1
|
Hoffmann M, Hennighausen L. Spotlight on amino acid changing mutations in the JAK-STAT pathway: from disease-specific mutation to general mutation databases. Sci Rep 2025; 15:6202. [PMID: 39979591 PMCID: PMC11842829 DOI: 10.1038/s41598-025-90788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
The JAK-STAT pathway is central to cytokine signaling and controls normal physiology and disease. Aberrant activation via mutations that change amino acids in proteins of the pathway can result in diseases. While disease-centric databases like COSMIC catalog mutations in cancer, their prevalence in healthy populations remains underexplored. We systematically studied such mutations in the JAK-STAT genes by comparing COSMIC and the population-focused All of Us database. Our analysis revealed frequent mutations in all JAK and STAT domains, particularly among white females. We further identified three categories: Mutations uniquely found in All of Us that were associated with cancer in the literature but could not be found in COSMIC, underscoring COSMIC's limitations. Mutations unique to COSMIC underline their potential as drivers of cancer due to their absence in the general population. Mutations present in both databases, e.g., JAK2Val617Phe/V617F - widely recognized as a cancer driver in hematopoietic cells, but without disease associations in All of Us, raising the possibility that combinatorial SNPs might be responsible for disease development. These findings illustrate the complementarity of both databases for understanding mutation impacts and underscore the need for multi-mutation analyses to uncover genetic factors underlying complex diseases and advance personalized medicine.
Collapse
Affiliation(s)
- Markus Hoffmann
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
Semenzato G, Calabretto G, Barilà G, Gasparini VR, Teramo A, Zambello R. Not all LGL leukemias are created equal. Blood Rev 2023; 60:101058. [PMID: 36870881 DOI: 10.1016/j.blre.2023.101058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Large Granular Lymphocyte (LGL) Leukemia is a rare, heterogeneous even more that once thought, chronic lymphoproliferative disorder characterized by the clonal expansion of T- or NK-LGLs that requires appropriate immunophenotypic and molecular characterization. As in many other hematological conditions, genomic features are taking research efforts one step further and are also becoming instrumental in refining discrete subsets of LGL disorders. In particular, STAT3 and STAT5B mutations may be harbored in leukemic cells and their presence has been linked to diagnosis of LGL disorders. On clinical grounds, a correlation has been established in CD8+ T-LGLL patients between STAT3 mutations and clinical features, in particular neutropenia that favors the onset of severe infections. Revisiting biological aspects, clinical features as well as current and predictable emerging treatments of these disorders, we will herein discuss why appropriate dissection of different disease variants is needed to better manage patients with LGL disorders.
Collapse
Affiliation(s)
- Gianpietro Semenzato
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Giulia Calabretto
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Teramo
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| | - Renato Zambello
- University of Padova, Department of Medicine, Hematology Unit, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
3
|
[Clinical characteristics of T-cell large granular lymphoblastic leukemia with STAT3 gene mutation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:495-501. [PMID: 34384156 PMCID: PMC8295617 DOI: 10.3760/cma.j.issn.0253-2727.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
目的 探讨携带STAT3基因突变的T细胞大颗粒淋巴细胞白血病(T-LGLL)患者的临床特征,为此类患者的临床管理提供参考。 方法 回顾性分析2009至2019年就诊于江苏省人民医院的T-LGLL患者的临床资料,比较STAT3突变患者与未突变患者的基线临床数据、治疗反应及生存结局。 结果 共纳入80例患者,STAT3未突变组66例,STAT3突变组14例(17.5%),其中Y640F突变发生频率最高(42.9%)。STAT3突变组与STAT3未突变组相比,HGB减低(67.5 g/L对82.5 g/L,P=0.018),中性粒细胞计数减少(0.665×109/L对1.465×109/L,P<0.001),乳酸脱氢酶升高(229 U/L对198 U/L,P=0.041),铁蛋白升高(402.5 g/L对236.0 g/L,P=0.029),TCR Vβ亚家族表达率升高(89.2%对65.4%,P=0.014),具备治疗指征患者比例升高(100%对74%,P=0.033)。STAT3突变组与未突变组一线免疫抑制治疗的完全缓解率分别为38.5%和32.7%,差异无统计学意义(P=0.748)。STAT3突变组与未突变组一线免疫抑制治疗的总有效率分别为69.2%和69.4%,差异无统计学意义(P=1.000)。中位随访63(2~121)个月,两组总生存时间(均未达到)的差异无统计学意义(P=0.170)。 结论 STAT3基因突变的T-LGLL患者可能有更高的肿瘤负荷和治疗需求,一线应用免疫抑制剂疗效良好。STAT3基因突变对T-LGLL患者预后的意义尚需进一步验证。
Collapse
|
4
|
