1
|
De Wever P, Van Ostaeyen B, Kargl R, Kleinschek KS, Fardim P. Synthesis and characterization of dextran palmitate for extrusion 3D printing. Int J Biol Macromol 2025; 294:139399. [PMID: 39753181 DOI: 10.1016/j.ijbiomac.2024.139399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/15/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing. The dextran derivatives were characterized by FTIR, NMR and elemental analysis. The degree of substitution (DS) varied between 0.94 ± 0.31 and 1.36 ± 0.16. Our findings reveal a melting temperature near 40 °C, independent of the DS or MW. Extrudability varied depending on the DS. Cubes with dimensions of 15 × 15 × 10 mm3 were printed from the dextran palmitate. The swelling degree of the cubes in water remained limited, up to 0.17 ± 0.02 g/g. This work demonstrates the great potential of dextran palmitate as biobased and biodegradable polymers for 3D printing for future applications in human health.
Collapse
Affiliation(s)
- Pieter De Wever
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Britt Van Ostaeyen
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Rupert Kargl
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria.
| | - Karin Stana Kleinschek
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria
| | - Pedro Fardim
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Mostafa AEA, Emadi R, Shirali D, Khodaei M, Emadi H, Saboori A. Printed polylactic acid/akermanite composite scaffolds for bone tissue engineering; development and surface modification. Int J Biol Macromol 2025; 284:138097. [PMID: 39608544 DOI: 10.1016/j.ijbiomac.2024.138097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The susceptibility of bone tissues to various factors such as ageing, accidents, and diseases has led to extensive tissue engineering research focusing on bone tissues. Hence, this research also aims to determine the optimal amount of Akermanite (AK) addition to the polylactic acid scaffold for bone tissue engineering applications, as well as the effects of surface modification on its properties. The Akermanite was synthesized using the sol-gel method. Then, composite scaffolds of polylactic acid, including 0, 10, 20, and 30 wt% AK, were printed via the fused deposition modelling (FDM) process. These scaffolds were labelled as PLA, 10 wt% AK, 20 wt% AK, and 30 wt% AK, respectively. The X-ray diffraction analysis confirmed the production of the AK high-purity phase. Cell viability tests on composite scaffolds confirmed non-toxicity, and cell adhesion improved with AK addition. Mechanical testing showed that the compressive strength of composite scaffolds increased by increasing the AK content of the composite. This study recommended the 20 wt% AK scaffold as the optimal composition for bone tissue engineering. The surface-modification of polylactic acid/AK composite scaffolds using sodium hydroxide showed that it can be suitable for advanced tissue structures and medical applications, contributing to advancements in tissue engineering and medical technology for improved bone treatments.
Collapse
Affiliation(s)
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Danial Shirali
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| | - Hosein Emadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 14176-14411, Iran
| | - Abdollah Saboori
- Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Integrated Additive Manufacturing Center (IAM@PoliTo), Politecnico di Torino, Corso Castelfidardo 51, 10129 Torino, Italy.
| |
Collapse
|
3
|
Ali W, Ordoño J, Kopp A, González C, Echeverry-Rendón M, LLorca J. Cytocompatibility, cell-material interaction, and osteogenic differentiation of MC3T3-E1 pre-osteoblasts in contact with engineered Mg/PLA composites. J Biomed Mater Res A 2024; 112:2136-2148. [PMID: 38899796 DOI: 10.1002/jbm.a.37767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Bioabsorbable Mg wire-reinforced poly-lactic acid (PLA) matrix composites are potential candidate for load-bearing orthopedic implants offering tailorable mechanical and degradation properties by stacking sequence, volume fraction and surface modification of Mg wires. In this study, we investigated the cytocompatibility, cell-material interaction, and bone differentiation behavior of MC3T3-E1 pre-osteoblast cells for medical-grade PLA, Mg/PLA, and PEO-Mg/PLA (having PEO surface modification on Mg wires) composites. MTT and live/dead assay showed excellent biocompatibility of both composites while cell-material interaction analysis revealed that cells were able to adhere and proliferate on the surface of composites. Cells on the longitudinal surface of composites showed a high and uniform cell density while those on transversal surfaces initially avoided Mg regions but later migrated back after the formation of the passivation layer. Bone differentiation tests showed that cells in extracts of PLA and composites were able to initiate the differentiation process as osteogenesis-related gene expressions, alkaline phosphatase protein quantity, and calcium mineralization increased after 7 and 14 days of culture. Interestingly, the bone differentiation response of PEO-Mg/PLA composite was found to be similar to medical-grade PLA, proving its superiority over Mg/PLA composite.
