1
|
Hung JH, Teng CF, Hung HC, Chen YL, Chen PJ, Ho CL, Chuang CH, Huang W. Genomic instabilities in hepatocellular carcinoma: biomarkers and application in immunotherapies. Ann Hepatol 2024; 29:101546. [PMID: 39147130 DOI: 10.1016/j.aohep.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. For patients with advanced HCC, liver function decompensation often occurs, which leads to poor tolerance to chemotherapies and other aggressive treatments. Therefore, it remains critical to develop effective therapeutic strategies for HCC. Etiological factors for HCC are complex and multifaceted, including hepatitis virus infection, alcohol, drug abuse, chronic metabolic abnormalities, and others. Thus, HCC has been categorized as a "genomically unstable" cancer due to the typical manifestation of chromosome breakage and aneuploidy, and oxidative DNA damage. In recent years, immunotherapy has provided a new option for cancer treatments, and the degree of genomic instability positively correlates with immunotherapy efficacies. This article reviews the endogenous and exogenous causes that affect the genomic stability of liver cells; it also updates the current biomarkers and their detection methods for genomic instabilities and relevant applications in cancer immunotherapies. Including genomic instability biomarkers in consideration of cancer treatment options shall increase the patients' well-being.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chiao-Feng Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan; Program for Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsu-Chin Hung
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsiang Chuang
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan, Taiwan..
| |
Collapse
|
2
|
Ringgaard ML, Steiniche T, Krag SP. Routine use of MSI testing in colorectal cancer using a proposed algorithm. APMIS 2024; 132:632-637. [PMID: 38873700 DOI: 10.1111/apm.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
Fifteen percent of all colorectal cancers have detectable defects in the mismatch repair system (dMMR). MMR status is used to identify possible Lynch Syndrome (LS) and to determine prognosis and choice of treatment. Two standard techniques for determining MMR status are immunohistochemistry (IHC) and analysis for microsatellite instability (MSI) by PCR. Recently, our department introduced Idylla™ MSI assay as an alternative option to IHC, and as part of this, we introduced a decision algorithm. The purpose of this study was to review the use of the new method and our algorithm and to assess possible false-positive results. Retrospectively, we identified 629 cases of colorectal cancer in which either IHC (336 cases) or Idylla™ MSI (293 cases) was performed. Similar results were obtained by the two methods. IHC detected dMMR in 55 cases (16%) and Idylla™ MSI in 52 cases (18%). In all 52 cases of MSI, subsequent IHC was performed. One case was not confirmed by IHC, but was confirmed by another PCR-based method. Overall, we found that the Idylla™ MSI works well as a screening method for dMMR with no false-positive cases detected. The proposed algorithm was useful and easily applicable.
Collapse
Affiliation(s)
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
3
|
Liu T, Ho CL, Chen YJ, Chen PJ, Chen WL, Lee CT, Chow NH, Huang W, Chen YL. A pilot study on the detection of microsatellite instability using long mononucleotide repeats in solid tumors. Oncol Lett 2024; 28:445. [PMID: 39099584 PMCID: PMC11294907 DOI: 10.3892/ol.2024.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Microsatellite instability (MSI) status is a prognostic biomarker for immunotherapy in certain types of cancers, such as colorectal cancers (CRCs) and endometrial cancers (ECs). Tumors that are categorized as having high MSI (MSI-H) express high levels of neoantigens for immune recognition. The typical MSI test measures the length of short mononucleotide repeats (SMR) poly(A) 21-27; however, a limitation of this test is the difficulty in determining the shift size, particularly in endometrial cancer. To investigate an MSI detection assay with improved performance, the present study analyzed the use of poly(A) 40-44 mononucleotide repeats to detect the MSI status of 100 patients with either CRC (n=50) or EC (n=50). Capillary electrophoresis was used to evaluate five long mononucleotide repeat (LMR) markers, including poly(A) 40-A, 40-B, 40-C, 40-D and 44. The concordance rate of the LMR-MSI assay compared with an immunohistochemistry MSI detection assay was 96.0 and 95.1% for CRCs and ECs respectively, with the detection limit of the LMR-MSI assay demonstrated to be 2.5% MSI-H in HCT116 colorectal carcinoma cell lines. The LMR-MSI assay yielded a 95.1% concordance rate in ECs compared with that in the SMR-MSI test (87.8%). The LMR-MSI test identified a significantly higher mean shift size (13 bp) in MSI-H tumors compared with the SMR-MSI test (10 bp), in both EC and CRC tissue samples. Together, the present study suggested that the LMR-MSI test could potentially be a sensitive and practical technology for molecular laboratory testing, particularly in the use of immunotherapy for patients with CRCs and ECs.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chung-Liang Ho
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Yan-Jhen Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Chung-Ta Lee
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Nan-Haw Chow
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Wenya Huang
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Yi-Lin Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
