1
|
Zhu H, Zhang R, Xia S, Xiao F. Effect of La addition on microstructure and mechanical properties of as-cast AZ91 magnesium alloy. Sci Rep 2025; 15:14956. [PMID: 40301386 PMCID: PMC12041206 DOI: 10.1038/s41598-025-96888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/01/2025] [Indexed: 05/01/2025] Open
Abstract
AZ91 magnesium alloy is extensively utilized in aerospace, automotive, and electronics industries because it is lightweight and has high specific strength and stiffness. However, its limited mechanical properties hinder its broad application. To enhance the comprehensive mechanical properties of AZ91 magnesium alloy, this study prepared AZ91 magnesium alloy by adding the rare-earth element lanthanum (La). Phase composition was examined through X-ray diffraction, and the microstructure was observed using an optical microscope and a scanning electron microscope. Mapping and energy spectrum analysis were performed to investigate the composition of the second phase. Differential scanning calorimetry was utilized to analyze the phase transition temperature, and the mechanical properties were tested. The solidification process was further assessed using Thermo-Calc simulation software. Results revealed that after the addition of La, a needle-shaped Al11La3 phase appeared in the microstructure. As the amount of added La increased, new granular Al11La3 and Al8LaMn4 phases emerged. When the amount of added La increased to 0.4 wt.%, the alloy exhibited maximum values for yield strength, tensile strength, and elongation values of 103.5 MPa, 169.75 MPa, and 4.4%, respectively. These improvements represent increments of 31.3%, 66.3%, and 214.3% in yield strength, tensile strength and elongation, respectively, compared with the alloy without La. When the La content reached 1.6 wt.%, hardness achieved its maximum value of 68.1 HV, showing an increase of approximately 26%. The evolution of microstructure and strengthening mechanism of mechanical properties were discussed.
Collapse
Affiliation(s)
- Hongwei Zhu
- College of Physics and Electronic Science, Shanxi Datong University, Datong, 037009, Shanxi, China
- Shanxi Province Magnesium Alloy New Materials and Forming Technology Innovation Center, Datong, 037009, Shanxi, China
| | - Rui Zhang
- College of Physics and Electronic Science, Shanxi Datong University, Datong, 037009, Shanxi, China
| | - Shule Xia
- CITIC Dicastal Co., Ltd., Qinhuangdao, 066004, Hebei, China.
| | - Furen Xiao
- Key Lab of Metastable Materials Science and Technology, Hebei Key Lab for Optimizing Metal Product Technology and Performance, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| |
Collapse
|
2
|
Costa V, Raimondi L, Scilabra SD, Pinto ML, Bellavia D, De Luca A, Guglielmi P, Cusanno A, Cattini L, Pulsatelli L, Pavarini M, Chiesa R, Giavaresi G. Effect of Hydrothermal Coatings of Magnesium AZ31 Alloy on Osteogenic Differentiation of hMSCs: From Gene to Protein Analysis. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1254. [PMID: 40141537 PMCID: PMC11944061 DOI: 10.3390/ma18061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025]
Abstract
An Mg-based alloy device manufactured via a superplastic forming process (Mg-AZ31+SPF) and coated using a hydrothermal method (Mg AZ31+SPF+HT) was investigated as a method to increase mechanical and osteointegration capability. The cell viability and osteointegrative properties of alloy-derived Mg AZ31+SPF and Mg AZ31+SPF+HT extracts were investigated regarding their effect on human mesenchymal stem cells (hMSCs) (maintained in basal (BM) and osteogenic medium (OM)) after 7 and 14 days of treatment. The viability was analyzed through metabolic activity and double-strand DNA quantification, while the osteoinductive effects were evaluated through qRT-PCR, osteoimage, and BioPlex investigations. Finally, a preliminary liquid mass spectrometry analysis was conducted on the secretome of hMSCs. Biocompatibility analysis revealed no toxic effect on cells' viability or proliferation during the experimental period. A modulation effect was observed on the osteoblast pre-commitment genes of hMSCs treated with Mg-AZ31+SPF+HT in OM, which was supported by mineralization nodule analysis. A preliminary mass spectrometry investigation highlighted the modulation of protein clusters involved in extracellular exosomes, Hippo, and the lipid metabolism process. In conclusion, our results revealed that the Mg AZ31+SPF+HT extracts can modulate the canonical and non-canonical osteogenic process in vitro, suggesting their possible application in bone tissue engineering.
Collapse
Affiliation(s)
- Viviana Costa
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Lavinia Raimondi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Simone Dario Scilabra
- Ri.MED Foundation, IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy; (S.D.S.); (M.L.P.)
| | - Margot Lo Pinto
- Ri.MED Foundation, IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy; (S.D.S.); (M.L.P.)
| | - Daniele Bellavia
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Angela De Luca
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Pasquale Guglielmi
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (P.G.); (A.C.)
| | - Angela Cusanno
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (P.G.); (A.C.)
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.C.); (L.P.)
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.C.); (L.P.)
| | - Matteo Pavarini
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, 20135 Milan, Italy; (M.P.); (R.C.)
| | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, 20135 Milan, Italy; (M.P.); (R.C.)
| | - Gianluca Giavaresi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| |
Collapse
|
3
|
Li Y, Yuan K, Deng C, Tang H, Wang J, Dai X, Zhang B, Sun Z, Ren G, Zhang H, Wang G. Biliary stents for active materials and surface modification: Recent advances and future perspectives. Bioact Mater 2024; 42:587-612. [PMID: 39314863 PMCID: PMC11417150 DOI: 10.1016/j.bioactmat.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Demand for biliary stents has expanded with the increasing incidence of biliary disease. The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures. However, these stents are nondegradable and prone to restenosis. Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis. To overcome these shortcomings, improvements were made to the materials and surfaces used for the stents. First, this paper reviews the advantages and limitations of nondegradable stents. Second, emphasis is placed on biodegradable polymer and biodegradable metal stents, along with functional coatings. This also encompasses tissue engineering & 3D-printed stents were highlighted. Finally, the future perspectives of biliary stents, including pro-epithelialization coatings, multifunctional coated stents, biodegradable shape memory stents, and 4D bioprinting, were discussed.
Collapse
Affiliation(s)
- Yuechuan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Hui Tang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Jinxuan Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Bing Zhang
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziru Sun
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Guiying Ren
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Blašković M, Butorac Prpić I, Aslan S, Gabrić D, Blašković D, Cvijanović Peloza O, Čandrlić M, Perić Kačarević Ž. Magnesium Membrane Shield Technique for Alveolar Ridge Preservation: Step-by-Step Representative Case Report of Buccal Bone Wall Dehiscence with Clinical and Histological Evaluations. Biomedicines 2024; 12:2537. [PMID: 39595103 PMCID: PMC11591876 DOI: 10.3390/biomedicines12112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite the increased use of new resorbable magnesium membranes, there are no reported cases or studies on the use of resorbable magnesium membranes in combination with bone grafts for alveolar ridge preservation (ARP) in cases with severe buccal bone wall dehiscence. This case report aimed to evaluate the effectiveness of the magnesium membrane shield technique in conjunction with bone grafting for ARP, assessing both clinical outcomes and histological bone regeneration. METHODS A 44-year-old female patient presented with a vertical fracture on tooth 24 (FDI Notation System) accompanied with complete destruction of the buccal bone wall. The treatment plan included tooth extraction, ARP using a combination of anorganic bovine bone and autologous bone grafting, and the application of a magnesium membrane as a shield to the pre-existing buccal wall. Six months post-procedure, a bone biopsy was taken from the implant site using a trephine bur. RESULTS Clinical and radiological evaluations six months after the procedure demonstrated sufficient bone volume for implant placement. Additionally, in the next three months, soft tissue conditioning with a provisional crown resulted in an aesthetically and functionally satisfactory outcome. Histological analysis of the bone biopsy revealed well-formed new bone in direct contact with residual biomaterial, with no signs of inflammation. Osteocytes were clearly visible within the newly formed bone matrix, indicating successful bone maturation. Active osteoblasts were observed along the bone-biomaterial interface, suggesting ongoing bone remodeling and integration. Additionally, histomorphometric evaluation revealed 47% newly formed bone, 32% soft tissue, and 19% residual biomaterial. CONCLUSIONS This case demonstrates the potential of the magnesium shield technique as an ARP technique in cases with severe buccal wall dehiscence. The technique yielded satisfactory clinical outcomes and promoted successful bone regeneration, as confirmed by histological analysis.
Collapse
Affiliation(s)
- Marko Blašković
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia; (M.B.); (D.B.)
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešmirova ulica 40/42, 51000 Rijeka, Croatia
| | - Ivana Butorac Prpić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Serhat Aslan
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy;
| | - Dragana Gabrić
- Department of Oral Surgery, School of Dental Medicine University of Zagreb, 10000 Zagreb, Croatia;
- Department of Dental Medicine, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Dorotea Blašković
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia; (M.B.); (D.B.)
| | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
| | - Marija Čandrlić
- Department of Integrative Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željka Perić Kačarević
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Botiss Biomaterials GmbH, 15806 Zossen, Germany
| |
Collapse
|
5
|
Angrisani N, von der Ahe C, Willumeit-Römer R, Windhagen H, Scheper V, Schwarze M, Wiese B, Helmholz H, Reifenrath J. Treatment of osteoarthritis by implantation of Mg- and WE43-cylinders - A preclinical study on bone and cartilage changes and their influence on pain sensation in rabbits. Bioact Mater 2024; 40:366-377. [PMID: 38978802 PMCID: PMC11228885 DOI: 10.1016/j.bioactmat.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/20/2024] [Accepted: 06/01/2024] [Indexed: 07/10/2024] Open
Abstract
With its main features of cartilage degeneration, subchondral bone sclerosis and osteophyte formation, osteoarthritis represents a multifactorial disease with no effective treatment options. As biomechanical shift in the trabecular network may be a driver for further cartilage degeneration, bone enhancement could possibly delay OA progression. Magnesium is known to be osteoconductive and already showed positive effects in OA models. We aimed to use magnesium cylinders to enhance subchondral bone quality, condition of cartilage and pain sensation compared to sole drilling in vivo. After eight weeks of implantation in rabbits, significant increase in subchondral bone volume and trabecular thickness with constant bone mineral density was found indicating favored biomechanics. As representative for pain, a higher number of CD271+ vessels were present in control samples without magnesium. However, this result could not be confirmed by sensitive, objective lameness evaluation using a pressure sensing mat and no positive effect could be shown on either cartilage degeneration evaluated by OARSI score nor the presence of regenerative cells in CD271-stained samples. The presented results show a relevant impact of implanted magnesium on key structures in OA pain with missing clinical relevance regarding pain. Further studies with shifted focus should examine additional structures as joint capsule or osteophytes.