Muñoz-García N, Jara-Acevedo M, Caldas C, Bárcena P, López A, Puig N, Alcoceba M, Fernández P, Villamor N, Flores-Montero JA, Gómez K, Lemes MA, Hernández JC, Álvarez-Twose I, Guerra JL, González M, Orfao A, Almeida J. STAT3 and STAT5B Mutations in T/NK-Cell Chronic Lymphoproliferative Disorders of Large Granular Lymphocytes (LGL): Association with Disease Features. Cancers (Basel) 2020; 12:cancers12123508. [PMID: 33255665 PMCID: PMC7760806 DOI: 10.3390/cancers12123508] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary STAT3 and STAT5B mutations have been identified in a subset of T and NK large granular lymphocytic leukemia (T/NK-LGLL). The aim of our study was to evaluate the frequency and type of these mutations in all different subtypes of T/NK-LGL expansions (n = 100 patients), as well as to analyze its association with biological and clinical features of the disease. We show for the first time that STAT3/5B mutations were present in all different T/NK-cell LGLL categories here studied; further, STAT3 mutations were associated with overall reduced counts of almost all normal residual populations of immune cells in blood, together with a shorter time-to-therapy vs. wild type T/NK-LGLL. These findings contribute to support the utility of the STAT3 mutation analysis for diagnostic and prognostic purposes in LGLL. Abstract STAT3 and STAT5B (STAT3/STAT5B) mutations are the most common mutations in T-cell large granular lymphocytic leukemia (T-LGLL) and chronic lymphoproliferative disorders of NK cells (CLPD-NK), but their clinical impact remains unknown. We investigated the frequency and type of STAT3/STAT5B mutations in FACS-sorted populations of expanded T/NK-LGL from 100 (82 clonal; 6 oligoclonal; 12 polyclonal) patients, and its relationship with disease features. Seventeen non-LGL T-CLPD patients and 628 age-matched healthy donors were analyzed as controls. STAT3 (n = 30) and STAT5B (n = 1) mutations were detected in 28/82 clonal T/NK-LGLL patients (34%), while absent (0/18, 0%) among oligoclonal/polyclonal LGL-lymphocytosis. Mutations were found across all diagnostic subgroups: TCD8+-LGLL, 36%; CLPD-NK, 38%; TCD4+-LGLL, 7%; Tαβ+DP-LGLL, 100%; Tαβ+DN-LGLL, 50%; Tγδ+-LGLL, 44%. STAT3-mutated T-LGLL/CLPD-NK showed overall reduced (p < 0.05) blood counts of most normal leukocyte subsets, with a higher rate (vs. nonmutated LGLL) of neutropenia (p = 0.04), severe neutropenia (p = 0.02), and cases requiring treatment (p = 0.0001), together with a shorter time-to-therapy (p = 0.0001), particularly in non-Y640F STAT3-mutated patients. These findings confirm and extend on previous observations about the high prevalence of STAT3 mutations across different subtypes of LGLL, and its association with a more marked decrease of all major blood-cell subsets and a shortened time-to-therapy.
Collapse
Affiliation(s)
- Noemí Muñoz-García
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - María Jara-Acevedo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Carolina Caldas
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Paloma Bárcena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Antonio López
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Noemí Puig
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Miguel Alcoceba
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
| | - Paula Fernández
- Institut für Labormedizin, Kantonsspital, 5001 Aarau, Switzerland;
| | - Neus Villamor
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Department of Pathology, Hematopathology Unit, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - Juan A. Flores-Montero
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Karoll Gómez
- Hematology Service, Juan Ramón Jiménez Hospital, 21005 Huelva, Spain;
| | - María Angelina Lemes
- Hematology Service, Dr. Negrín Hospital, 35010 Las Palmas de Gran Canaria, Spain;
| | | | - Iván Álvarez-Twose
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, 45071 Toledo, Spain
| | - Jose Luis Guerra
- Hematology Service, Virgen de la Luz Hospital, 16002 Cuenca, Spain;
| | - Marcos González
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Hematology Service, University Hospital of Salamanca, Translational and Clinical Research Program, Centro de Investigación del Cáncer/IBMCC and IBSAL, 37007 Salamanca, Spain
- Department of Nursery and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC—University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (N.M.-G.); (M.J.-A.); (C.C.); (P.B.); (A.L.); (J.A.F.-M.); (A.O.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain; (N.P.); (M.A.); (N.V.); (I.Á.-T.); (M.G.)