Collapse
Affiliation(s)
- Wahaaj Ali
- IMDEA Materials Institute, Getafe, Madrid, Spain
- Department of Material Science and Engineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | - Jesus Ordoño
- IMDEA Materials Institute, Getafe, Madrid, Spain
| | | | - Carlos González
- IMDEA Materials Institute, Getafe, Madrid, Spain
- Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Javier LLorca
- IMDEA Materials Institute, Getafe, Madrid, Spain
- Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Joseph A, Uthirapathy V. A Systematic Review of the Contribution of Additive Manufacturing toward Orthopedic Applications. ACS OMEGA 2024; 9:44042-44075. [PMID: 39524636 PMCID: PMC11541519 DOI: 10.1021/acsomega.4c04870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
Human bone holds an inherent capacity for repairing itself from trauma and damage, but concerning the severity of the defect, the choice of implant placement is a must. Additive manufacturing has become an elite option due to its various specifications such as patient-specific custom development of implants and its easy fabrication rather than the conventional methods used over the years. Additive manufacturing allows customization of the pore size, porosity, various mechanical properties, and complex structure design and formulation. Selective laser melting, powder bed fusion, electron beam melting, and fused deposition modeling are the various AM methods used extensively for implant fabrication. Metals, polymers, biocrystals, composites, and bio-HEA materials are used for implant fabrication for various applications. A wide variety of polymer implants are fabricated using additive manufacturing for nonload-bearing applications, and β-tricalcium phosphate, hydroxyapatite, bioactive glass, etc. are mainly used as ceramic materials in additive manufacturing due to the biological properties that could be imparted by the latter. For decades metals have played a major role in implant fabrication, and additive manufacturing of metals provides an easy approach to implant fabrication with augmented qualities. Various challenges and setbacks faced in the fabrication need postprocessing such as sintering, coating, surface polishing, etc. The emergence of bio-HEA materials, printing of shape memory implants, and five-dimensional printing are the trends of the era in additive manufacturing.
Collapse
Affiliation(s)
- Alphonsa Joseph
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, India
| | - Vijayalakshmi Uthirapathy
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, India
| |
Collapse
|
5
|
Peng K, Chen S, Senthooran V, Hu X, Qi Y, Zhang C, Wu L, Wang J. Microporous polylactic acid/chitin nanocrystals composite scaffolds using in-situ foaming 3D printing for bone tissue engineering. Int J Biol Macromol 2024; 279:135055. [PMID: 39216589 DOI: 10.1016/j.ijbiomac.2024.135055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Bone injury represents an urgent clinical problem, and implantable bioscaffolds offer suitable means for replacing and regenerating damaged tissues. This paper proposes an in-situ foaming printing method employing material extrusion additive manufacturing technology and physical foaming to prepared poly(lactic acid)/chitin nanocrystals (CHNCs) microporous composite scaffolds, featuring pore sizes ranging from 9 ± 5 μm. This method offers a novel strategy for the preparation of poly(lactic acid)-based scaffolds with good biocompatibility. Material characterization and mechanical property testing demonstrated that the in-situ foaming printed PLA scaffolds exhibited excellent foam printability, and the expansion ratio and compression properties of the scaffolds could be adjusted by modifying the CHNCs concentration and the printing speed, achieving a compression modulus between 39.2 MPa and 54.3 MPa. Furthermore, at equivalent foaming multiplicity (1.5-2.6 times), the compression modulus increased by nearly 100 % compared to previously reported PLA-based foam scaffolds. Importantly, the PLA/CHNCs scaffolds produced via in-situ foaming exhibited superior biocompatibility compared to directly printed PLA scaffolds. This PLA/CHNCs composite scaffold provides a promising approach to addressing and repairing bone defects.
Collapse
Affiliation(s)
- Kangming Peng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian Nanping Carbon Metrology Centre, Nanpin 353000, China.
| | - Shihao Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Velmurugan Senthooran
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Xueling Hu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Yi Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Chen Zhang
- School of Materials and Chemistry Engineering, Minjiang University, Fuzhou 350108, China.
