduction. The most drastic reduction in fracture load occurs at strain rates corresponding to the transition from controlled to impact falling. These results are particularly important for the improvement of fracture risk assessment in the elderly because they identify a critical range of loading rates (10-50mm/s) that can dramatically increase the risk of Colles' fracture.
Collapse
Affiliation(s)
- Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
| | | | | | | |
Collapse
|
38
|
Wu Z, Ovaert TC, Niebur GL. Viscoelastic properties of human cortical bone tissue depend on gender and elastic modulus. J Orthop Res 2012; 30:693-9. [PMID: 22052806 PMCID: PMC3288480 DOI: 10.1002/jor.22001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 10/13/2011] [Indexed: 02/04/2023]
Abstract
Bone exhibits rate-dependent failure behavior, suggesting that viscoelasticity is a factor in the damage and fracture of bone. Microdamage initiates at scales below the macroscopic porosity in bone, and, as such, is affected by the intrinsic viscoelasticity of the bone tissue. The viscoelasticity of the bone tissue can be measured by nanoindentation and recording the creep behavior at constant load. The viscoelastic properties have been used to assess differences in tissue behavior with respect to fracture healing, aging, and mouse strains. In this study, we compared the viscoelastic behavior of human cortical bone between genders by using nanoindentation at a fixed load of 10 mN to measure the creep time constant. Bones from females had a significantly greater time constant, indicating slower creep and relaxation, than bones from males. The creep time constants decreased with increasing tissue modulus. The mineralization, collagen content, and collagen cross-link density, which were bulk measurements, were analyzed to determine if the differences in viscoelastic behavior were explained by compositional differences in the bone. However, none of the parameters differed between genders, nor were they correlated to the viscoelastic time constant. As such, the difference must depend on other matrix proteins that we did not assess or differences in the microstructural organization. This is one of the only intrinsic bone material properties that has been found to differ between males and females, and it may be important for assessing differences in fracture risk, since crack propagation is generally sensitive to viscoelastic properties.
Collapse
Affiliation(s)
- Ziheng Wu
- Tissue Mechanics Laboratory, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
39
|
Abstract
STUDY DESIGN Case series. BACKGROUND Patellofemoral pain is a common overuse injury in runners. Recent findings suggest that patellofemoral pain is related to high-impact loading associated with a rearfoot strike pattern. This case series describes the potential training effects of a landing pattern modification program to manage patellofemoral pain in runners. CASE DESCRIPTION Three female runners with unilateral patellofemoral pain who initially presented with a rearfoot strike pattern underwent 8 sessions of landing pattern modification program using real-time audio feedback from a force sensor placed within the shoe. Ground reaction forces during running were assessed with an instrumented treadmill. Patellofemoral pain symptoms were assessed using 2 validated questionnaires. Finally, running performance was measured by self-reported best time to complete a 10-km run in the previous month. The runners were assessed before, immediately after, and 3 months following training. OUTCOMES The landing pattern of runners was successfully changed from a rearfoot to a nonrearfoot strike pattern after training. This new pattern was maintained 3 months after the program. The vertical impact peak and rates of loading were shown to be reduced. Likewise, the symptoms related to patellofemoral pain and associated functional limitations were improved. However, only 1 of the participants reported improved running performance after the training. DISCUSSION This case series provided preliminary data to support further investigation of interventions leading to landing pattern modification in runners with patellofemoral pain. LEVEL OF EVIDENCE Therapy, level 4.
Collapse
|
40
|
Tanimoto Y, Hirayama S, Yamaguchi M, Nishiwaki T. Static and dynamic moduli of posterior dental resin composites under compressive loading. J Mech Behav Biomed Mater 2011; 4:1531-9. [DOI: 10.1016/j.jmbbm.2011.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|
41
|
Ural A, Zioupos P, Buchanan D, Vashishth D. The effect of strain rate on fracture toughness of human cortical bone: a finite element study. J Mech Behav Biomed Mater 2011; 4:1021-32. [PMID: 21783112 PMCID: PMC3143384 DOI: 10.1016/j.jmbbm.2011.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/27/2022]
Abstract
Evaluating the mechanical response of bone under high loading rates is crucial to understanding fractures in traumatic accidents or falls. In the current study, a computational approach based on cohesive finite element modeling was employed to evaluate the effect of strain rate on fracture toughness of human cortical bone. Two-dimensional compact tension specimen models were simulated to evaluate the change in initiation and propagation fracture toughness with increasing strain rate (range: 0.08-18 s(-1)). In addition, the effect of porosity in combination with strain rate was assessed using three-dimensional models of micro-computed tomography-based compact tension specimens. The simulation results showed that bone's resistance against the propagation of a crack decreased sharply with increase in strain rates up to 1 s(-1) and attained an almost constant value for strain rates larger than 1 s(-1). On the other hand, initiation fracture toughness exhibited a more gradual decrease throughout the strain rates. There was a significant positive correlation between the experimentally measured number of microcracks and the fracture toughness found in the simulations. Furthermore, the simulation results showed that the amount of porosity did not affect the way initiation fracture toughness decreased with increasing strain rates, whereas it exacerbated the same strain rate effect when propagation fracture toughness was considered. These results suggest that strain rates associated with falls lead to a dramatic reduction in bone's resistance against crack propagation. The compromised fracture resistance of bone at loads exceeding normal activities indicates a sharp reduction and/or absence of toughening mechanisms in bone during high strain conditions associated with traumatic fracture.
Collapse
Affiliation(s)
- Ani Ural
- Dept of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Peter Zioupos
- Biomechanics Laboratories, Dept of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA, UK
| | - Drew Buchanan
- Dept of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Deepak Vashishth
- Dept of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
42
|
A study of the dynamic compressive behavior of Elk antler. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Kulin RM, Jiang F, Vecchio KS. Loading rate effects on the R-curve behavior of cortical bone. Acta Biomater 2011; 7:724-32. [PMID: 20883834 DOI: 10.1016/j.actbio.2010.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Rising resistance curve (R-curve) behavior in bone during quasi-static experiments has demonstrated the importance of microstructural toughening mechanisms in resisting fracture. However, despite clinical bone fracture primarily occurring under dynamic loading and the significant changes in material behavior observed with increasing strain rates, there have been no previous investigations into whether crack growth resistance is maintained during dynamic fracture. Using a novel modified split-Hopkinson pressure bar coupled with a high-speed camera to measure crack propagation, we present the first evidence of rising R-curve behavior in bone under dynamic loading (∼2 × 10(5)MPam(1/2)s(-1)). Results indicate that rising R-curve behavior is maintained, although with lower crack initiation toughness and propagation resistance than observed in quasi-static experiments. Observations of crack initiation and propagation in double-notched specimens using confocal fluorescence microscopy and electron microscopy suggest that this is due to subtle differences in toughening mechanisms between quasi-static and dynamic fracture.
Collapse
|