Collapse
Affiliation(s)
- Nina Angrisani
- Hannover Medical School, Clinic for Orthopaedic Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Lower Saxony, Germany
| | - Christin von der Ahe
- Hannover Medical School, Clinic for Orthopaedic Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Lower Saxony, Germany
| | | | - Henning Windhagen
- Hannover Medical School, Clinic for Orthopaedic Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Lower Saxony, Germany
| | - Verena Scheper
- Hannover Medical School, Department of Otolaryngology, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Lower Saxony, Germany
| | - Michael Schwarze
- Hannover Medical School, Clinic for Orthopaedic Surgery, Laboratory for Biomechanics and Biomaterials, Hannover, Lower Saxony, Germany
| | - Björn Wiese
- Helmholtz-Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Heike Helmholz
- Helmholtz-Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
| | - Janin Reifenrath
- Hannover Medical School, Clinic for Orthopaedic Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Lower Saxony, Germany
| |
Collapse
|
6
|
Iskhakova K, Wieland DCF, Marek R, Schwarze UY, Davydok A, Cwieka H, AlBaraghtheh T, Reimers J, Hindenlang B, Sefa S, Lopes Marinho A, Willumeit-Römer R, Zeller-Plumhoff B. Sheep Bone Ultrastructure Analyses Reveal Differences in Bone Maturation around Mg-Based and Ti Implants. J Funct Biomater 2024; 15:192. [PMID: 39057313 PMCID: PMC11278010 DOI: 10.3390/jfb15070192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Magnesium alloys are some of the most convenient biodegradable materials for bone fracture treatment due to their tailorable degradation rate, biocompatibility, and mechanical properties resembling those of bone. Despite the fact that magnesium-based implants and ZX00 (Mg-0.45Zn-0.45Ca in wt.%), in particular, have been shown to have suitable degradation rates and good osseointegration, knowledge gaps remain in our understanding of the impact of their degradation properties on the bone's ultrastructure. Bone is a hierarchically structured material, where not only the microstructure but also the ultrastructure are important as properties like the local mechanical response are determined by it. This study presents the first comparative analysis of bone ultrastructure parameters with high spatial resolution around ZX00 and Ti implants after 6, 12, and 24 weeks of healing. The mineralization was investigated, revealing a significant decrease in the lattice spacing of the (002) Bragg's peak closer to the ZX00 implant in comparison to Ti, while no significant difference in the crystallite size was observed. The hydroxyapatite platelet thickness and osteon density demonstrated a decrease closer to the ZX00 implant interface. Correlative indentation and strain maps obtained by scanning X-ray diffraction measurements revealed a higher stiffness and faster mechanical adaptation of the bone surrounding Ti implants as compared to the ZX00 ones. Thus, the results suggest the incorporation of Mg2+ ions into the bone ultrastructure, as well as a lower degree of remodeling and stiffness of the bone in the presence of ZX00 implants than Ti.
Collapse
Affiliation(s)
- Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - D. C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Romy Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (R.M.); (U.Y.S.)
| | - Uwe Y. Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (R.M.); (U.Y.S.)
- Department of Dental Medicine and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Anton Davydok
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany;
| | - Hanna Cwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Tamadur AlBaraghtheh
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Jan Reimers
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Birte Hindenlang
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - André Lopes Marinho
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| |
Collapse
|
7
|
Ni F, Peng J, Liu X, Gao P, Nie Z, Hu J, Zhao D. Modification of Microstructure and Mechanical Properties of Extruded AZ91-0.4Ce Magnesium Alloy through Addition of Ca. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3359. [PMID: 38998439 PMCID: PMC11243162 DOI: 10.3390/ma17133359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The effect of the addition of alkali earth element Ca on the microstructure and mechanical properties of extruded AZ91-0.4Ce-xCa (x = 0, 0.4, 0.8, 1.2 wt.%) alloys was studied by using scanning electron microscopy, transmission electron microscopy, and tensile tests. The results showed that the addition of Ca could significantly refine the second phase and grain size of the extruded AZ91-0.4Ce alloy. The refinement effect was most obvious when 0.8 wt.% of Ca was added, and the recrystallized grain size was 4.75 μm after extrusion. The addition of Ca resulted in the formation of a spherical Al2Ca phase, which effectively suppressed the precipitation of the β-Mg17Al12 phase, promoted dynamic recrystallization and grain refinement, impeded dislocation motion, and exerted a positive influence on the mechanical properties of the alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of the AZ91-0.4Ce-0.8Ca alloy were 238.7 MPa, 338.3 MPa, and 10.8%, respectively.
Collapse
Affiliation(s)
- Fengtao Ni
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jian Peng
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiangquan Liu
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Pan Gao
- Jiaozuo Gaozhao Magnesium Alloy Co., Ltd., Jiaozuo 454950, China
| | - Zhongkui Nie
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jie Hu
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Dong Zhao
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Tatullo M, Piattelli A, Ruggiero R, Marano RM, Iaculli F, Rengo C, Papallo I, Palumbo G, Chiesa R, Paduano F, Spagnuolo G. Functionalized magnesium alloys obtained by superplastic forming process retain osteoinductive and antibacterial properties: An in-vitro study. Dent Mater 2024; 40:557-562. [PMID: 38326212 DOI: 10.1016/j.dental.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the biocompatibility, osteogenic and antibacterial activity of biomedical devices based on Magnesium (Mg) Alloys manufactured by Superplastic Forming process (SPF) and subjected to Hydrothermal (HT) and Sol-Gel Treatment (Sol-Gel). METHODS Mg-SPF devices subjected to Hydrothermal (Mg-SPF+HT) and Sol-Gel Treatment (Mg-SPF+Sol-Gel) were investigated. The biocompatibility of Mg-SPF+Sol-Gel and Mg-SPF+HT devices was observed by indirect and direct cytotoxicity assays, whereas the colonization of sample surfaces was assessed by confocal microscopy. qRT-PCR analysis and microbial growth curve analyses were employed to evaluate the osteogenic and antibacterial activity of both SPF-Mg treated devices, respectively. RESULTS Mg-SPF+HT and Mg-SPF+Sol-Gel showed a high degree of biocompatibility. Analysis of mRNA expression of osteogenic genes in cells cultured on Mg-treated devices revealed a significant upregulation of the expression levels of BMP2 and Runx-2. Furthermore, the bacterial growth in strains developed in contact with both the Mg-SPF+HT and Mg-SPF+Sol-Gel devices was lower than that observed in the control. SIGNIFICANCE Hydrothermal and Sol-Gel Treatments of Mg alloys obtained through the SPF process demonstrated bioactive, osteogenic and antibacterial activity, offering a promising alternative to conventional Mg-based devices. The obtained Mg-based materials may have the potential to enhance the tunability of temporary devices in maxillary reconstruction, eliminating the need for second surgeries, and ensuring a good bone reconstruction and a reduced implant failure rate due to bacterial infections.
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Translational Biomedicine and Neuroscience, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Roberta Ruggiero
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Rosa Maria Marano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Flavia Iaculli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Carlo Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Ida Papallo
- CeSMA, University of Naples Federico II, Corso Nicolangelo Protopisani, 80146 Naples, Italy
| | - Gianfranco Palumbo
- Department of Mechanics, Polytechnic University of Bari, 70124 Bari, Italy
| | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, 20135 Milan, Italy
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
9
|
Ansoms P, Barzegari M, Vander Sloten J, Geris L. Coupling biomechanical models of implants with biodegradation models: A case study for biodegradable mandibular bone fixation plates. J Mech Behav Biomed Mater 2023; 147:106120. [PMID: 37757617 DOI: 10.1016/j.jmbbm.2023.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In fracture fixation, biodegradable implant materials are an interesting alternative to conventional non-biodegradable materials as the latter often require a second implant removal surgery to avoid long-term complications. In this study, we present an in silico strategy to design/study biodegradable metal implants focusing on mandibular fracture fixation plates of WE43 (Mg alloy). The in silico strategy is composed of an orchestrated interaction between three separate computational models. The first model simulates the mass loss of the degradable implant based on the chemistry of Mg biodegradation. A second model estimates the loading on the jaw plate in the physiological environment, incorporating a phenomenological dynamic bone regeneration process. The third model characterizes the mechanical behavior of the jaw plate and the influence of material degradation on the mechanical behavior. A sensitivity analysis was performed on parameters related to choices regarding numerical implementation and parameter dependencies were implemented to guarantee robust and correct results. Different clinical scenarios were tested, related to the amount of screws used to fix the plate. The results showed a lower initial strength when more screw holes were left open, as well as a faster decrease over time in strength due to the increased area available for surface degradation. The obtained degradation results were found to be in accordance with previously reported data of in vivo studies with biodegradable plates. The combination of these three models allows for the design of patient-specific biodegradable fixation implants able to deliver the desired mechanical behavior tuned to the bone regeneration process.
Collapse
Affiliation(s)
- Pieter Ansoms
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Mojtaba Barzegari
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Jos Vander Sloten
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Liesbet Geris
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium; Biomechanics Research Unit, GIGA in Silico Medicine, University of Liège, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Fan R, Wang L, Zhao S, Wang L, Guo E. Strengthening of Mg Alloy with Multiple RE Elements with Ag and Zn Doping via Heat Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114155. [PMID: 37297288 DOI: 10.3390/ma16114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Strengthening Mg alloys with rare earth elements has been a research focus for several decades. To minimize the usage of rare earth elements while enhancing mechanical properties, we adopted the strategy of alloying with multiple rare earth elements, namely Gd, Y, Nd, and Sm. Additionally, to promote the precipitation of basal precipitate, Ag and Zn doping was also induced. Thus, we designed a new cast Mg-2Gd-2Y-2Nd-2Sm-1Ag-1Zn-0.5Zr (wt.%) alloy. The microstructure of the alloy and its relevance to mechanical properties in various heat treatment conditions were investigated. After undergoing a heat treatment process, the alloy demonstrated exceptional mechanical properties, with a yield strength of 228 MPa and an ultimate tensile strength of 330 MPa achieved through peak-aging for 72 h at 200 °C. The excellent tensile properties are due to the synergistic effect of basal γ″ precipitate and prismatic β' precipitate. In its as-cast state, its primary mode of fracture is inter-granular, whereas in the solid-solution and peak-aging conditions, the predominant mode of fracture is a mixture of trans-granular and inter-granular fractures.
Collapse
Affiliation(s)
- Rui Fan
- Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150000, China
- School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161000, China
- The Engineering Technology Research Center for Precision Manufacturing Equipment and Industrial Perception of Heilongjiang Provincae, Qiqihar 161000, China
- The Collaborative Innovation Center for Intelligent Manufacturing Equipment Industrialization, Qiqihar 161000, China
| | - Lei Wang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150000, China
| | - Sicong Zhao
- Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150000, China
| | - Liping Wang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150000, China
| | - Erjun Guo
- Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150000, China
| |
Collapse
|
11
|
Sedelnikova MB, Kashin AD, Uvarkin PV, Tolmachev AI, Sharkeev YP, Ugodchikova AV, Luginin NA, Bakina OV. Porous Biocoatings Based on Diatomite with Incorporated ZrO 2 Particles for Biodegradable Magnesium Implants. J Funct Biomater 2023; 14:jfb14050241. [PMID: 37233351 DOI: 10.3390/jfb14050241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
In the present work, the surface of a biodegradable Mg alloy was modified to create porous diatomite biocoatings using the method of micro-arc oxidation. The coatings were applied at process voltages in the range of 350-500 V. We have studied the influence of the addition of ZrO2 microparticles on the structure and properties of diatomite-based protective coatings for Mg implants. The structure and properties of the resulting coatings were examined using a number of research methods. It was found that the coatings have a porous structure and contain ZrO2 particles. The coatings were mostly characterized by pores less than 1 μm in size. However, as the voltage of the MAO process increases, the number of larger pores (5-10 μm in size) also increases. However, the porosity of the coatings varied insignificantly and amounted to 5 ± 1%. It has been revealed that the incorporation of ZrO2 particles substantially affects the properties of diatomite-based coatings. The adhesive strength of the coatings has increased by approximately 30%, and the corrosion resistance has increased by two orders of magnitude compared to the coatings without zirconia particles.
