1
|
Vempati RK, Malla RR. Coralyne Targets the Catalytic Domain of MMP9: An In Silico and In Vitro Investigation. Crit Rev Oncog 2025; 30:71-89. [PMID: 39819436 DOI: 10.1615/critrevoncog.2024056393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Coralyne (COR) is a protoberberine-like isoquinoline alkaloid, and it is known for double-stranded (ds) DNA intercalation and topoisomerase inhibition. It can also sensitize cancer cells through various mechanisms. COR reduces the proliferation and migration of breast cancer cells by inhibiting the expression and activity of matrix metalloproteinase 9 (MMP9). However, the mechanism involved in the inhibitory activity of COR on MMP9 is not known. In the present study, in silico docking studies showed that COR binds to the active site of MMP9 catalytic domain (MMP9-CD) with considerable affinity. The binding affinity of COR to the MMP9-CD, estimated by three different web servers: CB Dock, Seam Dock, and PyRx, was found to be either -7.4 or -7.5 kcal/mol. Another web server that is routinely used for docking studies, Docking Server, has predicted a binding affinity of -5.9 kcal/mol. All four docking servers predicted the same binding site for COR within the MMP9-CD. Corroborating our docking results, molecular dynamic simulation studies have also shown that COR interacts with the same key active site amino acid residues of the MMP9-CD that are essential for its proteolytic function. Molecular mechanics with generalized born and surface area (MMGBSA) calculations using Schrodinger's prime module have shown that the binding free energy with which COR binds to MMP9 is -50 kcal/mol. It inhibited activity of recombinant human MMP9 activity and induced significant cytotoxicity and reduced the proliferation of MDA-MB 468 cells. Overall, our in silico and in vitro experiments show that COR potentially inhibits the activity of MMP9 by directly binding to the active site of its catalytic domain and possibly inhibits proliferation of MDA-MB 468 cells.
Collapse
Affiliation(s)
- Rahul Kumar Vempati
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, India
| | | |
Collapse
|
2
|
Moulishankar A, Sankaranarayanan M, Thirugnanasambandam S, Dhamotharan J, Mohanradja D, Sivakumar PM. Identification of novel DNA gyrase inhibitor by combined pharmacophore modeling, QSAR analysis, molecular docking, molecular dynamics, ADMET and DFT approaches. Acta Trop 2024; 260:107460. [PMID: 39527993 DOI: 10.1016/j.actatropica.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
DNA gyrase, an ATP-dependent enzyme, plays a critical role in DNA replication, transcription, and recombination in Mycobacterium tuberculosis (MTB). While fluoroquinolones are effective antibacterial agents targeting DNA gyrase, their clinical use is often limited due to side effects and the emergence of bacterial resistance. In this study, we developed a quantitative structure-activity relationship (QSAR) model to predict the anti-tubercular activity of Quinoline-Aminopiperidine derivatives targeting the DNA gyrase enzyme, using a dataset of 48 compounds obtained from the literature. The QSAR model was validated using both internal and external validation metrics. Model 4, the best predictive model, demonstrated a strong fit with an R² of 0.8393, an adjusted R² (R²adj) of 0.8010, and a lack of fit (LOF) parameter of 0.0626. The QSAR results revealed that DNA gyrase inhibition is significantly influenced by factors such as partition coefficient, molecular flexibility, hydrogen bonding potential, and the presence of fluorine atoms. Twelve quinoline-aminopiperidine derivatives were designed, and their anti-tubercular activity was predicted using QSAR model-4. These compounds were further assessed for pharmacokinetic properties, toxicity, and binding affinity to DNA gyrase. Pharmacophore modeling was also performed and validated using MOE software. The final pharmacophore model includes the features of two aromatic hydrophobic features, one hydrogen bond acceptor, and one hydrogen bond donor. The results indicated that designed compounds QA-3 and dataset compounds C-34 exhibit favorable drug-likeness properties. Molecular dynamics simulations confirmed the stable binding of compounds QA-3 and C-34 to the DNA gyrase protein, highlighting their potential as promising anti-tubercular agents. The developed QSAR Model-4 will facilitate the prediction of anti-tubercular activity in Quinoline-Aminopiperidine derivatives.
Collapse
Key Words
- %A, Percent ratio of active compounds in the hit list
- %Y, Number of active Compounds percent of yields
- ADMET study
- ADMET, Absorption Distribution Metabolism Excretion, Toxicity
- ATP, Adenosine triphosphate
- Abbriviations: QSAR, Quantitative Structure-Activity Relationship
- Aro, aromatic center
- B3LYP, Beck's three-parameter hybrid functional
- CCC, concordance correlation coefficient
- DFT, Density functional theory
- DOTS, Directly Observed Therapy Short-course
- E, enrichment factor
- FNs, false negatives
- FPs, false positives
- GA, genetic algorithms
- GH, Güner-Henry score or Goodness of hit score
- HBA, hydrogen bond acceptor
- HBD, hydrogen bond donar
- HBD, hydrogen bond donor
- HOMO, Highest occupied molecular orbital
- Ht, Hit list
- HydA, hydrophobic atom
- LMO, Leave many out
- LOF, Friedman's lack of fit
- LOO, leave one out
- LUMO, Lowest unoccupied molecular orbital
- MAE, Mean absolute error
- MDR-Tb, multidrug resistance tuberculosis
- MDS, Molecular dynamics simulation
- MIC, minimum inhibitory concentration
- MLR, multiple linear regressions
- MMV, Molegro Molecular Viewer
- MOE, Molecular Operating Environment
- Molecular modeling
- Mycobacterium tuberculosis
- OECD, Organisation for Economic Co-operation and Development
- OLS, Ordinary Least Squares
- PDB, Protein Data Bank
- PiN, Pi ring normal or aromatic ring
- Q(2)(LOO), Cross validation
- QSAR
- Quinoline – aminopiperidine derivatives
- R(2)(ad), Adjusted coefficient of determination
- R(2), Coefficient of determination
- RMSD, Root mean square deviation
- RMSE, Root mean square error
- RMSF, Root mean square fluctuation
- S, Standard deviation
- TB, Tuberculosis
- TNs, true negatives
- TPs, true positives
- VMD, Visual Molecular Dynamics
- WHO, World Health Organization
- XDR-Tb, extensive drug resistance tuberculosis
- logP, Partition coefficient
- pMIC, logarithmic scale of the minimum inhibitory concentration
Collapse
Affiliation(s)
- Anguraj Moulishankar
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemsitry Research Laboratory, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Sundarrajan Thirugnanasambandam
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India.
| | - Jothieswari Dhamotharan
- Department of Pharmaceutical Analysis, Sri Venkateswara College of Pharmacy, Rvs Nagar, Tirupati Road, Chittoor 517127, Andhra Pradesh, India
| | - Dhanalakshmi Mohanradja
- Department of Pharmaceutical Analysis, SMVEC Pharmacy College, Madagadipet 605107, Puducherry, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
3
|
Rashid ZA, Bardaweel SK. Novel Matrix Metalloproteinase-9 (MMP-9) Inhibitors in Cancer Treatment. Int J Mol Sci 2023; 24:12133. [PMID: 37569509 PMCID: PMC10418771 DOI: 10.3390/ijms241512133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with each stage of cancer pathogenesis and progression. The design and synthesis of MMP-9 inhibitors is a potentially attractive research area. Unfortunately, to date, there is no effective MMP-9 inhibitor that passes the clinical trials and is approved by the FDA. This review primarily focuses on exploring the diverse strategies employed in the design and advancement of MMP-9 inhibitors, along with their anticancer effects and selectivity. To illuminate the essential structural characteristics necessary for the future design of novel MMP-9 inhibitors, the current narrative review highlights several recently discovered MMP-9 inhibitors exhibiting notable selectivity and potency.