- Correspondence: ; Tel.: +34-923-294-811 (ext. 5816)
| |
Collapse
|
5
|
Teramo A, Barilà G, Calabretto G, Vicenzetto C, Gasparini VR, Semenzato G, Zambello R. Insights Into Genetic Landscape of Large Granular Lymphocyte Leukemia. Front Oncol 2020; 10:152. [PMID: 32133291 PMCID: PMC7040228 DOI: 10.3389/fonc.2020.00152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 01/29/2023] Open
Abstract
Large granular lymphocyte leukemia (LGLL) is a chronic proliferation of clonal cytotoxic lymphocytes, usually presenting with cytopenias and yet lacking a specific therapy. The disease is heterogeneous, including different subsets of patients distinguished by LGL immunophenotype (CD8+ Tαβ, CD4+ Tαβ, Tγδ, NK) and the clinical course of the disease (indolent/symptomatic/aggressive). Even if the etiology of LGLL remains elusive, evidence is accumulating on the genetic landscape driving and/or sustaining chronic LGL proliferations. The most common gain-of-function mutations identified in LGLL patients are on STAT3 and STAT5b genes, which have been recently recognized as clonal markers and were included in the 2017 WHO classification of the disease. A significant correlation between STAT3 mutations and symptomatic disease has been highlighted. At variance, STAT5b mutations could have a different clinical impact based on the immunophenotype of the mutated clone. In fact, they are regarded as the signature of an aggressive clinical course with a poor prognosis in CD8+ T-LGLL and aggressive NK cell leukemia, while they are devoid of negative prognostic significance in CD4+ T-LGLL and Tγδ LGLL. Knowing the specific distribution of STAT mutations helps identify the discrete mechanisms sustaining LGL proliferations in the corresponding disease subsets. Some patients equipped with wild type STAT genes are characterized by less frequent mutations in different genes, suggesting that other pathogenetic mechanisms are likely to be involved. In this review, we discuss how the LGLL mutational pattern allows a more precise and detailed tumor stratification, suggesting new parameters for better management of the disease and hopefully paving the way for a targeted clinical approach.
Collapse
Affiliation(s)
- Antonella Teramo
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giulia Calabretto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cristina Vicenzetto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Vanessa Rebecca Gasparini
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
6
|
Shanmugam V, Kim AS. Lymphomas. Genomic Med 2020. [DOI: 10.1007/978-3-030-22922-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
STAT3 Activation and Oncogenesis in Lymphoma. Cancers (Basel) 2019; 12:cancers12010019. [PMID: 31861597 PMCID: PMC7016717 DOI: 10.3390/cancers12010019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an important and the most studied transcription factor in the Janus kinase (JAK)/STAT signaling pathway. STAT3 mediates the expression of various genes that play a critical role in many cellular and biological processes, such as cell proliferation, survival, differentiation, migration, angiogenesis, and inflammation. STAT3 and associated JAKs are activated and tightly regulated by a variety of cytokines and growth factors and their receptors in normal immune responses. However, abnormal expression of STAT3 leads to its constitutive activation, which promotes malignant transformation and tumor progression through oncogenic gene expression in numerous human cancers. Human lymphoma is a heterogeneous malignancy of T and B lymphocytes. Constitutive signaling by STAT3 is an oncogenic driver in several types of B-cell lymphoma and most of T-cell lymphomas. Aberrant STAT3 activation can also induce inappropriate expression of genes involved in tumor immune evasion such as PD-L1. In this review, we focus on the oncogenic role of STAT3 in human lymphoma and highlight potential therapeutic intervention by targeting JAK/STAT3 signaling.