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jianlei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fujian Polytechnic Normal University, Fuzhou 350300, China.
| |
Collapse
|
6
|
Qian Y, Wang X, Wang P, Wu J, Shen Y, Cai K, Bai J, Lu M, Tang C. Biodegradable implant of magnesium/polylactic acid composite with enhanced antibacterial and anti-inflammatory properties. J Biomater Appl 2024; 39:165-178. [PMID: 38816339 DOI: 10.1177/08853282241257183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Addressing fracture-related infections (FRI) and impaired bone healing remains a significant challenge in orthopedics and stomatology. Researchers aim to address this issue by utilizing biodegradable biomaterials, such as magnesium/poly lactic acid (Mg/PLA) composites, to offer antibacterial properties during the degradation of biodegradable implants. Existing Mg/PLA composites often lack sufficient Mg content, hindering their ability to achieve the desired antibacterial effect. Additionally, research on the anti-inflammatory effects of these composites during late-stage degradation is limited. To strengthen mechanical properties, bolster antibacterial efficacy, and enhance anti-inflammatory capabilities during degradation, we incorporated elevated Mg content into PLA to yield Mg/PLA composites. These composites underwent in vitro degradation studies, cellular assays, bacterial tests, and simulation of the PLA degradation microenvironment. 20 wt% and 40 wt% Mg/PLA composites displayed significant antibacterial properties, with three composites exhibiting notable anti-inflammatory effects. In contrast, elevated Mg content detrimentally impacted mechanical properties. The findings suggest that Mg/PLA composites hold promise in augmenting antibacterial and anti-inflammatory attributes within polymers, potentially serving as temporary regenerative materials for treating bone tissue defects complicated by infections.
Collapse
Affiliation(s)
- Yuxin Qian
- Department of Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xianli Wang
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, China
| | - Ping Wang
- Department of Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jin Wu
- Department of Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Shen
- Department of Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kunzhan Cai
- Department of Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jing Bai
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, China
| | - Mengmeng Lu
- Department of Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chunbo Tang
- Department of Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
7
|
Aslam Khan MU, Aslam MA, Bin Abdullah MF, Stojanović GM. Current Perspectives of Protein in Bone Tissue Engineering: Bone Structure, Ideal Scaffolds, Fabrication Techniques, Applications, Scopes, and Future Advances. ACS APPLIED BIO MATERIALS 2024; 7:5082-5106. [PMID: 39007509 DOI: 10.1021/acsabm.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In view of their exceptional approach, excellent inherent biocompatibility and biodegradability properties, and interaction with the local extracellular matrix, protein-based polymers have received attention in bone tissue engineering, which is a multidisciplinary field that repairs and regenerates fractured bones. Bone is a multihierarchical complex structure, and it performs several essential biofunctions, including maintaining mineral balance and structural support and protecting soft organs. Protein-based polymers have gained interest in developing ideal scaffolds as emerging biomaterials for bone fractured healing and regeneration, and it is challenging to design ideal bone substitutes as perfect biomaterials. Several protein-based polymers, including collagen, keratin, gelatin, serum albumin, etc., are potential materials due to their inherent cytocompatibility, controlled biodegradability, high biofunctionalization, and tunable mechanical characteristics. While numerous studies have indicated the encouraging possibilities of proteins in BTE, there are still major challenges concerning their biodegradability, stability in physiological conditions, and continuous release of growth factors and bioactive molecules. Robust scaffolds derived from proteins can be used to replace broken or diseased bone with a biocompatible substitute; proteins, being biopolymers, provide excellent scaffolds for bone tissue engineering. Herein, recent developments in protein polymers for cutting-edge bone tissue engineering are addressed in this review within 3-5 years, with a focus on the significant challenges and future perspectives. The first section discusses the structural fundamentals of bone anatomy and ideal scaffolds, and the second section describes the fabrication techniques of scaffolds. The third section highlights the importance of proteins and their applications in BTE. Hence, the recent development of protein polymers for state-of-the-art bone tissue engineering has been discussed, highlighting the significant challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus Kubang Kerian 16150, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus Kubang Kerian 16150, Kota Bharu, Kelantan, Malaysia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Dehghan-Toranposhti S, Bakhshi R, Alizadeh R, Bohlouli M. Fabrication, characterization and evaluating properties of 3D printed PLA-Mn scaffolds. Sci Rep 2024; 14:16592. [PMID: 39025973 PMCID: PMC11258323 DOI: 10.1038/s41598-024-67478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Polylactic acid (PLA) based scaffolds have attained considerable attention in recent years for being used as biodegradable implants in bone tissue engineering (BTE), owing to their suitable biocompatibility and processability. Nevertheless, the mechanical properties, bioactivity and biodegradation rate of PLA need to be improved for practical application. In this investigation, PLA-xMn composite filaments (x = 0, 1, 3, 5 and 7 wt%) were fabricated, characterized, and used for 3D printing of scaffolds by the fused deposition modeling process. The effect of Mn addition on the thermal, physical, mechanical, and structural properties, as well as the degradability and cell viability of 3D printed scaffolds were investigated in details. The obtained results indicate that the PLA-Mn composite filaments exhibit higher chain mobility and melt flow index values, with lower cold crystallization temperature and a higher degree of crystallinity. This higher flowability led to lower dimensional accuracy of 3D printed scaffolds, but resulted in higher interlayer adhesion. It was found that the mechanical properties of composite scaffolds were remarkably enhanced with the addition of Mn particles. The incorporation of Mn particles also caused higher surface roughness and hydrophilicity, a superior biodegradation rate of the scaffolds as well as better biocompatibility, indicating a promising candidate for (BTE) applications.