Collapse
Affiliation(s)
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
5
|
Vachetta VS, Marder M, Troncoso MF, Elola MT. Opportunities, obstacles and current challenges of flavonoids for luminal and triple-negative breast cancer therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 6:100077. [DOI: 10.1016/j.ejmcr.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
6
|
Zhao Y, Yang H, Wu F, Luo X, Sun Q, Feng W, Ju X, Liu G. Exploration of N-Arylsulfonyl-indole-2-carboxamide Derivatives as Novel Fructose-1,6-bisphosphatase Inhibitors by Molecular Simulation. Int J Mol Sci 2022; 23:ijms231810259. [PMID: 36142164 PMCID: PMC9499002 DOI: 10.3390/ijms231810259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
A series of N-arylsulfonyl-indole-2-carboxamide derivatives have been identified as potent fructose-1,6-bisphosphatase (FBPase) inhibitors (FBPIs) with excellent selectivity for the potential therapy of type II diabetes mellitus. To explore the structure–activity relationships (SARs) and the mechanisms of action of these FBPIs, a systematic computational study was performed in the present study, including three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling, pharmacophore modeling, molecular dynamics (MD), and virtual screening. The constructed 3D-QSAR models exhibited good predictive ability with reasonable parameters using comparative molecular field analysis (q2 = 0.709, R2 = 0.979, rpre2 = 0.932) and comparative molecular similarity indices analysis (q2 = 0.716, R2 = 0.978, rpre2 = 0.890). Twelve hit compounds were obtained by virtual screening using the best pharmacophore model in combination with molecular dockings. Three compounds with relatively higher docking scores and better ADME properties were then selected for further studies by docking and MD analyses. The docking results revealed that the amino acid residues Met18, Gly21, Gly26, Leu30, and Thr31 at the binding site were of great importance for the effective bindings of these FBPIs. The MD results indicated that the screened compounds VS01 and VS02 could bind with FBPase stably as its cognate ligand in dynamic conditions. This work identified several potential FBPIs by modeling studies and might provide important insights into developing novel FBPIs.
Collapse
Affiliation(s)
- Yilan Zhao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Honghao Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Sun
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Weiliang Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| |
Collapse
|
7
|
Hinokiflavone Attenuates the Virulence of Methicillin-Resistant Staphylococcus aureus by Targeting Caseinolytic Protease P. Antimicrob Agents Chemother 2022; 66:e0024022. [PMID: 35862746 PMCID: PMC9380526 DOI: 10.1128/aac.00240-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Drug-resistant bacteria was the third leading cause of death worldwide in 2019, which sounds like a cautionary note for global public health. Therefore, developing novel strategies to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections is the need of the hour. Caseinolytic protease P (ClpP) represents pivotal microbial degradation machinery in MRSA involved in bacterial homeostasis and pathogenicity, considered an ideal target for combating S. aureus infections. Herein, we identified a natural compound, hinokiflavone, that inhibited the activity of ClpP of MRSA strain USA300 with an IC50 of 34.36 μg/mL. Further assays showed that hinokiflavone reduced the virulence of S. aureus by inhibiting multiple virulence factors expression. Results obtained from cellular thermal transfer assay (CETSA), thermal shift assay (TSA), local surface plasmon resonance (LSPR) and molecular docking (MD) assay enunciated that hinokiflavone directly bonded to ClpP with confirmed docking sites, including SER-22, LYS-26 and ARG-28. In vivo, the evaluation of anti-infective activity showed that hinokiflavone in combination with vancomycin effectively protected mice from MRSA-induced fatal pneumonia, which was more potent than vancomycin alone. As mentioned above, hinokiflavone, as an inhibitor of ClpP, could be further developed into a promising adjuvant against S. aureus infections.
Collapse
|
8
|
Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers (Basel) 2022; 14:cancers14071847. [PMID: 35406619 PMCID: PMC8998077 DOI: 10.3390/cancers14071847] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Having the capability to proteolyze diverse structural and signaling proteins, matrix metalloproteinase 9 (MMP9), one of the best-studied secretory endopeptidases, has been identified as a crucial mediator of processes closely associated with tumorigenesis, such as the extracellular matrix reorganization, epithelial to mesenchymal transition, cell migration, new blood vessel formation, and immune response. In this review, we present the current state of knowledge on MMP9 and its role in cancer growth in the context of cell adhesion/migration, cancer-related inflammation, and tumor microenvironment formation. We also summarize recent achievements in the development of selective MMP9 inhibitors and the limitations of using them as anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| | | | - Renata Tabola
- Department of Thoracic Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamilla Stach
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
9
|
Peng L, Qiu J, Liu L, Li X, Liu X, Zhang Y. Preparation of PEG/ZIF-8@HF drug delivery system for melanoma treatment via oral administration. Drug Deliv 2022; 29:1075-1085. [PMID: 35373691 PMCID: PMC8986218 DOI: 10.1080/10717544.2022.2058649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Melanoma is one of the highly malignant tumors whose incidence and fatality rates have been increased year by year. However, in addition to early surgical resection, there still lacks specific targeted drugs and treatment strategies. In this study, it was discovered that hinokiflavone (HF) encapsulated in zeolitic imidazolate framework-8 (ZIF-8) exhibited a superior anti-melanoma effect in vitro and in vivo. HF was encapsulated in ZIF-8 through a one-step synthesis method, and polyethylene glycol (PEG-2000) was used to optimize the size and dispersion of the drug-loaded complex (PEG/ZIF-8@HF). The results show that the prepared PEG/ZIF-8@HF has a high encapsulation efficiency (92.12%) and can achieve selective drug release in an acidic microenvironment. The results of in vitro anti-melanoma experiments indicate that PEG/ZIF-8@HF shows up-regulation of reactive oxygen species (ROS) levels and can restrain the migration and invasion of B16F10 cells. Moreover, in vivo animal experiments further confirm that PEG/ZIF-8@HF shows anti-tumor effect by up-regulating the pro-apoptotic proteins caspase-3 and caspase-8, and down-regulating the migration-promoting invasion protein MMP-9. This study developed a safe and effective oral administration of HF based on the high-efficiency delivery ZIF-8 system, which provides an effective treatment strategy for melanoma.
Collapse
Affiliation(s)
- Luxi Peng
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China.,The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Jiajun Qiu
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Lidan Liu
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuanyong Liu
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yongjun Zhang
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Lai YY, Li D, Chang SW. Computational insights into the substrate recognition mechanism of cartilage extracellular matrix degradation. Comput Struct Biotechnol J 2021; 19:5535-5545. [PMID: 34712398 PMCID: PMC8526910 DOI: 10.1016/j.csbj.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
Articular cartilage is connective tissue that forms a slippery load-bearing joint surface between bones. With outstanding mechanical properties, it plays an essential role in cushioning impact and protecting the ends of bones. Abnormal mechanical stimulation, such as repetitive overloading or chondral injury, induces excessive cartilage extracellular matrix (ECM) degradation, leading to osteoarthritis and other joint disorders. A disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) is an aggrecanase that dominates the catalysis of aggrecan, the major proteoglycan in the cartilage ECM. Intriguingly, unlike its critical cleavage site Glu373-374Ala, another potential cleavage site, Glu419-420Ala, composed of the same amino acids in the aggrecan interglobular domain, is not a major cleavage site. It remains unclear how ADAMTS-5 distinguishes between them and hydrolyzes the correct scissile bonds. This research introduces a bottom-up in silico approach to reveal the molecular mechanism by which ADAMTS-5 recognizes the cleavage site on aggrecan. It is hypothesized that the sequence in the vicinity assists ADAMTS-5 in positioning the cleavage site. Specific residues were found to serve as binding sites, helping aggrecan bind more stably and fit into the enzyme better. The findings provide insight into the substrate binding and recognition mechanism for cartilage ECM degradation from a brand new atomic-scale perspective, laying the foundation for prophylaxis and treatment of related joint diseases.