Collapse
Affiliation(s)
- Mariya B Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Alexander D Kashin
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Pavel V Uvarkin
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Alexey I Tolmachev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Yurii P Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Anna V Ugodchikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
- Laboratory of Plasma Synthesis of Materials, Troitsk Institute for Innovation & Fusion Research, Troitsk 108840, Russia
| | - Nikita A Luginin
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Olga V Bakina
- Laboratory of Nanobioengineering, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| |
Collapse
|
12
|
Zhang H, Saberi A, Heydari Z, Baltatu MS. Bredigite-CNTs Reinforced Mg-Zn Bio-Composites to Enhance the Mechanical and Biological Properties for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1681. [PMID: 36837310 PMCID: PMC9965178 DOI: 10.3390/ma16041681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Magnesium (Mg) and its compounds have been investigated as biodegradable metals for bone implants. However, high corrosion rates and low bioactivity that cause loss of mechanical properties are factors that have limited their biomedical applications. The purpose of this work is to remedy the weaknesses of the Mg-Zn (MZ) alloy matrix. For this purpose, we have synthesized Mg-based composites with different concentrations of bredigite (Br; Ca7MgSi4O16)-carbon nanotubes (CNTs) using mechanical alloying and semi-powder metallurgy processes with spark plasma sintering. Then, we studied the effect of the simultaneous addition of Br-CNTs on in vitro degradation, as well as its effect on the composites' mechanical and antibacterial properties. Increases of 57% and 72% respectively were observed in the microhardness and compressive strength of the MZ/Br-CNTs composite in comparison to the MZ alloy. In addition, the rate of degradation of Mg-based composites in simulated body fluids (SBF) was almost 2 times lower. An assessment of antibacterial behavior disclosed that the simultaneous adding of Br-CNTs to Mg can meaningfully prevent the growth and invasion of E. coli and S. aureus. These research findings demonstrate the potential application of MZ/Br-CNTs composites to implants and the treatment of bone infections.
Collapse
Affiliation(s)
- Hongwei Zhang
- School of Mechanical Engineering, Xijing University, Xi’an 710123, China
| | - Abbas Saberi
- Department of Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
| | - Zahra Heydari
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| |
Collapse
|
13
|
Kabir H, Munir K, Wen C, Li Y. Microstructures, mechanical and corrosion properties of graphene nanoplatelet-reinforced zinc matrix composites for implant applications. Acta Biomater 2023; 157:701-719. [PMID: 36476647 DOI: 10.1016/j.actbio.2022.11.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Zinc (Zn)-based alloys and composites are gaining increasing interest as promising biodegradable implant materials due to their appropriate biodegradation rates and biological functionalities. However, the inadequate mechanical strength and ductility of pure Zn have restricted its application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) fabricated via powder metallurgy were investigated as potential biodegradable implant materials. The microstructures, mechanical properties, and corrosion behaviors of the GNP-reinforced ZMCs were characterized using optical microscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, Raman spectroscopy, compression testing, and electrochemical and immersion testing in Hanks' balanced salt solution (HBSS). The microstructural study revealed that the GNP was uniformly dispersed in the ZMCs after ball milling and sintering at 420°C for 6 h. The microhardness, compressive yield strength, ultimate compressive strength, and compressive strain of the ZMC-0.2GNP were 69 HV, 123 MPa, 247 MPa, and 23 %, respectively, improvements of ∼ 18 %, 50%, ∼ 28%, and ∼ 15% compared to pure Zn. The corrosion rate of the ZMCs were lower than that of the pure Zn in HBSS, and the ZMC-0.2GNP composite exhibited the lowest corrosion rate of 0.09 mm/y as measured by electrochemical testing. Biocompatibility assessment indicated that the diluted extracts of pure Zn and GNP-reinforced ZMCs with concentrations of 12.5% and 6.25% exhibited no cytotoxicity after cell culturing for up to 5 days, and the diluted extracts of ZMC-0.2 GNP composite revealed more than 90% cell viability after cell culturing of 3 days, showing the satisfying cytocompatibility. STATEMENT OF SIGNIFICANCE: Biodegradable Zn is a promising candidate material for orthopedic implant applications. Nonetheless, the inadequate mechanical strength and ductility of pure Zn limited its clinical application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) were developed via powder metallurgy, and the reinforcing efficacy of GNP on their mechanical properties was investigated. The addition of GNP significantly improved the compressive properties of ZMCs, with the Zn-0.2GNP composite exhibiting the best compressive properties, including 123 MPa compressive yield strength, 247 MPa ultimate compressive strength, and 22.9% compressive strain. Further, the 12.5% concentration extract of the ZMCs exhibited no cytotoxicity after cell culturing for 5 d toward SaOS2 cells.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
14
|
Şevik H, Özarslan S, Dieringa H. Assessment of the Mechanical and Corrosion Properties of Mg-1Zn-0.6Ca/Diamond Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4399. [PMID: 36558252 PMCID: PMC9787344 DOI: 10.3390/nano12244399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
In this work, the microstructure, mechanical properties, and corrosion behavior of the Mg-1Zn-0.6Ca matrix alloy (ZX10), reinforced by adding various amounts of nanodiamond particles (0.5, 1, and 2 wt.%), prepared by the ultrasound-assisted stir-casting method, were investigated as they are deemed as potential implant materials in biomedical applications. Microstructure, nanoindentation, mechanical tensile, immersion, and potentiodynamic polarization tests were performed for evaluating the influence of the addition of nanodiamond particles on the alloy's mechanical and biocorrosion properties. The results revealed that the addition of nanodiamond particles causes a reduction in the alloy's grain size. The alloy's nanohardness and elastic modulus values increased when the amount of added nanodiamond particles were increased. The nanocomposite with an addition of 0.5% ND showed the best composition with regard to an acceptable corrosion rate as the corrosion rates are too high with higher additions of 1 or 2% NDs. At the same time, the yield strength, tensile strength, and elongation improved slightly compared to the matrix alloy.
Collapse
Affiliation(s)
- Hüseyin Şevik
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Mersin University, Mersin 33343, Turkey
| | - Selma Özarslan
- Department of Physics, Science and Art Faculty, Hatay Mustafa Kemal University, Antakya 31034, Turkey
| | - Hajo Dieringa
- Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
15
|
Huang H, Li G, Jia Q, Bian D, Guan S, Kulyasova O, Valiev RZ, Rau JV, Zheng Y. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Acta Biomater 2022; 152:1-18. [PMID: 36028200 DOI: 10.1016/j.actbio.2022.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023]
Abstract
Zinc based biodegradable metals (BMs) show great potential to be used in various biomedical applications, owing to their superior biodegradability and biocompatibility. Some high-strength (ultimate tensile strength > 600 MPa) Zn based BMs have already been developed through alloying and plastic working, making their use in load-bearing environments becomes a reality. However, different from Mg and Fe based BMs, Zn based BMs exhibit significant "strain-softening" effect that leads to limited uniform deformation. Non-uniform deformation is detrimental to Zn based devices or implants, which will possibly lead to unexpected failure. People might be misled by the considerable fracture elongation of Zn based BMs. Thus, it is important to specify uniform elongation as a term of mechanical requirements for Zn based BMs. In this review, recent advances on the mechanical properties of Zn based BMs have been comprehensively summarized, especially focusing on the strain softening phenomenon. At first, the origin and evaluation criteria of strain softening were introduced. Secondly, the effects of alloying elements (including element type, single or multiple addition, and alloying content) and microstructural characteristics (grain size, constituent phase, phase distribution, etc.) on mechanical properties (especially for uniform elongation) of Zn based BMs were summarized. Finally, how to get a good balance between strength and uniform elongation was generally discussed based on the service environment. In addition, possible ways to minimize or eliminate the strain softening effect were also proposed, such as controlling of twins, solute clusters, and grain boundary characteristics. All these items above would be helpful to understand the mechanical instability of Zn based BMs, and to make the full usage of them in the future medical device design. STATEMENT OF SIGNIFICANCE: Biodegradable metals (BMs) is a hotspot in the field of metallic biomaterials. Fracture elongation is normally adopted to quantify the deformability of Mg and Fe based BMs owing to their negligible necking strain, yet the strain softening would occur in Zn based BMs, which is extremely detrimental to performance of their medical device. In this review paper, a better understanding the mechanical performance of Zn-based BMs with the term "uniform elongation" instead of "fracture elongation" was depicted, and possible ways to minimize or eliminate the strain softening effect were also proposed, such as twins, solute clusters, self-stable dislocation network, and grain boundary characteristics. It would be helpful to understand the mechanical instability of Zn based BMs and making full usage of it in the future medical device design.