Collapse
Affiliation(s)
- Sina Dehghan-Toranposhti
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., Tehran, 11155-9466, Iran
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rasoul Bakhshi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., Tehran, 11155-9466, Iran
| | - Reza Alizadeh
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., Tehran, 11155-9466, Iran.
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Zhao J, Liu X, Pu X, Shen Z, Xu W, Yang J. Preparation Method and Application of Porous Poly(lactic acid) Membranes: A Review. Polymers (Basel) 2024; 16:1846. [PMID: 39000701 PMCID: PMC11244136 DOI: 10.3390/polym16131846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Porous membrane technology has garnered significant attention in the fields of separation and biology due to its remarkable contributions to green chemistry and sustainable development. The porous membranes fabricated from polylactic acid (PLA) possess numerous advantages, including a low relative density, a high specific surface area, biodegradability, and excellent biocompatibility. As a result, they exhibit promising prospects for various applications, such as oil-water separation, tissue engineering, and drug release. This paper provides an overview of recent research advancements in the fabrication of PLA membranes using electrospinning, the breath-figure method, and the phase separation method. Firstly, the principles of each method are elucidated from the perspective of pore formation. The correlation between the relevant parameters and pore structure is discussed and summarized, subsequently followed by a comparative analysis of the advantages and limitations of each method. Subsequently, this article presents the diverse applications of porous PLA membranes in tissue engineering, oil-water separation, and other fields. The current challenges faced by these membranes, however, encompass inadequate mechanical strength, limited production efficiency, and the complexity of pore structure control. Suggestions for enhancement, as well as future prospects, are provided accordingly.
Collapse
Affiliation(s)
- Jinxing Zhao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xianggui Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
| | - Xuelian Pu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Zetong Shen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenqiang Xu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Jian Yang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
10
|
Fang YG, Lin JY, Zhang YC, Qiu QW, Zeng Y, Li WX, Wang ZY. A reactive compatibilization with the compound containing four epoxy groups for polylactic acid/poly(butylene adipate-co-terephthalate)/thermoplastic starch ternary bio-composites. Int J Biol Macromol 2024; 262:129998. [PMID: 38336326 DOI: 10.1016/j.ijbiomac.2024.129998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
How to effectively improve the poor interfacial adhesion between polylactic acid/poly(butylene adipate-co-terephthalate) (PLA/PBAT) matrix and thermoplastic starch (TPS) is still a challenge. Therefore, this work aims to introduce a convenient method to enhance the performance of PLA/PBAT/TPS blend by melt reactive extrusion. Here, using 4,4'-methylene-bis(N,N-diglycidyl-aniline) (MBDG) containing four epoxy groups as a reactive compatibilizer, and respectively using 1-methylimidazole (MI) or triethylenediamine (TD) as a catalyzer, serial PLA/PBAT/TPS ternary bio-composites are successfully prepared via melt reactive extrusion. The results showed that, under the catalysis of organic base, especially MI, the epoxy groups of MBDG can effectively react with hydroxyl and carboxyl groups of PLA/PBAT and hydroxyl groups in TPS to form chain-expanded and cross-linked structures. The tensile strength of the composites is increased by 20.0 % from 21.1 MPa, and the elongation at break is increased by 182.4 % from 17.6 % owing to the chain extension and the forming of cross-linked structures. The molecular weight, thermal stability, crystallinity, and surface hydrophobicity of the materials are gradually improved with the increase of MBDG content. The melt fluidity of the composites is also improved due to the enhancement of compatibility. The obtained PLA/PBAT/TPS materials have the potential to be green plastic products with good properties.