Collapse
Affiliation(s)
- Yen-Yu Lai
- National Taiwan University, Department of Civil Engineering, Taipei 10617, Taiwan
| | - Deng Li
- National Taiwan University, Department of Civil Engineering, Taipei 10617, Taiwan
| | - Shu-Wei Chang
- National Taiwan University, Department of Civil Engineering, Taipei 10617, Taiwan
- National Taiwan University, Department of Biomedical Engineering, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Ligand-Based and Docking-Based Virtual Screening of MDM2 Inhibitors as Potent Anticancer Agents. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3195957. [PMID: 34413896 PMCID: PMC8369186 DOI: 10.1155/2021/3195957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
A ligand-based and docking-based virtual screening was carried out to identify novel MDM2 inhibitors. A pharmacophore model with four features was used for virtual screening, followed by molecular docking. Seventeen compounds were selected for an in vitro MDM2 inhibition assay, and compounds AO-476/43250177, AG-690/37072075, AK-968/15254441, AO-022/43452814, and AF-399/25108021 showed promising MDM2 inhibition activities with Ki values of 9.5, 8.5, 23.4, 3.2, and 23.1 μM, respectively. Four compounds also showed antiproliferative activity, and compound AO-022/43452814 was the most potent hit with IC50 values of 19.35, 26.73, 12.63, and 24.14 μM against MCF7 (p53 +/+), MCF7 (p53 -/-), HCT116 (p53 +/+), and HCT116 (p53 -/-) cell lines, respectively. Compound AO-022/43452814 could be used as a scaffold for the development of anticancer agents targeting MDM2.
Collapse
|
12
|
Goossens JF, Goossens L, Bailly C. Hinokiflavone and Related C-O-C-Type Biflavonoids as Anti-cancer Compounds: Properties and Mechanism of Action. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:365-377. [PMID: 33534099 PMCID: PMC7856339 DOI: 10.1007/s13659-021-00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Biflavonoids are divided in two classes: C-C type compounds represented by the dimeric compound amentoflavone and C-O-C-type compounds typified by hinokiflavone (HNK) with an ether linkage between the two connected apigenin units. This later sub-group of bisflavonyl ethers includes HNK, ochnaflavone, delicaflavone and a few other dimeric compounds, found in a variety of plants, notably Selaginella species. A comprehensive review of the anticancer properties and mechanism of action of HNK is provided, to highlight the anti-proliferative and anti-metastatic activities of HNK and derivatives, and HNK-containing plant extracts. The anticancer effects rely on the capacity of HNK to interfere with the ERK1-2/p38/NFκB signaling pathway and the regulation of the expression of the matrix metalloproteinases MMP-2 and MMP-9 (with a potential direct binding to MMP-9). In addition, HNK was found to function as a potent modulator of pre-mRNA splicing, inhibiting the SUMO-specific protease SENP1. As such, HNK represents a rare SENP1 inhibitor of natural origin and a scaffold to design synthetic compounds. Oral formulations of HNK have been elaborated to enhance its solubility, to facilitate the compound delivery and to enhance its anticancer efficacy. The review shed light on the anticancer potential of C-O-C-type biflavonoids and specifically on the pharmacological profile of HNK. This compound deserves further attention as a regulator of pre-mRNA splicing, useful to treat cancers (in particular hepatocellular carcinoma) and other human pathologies.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | - Laurence Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | | |
Collapse
|
13
|
Identification of immucillin analogue natural compounds to inhibit Helicobacter pylori MTAN through high throughput virtual screening and molecular dynamics simulation. In Silico Pharmacol 2021; 9:22. [PMID: 33786292 DOI: 10.1007/s40203-021-00081-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/10/2021] [Indexed: 01/29/2023] Open
Abstract
Abstract One in every two humans is having Helicobacter pylori (H. pylori) in stomach causing gastric ulcer. Emergence of several drugs in eliminating H. pylori has paved way for emergence of multidrug resistance in them. This resistance is thriving and thereby necessitating the need of a potent drug. Identifying a potential target for medication is crucial. Bacterial 5'-methylthioadenosine/S-enosyl homocysteine nucleosidase (MTAN) is a multifunctional enzyme that controls seven essential metabolic pathways. It functions as a catalyst in the hydrolysis of the N-ribosidic bond of adenosine-based metabolites: S-adenosylhomocysteine (SAH), 5'-methylthioadenosine (MTA), 5'-deoxyadenosine (5'-DOA), and 6-amino-6-deoxyfutalosine. H. pylori unlike other bacteria and humans utilises an alternative pathway for menaquinone synthesis. It utilises Futosiline pathway for menaquinone synthesis which are obligatory component in electron transport pathway. Therefore, the enzymes functioning in this pathway represent them-self as a point of attack for new medications. We targeted MTAN protein of H. pylori to find out a potent natural hit to inhibit its growth. A comparative analysis was made with potent H. pylori MTAN (HpMTAN) known inhibitor, 5'-butylthio-DADMe-Immucillin-A (BuT-DADMe-ImmA) and ZINC natural subset database. Optimized ligands from the ZINC natural database were virtually screened using ligand based pharmacophore hypothesis to obtain the most efficient and potent inhibitors for HpMTAN. The screened leads were evaluated for their therapeutic likeness. Furthermore, the ligands that passed the test were subjected for MM-GBSA with MTAN to reveal the essential features that contributes selectivity. The results showed that Van der Waals contributions play a central role in determining the selectivity of MTAN. Molecular dynamics (MD) studies were carried out for 100 ns to assess the stability of ligands in the active site. MD analysis showed that binding of ZINC00490333 with MTAN is stable compared to reference inhibitor molecule BuT-DADMe-ImmA. Among the natural inhibitors screened after various docking procedures ZINC00490333 has highest binding score for HpMTAN (- 13.987). The ZINC inhibitor was successful in reproducing the BuT-DADMe-ImmA interactions with HpMTAN. Hence we suggest that ZINC00490333 compound may represent as a good lead in designing novel potent inhibitors of HpMTAN. This in silico approach indicates the potential of this molecule for advancing a further step in gastric ulcer treatment. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00081-2.