Collapse
Affiliation(s)
- He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Guannan Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qinggong Jia
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Dong Bian
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Olga Kulyasova
- Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx St., Ufa, 450008, Russia
| | - R Z Valiev
- Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx St., Ufa, 450008, Russia
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy; Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991 Moscow, Russia
| | - Yufeng Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Li Q, Yang Q, Liu X, Liang W, Zhang X, Wang Y. Effect and mechanism of a novel Mg-Nd-Gd-Sr alloy on osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomater Appl 2022; 37:829-837. [PMID: 35977627 DOI: 10.1177/08853282221121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect and mechanism of a novel Mg-3Nd-1Gd-0.3Sr-0.2Zn-0.4Zr (abbreviated to Mg-Nd-Gd-Sr) alloy on the osteogenic differentiation of bone marrow mesenchymal stem cells extracted from Sprague-Dawley rats. Cultured cells were divided into five groups: a control group cultured in osteogenic induction medium alone without Mg-Nd-Gd-Sr alloy extract, and four experimental groups cultured in the same medium with 25%, 50%, 75%, and 100% Mg-Nd-Gd-Sr alloy extracts, respectively. After 14 days of culture, ALP activity was determined and expressions of osteogenesis-related factors Runx2, OCN, and OPN at the mRNA level and Runx2, OCN, and OPN at the protein level were detected by RT-PCR and western blot, respectively. After 21 days of culture, mineralized nodules were detected by alizarin red staining. The results showed that bone marrow mesenchymal stem cells from Sprague-Dawley rats were successfully isolated in vitro using the whole bone marrow adherence method. Flow cytometry revealed that the cells expressed high levels of CD44 and CD90, but low levels of CD31 and CD45. Alizarin red staining indicated the formation of mineralized nodules in all five groups. Compared with the control group, the number of mineralized nodules was increased significantly in the four experimental groups (p < 0.05). The ALP activity in each group was significantly higher on day 14 than on day 7, and was significantly higher in the four experimental groups compared with the control group (p < 0.05). Moreover, the ALP activity was highest when the concentration of Mg-Nd-Gd-Sr alloy extract was 75% (p < 0.05). RT-PCR results showed that, compared with the control group, the mRNA expression of Runx2, OPN, and OCN was significantly higher in the four experimental groups (p < 0.05), and the highest mRNA expression of Runx2, OPN, and OCN was observed in the 75% experimental group (p < 0.05). Western blotting showed that Mg-Nd-Gd-Sr alloy extract significantly increased the protein expression of Runx2, OCN, and OPN compared with the control group (p < 0.05). Our data indicate that the novel Mg-Nd-Gd-Sr alloy can promotes the osteogenic differentiation of bone marrow mesenchymal stem cells isolated from Sprague-Dawley rats. During this process, there is an increase in the expressions of Runx2, OPN, and OCN mRNAs and Runx2, OCN, and OPN proteins.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Qinglin Yang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaorong Liu
- College of Clinical Medicine, 12426Northwest University for Nationalities, Lanzhou, China.,Department of Laboratory, the Second People's Hospital of Gansu Province, Lanzhou, China
| | - Wenqiang Liang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaobo Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Yongping Wang
- Department of Orthopedics, 117741the First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Zhang T, Wang W, Liu J, Wang L, Tang Y, Wang K. A review on magnesium alloys for biomedical applications. Front Bioeng Biotechnol 2022; 10:953344. [PMID: 36051586 PMCID: PMC9424554 DOI: 10.3389/fbioe.2022.953344] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Magnesium (Mg) and Mg alloys are considered as potential candidates for biomedical applications because of their high specific strength, low density, and elastic modulus, degradability, good biocompatibility and biomechanical compatibility. However, the rapid corrosion rate of Mg alloys results in premature loss of mechanical integrity, limiting their clinical application in load-bearing parts. Besides, the low strength of Mg alloys restricts their further application. Thus, it is essential to understand the characteristics and influencing factors of mechanical and corrosion behavior, as well as the methods to improve the mechanical performances and corrosion resistance of Mg alloys. This paper reviews the recent progress in elucidating the corrosion mechanism, optimizing the composition, and microstructure, enhancing the mechanical performances, and controlling the degradation rate of Mg alloys. In particular, the research progress of surface modification technology of Mg alloys is emphasized. Finally, the development direction of biomedical Mg alloys in the future is prospected.
Collapse
Affiliation(s)
- Ting Zhang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| | - Wen Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- *Correspondence: Jia Liu, ; Kuaishe Wang,
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Kuaishe Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- *Correspondence: Jia Liu, ; Kuaishe Wang,
| |
Collapse
|
18
|
Zheng Z, Xu W, Xu Y, Xue Q. Mapping knowledge structure and themes trends of biodegradable Mg-based alloy for orthopedic application: A comprehensive bibliometric analysis. Front Bioeng Biotechnol 2022; 10:940700. [PMID: 36017343 PMCID: PMC9395602 DOI: 10.3389/fbioe.2022.940700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Since Lambotte and Payr first studied Mg-based alloys for orthopedics in 1900, the research of this field has finally ushered in vigorous development in the 21st century. From the perspective of quantitative analysis, this paper clearly demonstrated the global research trend from 2005 to 2021 by using bibliometrics and scientometric analysis. Methods: We obtained the publications from the Web of Science Core Collection (WoSCC) database. The bibliometric and scientometric analysis was conducted by using R software, CiteSpace software, VOSviewer software, Pajek software and Microsoft Excel program. Results: In total, 1921 publications were retrieved. It can be found that the number of publications is gradually increasing year by year. We can find that the most prolific countrie, institution and researcher are China, Chinese Academy of Sciences and Zheng Yufeng, respectively. The most influential journals in this field are Acta Biomaterialia and Biomaterials, with 16,511 and 12,314 total citations, respectively. By conducting the co-cited documents-based clustering analysis, 16 research hotspots and their representative studies have been identified. Besides, by conducting analysis of keywords, we divided the keyword citation bursts representing the development of the field into three stages. Conclusion: The number of researches on the biodegradable Mg-based alloys increased sharply all over the world in the 21st century. China has made significant progress in biodegradable Mg-based alloy research. More focus will be placed on osteogenic differentiation, fabrication, graphene oxide, antibacterial property, bioactive glass and nanocomposite, which may be the next popular topics in the field.
Collapse
Affiliation(s)
- Zitian Zheng
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Wennan Xu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Xu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
- *Correspondence: Qingyun Xue,
| |
Collapse
|
19
|
Fernández-Hernán JP, Torres B, López AJ, Rams J. The Role of the Sol-Gel Synthesis Process in the Biomedical Field and Its Use to Enhance the Performance of Bioabsorbable Magnesium Implants. Gels 2022; 8:gels8070426. [PMID: 35877511 PMCID: PMC9315552 DOI: 10.3390/gels8070426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
In the present day, the increment in life expectancy has led to the necessity of developing new biomaterials for the restoration or substitution of damaged organs that have lost their functionalities. Among all the research about biomaterials, this review paper aimed to expose the main possibilities that the sol-gel synthesis method can provide for the fabrication of materials with interest in the biomedical field, more specifically, when this synthesis method is used to improve the biological properties of different magnesium alloys used as biomaterials. The sol-gel method has been widely studied and used to generate ceramic materials for a wide range of purposes during the last fifty years. Focused on biomedical research, the sol-gel synthesis method allows the generation of different kinds of biomaterials with diverse morphologies and a high potential for the biocompatibility improvement of a wide range of materials commonly used in the biomedical field such as metallic implants, as well as for the generation of drug delivery systems or interesting biomaterials for new tissue engineering therapies.
Collapse
|
20
|
Zhu Y, Zhao S, Cheng L, Lin Z, Zeng M, Ruan Z, Sun B, Luo Z, Tang Y, Long H. Mg 2+ -mediated autophagy-dependent polarization of macrophages mediates the osteogenesis of bone marrow stromal stem cells by interfering with macrophage-derived exosomes containing miR-381. J Orthop Res 2022; 40:1563-1576. [PMID: 34727384 DOI: 10.1002/jor.25189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
Magnesium ion (Mg2+ ) has received increased attention due to the roles it plays in promoting osteogenesis and preventing inflammation. This study was designed to investigate the mechanism by which Mg2+ influences the osteoblastic differentiation of bone marrow stromal stem cells (BMSCs). The polarization of Mø (macrophages) was measured after treatment with Mg2+ . Meanwhile, autophagy in Mø was measured by detecting LC3B expression. Mø-derived exosomes were isolated and cocultured with BMSCs; after which, osteogenic differentiation was evaluated by Alizarin Red staining and detection of alkaline phosphatase (ALP). Our results showed that Mg2+ could induce autophagy in macrophages and modulate the M1/M2 polarization of macrophages. Mg2+ -mediated macrophages could facilitate the osteogenic differentiation of BMSCs by regulating autophagy, and this facilitation by Mg2+ -mediated macrophages was closely related to macrophage-derived exosomes, and especially exosomes containing miR-381. However, miR-381 in macrophages did not influence autophagy or the polarization of Mg2+ -mediated macrophages. Furthermore, macrophage-derived exosomes containing miR-381 mainly determined the osteogenic differentiation of BMSCs. Mg2+ -mediated macrophages were shown to promote the osteogenic differentiation of BMSCs via autophagy through reducing miR-381 in macrophage-derived exosomes. In conclusion, our results suggest Mg2+ -mediated macrophage-derived exosomes containing miR-381 as novel vehicles for promoting the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Shushan Zhao
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Liang Cheng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Min Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Buhua Sun
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhongwei Luo
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Yifu Tang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China.,Department of Orthopaedics, Xiangya Third Hospital of Central South University, Changsha, Hunan, PR China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| |
Collapse
|
21
|
Martin V, Garcia M, Montemor MDF, Fernandes JCS, Gomes PS, Fernandes MH. Simulating In Vitro the Bone Healing Potential of a Degradable and Tailored Multifunctional Mg-Based Alloy Platform. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060255. [PMID: 35735498 PMCID: PMC9219794 DOI: 10.3390/bioengineering9060255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
This work intended to elucidate, in an in vitro approach, the cellular and molecular mechanisms occurring during the bone healing process, upon implantation of a tailored degradable multifunctional Mg-based alloy. This was prepared by a conjoining anodization of the bare alloy (AZ31) followed by the deposition of a polymeric coating functionalized with hydroxyapatite. Human endothelial cells and osteoblastic and osteoclastic differentiating cells were exposed to the extracts from the multifunctional platform (having a low degradation rate), as well as the underlying anodized and original AZ31 alloy (with higher degradation rates). Extracts from the multifunctional coated alloy did not affect cellular behavior, although a small inductive effect was observed in the proliferation and gene expression of endothelial and osteoblastic cells. Extracts from the higher degradable anodized and original alloys induced the expression of some endothelial genes and, also, ALP and TRAP activities, further increasing the expression of some early differentiation osteoblastic and osteoclastic genes. The integration of these results in a translational approach suggests that, following the implantation of a tailored degradable Mg-based material, the absence of initial deleterious effects would favor the early stages of bone repair and, subsequently, the on-going degradation of the coating and the subjacent alloy would increase bone metabolism dynamics favoring a faster bone formation and remodeling process and enhancing bone healing.
Collapse
Affiliation(s)
- Victor Martin
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Mónica Garcia
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
| | - Maria de Fátima Montemor
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
| | - João Carlos Salvador Fernandes
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
22
|
The Microstructure Evolution of Mg-RE Alloy Produced by Reciprocating Upsetting Extrusion during Hot Compression. METALS 2022. [DOI: 10.3390/met12050888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mg-13Gd-4Y-2Zn-0.4Zr (wt. %) alloy bar produced by three passes reciprocating upsetting extrusion (named as RUE-ed bar) exhibited fine grain with the average grain size of 3.02 μm. Hot compression tests of the RUE-ed bar were carried out on Gleeble-3800 compression unit at different deformation temperatures (653, 683, 713, and 743 K) and strain rates (0.001–1 s, 0.01–1 s, 0.1–1 s, and 0.5–1 s). This alloy showed work hardening and softening stages in hot compression, the thermal activation energy of the RUE-ed bar was 150 ± 1 kJ/mol and the constitutive equation was: ε˙=1.80×109[sinh(0.0174σ)]2.47exp[−150×1038.314×T]. Numerous Mg5 (Gd, Y, Zn) phase re-dissolved in α-Mg matrix appeared in the RUE-ed samples during hot compression deformation. The movement of the dislocation stimulated the re-dissolution of the Mg5 (Gd, Y, Zn) phase. The re-dissolution of Mg5 (Gd, Y, Zn) phase promoted texture strengthening and DRX grains growth in this experiment. In addition, the transformation and kinking of LPSO phase played an important coordinating role in the process of hot compression; 18R-LPSO was changed to 14H-LPSO phase at low strain rate while the LPSO phase kinked dominant to coordinated deformation at high strain rate.