4
|
Xiang X, Ma X, Ying L, Zou H. Enhanced Commendable Sensitivity and Specificity for MSI in Colorectal Cancer by a New PCR-HRM Based 8-Loci MSI Assay. J Clin Lab Anal 2024; 38:e25085. [PMID: 39132875 PMCID: PMC11492358 DOI: 10.1002/jcla.25085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND This study evaluated the performance of the PCR-HRM assay by comparing it with immunohistochemistry (IHC) for mismatch repair (MMR) proteins and the PCR capillary electrophoresis (PCR-CE) methods. RESULTS A total of 224 patients with colorectal cancer participated in the study, with nearly half having mismatch repair deficiency (dMMR) tissues and the remainder possessing pMMR tissues. There was a 97.77% concordance between the PCR-HRM assay and IHC, and a 97.56% concordance between PCR-HRM and the PCR-CE assay. In comparison with IHC for dMMR proteins, the PCR-HRM demonstrated a sensitivity of 96.36% and a specificity of 99.12%. When juxtaposed with the PCR-CE assay, its sensitivity was 98.96% and specificity stood at 96.33%. The mutations observed in the microsatellite loci were uniformly distributed across all eight loci. Discrepant outcomes were more frequent in instances of MLH1 and PMS2 deficiency. Furthermore, the germline mutation status of MLH1, MSH2, PMS2, and MSH6 in 62 patients was ascertained using next-generation sequencing. All patients displaying MMR gene pathogenic mutations (N = 14) were identified as MSI-H by PCR-HRM, whereas those with MSS tissues (N = 43) did not exhibit MMR gene pathogenic mutations. Thus, the PCR-HRM method proficiently pinpoints tumors with verified germline MMR mutations, indicative of Lynch syndrome. CONCLUSION Conclusively, the PCR-HRM assay emerges as a swift and congruent diagnostic tool for microsatellite instability, boasting commendable sensitivity and specificity in colorectal cancer.
Collapse
Affiliation(s)
- Xueping Xiang
- Department of Pathology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Xiaojing Ma
- Department of Pathology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Linlin Ying
- Department of Pathology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Hong Zou
- Department of Pathology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
5
|
Nádorvári ML, Lotz G, Kulka J, Kiss A, Tímár J. Microsatellite instability and mismatch repair protein deficiency: equal predictive markers? Pathol Oncol Res 2024; 30:1611719. [PMID: 38655493 PMCID: PMC11036414 DOI: 10.3389/pore.2024.1611719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Current clinical guidelines recommend mismatch repair (MMR) protein immunohistochemistry (IHC) or molecular microsatellite instability (MSI) tests as predictive markers of immunotherapies. Most of the pathological guidelines consider MMR protein IHC as the gold standard test to identify cancers with MMR deficiency and recommend molecular MSI tests only in special circumstances or to screen for Lynch syndrome. However, there are data in the literature which suggest that the two test types may not be equal. For example, molecular epidemiology studies reported different rates of deficient MMR (dMMR) and MSI in various cancer types. Additionally, direct comparisons of the two tests revealed relatively frequent discrepancies between MMR IHC and MSI tests, especially in non-colorectal and non-endometrial cancers and in cases with unusual dMMR phenotypes. There are also scattered clinical data showing that the efficacy of immune checkpoint inhibitors is different if the patient selection was based on dMMR versus MSI status of the cancers. All these observations question the current dogma that dMMR phenotype and genetic MSI status are equal predictive markers of the immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Evrard C, Cortes U, Ndiaye B, Bonnemort J, Martel M, Aguillon R, Tougeron D, Karayan-Tapon L. An Innovative and Accurate Next-Generation Sequencing-Based Microsatellite Instability Detection Method for Colorectal and Endometrial Tumors. J Transl Med 2024; 104:100297. [PMID: 38008183 DOI: 10.1016/j.labinv.2023.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
The detection of microsatellite instability (MSI) and mismatch repair (MMR) deficiency has become mandatory for most tumors in recent years, owing to the development of immune checkpoint inhibitors as a highly effective therapy for MMR deficiency/MSI tumors. The timely and efficient detection of MSI is valuable, and new methods are increasingly being developed. To date, MMR assessment has been performed using immunohistochemistry of the 4 MMR proteins and/or microsatellite stability/MSI using PCR, mostly using the pentaplex panel. The implementation of next-generation sequencing (NGS) for MSI analysis would improve the effectiveness at a lower cost and in less time. This study describes the development of 8 new microsatellites combined with a classification algorithm, termed "Octaplex CaBio-MSID" (for Cancérologie Biologique MSI Detection tool), to assess MSI using NGS. A series of 303 colorectal cancer and 88 endometrial cancer samples were assessed via MSI testing using NGS using the Octaplex CaBio-MSID algorithm. The sensitivity and specificity of Octaplex CaBio-MSID were 98.4% and 98.4% for colorectal cancers, and 89.3% and 100% for endometrial cancers, respectively. This new NGS-based MSI detection method outperforms previously published methods (ie, Idylla [Biocartis], OncoMate MSI Dx [Promega], and Foundation One CDx [Roche Foundation Medicine]). Although highly efficient, Octaplex CaBio-MSID requires validation in a larger independent series of different tumor types.