Collapse
Affiliation(s)
- Yong-Gan Fang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China; Guangdong Esquel Textiles Co., Ltd., Foshan, Guangdong 528500, PR China.
| | - You-Cai Zhang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Qi-Wen Qiu
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Yong Zeng
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Wen-Xi Li
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
11
|
Harb SV, Kolanthai E, Backes EH, Beatrice CAG, Pinto LA, Nunes ACC, Selistre-de-Araújo HS, Costa LC, Seal S, Pessan LA. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds. Tissue Eng Regen Med 2024; 21:223-242. [PMID: 37856070 PMCID: PMC10825090 DOI: 10.1007/s13770-023-00584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Poly (lactic acid) (PLA) is a biodegradable polyester that has been exploited for a variety of biomedical applications, including tissue engineering. The incorporation of β-tricalcium phosphate (TCP) into PLA has imparted bioactivity to the polymeric matrix. METHODS We have modified a 90%PLA-10%TCP composite with SiO2 and MgO (1, 5 and 10 wt%), separately, to further enhance the material bioactivity. Filaments were prepared by extrusion, and scaffolds were fabricated using 3D printing technology associated with fused filament fabrication. RESULTS The PLA-TCP-SiO2 composites presented similar structural, thermal, and rheological properties to control PLA and PLA-TCP. In contrast, the PLA-TCP-MgO composites displayed absence of crystallinity, lower polymeric molecular weight, accelerated degradation ratio, and decreased viscosity within the 3D printing shear rate range. SiO2 and MgO particles were homogeneously dispersed within the PLA and their incorporation increased the roughness and protein adsorption of the scaffold, compared to a PLA-TCP scaffold. This favorable surface modification promoted cell proliferation, suggesting that SiO2 and MgO may have potential for enhancing the bio-integration of scaffolds in tissue engineering applications. However, high loads of MgO accelerated the polymeric degradation, leading to an acid environment that imparted the composite biocompatibility. The presence of SiO2 stimulated mesenchymal stem cells differentiation towards osteoblast; enhancing extracellular matrix mineralization, alkaline phosphatase (ALP) activity, and bone-related genes expression. CONCLUSION The PLA-10%TCP-10%SiO2 composite presented the most promising results, especially for bone tissue regeneration, due to its intense osteogenic behavior. PLA-10%TCP-10%SiO2 could be used as an alternative implant for bone tissue engineering application.
Collapse
Affiliation(s)
- Samarah V Harb
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Eduardo H Backes
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Cesar A G Beatrice
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Leonardo A Pinto
- Department of Materials Engineering (DEMa), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Ana Carolina C Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Heloisa S Selistre-de-Araújo
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Lidiane C Costa
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luiz Antonio Pessan
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
12
|
García-Sobrino R, Muñoz M, Rodríguez-Jara E, Rams J, Torres B, Cifuentes SC. Bioabsorbable Composites Based on Polymeric Matrix (PLA and PCL) Reinforced with Magnesium (Mg) for Use in Bone Regeneration Therapy: Physicochemical Properties and Biological Evaluation. Polymers (Basel) 2023; 15:4667. [PMID: 38139919 PMCID: PMC10747080 DOI: 10.3390/polym15244667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Improvements in Tissue Engineering and Regenerative Medicine (TERM)-type technologies have allowed the development of specific materials that, together with a better understanding of bone tissue structure, have provided new pathways to obtain biomaterials for bone tissue regeneration. In this manuscript, bioabsorbable materials are presented as emerging materials in tissue engineering therapies related to bone lesions because of their ability to degrade in physiological environments while the regeneration process is completed. This comprehensive review aims to explore the studies, published since its inception (2010s) to the present, on bioabsorbable composite materials based on PLA and PCL polymeric matrix reinforced with Mg, which is also bioabsorbable and has recognized osteoinductive capacity. The research collected in the literature reveals studies based on different manufacturing and dispersion processes of the reinforcement as well as the physicochemical analysis and corresponding biological evaluation to know the osteoinductive capacity of the proposed PLA/Mg and PCL/Mg composites. In short, this review shows the potential of these composite materials and serves as a guide for those interested in bioabsorbable materials applied in bone tissue engineering.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Marta Muñoz
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Elías Rodríguez-Jara
- Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, c/Kelsen 5, 28049 Madrid, Spain;
| | - Joaquín Rams
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Belén Torres
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Sandra C. Cifuentes
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| |
Collapse
|
13
|
Ma M, Zeng H, Yang P, Xu J, Zhang X, He W. Drug Delivery and Therapy Strategies for Osteoporosis Intervention. Molecules 2023; 28:6652. [PMID: 37764428 PMCID: PMC10534890 DOI: 10.3390/molecules28186652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the advent of the aging society, osteoporosis (OP) risk increases yearly. Currently, the clinical usage of anti-OP drugs is challenged by recurrent side effects and poor patient compliance, regardless of oral, intravenous, or subcutaneous administration. Properly using a drug delivery system or formulation strategy can achieve targeted drug delivery to the bone, diminish side effects, improve bioavailability, and prolong the in vivo residence time, thus effectively curing osteoporosis. This review expounds on the pathogenesis of OP and the clinical medicaments used for OP intervention, proposes the design approach for anti-OP drug delivery, emphatically discusses emerging novel anti-OP drug delivery systems, and enumerates anti-OP preparations under clinical investigation. Our findings may contribute to engineering anti-OP drug delivery and OP-targeting therapy.