Collapse
|
23
|
Lu X, Cai H, Li YR, Zheng X, Yun J, Li W, Geng X, Kwon JS, Jiang HB. A Systematic Review and Network Meta-Analysis of Biomedical Mg Alloy and Surface Coatings in Orthopedic Application. Bioinorg Chem Appl 2022; 2022:4529520. [PMID: 35399618 PMCID: PMC8991394 DOI: 10.1155/2022/4529520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
Magnesium alloys have great application prospects as ideal bone implant materials. However, their poor corrosion resistance limits their clinical orthopedic application. Surface modification promotes the corrosion resistance of magnesium. Conversion coatings, such as calcium phosphate (Ca-P) coating, microarc oxidation (MAO) treatment, and fluoride (FLU) treatment, have been extensively investigated in in vivo studies. This systematic review and network meta-analysis compared the influence of different conversion coatings on bone repair, material properties, and systemic host response in orthopedic applications. Using the PICOS model, the inclusion criteria for biodegradable magnesium and its alloys were determined for in vivo studies. Four databases were used. The standard and weight mean differences with 95% confidence intervals were used to analyze new bone formation and degradation rate. Network structure and forest plots were created, and ranking probabilities were estimated. The risk of bias and quality of evidence were assessed using SYRCLE, CERQual, and GRADE tools. In the qualitative analysis, 43 studies were selected, and the evaluation of each outcome indicator was not entirely consistent from article to article. In the quantitative analysis, 21 articles were subjected to network meta-analysis, with 16 articles on implant degradation and 8 articles for new bone formation. Additionally, SUCRA indicated that Ca-P coating exhibited the highest corrosion resistance, followed by FLU treatment. MAO demonstrated the best capability for new bone formation, followed by Ca-P coating. Ca-P coating exhibited the highest overall performance. To conclude, coated Mg can promote better new bone formation than bare Mg and has considerable biocompatibility. Ca-P-coated Mg and MAO-coated Mg have the greatest potential to significantly promote corrosion resistance and bone regeneration, respectively. The findings of this study will provide a theoretical basis for the investigation of composite coatings and guidance for the orthopedic application of Mg bone implants.
Collapse
Affiliation(s)
- XinYue Lu
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Yu Ru Li
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Xinru Zheng
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Jiahao Yun
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Wenhui Li
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - XiaoYu Geng
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Heng Bo Jiang
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| |
Collapse
|
24
|
In Vitro Corrosion Performance of As-Extruded Mg–Gd–Dy–Zr Alloys for Potential Orthopedic Applications. METALS 2022. [DOI: 10.3390/met12040604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, different contents of rare earth elements with high solid solubility (Gd and Dy) were added into Mg and fabricated through homogenization and hot extrusion processes that enable few second phase formation to efficaciously inhibit the galvanic corrosion. The microstructure and phase characterization of the as-extruded Mg–Gd–Dy–Zr alloys were analyzed by scanning electron microscopy, electron backscattered diffraction, and X-ray diffraction. The in vitro biodegradation behavior of the as-extruded Mg–Gd–Dy–Zr alloys was investigated via the electrochemical measurement and immersion test. The results revealed that all the as-extruded alloys with different RE additions exerted fully recrystallized microstructures. The average grain size was appropriately 20 μm to 30 μm for all alloys and gradually increased by adding more RE. Only a few tiny second-phase particles less than 5 μm dispersed for all the samples and the volume fraction of particles increased slightly with the increase in RE content. The as-extruded Mg–Gd–Dy–Zr alloys with low RE content (GD0.6) allowed for a satisfactory corrosion resistance in Hank’s solution with a controlled corrosion rate less than 0.5 mm/year, which is considered as the tolerance limit for the corrosion rate of orthopedic implants. This study provides a cost-effective choice for promoting biodegradable magnesium alloys for potential orthopedic applications with low rare earth content in Mg alloys.
Collapse
|
25
|
Making Hardware Removal Unnecessary by Using Resorbable Implants for Osteosynthesis in Children. CHILDREN 2022; 9:children9040471. [PMID: 35455515 PMCID: PMC9031809 DOI: 10.3390/children9040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Introduction: Following osteosynthesis, children generally require a second surgery to remove the hardware. This becomes unnecessary, by using resorbable implants. Limiting the number of required surgeries and their associated risks, this technique provides critical aspects of minimally invasive surgery. This review focuses on resorbable implants for osteosynthesis for the treatment of fractures in children and discusses their clinical features. Method: We provide an overview of the two most common technologies used in resorbable osteosynthesis materials: polymer- and magnesium-based alloys. Clinical examples of osteosynthesis are presented using polymer-based ActivaTM products and magnesium-based Magnezix® products. Results: Polymer-based implants demonstrate surgical safety and efficacy. Due to their elasticity, initial placement of polymer-based products may demonstrate technical challenges. However, stability is maintained over the course of healing. While maintaining good biocompatibility, the rate of polymer-resorption may be controlled by varying the composition of polyesters and copolymers. Similarly, magnesium-based implants demonstrate good mechanical stability and resorption rates, while these characteristics may be controlled by varying alloy components. One of the significant shortcomings of magnesium is that metabolism results in the production of hydrogen gas. Both technologies provide equally good results clinically and radiographically, when compared to non-resorbable implants. Conclusion: Resorbable osteosynthesis materials demonstrate similar therapeutic results as conventional materials for osteosynthesis. Resorbable implants may have the potential to improve patient outcomes, by sparing children a second surgery for hardware removal.
Collapse
|
26
|
Kozakiewicz M, Gabryelczak I. Bone Union Quality after Fracture Fixation of Mandibular Head with Compression Magnesium Screws. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2230. [PMID: 35329682 PMCID: PMC8950275 DOI: 10.3390/ma15062230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
For some years now, fixation devices created with resorbable magnesium alloys for the mandibular head have been clinically available and are beginning to be used. It is thus valuable to evaluate the quality of unions in these cases. The aim of this study was radiological comparison of magnesium versus titanium open reduction and rigid fixations in the mandible condylar head. Thirty-one patients were treated for fractures of the mandibular head with magnesium WE43 alloy headless compression screws (diameter 2.3 mm) and, as a reference group, 29 patients were included with similar construction titanium screws (diameter 1.8 mm). The 12-month results of the treatment were evaluated by the texture analysis of CT. Near similar treatment results were found with magnesium screws in traditional titanium fixation. Magnesium screws result in a higher density of the bone structure in the mandibular head. Conclusions: The quantitative evaluation of bone union after surgical treatment of mandibular head fracture with magnesium compression headless screws indicates that stable consolidation was achieved. Undoubtedly, the resorption process of the screws was found to be incomplete after 12 months, evidenced by a marked densification of the bone structure at the fracture site.
Collapse
Affiliation(s)
- Marcin Kozakiewicz
- Department of Maxillofacial Surgery, Medical University of Lodz, 113 Żeromskiego Str., 90-549 Lodz, Poland;
| | | |
Collapse
|
27
|
Biodegradable Mg-Zn-Ca-Based Metallic Glasses. MATERIALS 2022; 15:ma15062172. [PMID: 35329624 PMCID: PMC8955783 DOI: 10.3390/ma15062172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Biodegradable Mg-Zn-Ca-based metallic glasses (MGs) present improved strength and superior corrosion resistance, compared to crystalline Mg. In particular, in vivo and in vitro attempts reveal that biodegradable Mg-Zn-Ca-based MGs possess excellent biocompatibility, suggesting that they are ideal candidates for temporary implant materials. However, the limited size and severe brittleness prevent their widespread commercialization. In this review, we firstly summarize the microstructure characteristic and mechanical properties of Mg-Zn-Ca-based MGs. Then, we provide a comprehensive and systematic understanding of the recent progress of the biocorrosion and biocompatibility of Mg-Zn-Ca-based MGs. Last, but not least, the outlook towards the fabrication routes, composition design, structure design, and reinforcement approaches of Mg-Zn-Ca-based MGs are briefly proposed.
Collapse
|
28
|
Tailoring of Biodegradable Magnesium Alloy Surface with Schiff Base Coating via Electrostatic Spraying for Better Corrosion Resistance. METALS 2022. [DOI: 10.3390/met12030471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, three new Schiff bases were synthesized from paeonol and amino acids to prepare a compound Schiff base coating on the Mg-Zn-Y-Nd alloy (ZE21B alloy) surface by electrostatic spraying, and these three single Schiff base coatings were prepared on the ZE21B alloy as control. The results of SEM and XPS confirmed the successful preparation of the coating. Immersion tests and electrochemical tests showed that both the single coating and the compound coating significantly improved the corrosion resistance of ZE21B alloy, and the compound coating could play a synergistic corrosion inhibition effect, thus showing the best corrosion resistance.
Collapse
|
29
|
Nasr Azadani M, Zahedi A, Bowoto OK, Oladapo BI. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomater 2022; 11:1-26. [PMID: 35239157 DOI: 10.1007/s40204-022-00182-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Medical application materials must meet multiple requirements, and the designed implant must mimic the bone structure in shape and support the formation of bone tissue (osteogenesis). Magnesium (Mg) alloys, as a "smart" biodegradable material and as "the green engineering material in the twenty-first century", have become an outstanding bone implant material due to their natural degradability, smart biocompatibility, and desirable mechanical properties. Magnesium is recognised as the next generation of orthopaedic appliances and bioresorbable scaffolds. At the same time, improving the mechanical properties and corrosion resistance of magnesium alloys is an urgent challenge to promote the application of magnesium alloys. Nevertheless, the excessively quick deterioration rate generally results in premature mechanical integrity disintegration and local hydrogen build-up, resulting in restricted clinical bone restoration applicability. The condition of Mg bone implants is thoroughly examined in this study. The relevant approaches to boost the corrosion resistance, including purification, alloying treatment, surface coating, and Mg-based metal matrix composite, are comprehensively revealed. These characteristics are reviewed to assess the progress of contemporary Mg-based biocomposites and alloys for biomedical applications. The fabricating techniques for Mg bone implants also are thoroughly investigated. Notably, laser-based additive manufacturing fabricates customised forms and complicated porous structures based on its distinctive additive manufacturing conception. Because of its high laser energy density and strong controllability, it is capable of fast heating and cooling, allowing it to modify the microstructure and performance. This review paper aims to provide more insight on the present challenges and continued research on Mg bone implants, highlighting some of the most important characteristics, challenges, and strategies for improving Mg bone implants.