Collapse
|
8
|
de Araujo ED, Orlova A, Neubauer HA, Bajusz D, Seo HS, Dhe-Paganon S, Keserű GM, Moriggl R, Gunning PT. Structural Implications of STAT3 and STAT5 SH2 Domain Mutations. Cancers (Basel) 2019; 11:E1757. [PMID: 31717342 PMCID: PMC6895964 DOI: 10.3390/cancers11111757] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Src Homology 2 (SH2) domains arose within metazoan signaling pathways and are involved in protein regulation of multiple pleiotropic cascades. In signal transducer and activator of transcription (STAT) proteins, SH2 domain interactions are critical for molecular activation and nuclear accumulation of phosphorylated STAT dimers to drive transcription. Sequencing analysis of patient samples has revealed the SH2 domain as a hotspot in the mutational landscape of STAT proteins although the functional impact for the vast majority of these mutations remains poorly characterized. Despite several well resolved structures for SH2 domain-containing proteins, structural data regarding the distinctive STAT-type SH2 domain is limited. Here, we review the unique features of STAT-type SH2 domains in the context of all currently reported STAT3 and STAT5 SH2 domain clinical mutations. The genetic volatility of specific regions in the SH2 domain can result in either activating or deactivating mutations at the same site in the domain, underscoring the delicate evolutionary balance of wild type STAT structural motifs in maintaining precise levels of cellular activity. Understanding the molecular and biophysical impact of these disease-associated mutations can uncover convergent mechanisms of action for mutations localized within the STAT SH2 domain to facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elvin D. de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Patrick T. Gunning
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
9
|
Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, Guo Q, Sun L, Yin X, Zhang Y, Li X. Roles of STAT3 in leukemia (Review). Int J Oncol 2018; 53:7-20. [PMID: 29749432 DOI: 10.3892/ijo.2018.4386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Leukemia is a type of hematopoietic malignancy, and the incidence rate in the United States and European Union increases by an average of 0.6 to 0.7% annually. The incidence rate in China is approximately 5.17/100,000 individuals, and the mortality rate is 3.94/100,000 individuals. Leukemia is the most common tumor affecting children and adults under 35 years of age, and is one of the major diseases leading to the death of adolescents. Signal transducer and activator of transcription 3 (STAT3) is a vital regulatory factor of signal transduction and transcriptional activation, and once activated, the phosphorylated form of STAT3 (p-STAT3) is transferred into the nucleus to regulate the transcription of target genes, and plays important roles in cell proliferation, differentiation, apoptosis and other physiological processes. An increasing number of studies have confirmed that the abnormal activation of STAT3 is involved in the development of tumors. In this review, the roles of STAT3 in the pathogenesis, diagnosis, treatment and prognosis of leukemia are discussed in the aspects of cell proliferation, differentiation and apoptosis, with the aim to further clarify the roles of STAT3 in leukemia, and shed light into possible novel targets and strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yin Shi
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xintao Qu
- Department of Bone and Joint Surgery Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xunqiang Yin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yunhong Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
10
|
Systematic STAT3 sequencing in patients with unexplained cytopenias identifies unsuspected large granular lymphocytic leukemia. Blood Adv 2017; 1:1786-1789. [PMID: 29296824 DOI: 10.1182/bloodadvances.2017011197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023] Open
|
11
|
Chandrasekaran P, Zimmerman O, Paulson M, Sampaio EP, Freeman AF, Sowerwine KJ, Hurt D, Alcántara-Montiel JC, Hsu AP, Holland SM. Distinct mutations at the same positions of STAT3 cause either loss or gain of function. J Allergy Clin Immunol 2016; 138:1222-1224.e2. [PMID: 27345172 PMCID: PMC5056811 DOI: 10.1016/j.jaci.2016.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Prabha Chandrasekaran
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Md
| | - Ofer Zimmerman
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michelle Paulson
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elizabeth P Sampaio
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kathryn J Sowerwine
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Darell Hurt
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
12
|
Pencik J, Pham HTT, Schmoellerl J, Javaheri T, Schlederer M, Culig Z, Merkel O, Moriggl R, Grebien F, Kenner L. JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine 2016; 87:26-36. [PMID: 27349799 DOI: 10.1016/j.cyto.2016.06.017] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
In the past decades, studies of the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling have uncovered highly conserved programs linking cytokine signaling to the regulation of essential cellular mechanisms such as proliferation, invasion, survival, inflammation and immunity. Inhibitors of the JAK/STAT pathway are used for treatment of autoimmune diseases, such as rheumatoid arthritis or psoriasis. Aberrant JAK/STAT signaling has been identified to contribute to cancer progression and metastatic development. Targeting of JAK/STAT pathway is currently one of the most promising therapeutic strategies in prostate cancer (PCa), hematopoietic malignancies and sarcomas. Notably, newly identified regulators of JAK/STAT signaling, the non-coding RNAs transcripts and their role as important targets and potential clinical biomarkers are highlighted in this review. In addition to the established role of the JAK/STAT signaling pathway in traditional cytokine signaling the non-coding RNAs add yet another layer of hidden regulation and function. Understanding the crosstalk of non-coding RNA with JAK/STAT signaling in cancer is of critical importance and may result in better patient stratification not only in terms of prognosis but also in the context of therapy.