Collapse
|
14
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
15
|
Bioguided Fractionation of Local Plants against Matrix Metalloproteinase9 and Its Cytotoxicity against Breast Cancer Cell Models: In Silico and In Vitro Study. Molecules 2020; 25:molecules25204691. [PMID: 33066411 PMCID: PMC7587335 DOI: 10.3390/molecules25204691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase9 (MMP9) is known to be highly expressed during metastatic cancer where most known potential inhibitors failed in the clinical trials. This study aims to select local plants in our state, as anti-breast cancer agent with hemopexin-like domain of MMP9 (PEX9) as the selective protein target. In silico screening for PEX9 inhibitors was performed from our in house-natural compound database to identify the plants. The selected plants were extracted using methanol and then a step-by-step in vitro screening against MMP9 was performed from its crude extract, partitions until fractions using FRET-based assay. The partitions were obtained by performing liquid–liquid extraction on the methanol extract using n-hexane, ethylacetate, n-butanol, and water representing nonpolar to polar solvents. The fractions were made from the selected partition, which demonstrated the best inhibition percentage toward MMP9, using column chromatography. Of the 200 compounds screened, 20 compounds that scored the binding affinity −11.2 to −8.1 kcal/mol toward PEX9 were selected as top hits. The binding of these hits were thoroughly investigated and linked to the plants which they were reported to be isolated from. Six of the eight crude extracts demonstrated inhibition toward MMP9 with the IC50 24 to 823 µg/mL. The partitions (1 mg/mL) of Ageratum conyzoides aerial parts and Ixora coccinea leaves showed inhibition 94% and 96%, whereas their fractions showed IC50 43 and 116 µg/mL, respectively toward MMP9. Using MTT assay, the crude extract of Ageratum exhibited IC50 22 and 229 µg/mL against 4T1 and T47D cell proliferations, respectively with a high safety index concluding its potential anti-breast cancer from herbal.
Collapse
|
16
|
Discovery of novel aminopiperidinyl amide CXCR4 modulators through virtual screening and rational drug design. Eur J Med Chem 2020; 201:112479. [PMID: 32534343 DOI: 10.1016/j.ejmech.2020.112479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/29/2022]
Abstract
The C-X-C chemokine receptor type 4 (CXCR4) is a potential therapeutic target for HIV infection, metastatic cancer, and inflammatory autoimmune diseases. In this study, we screened the ZINC chemical database for novel CXCR4 modulators through a series of in silico guided processes. After evaluating the screened compounds for their binding affinities to CXCR4 and inhibitory activities against the chemoattractant CXCL12, we identified a hit compound (ZINC 72372983) showing 100 nM affinity and 69% chemotaxis inhibition at the same concentration (100 nM). To increase the potency of our hit compound, we explored the protein-ligand interactions at an atomic level using molecular dynamics simulation which enabled us to design and synthesize a novel compound (Z7R) with nanomolar affinity (IC50 = 1.25 nM) and improved chemotaxis inhibition (78.5%). Z7R displays promising anti-inflammatory activity (50%) in a mouse edema model by blocking CXCR4-expressed leukocytes, being supported by our immunohistochemistry study.
Collapse
|
17
|
Jamal S, Ahmed A, Moin ST. Evaluation of a sesquiterpene as possible drug lead against gelatinases via molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:1645-1660. [PMID: 32174257 DOI: 10.1080/07391102.2020.1743363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Malignant tumors can be targeted by accounting for their metastatic capabilities. Matrix metalloproteinases (MMPs) are the key players in tumor metastasis facilitating through their proteolytic activities of angiogenesis and extracellular matrix components (ECM) degradation. MMP-2 and MMP-9 being the members of a distinguished class of MMPs more commonly known as gelatinases are the prominent enzymes which are involved in different cancer progression stages. Targeting these isoforms specifically has always been a challenging task due to highly similar structural and functional features among the other members of MMPs with well preserve active sites containing catalytic zinc atom that was the only reason that none of the MMP inhibitor has been successfully marketed for the tumor pathology up till now. Therefore, non-competitive inhibitors with different structural attributed are needed to be evaluated at the molecular level for further experiments. The present study deals with the application of molecular dynamics simulation for the investigation of an alternative pathway for the inhibition of MMP-2 and MMP-9 by a sesquiterpene isolated from Polygonum barbatum which demonstrates the characteristics binding to the S1' subsite of the enzymes followed by in vitro gene expression studies. The simulation results provide information on the possible binding profile producing inhibitory effects imposed by the inhibitor to these enzymes by acquiring different structural and dynamical features. Moreover, thermodynamic quantities based on the computationally intensive thermodynamic integration approach were also obtained in terms of inhibitor binding affinity computed for the inhibitor against MMP-2 and MMP-9 that completely augmented the experimental gene expression study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sehrish Jamal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
18
|
Chen Y, Tian Y, Gao Y, Wu F, Luo X, Ju X, Liu G. In silico Design of Novel HIV-1 NNRTIs Based on Combined Modeling Studies of Dihydrofuro[3,4-d]pyrimidines. Front Chem 2020; 8:164. [PMID: 32266208 PMCID: PMC7105726 DOI: 10.3389/fchem.2020.00164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
A novel series of dihydrofuro[3,4-d]pyrimidine (DHPY) analogs have recently been recognized as promising HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) with potent antiviral activity. To better understand the pharmacological essentiality of these DHPYs and design novel NNRTI leads, in this work, a systematic in silico study was performed on 52 DHPYs using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, virtual screening, absorption-distribution-metabolism-excretion (ADME) prediction, and molecular dynamics (MD) methods. The generated 3D-QSAR models exhibited satisfactory parameters of internal validation and well-externally predictive capacity, for instance, the q2, R2, andr pred 2 of the optimal comparative molecular similarity indices analysis model were 0.647, 0.970, and 0.751, respectively. The docking results indicated that residues Lys101, Tyr181, Tyr188, Trp229, and Phe227 played important roles for the DHPY binding. Nine lead compounds were obtained by the virtual screening based on the docking and pharmacophore model, and three new compounds with higher docking scores and better ADME properties were subsequently designed based on the screening and 3D-QSAR results. The MD simulation studies further demonstrated that the newly designed compounds could stably bind with the HIV-1 RT. These hit compounds were supposed to be novel potential anti-HIV-1 inhibitors, and these findings could provide significant information for designing and developing novel HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
19
|
Huang W, Liu C, Liu F, Liu Z, Lai G, Yi J. Hinokiflavone induces apoptosis and inhibits migration of breast cancer cells via EMT signalling pathway. Cell Biochem Funct 2020; 38:249-256. [PMID: 32107809 PMCID: PMC7318630 DOI: 10.1002/cbf.3443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Hinokiflavone is a natural product, isolated from Selaginella P. Beauv, Juniperus phoenicea and Rhus succedanea. Even though hinokiflavone was reported to possess cytotoxicity to many cancer cells, and has potential in cancer treatment, the anti‐proliferation and anti‐metastasis efficacy of hinokiflavone on human breast cancer cells has not a further research. In this study, we investigated the anti‐cancer activity of hinokiflavone in human breast cancer cells in vitro and in vivo. Hinokiflavone exhibited a time‐ and dose‐dependent manner apoptosis induction by upregulating expression of Bax and downregulating Bcl‐2 in breast cancer cells. Furthermore, hinokiflavone significantly inhibited the migration and invasion of breast cancer cells by impairing the process of epithelial‐to‐mesenchymal transition. In addition, the tumour growth was distinctly inhibited by treatment of hinokiflavone in a xenograft tumour mouse model of MDA‐MB‐231 cells. Immunohistochemical analysis of tumour sections showed that MMP‐2+ cells and Ki‐67+ cells were remarkably decreased in tumour tissues of mice after treatment of hinokiflavone, indicating that hinokiflavone inhibits not only proliferation but also metastasis of breast cancer cells. Our study suggested that hinokiflavone can be a potential drug to breast cancer. Significance of the study Hinokiflavone significantly inhibited proliferation and induced apoptosis in breast cancer cells. In addition, hinokiflavone remarkably inhibited migration and invasion of breast cancer cells via EMT signalling pathway. It is worth noting that hinokiflavone possesses anti‐tumour effect in tumour mouse xenograft model of breast cancer. Overall, our results indicated that hinokiflavone may be a potential anticancer drug for breast cancer treatment.