Collapse
Affiliation(s)
- Meysam Nasr Azadani
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK.
| | - Abolfazl Zahedi
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Oluwole Kingsley Bowoto
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Bankole Ibrahim Oladapo
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
30
|
Herber V, Labmayr V, Sommer NG, Marek R, Wittig U, Leithner A, Seibert F, Holweg P. Can Hardware Removal be Avoided Using Bioresorbable Mg-Zn-Ca Screws After Medial Malleolar Fracture Fixation? Mid-Term Results of a First-In-Human Study. Injury 2022; 53:1283-1288. [PMID: 34758916 DOI: 10.1016/j.injury.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023]
Abstract
UNLABELLED Ankle is the most common site of hardware removal, mainly performed within 12 months of the primary surgery. The prominence of the metallic hardware is a frequent cause of pain after fracture fixation. Over the last decade, the development of bioresorbable materials based on magnesium (Mg) has increased. Bioresorbable metals aim to avoid a second surgery for hardware removal. METHODS Twenty patients with isolated, bimalleolar, or trimalleolar ankle fractures were treated with bioresorbable screws made of Mg, 0.45wt% calcium (Ca) and 0.45wt% zinc (Zn) (ZX00). Patient-reported outcome measures (PROMs) including visual analogue scale (VAS) for pain, the presence of complications 6 and 12 months after surgery and the AOFAS scale after 12 months were reported. The functional outcomes were analysed through the range of motion (ROM) of the ankle joint with a standard goniometer. Degradation products and the bioresorbability of the screws were evaluated using plane radiographs. RESULTS One patient was lost to follow-up. All patients were free of pain, no complications, shoe conflict or misalignement were reported after 12 months of follow-up. No Mg screws were surgically removed. An additional fixation of the distal fibula or the dorsal tibial fragment with conventional titanium implants (Ti) was performed in 17 patients. Within 12 months after primary refixation, 12 of these patients (71%) underwent a second surgery for Ti hardware removal. The mean AOFAS score was 89.8±7.1 and the difference between the treated and the non-treated site in the ROM of the talocrural joint was 2°±11° after 12 months. Radiolucent areas around the screws were attributed to degradation and did not affect clinical or functional outcomes. After one year, the Mg screw heads could not be detected in the plane radiographs of 17 patients which suggests that the majority of the screw head is degraded without introducing adverse reactions. CONCLUSIONS At 6 and 12 months, the bioresorbable Mg screws show excellent PROMs without complications or need for screw removal. The resorbability of the screw heads in most of the patients after one year could also provide an advantage over conventional bio-inert implants by avoiding related skin irritation due for instance to shoe conflict.
Collapse
Affiliation(s)
- Valentin Herber
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria; Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria..
| | - Viktor Labmayr
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Nicole G Sommer
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Romy Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Ulrike Wittig
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Franz Seibert
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| | - Patrick Holweg
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6 8036 Graz, Austria
| |
Collapse
|
31
|
Aggarwal D, Kumar V, Sharma S. Drug-loaded biomaterials for orthopedic applications: A review. J Control Release 2022; 344:113-133. [DOI: 10.1016/j.jconrel.2022.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
|
32
|
Effect of Vacancies on Dynamic Response and Spallation in Single-Crystal Magnesium by Molecular Dynamic Simulation. METALS 2022. [DOI: 10.3390/met12020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of vacancies on dynamic response and spallation in single-crystal magnesium (Mg) is investigated by nonequilibrium molecular dynamics simulations. The initial vacancy concentration (Cv) ranges from 0% to 2.0%, and the shock loading is applied along [0001] and [10–10] directions. The simulation results show that the effects of vacancy defects are strongly dependent on the shock directions. For shock along the [0001] direction, vacancy defects have a negligible effect on compression-induced plasticity, but play a role in increasing spall damage. In contrast, for shock along the [10–10] orientation, vacancy defects not only provide the nucleation sites for compression-induced plasticity, which mainly involves crystallographic reorientation, phase transition, and stacking faults, but also significantly reduce spall damage. The degree of spall damage is probably determined by a competitive mechanism between energy absorption and stress attenuation induced by plastic deformation. Void evolution during spallation is mainly based on the emission mechanism of dislocations. The {11–22} <11–23> pyramidal dislocation facilitates the nucleation of void in the [0001] shock, as well as the {1–100} <11–20> prismatic dislocation in the [10–10] shock. We also investigated the variation of spall strength between perfect and defective Mg at different shock velocities. The relevant results can provide a reference for future investigations on spall damage.
Collapse
|
33
|
Tamay DG, Gokyer S, Schmidt J, Vladescu A, Yilgor Huri P, Hasirci V, Hasirci N. Corrosion Resistance and Cytocompatibility of Magnesium-Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:104-122. [PMID: 34958199 DOI: 10.1021/acsami.1c16307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 μm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was -1933 mV for CaP-coated samples, was found significantly electropositive at -275 mV for Ga-doped ones. All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara 06800, Turkey
| | - Seyda Gokyer
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Jürgen Schmidt
- Team Leader Electrochemistry, INNOVENT e.V. Technology Development, Prüssingstraße 27b, Jena 07745, Germany
| | - Alina Vladescu
- National Institute of Research and Development for Optoelectronics - INOE 2000, 409 Atomistilor St., Magurele 077125, Romania
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk 634050, Russia
| | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- Biomaterials Center, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara 06800, Turkey
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Tissue Engineering and Biomaterial Research Center, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
34
|
Quan PH, Antoniac I, Miculescu F, Antoniac A, Păltânea VM, Robu A, Bița AI, Miculescu M, Saceleanu A, Bodog AD, Saceleanu V. Fluoride Treatment and In Vitro Corrosion Behavior of Mg-Nd-Y-Zn-Zr Alloys Type. MATERIALS 2022; 15:ma15020566. [PMID: 35057284 PMCID: PMC8779082 DOI: 10.3390/ma15020566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/26/2022]
Abstract
Fluoride conversion coatings on Mg present many advantages, among which one can find the reduction of the corrosion rate under “in vivo” or “in vitro” conditions and the promotion of the calcium phosphate deposition. Moreover, the fluoride ions released from MgF2 do not present cytotoxic effects and inhibit the biofilm formation, and thus these treated alloys are very suitable for cardiovascular stents and biodegradable orthopedic implants. In this paper, the biodegradation behavior of four new magnesium biodegradable alloys that have been developed in the laboratory conditions, before and after surface modifications by fluoride conversion (and sandblasting) coatings, are analyzed. We performed structural and surface analysis (XRD, SEM, contact angle) before and after applying different surface treatments. Furthermore, we studied the electrochemical behavior and biodegradation of all experimental samples after immersion test performed in NaCl solution. For a better evaluation, we also used LM and SEM for evaluation of the corroded samples after immersion test. The results showed an improved corrosion resistance for HF treated alloy in the NaCl solution. The chemical composition, uniformity, thickness and stability of the layers generated on the surface of the alloys significantly influence their corrosion behavior. Our study reveals that HF treatment is a beneficial way to improve the biofunctional properties required for the studied magnesium alloys to be used as biomaterials for manufacturing the orthopedic implants.
Collapse
Affiliation(s)
- Pham Hong Quan
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romania Scientist, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Florin Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Veronica Manescu Păltânea
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bița
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Marian Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Adriana Saceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| | - Alin Dănuț Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| | - Vicentiu Saceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| |
Collapse
|
35
|
Davis R, Singh A, Jackson MJ, Coelho RT, Prakash D, Charalambous CP, Ahmed W, da Silva LRR, Lawrence AA. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2022; 120:1473-1530. [PMID: 35228769 PMCID: PMC8865884 DOI: 10.1007/s00170-022-08770-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/17/2022] [Indexed: 05/08/2023]
Abstract
There is a tremendous increase in the demand for converting biomaterials into high-quality industrially manufactured human body parts, also known as medical implants. Drug delivery systems, bone plates, screws, cranial, and dental devices are the popular examples of these implants - the potential alternatives for human life survival. However, the processing techniques of an engineered implant largely determine its preciseness, surface characteristics, and interactive ability with the adjacent tissue(s) in a particular biological environment. Moreover, the high cost-effective manufacturing of an implant under tight tolerances remains a challenge. In this regard, several subtractive or additive manufacturing techniques are employed to manufacture patient-specific implants, depending primarily on the required biocompatibility, bioactivity, surface integrity, and fatigue strength. The present paper reviews numerous non-degradable and degradable metallic implant biomaterials such as stainless steel (SS), titanium (Ti)-based, cobalt (Co)-based, nickel-titanium (NiTi), and magnesium (Mg)-based alloys, followed by their processing via traditional turning, drilling, and milling including the high-speed multi-axis CNC machining, and non-traditional abrasive water jet machining (AWJM), laser beam machining (LBM), ultrasonic machining (USM), and electric discharge machining (EDM) types of subtractive manufacturing techniques. However, the review further funnels down its primary focus on Mg, NiTi, and Ti-based alloys on the basis of the increasing trend of their implant applications in the last decade due to some of their outstanding properties. In the recent years, the incorporation of cryogenic coolant-assisted traditional subtraction of biomaterials has gained researchers' attention due to its sustainability, environment-friendly nature, performance, and superior biocompatible and functional outcomes fitting for medical applications. However, some of the latest studies reported that the medical implant manufacturing requirements could be more remarkably met using the non-traditional subtractive manufacturing approaches. Altogether, cryogenic machining among the traditional routes and EDM among the non-traditional means along with their variants, were identified as some of the most effective subtractive manufacturing techniques for achieving the dimensionally accurate and biocompatible metallic medical implants with significantly modified surfaces.