Collapse
Affiliation(s)
- Camille Evrard
- Université de Poitiers, PRoDiCeT, Poitiers, France; CHU de Poitiers, Service d'Oncologie médicale, Poitiers, France.
| | - Ulrich Cortes
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | - Birama Ndiaye
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | | | - Marine Martel
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | - Roxanne Aguillon
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | - David Tougeron
- Université de Poitiers, PRoDiCeT, Poitiers, France; CHU de Poitiers, Service d'hépato-Gastro-Entérologie, Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, PRoDiCeT, Poitiers, France; CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| |
Collapse
|
7
|
Wang D, Wang S, Zhang Y, Cheng X, Huang X, Han Y, Chen Z, Liu C, Li J, Zhang R. Validation and benchmarking of targeted panel sequencing for cancer genomic profiling. Am J Clin Pathol 2023; 160:507-523. [PMID: 37477357 DOI: 10.1093/ajcp/aqad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVES To validate a large next-generation sequencing (NGS) panel for comprehensive genomic profiling and improve patient access to more effective precision oncology treatment strategies. METHODS OncoPanScan was designed by targeting 825 cancer-related genes to detect a broad range of genomic alterations. A practical validation strategy was used to evaluate the assay's analytical performance, involving 97 tumor specimens with 25 paired blood specimens, 10 engineered cell lines, and 121 artificial reference DNA samples. RESULTS Overall, 1107 libraries were prepared and the sequencing failure rate was 0.18%. Across alteration classes, sensitivity ranged from 0.938 to more than 0.999, specificity ranged from 0.889 to more than 0.999, positive predictive value ranged from 0.867 to more than 0.999, repeatability ranged from 0.908 to more than 0.999, and reproducibility ranged from 0.832 to more than 0.999. The limit of detection for variants was established based on variant frequency, while for tumor mutation burden and microsatellite instability, it was based on tumor content, resulting in a minimum requirement of 20% tumor content. Benchmarking variant calls against validated NGS assays revealed that variations in the dry-bench processes were the primary cause of discordances. CONCLUSIONS This study presents a detailed validation framework and empirical recommendations for large panel validation and elucidates the sources of discordant alteration calls by comparing with "gold standard measures."
Collapse
Affiliation(s)
- Duo Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | | | - Yuanfeng Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | | | - Xin Huang
- Genetron Health (Beijing), Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | | | - Cong Liu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
8
|
Sousa Marques D, Gullo I, Mascarenhas-Lemos L, Silva JR, Neto do Nascimento C, Pontes P, Pinho L, Cirnes L, Wen X, Cravo M, Carneiro F. Performance of Immunohistochemical and Molecular Methods in Detecting Microsatellite Instability in Gastric Cancer: A Multicenter Study. Pathobiology 2023; 90:389-399. [PMID: 37271124 DOI: 10.1159/000530997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Microsatellite instability (MSI) is an important prognostic molecular biomarker for gastric cancer (GC). MSI status may be detected by immunohistochemistry (IHC) for mismatch repair (MMR) proteins and polymerase chain reaction (PCR). Idylla™ MSI assay has not been validated for GC but may prove to be a valid alternative. METHODS In a series of 140 GC cases, MSI status was evaluated by IHC for MLH1, PMS2, MSH2, and MSH6; gold-standard pentaplex PCR panel (PPP) (BAT-25, BAT-26, NR-21, NR-24, and NR-27); and Idylla. Statistical analysis was performed using SPSS 27.0. RESULTS PPP identified 102 microsatellite stable (MSS) cases and 38 MSI-high cases. Only 3 cases showed discordant results. Compared with PPP, the sensitivity was 100% for IHC and 94.7% for Idylla. Specificity was 99% for IHC and 100% for Idylla. MLH1 IHC alone showed sensitivity and specificity of 97.4% and 98.0%, respectively. IHC identified three indeterminate cases; all were MSS according to PPP and Idylla. CONCLUSION IHC for MMR proteins represents an optimal screening tool for MSI status in GC. If resources are limited, isolated MLH1 evaluation may constitute a valuable option for preliminary screening. Idylla may help detect rare MSS cases with MMR-loss and define MSI status in indeterminate cases.
Collapse
Affiliation(s)
| | - Irene Gullo
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| | - Luís Mascarenhas-Lemos
- Faculty of Medicine of Catholic University of Portugal, Rio de Mouro, Portugal
- Department of Pathology, Hospital da Luz de Lisboa, Lisboa, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | | | | - Patrícia Pontes
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Lídia Pinho
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| | - Luis Cirnes
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| | - Xiaogang Wen
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
- Department of Pathology, Centro Hospitalar Do Porto, Porto, Portugal
| | - Marília Cravo
- Department of Gastroenterology, Hospital da Luz de Lisboa, Lisboa, Portugal
- Faculty of Medicine of the University of Lisbon, Lisboa, Portugal
| | - Fátima Carneiro
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| |
Collapse
|
9
|
Ukkola I, Nummela P, Kero M, Ristimäki A. Diagnostic performance of Idylla MSI test in colorectal cancer biopsies. Diagn Pathol 2023; 18:39. [PMID: 36978094 PMCID: PMC10053848 DOI: 10.1186/s13000-023-01328-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Universal testing for microsatellite instability (MSI) is recommended in colorectal cancer (CRC) to screen for Lynch syndrome and to guide optimal treatment and follow-up of the patients. Especially in neoadjuvant setting, where immuno-oncological treatments have recently shown excellent responses, identification of MSI status at biopsy is a prerequisite. Idylla MSI test offers a rapid and automated test to assess MSI-status from formalin-fixed paraffin-embedded tumor tissue sections. In this study, we compared the performance of the Idylla MSI test to mismatch repair (MMR) protein immunohistochemistry (IHC) using 117 CRC biopsies with previously known deficient MMR status. The concordance between Idylla and IHC was 99.0% (95/96) for biopsies with the recommended ≥ 20% tumor cell content. Further, 85.7% (18/21) of suboptimal CRC biopsy specimens (tumor cell content 5-15%) were diagnosed as MSI. Overall, we identified four discrepant cases of which three had tumor cell content less than 20%, explaining the discordant result. Our study shows that the Idylla MSI test offers a competent tool for MSI screening in CRC biopsy specimens.