Collapse
Affiliation(s)
- Wenzhen Huang
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Chi Liu
- School of Medical & Life Sciences, Chengdu University of TCM, Chengdu, Sichuan, P.R. China
| | - Fengen Liu
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Zhiyong Liu
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Guie Lai
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Jian Yi
- Department of Vascular and Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|
20
|
Battle tactics against MMP-9; discovery of novel non-hydroxamate MMP-9 inhibitors endowed with PI3K/AKT signaling attenuation and caspase 3/7 activation via Ugi bis-amide synthesis. Eur J Med Chem 2019; 186:111875. [PMID: 31740054 DOI: 10.1016/j.ejmech.2019.111875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinases (MMPs) are major modulators of the tumor microenvironment. They participate in extracellular matrix turnover, tumor growth, angiogenesis and metastasis. Accordingly, MMPs inhibition seems to be ideal solution to control cancer. Many MMPs inhibitors have been introduced ranging from hydroxamate-based peptidomimetics to the next generation non-hydroxamate inhibitors. Among MMPs, MMP-9 is attractive druggable anticancer target. Studies showed that inhibiting AKT, the central signaling node of MMP-9 upregulation, provides additional MMP-9 blockade. Furthermore, caspase-dependent AKT cleavage leads to cell death. Herein, Ugi MCR was utilized as a rapid combinatorial approach to generate various decorated bis-amide scaffolds as dual MMP-9/AKT inhibitors endowed with caspase 3/7 activation potential. The target adducts were designed to mimic the thematic structural features of non-hydroxamate MMP inhibitors. p-Nitrophenyl isonitrile 1 was utilized as structure entry to Ugi products with some structural similarities to amide-based caspase 3/7 activators. Besides, various acids, amines and aldehydes were employed as Ugi educts to enrich the SAR data. All adducts were screened for cytotoxicity against normal fibroblasts and three cancer cell lines; MCF-7, NFS-60 and HepG-2 utilizing MTT assay. 8, 11 and 28 were more active and safer than doxorubicin with single-digit nM IC50 and promising selectivity. Mechanistically, they exhibited dual MMP-9/AKT inhibition at single-digit nM IC50 with excellent selectivity over MMP-1,-2 and -13, and induced >51% caspase 3/7 activation. Consequently, they induced >49% apoptosis as detected by flow cytometric analysis, and inhibited cell migration (metastasis) up to 97% in cancer cells. Docking simulations were nearly consistent with enzymatic evaluation, also declared possible binding modes and essential structure features of active compounds. In silico physicochemical properties, ligand efficiency and drug-likeness metrics were reasonable for all adducts. Interestingly, 8 and 28 can be considered as drug-like candidates.
Collapse
|
21
|
Adhipandito CF, Ludji DPKS, Aprilianto E, Jenie RI, Al-Najjar B, Hariono M. Matrix metalloproteinase9 as the protein target in anti-breast cancer drug discovery: an approach by targeting hemopexin domain. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2019. [DOI: 10.1186/s43094-019-0001-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
22
|
Zhou J, Zhao R, Ye T, Yang S, Li Y, Yang F, Wang G, Xie Y, Li Q. Antitumor activity in colorectal cancer induced by hinokiflavone. J Gastroenterol Hepatol 2019; 34:1571-1580. [PMID: 30575109 DOI: 10.1111/jgh.14581] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/29/2018] [Accepted: 12/15/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Colorectal cancer is one of the most common malignant disease worldwide with highly metastatic potential. Identification of effective therapeutic treatment overcoming such disease is an urgent need. Our study focuses on hinokiflavone as an antitumor agent against colorectal cancer. METHODS MTT assay, cell colony formation assay, Hoechst staining, flow cytometry, Western blot analysis, real-time polymerase chain reaction, and migration and invasion assay were performed to identify the effects of hinokiflavone on cell proliferation, apoptosis, and metastasis. CT26 tumor-bearing mice model was conducted to explore the antitumor activity of hinokiflavone in vivo. Immunohistochemistry staining was used to detect the protein expression of Ki-67, cleaved caspase-3, and MMP9 in treated tumors. Acute toxicity was evaluated by serological and hematological analyses, and drug side effect on organs was evaluated by hematoxylin and eosin staining. RESULTS Hinokiflavone reduced the proliferation, migration, and invasion and promoted the apoptosis in colorectal tumor cells in vitro. Treatment of hinokiflavone at a tolerable and safe dose (50 mg/kg) significantly suppressed tumor growth in mice bearing CT26 tumors by reducing tumor proliferation and metastasis and inducing apoptosis. Mechanically, treatment of hinokiflavone induced apoptosis by loss of mitochondrial transmembrane potential and increased reactive oxygen species generation. CONCLUSIONS Hinokiflavone suppressed colorectal tumor cell proliferation, induced apoptosis via the reactive oxygen species-mitochondria-mediated apoptotic pathway, and inhibited tumor cell migration and invasion. Antitumor activity of hinokiflavone was also validated in mice model without observed toxicity. Our findings suggested that the plant-derived hinokiflavone could be used as an antitumor agent against colorectal cancer.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.,West China Biomedical Big Data Center, Sichuan University, Chengdu, Sichuan Province, China
| | - Rongce Zhao
- Division of Liver Transplantation, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Shuping Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Yali Li
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Fangfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou Province, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.,West China Biomedical Big Data Center, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
Hu Y, Zhou L, Zhu X, Dai D, Bao Y, Qiu Y. Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors. J Biomol Struct Dyn 2018; 37:2703-2715. [PMID: 30052133 DOI: 10.1080/07391102.2018.1495576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wee1-like protein kinase (Wee1) is a tyrosine kinase that regulates the G2 checkpoint and prevents entry into mitosis in response to DNA damage. Based on a series of signaling pathways initiated by Wee1, Wee1 has been recognized as a potential target for cancer therapy. To discover potent Wee1 inhibitors with novel scaffolds, ligand-based pharmacophore model has been built based on 101 known Wee1 inhibitors. Then the best pharmacophore model, AADRRR.340, with good partial least square (PLS) statistics (R2 = 0.9212, Q2 = 0.7457), was selected and validated. The validated model was used as a three-dimensional (3D) search query for databases virtual screening. The filtered molecules were further analyzed and refined by Lipinski's rule of 5, multiple docking procedures (high throughput virtual screening (HTVS), standard precision (SP), genetic optimization for ligand docking (GOLD), extra precision (XP), and unique quantum polarized ligand docking (QPLD)); absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening; and the Prime/molecular mechanics generalized born surface area (MM-GBSA) method binding free energy calculations. Eight leads were identified as potential Wee1 inhibitors, and a 50 ns molecular dynamics (MD) simulation was carried out for top four inhibitors to predict the stability of ligand-protein complex. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) based on MD simulation and the energy contribution per residue to the binding energy were calculated. In the end, three hits with good stabilization and affinity to protein were identified. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yanqiu Hu
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Lu Zhou
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Xiaohong Zhu
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Duoqian Dai
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Yinfeng Bao
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| | - Yaping Qiu
- a College of Chemical Engineering , Sichuan University , Chengdu , China
| |
Collapse
|
24
|
Singh PK, Silakari O. Pharmacophore and molecular dynamics based activity profiling of natural products for kinases involved in lung cancer. J Mol Model 2018; 24:318. [PMID: 30343450 DOI: 10.1007/s00894-018-3849-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
To determine the kinase inhibitory potential of natural products that could be utilized in lung cancer therapy in the near future, a pharmacophore-based activity profiling protocol using parallel pharmacophore-based virtual screening of ZINC-a natural product database-was employed. The work presented here is based on the previously explored fact that pharmacophore-based parallel screening is a reliable in silico protocol to predict the possible biological activities of any compound, or any compound library, by screening it with a number of pharmacophore models. The present study involves ligand-based pharmacophore modeling of various kinases, including EGFR (T790 M), cMET, ErbB2, FGFR and ALK, which are well established targets of normal as well resistant lung cancer. The generated pharmacophore models were then utilized for parallel and cross screening. The profiled molecules for each target were then validated using molecular docking and molecular dynamic simulations. The results show that kinase inhibitory activity profiling of some natural product molecules was successfully achieved. Graphical abstract Pharmacophore and activity profiling of natural products for kinases involved in lung cancer.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
25
|
Abstract
Matrix metalloproteinases (MMPs) are structurally related endopeptidases. They are also known as metzincins due to their interaction with zinc ion of the conserved methionine (Met) at the active site. MMPs play an important role in physiological and signaling processes of wound healing, bone resorption and angiogenesis. The structure of MMPs consists of signal peptide, propeptide, catalytic domain, hinge region and hemopexin-like domain. MMP-9 shares high structural and functional similarities with MMP-2, therefore designing selective MMP-9 inhibitors (MMPIs) is challenging. The selectivity can be achieved by targeting S2 subsite of MMP-9 that is having difference with MMP-2. Further, targeting its exosite and protein disulfide isomerase may also provide selective MMPIs. The review highlights the molecular features and basis of MMP-9 enzyme action. The MMPIs reported in the recent years have also been included.