Collapse
Affiliation(s)
- Rahul Davis
- Department of Mechanical Engineering, National Institute of Technology Patna, Patna, 800005 India
- Department of Mechanical Engineering, Vaugh Institute of Agricultural Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007 India
| | - Abhishek Singh
- Department of Mechanical Engineering, National Institute of Technology Patna, Patna, 800005 India
| | - Mark James Jackson
- School of Integrated Studies, College of Technology and Aviation, Kansas State University, Salina, KS 67401 USA
| | | | - Divya Prakash
- Department of Mechanical Engineering, Vaugh Institute of Agricultural Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007 India
| | | | - Waqar Ahmed
- School of Mathematics and Physics, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS UK
| | - Leonardo Rosa Ribeiro da Silva
- School of Mechanical Engineering, Federal University of Uberlandia, Av. João Naves de Ávila, Uberlândia, MG 38400-902 Brazil
| | - Abner Ankit Lawrence
- Department of Mechanical Engineering, Vaugh Institute of Agricultural Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007 India
| |
Collapse
|
36
|
Li Q, Xie B, Liu X, Liang W, Zhang X, Wang Y. Effects of Mg-Nd-Gd-Sr alloy on bone marrow mesenchymal stem cell function derived from SD rats. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction The aim of this study was to determine the effect of a new type of Mg-3Nd-1Gd-0.3Sr-0.2Zn-0.4Zr (abbreviated to Mg-Nd-Gd-Sr) alloy on bone marrow mesenchymal stem cell (BMSCs) function derived from SD rats. Methods BMSCs were first isolated and cultured in vitro using the whole bone marrow adherence method, and identified by BMSC surface biomarkers and osteogenic induction. The in vitro biological safety of the Mg-Nd-Gd-Sr alloy was studied by cytotoxicity and apoptosis experiments, and the in vitro biological functions were studied by cell adhesion and cell proliferation experiments. Results The results showed that high-purity BMSCs were isolated using the whole bone marrow adherence method. Flow cytometry showed high expression of CD44 and CD90, and low expression of CD31 and CD45 in the BMSCs. Osteogenic induction showed that the BMSCs differentiated into osteoblasts, and mineralized nodules were observed. The cytotoxicity of the Mg-Nd-Gd-Sr alloy to SD rat BMSCs was 0–1 grade, suggesting that the Mg-Nd-Gd-Sr alloy had no significant cytotoxic effect on SD rat BMSCs; compared with the control group, there was no significant cell apoptosis in any of the experimental groups ( p > 0.05). Cell adhesion experiments showed that the number of adherent cells increased with the duration of culture with the exception of the 100% concentration group; compared with the control group, the 75% concentration group had the highest number of adherent cells at the 1st, 3rd, 5th, and 7th hours ( p < 0.05). Cell proliferation experiments showed that the number of cells in all experiment groups was higher than the control group ( p < 0.05) on the 1st, 3rd, 5th, and 7th days, with the highest number of cells in the 75% concentration group ( p < 0.05). Conclusion Our data indicate that the extracts of new type of Mg-Nd-Gd-Sr alloy has no apparent cytotoxicity to BMSCs, does not affect cell apoptosis, and has good biocompatibility. Different concentrations of Mg-Nd-Gd-Sr alloy extracts promoted the adhesion and proliferation of BMSCs. The alloy had good biological functions, and is thus a promising bone repair material.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ben Xie
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaorong Liu
- College of Clinical Medicine, Northwest University for Nationalities, Lanzhou, China
- Department of Laboratory, The Second People’s Hospital of Gansu Province, Lanzhou, China
| | - Wenqiang Liang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaobo Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Yongping Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Li H, Lin G, Wang P, Huang J, Wen C. Nutrient alloying elements in biodegradable metals: a review. J Mater Chem B 2021; 9:9806-9825. [PMID: 34842888 DOI: 10.1039/d1tb01962g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a new generation of biomedical metallic materials, biodegradable metals have become a hot research topic in recent years because they can completely degrade in the human body, thus preventing secondary surgery, and reducing the pain and economic burden for patients. Clinical applications require biodegradable metals with adequate mechanical properties, corrosion resistance, and biocompatibility. Alloying is an important method to create biodegradable metals with required and comprehensive performances. Since nutrient elements already have important effects on various physiological functions of the human body, the alloying of nutrient elements with biodegradable metals has attracted much attention. The present review summarizes and discusses the effects of nutrient alloying elements on the mechanical properties, biodegradation behavior, and biocompatibility of biodegradable metals. Moreover, future research directions of biodegradable metals with nutrient alloying elements are suggested.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China. .,State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guicai Lin
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Pengyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jinyan Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
38
|
Luo Y, Zhang C, Wang J, Liu F, Chau KW, Qin L, Wang J. Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction. Bioact Mater 2021; 6:3231-3243. [PMID: 33778201 PMCID: PMC7966853 DOI: 10.1016/j.bioactmat.2021.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
As one of the most promising fixators developed for anterior cruciate ligament (ACL) reconstruction, biodegradable magnesium (Mg)-based interference screws have gained increasing attention attributed to their appropriate modulus and favorable biological properties during degradation after surgical insertion. However, its fast degradation and insufficient mechanical strength have also been recognized as one of the major causes to limit their further application clinically. This review focused on the following four parts. Firstly, the advantages of Mg or its alloys over their counterparts as orthopaedic implants in the fixation of tendon grafts in ACL reconstruction were discussed. Subsequently, the underlying mechanisms behind the contributions of Mg ions to the tendon-bone healing were introduced. Thirdly, the technical challenges of Mg-based interference screws towards clinical trials were discussed, which was followed by the introduction of currently used modification methods for gaining improved corrosion resistance and mechanical properties. Finally, novel strategies including development of Mg/Titanium (Ti) hybrid fixators and Mg-based screws with innovative structure for achieving clinically customized therapies were proposed. Collectively, the advancements in the basic and translational research on the Mg-based interference screws may lay the foundation for exploring a new era in the treatment of the tendon-bone insertion (TBI) and related disorders.
Collapse
Affiliation(s)
- Ying Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jue Wang
- Hanglok-Tech Co., Ltd., Hengqin New Area, China
| | - Fangfei Liu
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kelvin Wingho Chau
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
39
|
Dong X, Wei B, Legut D, Zhang H, Zhang R. Electrochemical Pourbaix diagrams of Mg-Zn alloys from first-principles calculations and experimental thermodynamic data. Phys Chem Chem Phys 2021; 23:19602-19610. [PMID: 34524301 DOI: 10.1039/d1cp02754a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mg-Zn alloys have attracted much attention as biodegradable alloys owing to their superior mechanical properties and excellent biocompatibility. However, their corrosion/degradation behaviour has become a major issue for various biomedical applications. To understand their corrosion behaviours in aqueous environments, the first-principles informed Pourbaix diagrams, that is, electrochemical phase diagrams with respect to electrode potential and solution pH, were constructed for Mg-Zn alloys and compared with experimental observations. It was found that for Mg-rich alloys, the MgZn phase has a higher potential than the Mg matrix and may act as a cathode, resulting in galvanic corrosion, while for Zn-rich alloys, the phase Mg2Zn11 corrodes first. In Zn-rich alloys, Mg(OH)2 preferably precipitates under alkaline conditions, thus hindering the increase in pH and preventing the release of dissolved ZnO22- ions. In a Cl-containing solution, the soluble ZnCl2 eases the corrosion of the Zn matrix by decreasing the corrosion potential. These results are supported by various experimental observations; thus, they provide an in-depth understanding of the degradation behaviour of various Mg-Zn alloys as well as a feasible pathway in the design of biocompatible Mg-Zn alloys with first-principles informed Pourbaix diagrams.
Collapse
Affiliation(s)
- Xinxin Dong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.,Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China.
| | - Bo Wei
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.,Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China.
| | - Dominik Legut
- IT4Innovations Center, VSB-Technical University of Ostrava, CZ-70833 Ostrava, Czech Republic
| | - Haijun Zhang
- Nation al United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, China. .,Department of Vascular & Intervention, Tenth Peoples' Hospital of Tongji University, Shanghai, 200072, China
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.,Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
40
|
Chandra G, Pandey A, Tipan N. Longitudinally centered embossed structure in the locking compression plate for biodegradable bone implant plate: a finite element analysis. Comput Methods Biomech Biomed Engin 2021; 25:603-618. [PMID: 34486894 DOI: 10.1080/10255842.2021.1970145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the current revolution of internal fixation implant in orthopaedics, a biodegradable implant is the most awaited and exceptional medical device where biodegradable material has paid more attention to the success of a biodegradable implant than the design of a biodegradable bone implant plate. By far, LCP is the most traditionally used implant plate (using non-biodegradable material) because of its experimental success, but not with qualified biodegradable material (Mg-alloy). This lack of mechanical performance is a major drawback that can be rectified by better structural design. This will help avoid few other problems as well. Therefore, with proper consideration, the LCP has been added to a semicircular filleted longitudinally centered embossed (LCE) structure to enhance overall mechanical performance that can help emphasize mechanical support even after continuous degradation when applied in a physiological environment. For mechanical verification of this advanced design of biodegradable bone implant plate, four-point bending test (4PBT) and axial compression test (ACT) have been performed using FEM on LCELCP, LCP, continuously degraded (CD)-LCELCP, and CD-LCP. LCELCP showed reduced stress of about 22% and 10% in 4PBT and ACT, respectively, compared to LCP. CD-LCELCP is safe during ACT over 6 months of continuous degradation when the degradation rate is assumed to be 4 mm/year. These results also ensured accuracy using mesh convergence and also mesh checked for quality assurance. Overall, LCELCP can be considered as a biodegradable bone implant plate because of its superior performance, if its ultimate validation is carried out through animal/human trials as future work.
Collapse
Affiliation(s)
- Girish Chandra
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Ajay Pandey
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Nilesh Tipan
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
41
|
Wang Y, Liang W, Liu X, Li Q, Xie Y, Jiang Y. Osteogenesis and degradation behavior of magnesium alloy plate in vivo. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211034078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: The magnesium alloy was fabricated into orthopedic plates, and used to repair tibial fractures of New Zealand white rabbits. The osteogenesis and degradation behavior of magnesium alloy plates were investigated in vivo. Methods: 38 rabbits were randomly divided into an experimental group using the magnesium alloy plate and control group using a titanium alloy plate. Tibial fractures in the experimental group and control group were fixed with magnesium alloy plates and titanium alloy plates, respectively. An X-ray of the fracture site was taken at 1, 2, 4, 8, and 16 weeks after surgery. The formation of callus and expression of bone morphogenetic protein (BMP-2) in each group were examined at 4, 8, and 16 weeks postoperatively. The degradation behavior of the magnesium alloy plate was observed using a scanning electron microscope with an energy dispersive spectroscopy system. Results: The results of X-ray showed that the fracture healed gradually and there was significant callus around the plate in the magnesium alloy plate group than that in the titanium alloy plate groups. The formation of callus and the expression of BMP-2 in the magnesium alloy plate group were more significant than that in the titanium plate group. The degradation behavior of the magnesium alloy plates deepened in vivo with the implantation time. Conclusion: The results demonstrated that the magnesium alloy plate implanted into the rabbit tibia could promote the formation of callus and result in osteogenesis in vivo. Meanwhile, the magnesium alloy plate was absorbed gradually in vivo.
Collapse
Affiliation(s)
- Yongping Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wenqiang Liang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaorong Liu
- Department of Laboratory, College of Clinical Medicine of Northwest University for Nationalities, Lanzhou, China
- Department of Laboratory, The Second Hospital of Gansu Province, Lanzhou, China
| | - Qiangqiang Li
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yadong Xie
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yao Jiang
- Department of Orthopedics, Sixth People’s Hospital of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
42
|
Abstract
Magnesium is a promising material. It has a remarkable mix of mechanical and biomedical properties that has made it suitable for a vast range of applications. Moreover, with alloying, many of these inherent properties can be further improved. Today, it is primarily used in the automotive, aerospace, and medical industries. However, magnesium has its own set of drawbacks that the industry and research communities are actively addressing. Magnesium’s rapid corrosion is its most significant drawback, and it dramatically impeded magnesium’s growth and expansion into other applications. This article reviews both the engineering and biomedical aspects and applications for magnesium and its alloys. It will also elaborate on the challenges that the material faces and how they can be overcome and discuss its outlook.
Collapse
|
43
|
Chandra G, Pandey A. Design approaches and challenges for biodegradable bone implants: a review. Expert Rev Med Devices 2021; 18:629-647. [PMID: 34041994 DOI: 10.1080/17434440.2021.1935875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Biodegradable materials have been at the forefront of cutting-edge research and offer a truly viable option in the designing and manufacturing of bone implants in biomedical engineering. Most research regarding these materials has focused on their biological characteristics and mechanical behavior vis-à-vis nonbiodegradable (NB) materials; but the design aspects and parametric configurations of biodegradable bone implant have somehow not received as much attention as they deserved.Area covered: This review aims to develop insight into the parametrically conceptualized design of biodegradable bone implant and takes into due consideration the characteristics of bone-biodegradable implant interface (BBII), design techniques employed for conventionally used bone implants to optimize parameters using standard test methods, traditional design, and finite element analysis approaches for implant and healing behavior, manufacturing techniques, real-time surgical simulations, and so on.Expert opinion: Some successful and conventionally used NB bone implants do not dissolve or degrade with time and require removal through a complicated surgery after fulfilling the intended objectives. These bone implants should be reconceptualized and designed with an appropriate biodegradable material while paying due attention to all factors/parameters involved and striking a balance between these factors with the ultimate objective of fulfilling all desired orthopedic requirements.