Collapse
Affiliation(s)
- Iiris Ukkola
- Department of Pathology, HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, University of Helsinki, P.O. Box 400, FI-00029 HUS, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Pirjo Nummela
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, University of Helsinki, P.O. Box 400, FI-00029 HUS, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, University of Helsinki, P.O. Box 400, FI-00029 HUS, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
10
|
Abbes S, Baldi S, Sellami H, Amedei A, Keskes L. Molecular methods for colorectal cancer screening: Progress with next-generation sequencing evolution. World J Gastrointest Oncol 2023; 15:425-442. [PMID: 37009313 PMCID: PMC10052664 DOI: 10.4251/wjgo.v15.i3.425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Currently, colorectal cancer (CRC) represents the third most common malignancy and the second most deadly cancer worldwide, with a higher incidence in developed countries. Like other solid tumors, CRC is a heterogeneous genomic disease in which various alterations, such as point mutations, genomic rearrangements, gene fusions or chromosomal copy number alterations, can contribute to the disease development. However, because of its orderly natural history, easily accessible onset location and high lifetime incidence, CRC is ideally suited for preventive intervention, but the many screening efforts of the last decades have been compromised by performance limitations and low penetrance of the standard screening tools. The advent of next-generation sequencing (NGS) has both facilitated the identification of previously unrecognized CRC features such as its relationship with gut microbial pathogens and revolutionized the speed and throughput of cataloguing CRC-related genomic alterations. Hence, in this review, we summarized the several diagnostic tools used for CRC screening in the past and the present, focusing on recent NGS approaches and their revolutionary role in the identification of novel genomic CRC characteristics, the advancement of understanding the CRC carcinogenesis and the screening of clinically actionable targets for personalized medicine.
Collapse
Affiliation(s)
- Salma Abbes
- Laboratory of Parasitic and Fungal Molecular Biology, University of Sfax, Sfax 3029, Tunisia
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Hayet Sellami
- Drosophila Research Unit-Parasitology and Mycologie Laboratory, University of Sfax, Sfax 3029, Tunisia
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- SOD of Interdisciplinary Internal Medicine, Careggi University Hospital, Florence 50134, Italy
| | - Leila Keskes
- Laboratory of Human Molecular Genetic, University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|
11
|
Rafaniello-Raviele P, Betella I, Rappa A, Vacirca D, Tolva G, Guerrieri-Gonzaga A, Bertario L, Barberis M, Bonanni B, Marabelli M. Microsatellite instability evaluation: which test to use for endometrial cancer? J Clin Pathol 2023; 76:29-33. [PMID: 34312297 DOI: 10.1136/jclinpath-2021-207723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 12/27/2022]
Abstract
AIMS Analysis of microsatellite instability (MSI) is strongly recommended in endometrial cancer (EC) and colorectal cancer to screen for Lynch syndrome, to predict prognosis and to determine optimal treatment and follow-up. In a large monoinstitutional series of ECs, we evaluated the reliability and accuracy of Idylla assay, a rapid, fully automated system to detect MSI, and we compared its performance with two routine reference methods. METHODS We evaluated MSI status in 174 formalin-fixed, paraffin-embedded EC tissue samples using immunohistochemistry (IHC) for mismatch repair (MMR) proteins and Idylla assay. Samples with discordant or equivocal results were analysed with a third technique, the Promega MSI kit. RESULTS Idylla MSI assay and IHC were highly concordant (overall agreement: 154/170=90.59%, 95% CI 85.26% to 94.12%). However, in four samples, MMR-IHC staining was equivocal; moreover, 16 cases showed discordant results, that is, MMR deficient using IHC and microsatellite stable using Idylla. These 20 samples were reanalysed using the MSI-Promega kit, which showed the same results of Idylla assay in 18/20 cases (overall agreement: 90%, 95% CI 69.90% to 97.21%). CONCLUSIONS Our results suggest that IHC is an efficient method to determine MMR status in ECs. However, the Idylla MSI assay is a rapid and reliable tool to define MSI status, and it could represent a valuable alternative to conventional MSI-PCR methods.