Collapse
|
26
|
Yang S, Zhang Y, Luo Y, Xu B, Yao Y, Deng Y, Yang F, Ye T, Wang G, Cheng Z, Zheng Y, Xie Y. Hinokiflavone induces apoptosis in melanoma cells through the ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion. Biomed Pharmacother 2018; 103:101-110. [PMID: 29635122 DOI: 10.1016/j.biopha.2018.02.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 02/05/2023] Open
Abstract
Melanoma, the highest degree of malignancy, is one of the most common skin tumors. However, there is no effective strategy to treat melanoma in current clinical practice. Therefore, it is urgent to find an efficient drug to overcome melanoma. Here, the in vitro anticancer effects of a natural product named hinokiflavone on three melanoma carcinoma cell lines (human melanoma A375 and CHL-1 cells, murine melanoma B16-F10 cells) and mechanisms of action were explored. The results of MTT assay revealed that hinokiflavone inhibited cell proliferation of these cell lines in a dose- and time-dependent manner. Interestingly, hinokiflavone showed low toxicity to normal liver cells. Flow cytometry assay and EdU incorporation assay indicated that hinokiflavone affected A375 and B16 cells survival by inducing apoptosis and blocking cell cycle progression at S phase in a concentration-dependent manner. Moreover, hinokiflavone enhanced the reactive oxygen species (ROS) and decreased the mitochondrial membrane potential obviously. Furthermore, hinokiflavone effectively impaired A375 cells migration and invasion, and down-regulated the expression of matrix metalloproteinase (MMP) MMP2 and MMP9. The above-mentioned results demonstrated that hinokiflavone could be a novel chemotherapeutic agent in melanoma treatment by inhibiting cell proliferation, inducing apoptosis and cell cycle arresting and blocking cell migration and invasion.
Collapse
Affiliation(s)
- Shuping Yang
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province 610064, PR China
| | - Yange Zhang
- Cosmetic Plastic and Burn Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Yi Luo
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province 610064, PR China
| | - Bocheng Xu
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province 610064, PR China
| | - Yuqin Yao
- Research Center for Occupational Respiratory Diseases, West China School of Public Health/No.4 West China Teaching Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Yuanle Deng
- Research Center for Occupational Respiratory Diseases, West China School of Public Health/No.4 West China Teaching Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Fangfang Yang
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province 610064, PR China
| | - Tinghong Ye
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province 610064, PR China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou Province 563003, PR China
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yu Zheng
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province 610064, PR China.
| | - Yongmei Xie
- Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province 610064, PR China.
| |
Collapse
|
27
|
Affiliation(s)
- Xun Li
- Department of Medicinal Chemistry, Key laboratory of Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, PR China
| |
Collapse
|
28
|
Pawellek A, Ryder U, Tammsalu T, King LJ, Kreinin H, Ly T, Hay RT, Hartley RC, Lamond AI. Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. eLife 2017; 6:27402. [PMID: 28884683 PMCID: PMC5619949 DOI: 10.7554/elife.27402] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
We have identified the plant biflavonoid hinokiflavone as an inhibitor of splicing in vitro and modulator of alternative splicing in cells. Chemical synthesis confirms hinokiflavone is the active molecule. Hinokiflavone inhibits splicing in vitro by blocking spliceosome assembly, preventing formation of the B complex. Cells treated with hinokiflavone show altered subnuclear organization specifically of splicing factors required for A complex formation, which relocalize together with SUMO1 and SUMO2 into enlarged nuclear speckles containing polyadenylated RNA. Hinokiflavone increases protein SUMOylation levels, both in in vitro splicing reactions and in cells. Hinokiflavone also inhibited a purified, E. coli expressed SUMO protease, SENP1, in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased in cells following hinokiflavone treatment, with the major targets including six proteins that are components of the U2 snRNP and required for A complex formation.
Collapse
Affiliation(s)
- Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ursula Ryder
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Triin Tammsalu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lewis J King
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Helmi Kreinin
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Tony Ly
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Richard C Hartley
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
29
|
Patel P, Parmar K, Vyas VK, Patel D, Das M. Combined in silico approaches for the identification of novel inhibitors of human islet amyloid polypeptide (hIAPP) fibrillation. J Mol Graph Model 2017; 77:295-310. [PMID: 28917147 DOI: 10.1016/j.jmgm.2017.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 12/31/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is a natively unfolded polypeptide hormone of glucose metabolism, which is co-secreted with insulin by the β-cells of the pancreas. In patients with type 2 diabetes, IAPP forms amyloid fibrils because of diabetes-associated β-cells dysfunction and increasing fibrillation, in turn, lead to failure of secretory function of β-cells. This provides a target for the discovery of small organic molecules against protein aggregation diseases. However, the binding mechanism of these molecules with monomers, oligomers and fibrils to inhibit fibrillation is still an open question. In this work, ligand and structure-based in silico approaches were used to identify novel fibrillation inhibitors and/or fibril binding compounds. The best pharmacophore model was used as a 3D search query for virtual screening of a compound database to identify novel molecules having the potential to be therapeutic agents against protein aggregation diseases. Docking and molecular dynamics simulation studies were used to explore the interaction pattern and mechanism of the identified novel small molecules with predicted hIAPP structure, its aggregation prone conformation and fibril forming segments. We show that catechins with galloyl group and molecules having two to three planar apolar rings bind to hIAPP structures and fibril forming segments with greater affinity. The differences in binding affinities of different compounds against several fibril forming segments of the peptide suggest that a mixture of active compounds may be required for treatment of aggregation diseases.