Collapse
Affiliation(s)
- Jan Pencik
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ha Thi Thanh Pham
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Johannes Schmoellerl
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Michaela Schlederer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Department for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Department for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
13
|
Greenberg SA, Pinkus JL, Amato AA, Kristensen T, Dorfman DM. Association of inclusion body myositis with T cell large granular lymphocytic leukaemia. Brain 2016; 139:1348-60. [DOI: 10.1093/brain/aww024] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/07/2016] [Indexed: 01/02/2023] Open
|
14
|
Yu Y, Song P, Mei J, An Z, Wang L, Zhou X, Li F, Tang Y, Zhai Y. [CD4⁻ CD8⁻ TCRγδ⁺T cell large granular lymphocyte leukemia associated with β- thalassemia minor: one case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:951-3. [PMID: 26632470 PMCID: PMC7342424 DOI: 10.3760/cma.j.issn.0253-2727.2015.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Yaping Yu
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| | - Ping Song
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| | - Jiangang Mei
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| | - Zhiming An
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| | - Liping Wang
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| | - Xiaogang Zhou
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| | - Feng Li
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| | - Yumei Tang
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| | - Yongping Zhai
- Department of Hematology, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing 210002, China
| |
Collapse
|
15
|
Vogel TP, Milner JD, Cooper MA. The Ying and Yang of STAT3 in Human Disease. J Clin Immunol 2015; 35:615-23. [PMID: 26280891 DOI: 10.1007/s10875-015-0187-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
The transcription factor signal transducer and activator of transcription 3 (STAT3) is a critical regulator of multiple, diverse cellular processes. Heterozgyous, germline, loss-of-function mutations in STAT3 lead to the primary immune deficiency Hyper-IgE syndrome. Heterozygous, somatic, gain-of-function mutations in STAT3 have been reported in malignancy. Recently, germline, heterozygous mutations in STAT3 that confer a gain-of-function have been discovered and result in early-onset, multi-organ autoimmunity. This review summarizes what is known about the role of STAT3 in human disease.
Collapse
Affiliation(s)
- Tiphanie P Vogel
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Kristensen T, Broesby-Olsen S, Vestergaard H, Bindslev-Jensen C, Møller MB. Targeted ultradeep next-generation sequencing as a method for KIT D816V mutation analysis in mastocytosis. Eur J Haematol 2015; 96:381-8. [PMID: 26095448 DOI: 10.1111/ejh.12601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
Abstract
Next-generation sequencing (NGS) is becoming increasingly used for diagnostic mutation analysis in myeloid neoplasms and may also represent a feasible technique in mastocytosis. However, detection of the KIT D816V mutation requires a highly sensitive method in most patients due to the typically low mutation levels. In this study, we established an NGS-based KIT mutation analysis and analyzed the sensitivity of D816V detection using the Ion Torrent platform. Eighty-two individual NGS analyses were included in the study. All samples were also analyzed using highly sensitive KIT D816V mutation-specific qPCR. Measurements of the background level in D816V-negative samples supported a cutoff for positivity of 0.2% in three different NGS panels. Clinical samples from patients with SM that tested positive using qPCR with a D816V allele burden >0.2% also tested positive using NGS. Samples that tested positive using qPCR with an allele burden <0.2% tested negative using NGS. We thereby demonstrate that caution should be taken when using the potentially very sensitive NGS technique for KIT D816V mutation analysis in mastocytosis, as many patients with SM have D816V mutation levels below the detection limit of NGS. A dedicated and highly sensitive KIT D816V mutation analysis therefore remains important in mastocytosis diagnostics.
Collapse
Affiliation(s)
- Thomas Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Hanne Vestergaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | | | | | | |
Collapse
|
17
|
Abstract
T-cell lymphomas are a group of predominantly rare hematologic malignancies that tend to recapitulate different stages of T-cell development, in a similar way that B-cell lymphomas do. As opposed to B-cell lymphomas, the understanding of the biology and the classification of T-cell lymphomas are somewhat rudimentary, and numerous entities are still included as 'provisional categories' in the World Health Classification of hematolopoietic malignancies. A relevant and useful classification of these disorders have been difficult to accomplish because of the rarity nature of them, the relative lack of understanding of the molecular pathogenesis, and their morphological and immunophenotypical complexity. Overall, T-cell lymphomas represent only 15 % of all non-Hodgkin lymphomas. This review is focused on addressing the current status of the categories of mature T-cell leukemias and lymphomas (nodal and extranodal) using an approach that incorporates histopathology, immunophenotype, and molecular understanding of the nature of these disorders, using the same philosophy of the most recent revised WHO classification of hematopoietic malignancies.
Collapse
Affiliation(s)
- Alejandro Ariel Gru
- Department of Pathology and Dermatology, Divisions of Hematopathology and Dermatopathology, Cutaneous Lymphoma Program, The Ohio State University Wexner Medical Center, Richard Solove 'The James' Comprehensive Cancer Center, 333 W 10th Ave, Columbus, OH, 43210, USA,
| |
Collapse
|