Collapse
Affiliation(s)
| | - Ilaria Betella
- Department of Gynecologic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Alessandra Rappa
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Davide Vacirca
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Gianluca Tolva
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Lucio Bertario
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| |
Collapse
|
12
|
Detecting mismatch repair deficiency in solid neoplasms: immunohistochemistry, microsatellite instability, or both? Mod Pathol 2022; 35:1515-1528. [PMID: 35668150 DOI: 10.1038/s41379-022-01109-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022]
Abstract
In managing patients with solid tumors, the value of detecting the status of tumor DNA mismatch repair function is widely recognized. Mismatch repair protein immunohistochemistry and molecular microsatellite instability testing constitute the two major test modalities currently in use, yet each is associated with caveats and limitations that can be consequential. Most notably, the traditional approach of defining mismatch repair protein immunohistochemistry abnormality by complete loss of staining in all tumor cells is evolving. Partial or clonal loss is becoming recognized as a manifestation of gene abnormality; in some cases, such clonal loss is associated with germline pathogenic variants. The current criteria and cutoff values for defining microsatellite instability-high are developed primarily according to colorectal tumors. Non-colorectal cases, and occasionally even colorectal tumors, that are mismatch repair-deficient by immunohistochemistry but not microsatellite instability-high by current standards are being recognized. Emerging data suggest that these immunohistochemistry abnormal / non-microsatellite instability-high cases warrant further genetic workup for Lynch syndrome detection. Whether these tumors respond to immunotherapy is a question still to be addressed. It is imperative that pathologists as well as clinicians and investigators be aware of such intricacies regarding routine immunohistochemistry and microsatellite instability testing and the results they generate. This review summarizes our current understanding of the advantages and limitations of these tests and offer our view on what constitutes the most optimal strategy in test selection and how best to utilize case context to enhance the interpretation of the test results.
Collapse
|
13
|
Histomorphological and molecular genetic characterization of different intratumoral regions and matched metastatic lymph nodes of colorectal cancer with heterogenous mismatch repair protein expression. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04261-1. [PMID: 35939113 DOI: 10.1007/s00432-022-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE To better understand the clinicopathological characteristics and molecular alterations in different intratumoral components of colorectal cancer (CRC) with heterogeneity of mismatch repair (MMR) protein expression and microsatellite instability (MSI) status. METHODS The histopathological features, MSI status, and other molecular alterations were analyzed in separately microdissected intratumoral regions and matched metastatic lymph nodes in four cases with intratumoral heterogenous MMR expression screened from 500 CRC patients, using PCR-based MSI testing, MLH1 promoter methylation, and targeted next-generation sequencing (NGS). RESULTS High microsatellite instability (MSI-H) was identified in MLH1/PMS2-deficient regions in Cases 1 to 3 and in MSH2/MSH6-deficient regions in Case 4, while microsatellite stability (MSS) was detected in all the intratumoral regions and metastatic lymph nodes with proficient MMR expression (pMMR). Intratumoral heterogeneity of MLH1 promoter methylation and/or other common driving gene mutations of CRC, such as KRAS and PIK3CA mutations, was identified in all four CRCs. Further, three cases (75%) showed heterogeneous histomorphological features in intratumoral components and metastatic lymph nodes (Cases 1, 2, and 4), and the corresponding metastatic lymph nodes showed moderate differentiation with MSS/pMMR (Cases 2 and 3). CONCLUSIONS Intratumoral heterogeneous MSI status is highly correlated with intratumoral histomorphological heterogeneity, which is also an important clue for the intratumoral heterogeneity of drive gene mutations in CRC. Thus, it is essential to detect MMR protein expression and other gene mutations in metastases before treatment, especially for CRCs with intratumoral heterogenous MMR protein expression or heterogenous histomorphological features.
Collapse
|
14
|
Adeleke S, Haslam A, Choy A, Diaz-Cano S, Galante JR, Mikropoulos C, Boussios S. Microsatellite instability testing in colorectal patients with Lynch syndrome: lessons learned from a case report and how to avoid such pitfalls. Per Med 2022; 19:277-286. [PMID: 35708161 DOI: 10.2217/pme-2021-0128] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present the case of a patient with Lynch syndrome and metastatic colorectal carcinoma (mCRC). The initial immunohistochemistry (IHC) test for deficient mismatch repair gave a false negative result. However, the same mutation has accurately has been detected with IHC in other cancers with microsatellite instability (MSI) This supports the determining role of somatic missense mutations in MMR IHC. MSI-PCR testing confirmed MSI and the patient benefited from nivolumab with a complete metabolic response. We explain the rationale for immunotherapy in mCRC, current testing strategies and discuss future developments in MSI testing. We advocate for upfront testing using both IHC and MSI-PCR to direct therapy in mCRC, and a greater understanding of IHC and MSI-PCR testing pitfalls.