Collapse
Affiliation(s)
- Palak Patel
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Krupali Parmar
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Dhaval Patel
- Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382007, India
| | - Mili Das
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
30
|
Kalva S, Agrawal N, Skelton AA, Saleena LM. Identification of novel selective MMP-9 inhibitors as potential anti-metastatic lead using structure-based hierarchical virtual screening and molecular dynamics simulation. MOLECULAR BIOSYSTEMS 2017; 12:2519-31. [PMID: 27250644 DOI: 10.1039/c6mb00066e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MMP-9 is an attractive target for the development of new anticancer drugs. In the current study, pharmacophore modeling was employed using two highly active and selective gelatinase inhibitors obtained from two X-ray crystal structures (PDB IDs: and ) to identify novel selective MMP-9 inhibitors. The derived model was refined manually and also validated by the GH scoring method. The refined pharmacophore model, ADRR, was able to retrieve 86% of actives with a GH score of 0.774, indicating that the model was capable of retrieving the active MMP-9 inhibitors. ADRR was used to screen 2 838 166 unique structures. Hit filtration was carried out using a fitness score >1.5 and drug-likeness properties. Hierarchical clustering generates 33 clusters based on diversity. A total of 33 molecules were obtained and these molecules were taken for cross-docking studies with 5 subtype MMPs. Among 33 tested, 2 molecules, P10A-0000088030 (Lig-1) and P10A-0001383812 (Lig-2), were found to have the highest docking scores (-8.59 kcal mol(-1) and -8.27 kcal mol(-1)) towards MMP-9 compared with the other MMPs. Further MM-GBSA analysis was performed for two hits with 5 subtype MMPs to reveal the essential features that contribute to selectivity. The results showed that van der Waals contributions play a central role in determining the selectivity of MMP-9 inhibitors. Molecular dynamics studies were carried out for total time of 330 ns to assess the stability of ligands at the active site. MD analysis showed that binding of Lig-1 with MMP-9 is stable compared to that with Lig-2. Hence, we suggest the Lig-1 compound as a good lead in designing novel potent inhibitors of MMP-9.
Collapse
Affiliation(s)
- Sukesh Kalva
- Department of Pharmacy, University of Kwazulu Natal, Durban, South Africa
| | - Nikhil Agrawal
- Department of Pharmacy, University of Kwazulu Natal, Durban, South Africa
| | - Adam A Skelton
- Department of Pharmacy, University of Kwazulu Natal, Durban, South Africa
| | - Lilly M Saleena
- Department of Bioinformatics, School of Bioengineering, SRM University, Kancheepuram, Tamil nadu, India.
| |
Collapse
|
31
|
Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products. J Comput Aided Mol Des 2017. [PMID: 28623487 DOI: 10.1007/s10822-017-0028-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is an attractive target for cancer therapy. In this study, the pharmacophore model of MMP-9 inhibitors is built based on the experimental binding structures of multiple receptor-ligand complexes. It is found that the pharmacophore model consists of six chemical features, including two hydrogen bond acceptors, one hydrogen bond donor, one ring aromatic regions, and two hydrophobic (HY) features. Among them, the two HY features are especially important because they can enter the S1' pocket of MMP-9 which determines the selectivity of MMP-9 inhibitors. The reliability of pharmacophore model is validated based on the two different decoy sets and relevant experimental data. The virtual screening, combining pharmacophore model with molecular docking, is performed to identify the selective MMP-9 inhibitors from a database of natural products. The four novel MMP-9 inhibitors of natural products, NP-000686, NP-001752, NP-014331, and NP-015905, are found; one of them, NP-000686, is used to perform the experiment of in vitro bioassay inhibiting MMP-9, and the IC50 value was estimated to be only 13.4 µM, showing the strongly inhibitory activity of NP-000686 against MMP-9, which suggests that our screening results should be reliable. The binding modes of screened inhibitors with MMP-9 active sites were discussed. In addition, the ADMET properties and physicochemical properties of screened four compounds were assessed. The found MMP-9 inhibitors of natural products could serve as the lead compounds for designing the new MMP-9 inhibitors by carrying out structural modifications in the future.
Collapse
|
32
|
Diniz C, Suliburska J, Ferreira IMPLVO. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols. Mol Nutr Food Res 2017; 61. [PMID: 27981783 DOI: 10.1002/mnfr.201600912] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals.
Collapse
Affiliation(s)
- Carmen Diniz
- LAQV/REQUIMTE-Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Poznan, Poland
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE-Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
33
|
Sindhu T, Srinivasan P. Pharmacophore modeling, comprehensive 3D-QSAR, and binding mode analysis of TGR5 agonists. J Recept Signal Transduct Res 2017; 37:109-123. [DOI: 10.1080/10799893.2016.1189564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Thangaraj Sindhu
- Molecular Biology Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| | - Pappu Srinivasan
- Molecular Biology Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| |
Collapse
|
34
|
Ntie-Kang F, Simoben CV, Karaman B, Ngwa VF, Judson PN, Sippl W, Mbaze LM. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2137-54. [PMID: 27445461 PMCID: PMC4938243 DOI: 10.2147/dddt.s108118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner–Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa’s expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; Department of Chemistry, University of Buea, Buea, Cameroon
| | - Conrad Veranso Simoben
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; Department of Chemistry, University of Buea, Buea, Cameroon
| | - Berin Karaman
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Valery Fuh Ngwa
- Interuniversity Institute For Biostatistics and Statistical Bioinformatics (I-BioStat), University of Hasselt, Hasselt, Belgium
| | | | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Luc Meva'a Mbaze
- Department of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon
| |
Collapse
|
35
|
Sharma MK, Murumkar PR, Kuang G, Tang Y, Yadav MR. Identifying the structural features and diversifying the chemical domain of peripherally acting CB1 receptor antagonists using molecular modeling techniques. RSC Adv 2016. [DOI: 10.1039/c5ra20612j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A four featured pharmacophore and predictive 3D-QSAR models were developed which were used for virtual screening of the Asinex database to get chemically diverse hits of peripherally active CB1 receptor antagonists.
Collapse
Affiliation(s)
| | | | - Guanglin Kuang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai–200237
- China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai–200237
- China
| | - Mange Ram Yadav
- Faculty of Pharmacy
- The M. S. University of Baroda
- Vadodara–390 001
- India
| |
Collapse
|
36
|
Singh T, Adekoya OA, Jayaram B. Understanding the binding of inhibitors of matrix metalloproteinases by molecular docking, quantum mechanical calculations, molecular dynamics simulations, and a MMGBSA/MMBappl study. MOLECULAR BIOSYSTEMS 2015; 11:1041-51. [PMID: 25611160 DOI: 10.1039/c5mb00003c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) consist of a class of proteins required for normal tissue function. Their over expression is associated with many disease states and hence the interest in MMPs as drug targets. Almost all MMP inhibitors have been reported to fail in clinical trials due to lack of specificity. Zinc in the binding site of metalloproteinases performs essential biological functions and contributes to the binding affinity of inhibitors. The multiple possibilities for coordination geometry and the consequent charge on the zinc atom indicate that parameters developed are not directly transferable across different families of zinc metalloproteinases with different zinc coordination geometries, active sites and ligand architectures which makes it difficult to evaluate metal-ligand interactions. In order to assist in drug design endeavors for MMP targets, a computationally tractable pathway is presented, comprising docking of small molecule inhibitors against the target MMPs, derivation of quantum mechanical charges on the zinc ion in the active site and the amino acids coordinating with zinc including the inhibitor molecule, molecular dynamics simulations on the docked ligand-MMP complexes and evaluation of binding affinities of the ligand-MMP complexes via an accurate scoring function for zinc containing metalloprotein-ligand complexes. The above pathway was applied to study the interaction of inhibitor Batimastat with MMPs, which resulted in a high correlation between the predicted binding free energies and experiment, suggesting the potential applicability of the pathway. We then proceeded to formulate a few design principles which identify the key protein residues for generating molecules with high affinity and specificity against each of the MMPs.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.