Collapse
Affiliation(s)
- Mingyang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Huiling Zeng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, China;
| | - Jiabing Xu
- Taizhou Institute for Drug Control, Taizhou 225316, China;
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
14
|
Kalva SN, Ali F, Velasquez CA, Koç M. 3D-Printable PLA/Mg Composite Filaments for Potential Bone Tissue Engineering Applications. Polymers (Basel) 2023; 15:polym15112572. [PMID: 37299370 DOI: 10.3390/polym15112572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Magnesium (Mg) is a promising material for bone tissue engineering applications due to it having similar mechanical properties to bones, biocompatibility, and biodegradability. The primary goal of this study is to investigate the potential of using solvent-casted polylactic acid (PLA) loaded Mg (WE43) composites as filament feedstock for fused deposition modeling (FDM) 3D Printing. Four PLA/Magnesium (WE43) compositions (5, 10, 15, 20 wt%) are synthesized and produced into filaments, then used to print test samples on an FDM 3D printer. Assessments are made on how Mg incorporation affected PLA's thermal, physicochemical, and printability characteristics. The SEM study of the films shows that the Mg particles are uniformly distributed in all the compositions. The FTIR results indicate that the Mg particles blend well with the polymer matrix and there is no chemical reaction between the PLA and the Mg particles during the blending process. The thermal studies show that the addition of Mg leads to a small increase in the melting peak reaching a maximum of 172.8 °C for 20% Mg samples. However, there are no dramatic variations in the degree of crystallinity among the Mg-loaded samples. The filament cross-section images show that the distribution of Mg particles is uniform up to a concentration of 15% Mg. Beyond that, non-uniform distribution and an increase in pores in the vicinity of the Mg particles is shown to affect their printability. Overall, 5% and 10% Mg composite filaments were printable and have the potential to be used as composite biomaterials for 3D-printed bone implants.
Collapse
Affiliation(s)
- Sumama Nuthana Kalva
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Surgical Research Section, Innovation Unit, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Fawad Ali
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Carlos A Velasquez
- Surgical Research Section, Innovation Unit, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Muammer Koç
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
15
|
Buehler MJ. Emerging trends in multi-modal multi-dimensional biomechanical materials research. J Mech Behav Biomed Mater 2023; 141:105754. [PMID: 36906507 DOI: 10.1016/j.jmbbm.2023.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Leonés A, Salaris V, Ramos Aranda I, Lieblich M, López D, Peponi L. Thermal Properties and In Vitro Biodegradation of PLA-Mg Filaments for Fused Deposition Modeling. Polymers (Basel) 2023; 15:polym15081907. [PMID: 37112054 PMCID: PMC10143554 DOI: 10.3390/polym15081907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Additive manufacturing, in particular the fused deposition method, is a quite new interesting technique used to obtain specific 3D objects by depositing layer after layer of material. Generally, commercial filaments can be used in 3D printing. However, the obtention of functional filaments is not so easy to reach. In this work, we obtain filaments based on poly(lactic acid), PLA, reinforced with different amounts of magnesium, Mg, microparticles, using a two-step extrusion process, in order to study how processing can affect the thermal degradation of the filaments; we additionally study their in vitro degradation, with a complete release of Mg microparticles after 84 days in phosphate buffer saline media. Therefore, considering that we want to obtain a functional filament for further 3D printing, the simpler the processing, the better the result in terms of a scalable approach. In our case, we obtain micro-composites via the double-extrusion process without degrading the materials, with good dispersion of the microparticles into the PLA matrix without any chemical or physical modification of the microparticles.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| | - Ignacio Ramos Aranda
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| |
Collapse
|