Collapse
Affiliation(s)
- Sola Adeleke
- High Dimensional Neurology Group, UCL Queen's Square Institute of Neurology, London, WC1N 3BG, UK.,Department of Oncology, Guy's & St Thomas' Hospital, London, UK.,School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London, WC2R 2LS, UK
| | - Aidan Haslam
- South Bristol Academy, Dolphin House, Bristol Royal Infirmary, Marlborough Street, BS2 8HW, UK
| | - Adrian Choy
- Department of Oncology, Oxford University Hospitals, NHS Foundation Trust, Headington, Oxford, OX3 7DQ, UK
| | - Salvador Diaz-Cano
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK.,Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Joao R Galante
- Maidstone Hospital, Hermitage Lane, Maidstone, Kent, ME16 9QQ, UK
| | - Christos Mikropoulos
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK.,King's College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, London, SE1 9RT, UK.,AELIA Organization, 9th Km Thessaloniki, Thermi, Thessaloniki, 57001, Greece
| |
Collapse
|
15
|
Gatius S, Velasco A, Varela M, Cuatrecasas M, Jares P, Setaffy L, Bonhomme B, Santon A, Lindemann K, Croce S, Davidson B, Lax S, Palacios J, Matias-Guiu X. Comparison of the Idylla™ MSI assay with the Promega™ MSI Analysis System and immunohistochemistry on formalin-fixed paraffin-embedded tissue of endometrial carcinoma: results from an international, multicenter study. Virchows Arch 2022; 480:1031-1039. [DOI: 10.1007/s00428-022-03291-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
|
16
|
Samaison L, Uguen A. Idylla MSI test combined with immunohistochemistry is a valuable and cost effective strategy to search for microsatellite instable tumors of noncolorectal origin. Pathol Int 2022; 72:234-241. [PMID: 35083825 DOI: 10.1111/pin.13208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
Recent diagnostic and therapeutic progresses have increased the need of searching for microsatellite instability (MSI) in cancer samples beyond colorectal cancer (CRC) ones. The availability of the fully-automated Idylla MSI test (Biocartis), implementable easily in pathology laboratories, offers the opportunity to reconsider MSI diagnostic strategies towards rapid and in-house diagnosis. In this study, we evaluate the performances and cost-effectiveness of an in-house Idylla MSI testing in comparison with an externalized testing of about 54 non-CRC tumor samples. The Idylla MSI test concluded in valid analyses in 53/54 (98.1%) tumor samples with MSI statuses concordant with external molecular and immunohistochemical testing in 50/53 (94.3%) samples. Wrong Idylla MSI test results were obtained in 3/53 (5.7%) samples. Manual checking of microsatellite analyses results and confrontation between the results of Idylla and immunohistochemical analyses have permitted detection and correction of the discrepancies. The implementation of an in-house Idylla MSI testing for non-CRC tumors, necessarily combined with immunohistochemistry searching for MSI tumors, appeared not only valuable in terms of performances, but also in terms of cost-effectiveness without increasing the analyses-related costs but decreasing dramatically their turnaround times to one single working day.
Collapse
Affiliation(s)
| | - Arnaud Uguen
- CHRU Brest, Service d'anatomie et cytologie pathologiques, Brest, France.,LBAI, UMR1227, Inserm, CHU de Brest, Université de Brest, Brest, France
| |
Collapse
|
17
|
Bourhis A, Remoué A, Samaison L, Uguen A. Diagnostic mutationnel rapide Idylla™ : applications théranostiques actuelles et futures. Ann Pathol 2022; 42:329-343. [DOI: 10.1016/j.annpat.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
|
18
|
Durán-Vinet B, Araya-Castro K, Calderón J, Vergara L, Weber H, Retamales J, Araya-Castro P, Leal-Rojas P. CRISPR/Cas13-Based Platforms for a Potential Next-Generation Diagnosis of Colorectal Cancer through Exosomes Micro-RNA Detection: A Review. Cancers (Basel) 2021; 13:4640. [PMID: 34572866 PMCID: PMC8466426 DOI: 10.3390/cancers13184640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer with the second highest mortality rate worldwide. CRC is a heterogenous disease with multiple risk factors associated, including obesity, smoking, and use of alcohol. Of total CRC cases, 60% are diagnosed in late stages, where survival can drop to about 10%. CRC screening programs are based primarily on colonoscopy, yet this approach is invasive and has low patient adherence. Therefore, there is a strong incentive for developing molecular-based methods that are minimally invasive and have higher patient adherence. Recent reports have highlighted the importance of extracellular vesicles (EVs), specifically exosomes, as intercellular communication vehicles with a broad cargo, including micro-RNAs (miRNAs). These have been syndicated as robust candidates for diagnosis, primarily for their known activities in cancer cells, including immunoevasion, tumor progression, and angiogenesis, whereas miRNAs are dysregulated by cancer cells and delivered by cancer-derived exosomes (CEx). Quantitative polymerase chain reaction (qPCR) has shown good results detecting specific cancer-derived exosome micro-RNAs (CEx-miRNAs) associated with CRC, but qPCR also has several challenges, including portability and sensitivity/specificity issues regarding experiment design and sample quality. CRISPR/Cas-based platforms have been presented as cost-effective, ultrasensitive, specific, and robust clinical detection tools in the presence of potential inhibitors and capable of delivering quantitative and qualitative real-time data for enhanced decision-making to healthcare teams. Thereby, CRISPR/Cas13-based technologies have become a potential strategy for early CRC diagnosis detecting CEx-miRNAs. Moreover, CRISPR/Cas13-based platforms' ease of use, scalability, and portability also showcase them as a potential point-of-care (POC) technology for CRC early diagnosis. This study presents two potential CRISPR/Cas13-based methodologies with a proposed panel consisting of four CEx-miRNAs, including miR-126, miR-1290, miR-23a, and miR-940, to streamline novel applications which may deliver a potential early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Benjamín Durán-Vinet