| | | | | |
Collapse
|
37
|
Sivaramakrishnan V, Ilamathi M, Ghosh KS, Sathish S, Gowda TV, Vishwanath BS, Rangappa KS, Dhananjaya BL. Virtual analysis of structurally diverse synthetic analogs as inhibitors of snake venom secretory phospholipase A2. J Mol Recognit 2015. [PMID: 26218369 DOI: 10.1002/jmr.2492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Due to the toxic pathophysiological role of snake venom phospholipase A2 (PLA2 ), its compelling limitations to anti-venom therapy in humans and the need for alternative therapy foster considerable pharmacological interest towards search of PLA2 specific inhibitors. In this study, an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on VRV-PL-V (Vipera russellii venom phospholipase A2 fraction-V) belonging to Group II-B secretory PLA2 from Daboia russelli pulchella is carried out in order to study the structure-based inhibitor design. The accuracy of the model was validated using multiple computational approaches. The molecular docking study of this protein was undertaken using different classes of experimentally proven, structurally diverse synthetic inhibitors of secretory PLA2 whose selection is based on IC50 value that ranges from 25 μM to 100 μM. Estimation of protein-ligand contacts by docking analysis sheds light on the importance of His 47 and Asp 48 within the VRV-PL-V binding pocket as key residue for hydrogen bond interaction with ligands. Our virtual analysis revealed that compounds with different scaffold binds to the same active site region. ADME analysis was also further performed to filter and identify the best potential specific inhibitor against VRV-PL-V. Additionally, the e-pharmacophore was generated for the best potential specific inhibitor against VRV-PL-V and reported here. The present study should therefore play a guiding role in the experimental design of VRV-PL-V inhibitors that may provide better therapeutic molecular models for PLA2 recognition and anti-ophidian activity.
Collapse
Affiliation(s)
- V Sivaramakrishnan
- Cardiomyocyte Toxicity and Oncology Research Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401, India
| | - M Ilamathi
- Cardiomyocyte Toxicity and Oncology Research Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401, India
| | - K S Ghosh
- Department of Chemistry, National Institute of Technology (NIT), Hamirpur, 177 005, India
| | - S Sathish
- Department of Studies in Biochemistry, University of Mysore, Mysore, 570006, India
| | - T V Gowda
- Department of Studies in Biochemistry, University of Mysore, Mysore, 570006, India
| | - B S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Mysore, 570006, India
| | - K S Rangappa
- Department of Chemistry, University of Mysore, Mysore, 570006, India
| | - B L Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain University, Jakkasandra post, Ramanagara, 562112, India
| |
Collapse
|
38
|
Raj KK, Ganesh Kumar V, Leela Madhuri C, Mathi P, Durga Lakshmi R, Ravi M, Sri Ramudu B, Venkata Rao SV, Ramachandran D. Designing of potential inhibitors against Staphylococcus aureus sortase A: Combined analogue and structure based approach with in vitro validation. J Mol Graph Model 2015; 60:89-97. [PMID: 26119984 DOI: 10.1016/j.jmgm.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus sortase A is an attractive target of Gram-positive bacteria that plays a crucial role in anchoring of surface proteins to peptidoglycan present in bacterial cell wall. Inhibiting sortase A is an elementary and essential effort in preventing the pathogenesis. In this context, in silico virtual screening of in-house database was performed using ligand based pharmacophore model as a filter. The developed pharmacophore model AAHR 11 consists of two acceptors, one hydrophobic and one ring aromatic feature. Top ranked molecule KKR1 was docked into the active site of the target. After profound analysis, it was analyzed and optimized based on the observations from its binding pose orientation. Upgraded version of KKR1 was KKR2 and has improved docking score, binding interactions and best fit in the binding pocket. KKR1 along with KKR2 were further validated using 100 ns molecular dynamic studies. Both KKR1 and KKR2 contain Indole-thiazolidine moiety and were synthesized. The disk diffusion assay has good initial results (ZI of KKR1, KKR2 were 24, 38 mm at 10 μg/mL and ZI of Ampicillin was 22 at 10 μg/mL) and calculated MICs of the molecules (KKR1 5.56±0.28 μg/mL, KKR2 1.32±0.12 μg/mL, Ampicillin 8±1.1 μg/mL) were in good agreement with standard drug Ampicillin. KKR1 has shown IC50 of 1.23±0.14 μM whereas the optimized lead molecule KKR2 show IC50 of 0.008±0.07 μM. Results from in silico were validated by in vitro studies and proved that indole-thiazolidine molecules would be useful for future development as lead molecules against S. aureus sortase A.
Collapse
Affiliation(s)
- K Kranthi Raj
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India
| | - Veeramachaneni Ganesh Kumar
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Chalasani Leela Madhuri
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Pardhasaradhi Mathi
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Ravulapati Durga Lakshmi
- Department of Electronics and Computer Engineering, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - M Ravi
- Bioinformatics Division, Environmental Microbiology Lab, Department of Botany, Osmania University, Hyderabad 500 007, India
| | - B Sri Ramudu
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India
| | - S V Venkata Rao
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, Nuzvid 521 201 AP, India
| | - D Ramachandran
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India.
| |
Collapse
|
39
|
Poly(ADP-ribose) polymerase (PARP)-based pharmacophore model development and its application in designing antitumor inhibitors. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
In silico design of human IMPDH inhibitors using pharmacophore mapping and molecular docking approaches. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:418767. [PMID: 25784957 PMCID: PMC4345060 DOI: 10.1155/2015/418767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 12/20/2022]
Abstract
Inosine 5′-monophosphate dehydrogenase (IMPDH) is one of the crucial enzymes in the de novo biosynthesis of guanosine nucleotides. It has served as an attractive target in immunosuppressive, anticancer, antiviral, and antiparasitic therapeutic strategies. In this study, pharmacophore mapping and molecular docking approaches were employed to discover novel Homo sapiens IMPDH (hIMPDH) inhibitors. The Güner-Henry (GH) scoring method was used to evaluate the quality of generated pharmacophore hypotheses. One of the generated pharmacophore hypotheses was found to possess a GH score of 0.67. Ten potential compounds were selected from the ZINC database using a pharmacophore mapping approach and docked into the IMPDH active site. We find two hits (i.e., ZINC02090792 and ZINC00048033) that match well the optimal pharmacophore features used in this investigation, and it is found that they form interactions with key residues of IMPDH. We propose that these two hits are lead compounds for the development of novel hIMPDH inhibitors.
Collapse
|
41
|
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19:11679-721. [PMID: 25102117 PMCID: PMC6271439 DOI: 10.3390/molecules190811679] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Collapse
Affiliation(s)
- Tawona N Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
42
|
Muvva C, Singam ERA, Raman SS, Subramanian V. Structure-based virtual screening of novel, high-affinity BRD4 inhibitors. MOLECULAR BIOSYSTEMS 2014; 10:2384-97. [DOI: 10.1039/c4mb00243a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|