Collapse
Affiliation(s)
- Girish Chandra
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Ajay Pandey
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
44
|
Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm (Beijing) 2021; 2:123-144. [PMID: 34766139 PMCID: PMC8491235 DOI: 10.1002/mco2.59] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
As promising biodegradable materials with nontoxic degradation products, magnesium (Mg) and its alloys have received more and more attention in the biomedical field very recently. Having excellent biocompatibility and unique mechanical properties, magnesium-based alloys currently cover a broad range of applications in the biomedical field. The use of Mg-based biomedical devices eliminates the need for biomaterial removal surgery after the healing process and reduces adverse effects induced by the implantation of permanent biomaterials. However, the high corrosion rate of Mg-based implants leads to unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. To overcome these limitations, alloying Mg with suitable alloying elements and surface treatment come highly recommended. In this area, open questions remain on the behavior of Mg-based biomaterials in the human body and the effects of different factors that have resulted in these challenges. In addition to that, many techniques are yet to be verified to turn these challenges into opportunities. Accordingly, this article aims to review major challenges and opportunities for Mg-based biomaterials to minimize the challenges for the development of novel biomaterials made of Mg and its alloys.
Collapse
Affiliation(s)
- Shukufe Amukarimi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences (IUMS)TehranIran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences (IUMS)TehranIran
| |
Collapse
|
45
|
Mao G, Jin X, Sun J, Han X, Zeng M, Qiu Y, Bian W. Microalloying Design of Biodegradable Mg-2Zn-0.05Ca Promises Improved Bone-Implant Applications. ACS Biomater Sci Eng 2021; 7:2755-2766. [PMID: 34029062 DOI: 10.1021/acsbiomaterials.1c00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mg and its alloys have been comprehensively studied and show huge potential for clinical orthopedic applications. However, balancing the mechanical strength and corrosion resistance of alloys is still a challenge. In light of this, micro-level contents of Zn and Ca were added to pure Mg to fabricate a Mg-2Zn-0.05Ca microalloy to expectedly enhance the mechanical strength and concurrently improve the corrosion resistance. The characteristics of the rolled Mg-2Zn-0.05Ca microalloy were explored using optical microscopy, X-ray diffraction, and tensile tests. The corrosion behavior and mechanical strength loss were explored using electrochemical and immersion tests. The effects of the microalloy extract on the proliferation, adhesion, and osteogenic differentiation of MC3T3-E1 cells were systematically studied. Moreover, implantations were done in femoral condyles of rabbits to study the degradation properties, osteogenic effect, mechanical strength loss, and biosafety of the microalloy. The ultimate tensile strength and yield strength of the rolled microalloy were found to be significantly elevated to 257 ± 2.74 and 237.6 ± 8.29 MPa, respectively. The microalloy showed a stable and gradual strength loss during degradation, both in vivo and in vitro. Concurrently, the microalloy exhibited improved corrosion resistance ability and especially, in vivo, the rolled microalloy exhibited a comparable degradation rate to that of rolled pure Mg within the initial 12 weeks of implantation. Additionally, the microalloy promoted osteogenesis, both in vitro and in vivo, and no short- and long-term toxicities of the microalloy were observed in rabbits. This study suggested that the rolled Mg-2Zn-0.05Ca microalloy effectively balanced the mechanical strength and corrosion resistance and showed potential application as bone implants.
Collapse
Affiliation(s)
- Genwen Mao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Juan Sun
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xuezhe Han
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Min Zeng
- School of Energy and Power Engineering, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710048, China
| | - Yusheng Qiu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
46
|
Herber V, Okutan B, Antonoglou G, Sommer NG, Payer M. Bioresorbable Magnesium-Based Alloys as Novel Biomaterials in Oral Bone Regeneration: General Review and Clinical Perspectives. J Clin Med 2021; 10:jcm10091842. [PMID: 33922759 PMCID: PMC8123017 DOI: 10.3390/jcm10091842] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone preservation and primary regeneration is a daily challenge in the field of dental medicine. In recent years, bioresorbable metals based on magnesium (Mg) have been widely investigated due to their bone-like modulus of elasticity, their high biocompatibility, antimicrobial, and osteoconductive properties. Synthetic Mg-based biomaterials are promising candidates for bone regeneration in comparison with other currently available pure synthetic materials. Different alloys based on Mg were developed to fit clinical requirements. In parallel, advances in additive manufacturing offer the possibility to fabricate experimentally bioresorbable metallic porous scaffolds. This review describes the promising clinical results of resorbable Mg-based biomaterials for bone repair in osteosynthetic application and discusses the perspectives of use in oral bone regeneration.
Collapse
Affiliation(s)
- Valentin Herber
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; (G.A.); (M.P.)
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6, 8036 Graz, Austria; (B.O.); (N.G.S.)
- Correspondence:
| | - Begüm Okutan
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6, 8036 Graz, Austria; (B.O.); (N.G.S.)
| | - Georgios Antonoglou
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; (G.A.); (M.P.)
| | - Nicole G. Sommer
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5/6, 8036 Graz, Austria; (B.O.); (N.G.S.)
| | - Michael Payer
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; (G.A.); (M.P.)
| |
Collapse
|
47
|
Becerra LHC, Rodríguez MALH, Arroyo RL, Solís HE, Castro AT. Effect of sterilization on 3-point dynamic response to in vitro bending of an Mg implant. Biomater Res 2021; 25:9. [PMID: 33823939 PMCID: PMC8025350 DOI: 10.1186/s40824-021-00207-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background The aim of the study is to characterize a biomedical magnesium alloy and highlighting the loss of mechanical integrity due to the sterilization method. Ideally, when using these alloys is to delay the onset of degradation so that the implant can support body loads and avoid toxicological effects due to the release of metal ions into the body. Methods Standardized procedures according to ASTM F-1264 and ISO-10993-5 were used, respecting detailed methodological controls to ensure accuracy and reproducibility of the results, this testing methodology is carried out in accordance with the monographs of the Pharmacopoeia for the approval of medical devices and obtaining a health registration. An intramedullary implant (IIM) manufactured in magnesium (Mg) WE43 can support loads of the body in the initial period of bone consolidation without compromising the integrity of the fractured area. A system with these characteristics would improve morbidity and health costs by avoiding secondary surgical interventions. Results As a property, the fatigue resistance of Mg in aggressive environments such as the body environment undergoes progressive degradation, however, the autoclave sterilization method drastically affects fatigue resistance, as demonstrated in tests carried out under in vitro conditions. Coupled with this phenomenon, the relatively poor biocompatibility of Mg WE43 alloys has limited applications where they can be used due to low acceptance rates from agencies such as the FDA. However, Mg alloy with elements such as yttrium and rare earth elements (REEs) have been shown to delay biodegradation depending on the method of sterilization and the physiological solution used. With different sterilization techniques, it may be possible to keep toxicological effects to a minimum while still ensuring a balance between the integrity of fractured bone and implant degradation time. Therefore, the evaluation of fatigue resistance of WE43 specimens sterilized and tested in immersion conditions (enriched Hank’s solution) and according to ASTM F-1264, along with the morphological, crystallinity, and biocompatibility characterization of the WE43 alloy allows for a comprehensive evaluation of the mechanical and biological properties of WE43. Conclusions These results will support decision-making to generate a change in the current perspective of biomaterials utilized in medical devices (MDs), to be considered by manufacturers and health regulatory agencies. An implant manufactured in WE43 alloy can be used as an intramedullary implant, considering keeping elements such as yttrium-REEs below as specified in its designation and with the help of a coating that allows increasing the life of the implant in vivo.
Collapse
Affiliation(s)
- Luis Humberto Campos Becerra
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León (UANL), Pedro de Alba S/N, ciudad universitaria, San Nicolás de los Garza, NL, Mexico.
| | | | - Raúl Lesso Arroyo
- Departamento de Ingeniería Mecánica., Biomecánica, Instituto Tecnológico de Celaya (ITC), Av. Tecnológico Esq. A. García Cubas S/N Col. Bonfil, Celaya, 38010, Guanajuato, CP, Mexico
| | - Hugo Esquivel Solís
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas No.800, Colinas de la normal C.P, 44270, Guadalajara, Jalisco, Mexico
| | - Alejandro Torres Castro
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León (UANL), Pedro de Alba S/N, ciudad universitaria, San Nicolás de los Garza, NL, Mexico
| |
Collapse
|
48
|
Kabir H, Munir K, Wen C, Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater 2021; 6:836-879. [PMID: 33024903 PMCID: PMC7530311 DOI: 10.1016/j.bioactmat.2020.09.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Biodegradable metals (BMs) gradually degrade in vivo by releasing corrosion products once exposed to the physiological environment in the body. Complete dissolution of biodegradable implants assists tissue healing, with no implant residues in the surrounding tissues. In recent years, three classes of BMs have been extensively investigated, including magnesium (Mg)-based, iron (Fe)-based, and zinc (Zn)-based BMs. Among these three BMs, Mg-based materials have undergone the most clinical trials. However, Mg-based BMs generally exhibit faster degradation rates, which may not match the healing periods for bone tissue, whereas Fe-based BMs exhibit slower and less complete in vivo degradation. Zn-based BMs are now considered a new class of BMs due to their intermediate degradation rates, which fall between those of Mg-based BMs and Fe-based BMs, thus requiring extensive research to validate their suitability for biomedical applications. In the present study, recent research and development on Zn-based BMs are reviewed in conjunction with discussion of their advantages and limitations in relation to existing BMs. The underlying roles of alloy composition, microstructure, and processing technique on the mechanical and corrosion properties of Zn-based BMs are also discussed.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
49
|
Li K, Wang B, Zhou J, Li SY, Huang PR. In vitro corrosion resistance and cytocompatibility of Mg66Zn28Ca6 amorphous alloy materials coated with a double-layered nHA and PCL/nHA coating. Colloids Surf B Biointerfaces 2020; 196:111251. [DOI: 10.1016/j.colsurfb.2020.111251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 01/03/2023]
|
50
|
Jiao Y, Ni X, Zou G, Ren L, Yi L, Zhao Q. Microstructure and biological activity of silicon‐doped composite coatings fabricated by micro‐arc oxidation on magnesium alloy. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center Chinese PLA General Hospital Beijing China
| | - Xiao‐hui Ni
- Department of Orthopedics Dafeng People's Hospital Yancheng China
| | - Guo‐you Zou
- Department of Orthopedics Dafeng People's Hospital Yancheng China
| | - Liu‐bao Ren
- Department of Orthopedics Dafeng People's Hospital Yancheng China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Quan‐ming Zhao
- Department of Orthopedics Dafeng People's Hospital Yancheng China
| |
Collapse
|