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Karla Araya-Castro
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Innovation and Entrepreneurship Institute (iDEAUFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Juan Calderón
- Center for Genetics and Genomics, School of Medicine, Institute of Science and Innovation in Medicine (ICIM), Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Luis Vergara
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Cell and Applied Molecular Biology, Universidad de La Frontera, Temuco 4780000, Chile
| | - Helga Weber
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Javier Retamales
- Chilean Cooperative Group for Oncologic Research (GOCCHI), Santiago 8320000, Chile;
| | - Paulina Araya-Castro
- School of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Pamela Leal-Rojas
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
19
|
Ukkola I, Nummela P, Pasanen A, Kero M, Lepistö A, Kytölä S, Bützow R, Ristimäki A. Detection of microsatellite instability with Idylla MSI assay in colorectal and endometrial cancer. Virchows Arch 2021; 479:471-479. [PMID: 33755781 PMCID: PMC8448708 DOI: 10.1007/s00428-021-03082-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Universal testing of microsatellite instability (MSI) is recommended for colorectal cancer (CRC) and endometrial cancer (EC) to screen for Lynch syndrome and to aid in assessing prognosis and optimal treatment. We compared the performance of Idylla MSI test to immunohistochemistry (IHC) of mismatch repair (MMR) proteins in consecutive series of 100 CRC and 108 EC samples, as well as in retrospective series of 28 CRC and 33 EC specimens with known deficient MMR protein expression. The concordance between the Idylla test and IHC was 100% in all CRC samples (n=128) but lower in EC samples (87.2%; n=141). In the EC samples, sensitivity of Idylla test was 72.7% and specificity 100%. EC MSI/dMMR agreement was 85.4% for MLH1, 87.5% for MSH2, and only 35.3% for MSH6. When we analyzed 14 EC samples that were discrepant, i.e., dMMR using IHC and microsatellite stable using Idylla, with microsatellite markers BAT25 and BAT26, we found four cases to be replication error (RER) positive. All RER positive cases were deficient for MSH6 protein expression. We also re-analyzed EC samples with variable tumor cellularity to determine the limit of detection of the Idylla test and found that a 30% or higher tumor cellularity is required. We conclude that Idylla MSI test offers a sensitive and specific method for CRC diagnostics but is less sensitive in EC samples especially in the case of MSH6 deficiency.
Collapse
Affiliation(s)
- Iiris Ukkola
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Pirjo Nummela
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland
| | - Anna Lepistö
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Gastrointestinal Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Soili Kytölä
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
20
|
Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021. [PMID: 34440647 DOI: 10.3390/cells1008187828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.
Collapse
|
21
|
Malapelle U, Parente P, Pepe F, De Luca C, Pisapia P, Sgariglia R, Nacchio M, Gragnano G, Russo G, Conticelli F, Bellevicine C, Vigliar E, Iaccarino A, Covelli C, Balistreri M, Clemente C, Perrone G, Danza A, Scaramuzzi F, Fassan M, Troncone G, Graziano P. Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021; 10:1878. [PMID: 34440647 PMCID: PMC8391221 DOI: 10.3390/cells10081878] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Roberta Sgariglia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Gianluca Gragnano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Floriana Conticelli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Claudia Covelli
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Mariangela Balistreri
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
| | - Celeste Clemente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Giovanni Perrone
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Angela Danza
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Fabio Scaramuzzi
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
- Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| |
Collapse
|
22
|
Dedeurwaerdere F, Claes KB, Van Dorpe J, Rottiers I, Van der Meulen J, Breyne J, Swaerts K, Martens G. Comparison of microsatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer. Sci Rep 2021; 11:12880. [PMID: 34145315 PMCID: PMC8213758 DOI: 10.1038/s41598-021-91974-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
DNA mismatch repair deficiency (dMMR) testing is crucial for diagnosing Lynch syndrome and detection of microsatellite unstable (MSI) tumors eligible for immunotherapy. The aim of this study was to compare the relative diagnostic performance of three molecular MSI assays: polymerase chain reaction (PCR), MSI testing by Idylla and next-generation-sequencing (NGS) on 49 tumor samples (28 colorectal and 21 endometrial adenocarcinomas) versus immunohistochemistry (IHC). Discrepancies were investigated by MLH1 methylation analysis and integrated with germline results if available. Overall, the molecular assays achieved equivalent diagnostic performance for MSI detection with area under the ROC curves (AUC) of respectively 0.91 for Idylla and PCR, and 0.93 for NGS. In colorectal cancers with tumor cell percentages ≥ 30% all three molecular assays achieved 100% sensitivity and specificity (AUC = 1) versus IHC. Also, in endometrial cancers, all three molecular assays showed equivalent diagnostic performance, albeit at a clearly lower sensitivity ranging from 58% for Idylla to 75% for NGS, corresponding to negative predictive values from 78 to 86%. PCR, Idylla and NGS show similar diagnostic performance for dMMR detection in colorectal and endometrial cancers. Molecular MSI analysis has lower sensitivity for dMMR detection in endometrial cancer indicating that combined use of both IHC and molecular methods is recommended.Clinical Trial Number/IRB: B1172020000040, Ethical Committee, AZ Delta General Hospital.
Collapse
Affiliation(s)
| | - Kathleen Bm Claes
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | | | - Joni Van der Meulen
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
- Molecular Diagnostics, Ghent University Hospital, Gent, Belgium
| | - Joke Breyne
- Department of Laboratory Medicine, Department of Laboratory Medicine, AZ Delta General Hospital, AZ Delta General Hospital, Deltalaan 1, 8800, Roeselare, Belgium
| | - Koen Swaerts
- Department of Laboratory Medicine, Department of Laboratory Medicine, AZ Delta General Hospital, AZ Delta General Hospital, Deltalaan 1, 8800, Roeselare, Belgium
| | - Geert Martens
- Department of Laboratory Medicine, Department of Laboratory Medicine, AZ Delta General Hospital, AZ Delta General Hospital, Deltalaan 1, 8800, Roeselare, Belgium.
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium.
| |
Collapse
|
23
|
Velasco A, Tokat F, Bonde J, Trim N, Bauer E, Meeney A, de Leng W, Chong G, Dalstein V, Kis LL, Lorentzen JA, Tomić S, Thwaites K, Putzová M, Birnbaum A, Qazi R, Primmer V, Dockhorn-Dworniczak B, Hernández-Losa J, Soares FA, Gertler AA, Kalman M, Wong C, Carraro DM, Sousa AC, Reis RM, Fox SB, Fassan M, Brevet M, Merkelbach-Bruse S, Colling R, Soilleux E, Teo RYW, D'Haene N, Nolet S, Ristimäki A, Väisänen T, Chapusot C, Soruri A, Unger T, Wecgowiec J, Biscuola M, Frattini M, Long A, Campregher PV, Matias-Guiu X. Multi-center real-world comparison of the fully automated Idylla™ microsatellite instability assay with routine molecular methods and immunohistochemistry on formalin-fixed paraffin-embedded tissue of colorectal cancer. Virchows Arch 2021; 478:851-863. [PMID: 33170334 PMCID: PMC8099763 DOI: 10.1007/s00428-020-02962-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Microsatellite instability (MSI) is present in 15-20% of primary colorectal cancers. MSI status is assessed to detect Lynch syndrome, guide adjuvant chemotherapy, determine prognosis, and use as a companion test for checkpoint blockade inhibitors. Traditionally, MSI status is determined by immunohistochemistry or molecular methods. The Idylla™ MSI Assay is a fully automated molecular method (including automated result interpretation), using seven novel MSI biomarkers (ACVR2A, BTBD7, DIDO1, MRE11, RYR3, SEC31A, SULF2) and not requiring matched normal tissue. In this real-world global study, 44 clinical centers performed Idylla™ testing on a total of 1301 archived colorectal cancer formalin-fixed, paraffin-embedded (FFPE) tissue sections and compared Idylla™ results against available results from routine diagnostic testing in those sites. MSI mutations detected with the Idylla™ MSI Assay were equally distributed over the seven biomarkers, and 84.48% of the MSI-high samples had ≥ 5 mutated biomarkers, while 98.25% of the microsatellite-stable samples had zero mutated biomarkers. The concordance level between the Idylla™ MSI Assay and immunohistochemistry was 96.39% (988/1025); 17/37 discordant samples were found to be concordant when a third method was used. Compared with routine molecular methods, the concordance level was 98.01% (789/805); third-method analysis found concordance for 8/16 discordant samples. The failure rate of the Idylla™ MSI Assay (0.23%; 3/1301) was lower than that of referenced immunohistochemistry (4.37%; 47/1075) or molecular assays (0.86%; 7/812). In conclusion, lower failure rates and high concordance levels were found between the Idylla™ MSI Assay and routine tests.
Collapse
Affiliation(s)
- Ana Velasco
- Departments of Pathology and Molecular Genetics, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida, IRBLLEIDA, IDIBELL, CIBERONC, Av. Alcalde Rovira Roure, 80 25198, Lleida, Spain.
| | - Fatma Tokat
- Department of Pathology, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Jesper Bonde
- Molecular Pathology Laboratory, Department of Pathology, afs. 134, Hvidovre Hospital, Hvidovre, Denmark
| | - Nicola Trim
- Molecular Pathology Diagnostic Service, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Elisabeth Bauer
- Städtisches Klinikum Karlsruhe gGmbH, Institut für Pathologie, Karlsruhe, Germany
| | - Adam Meeney
- Ophthalmic Pathology Laboratory Histopathology, Royal Hallamshire Hospital, Glossop Road, Sheffield, UK
| | - Wendy de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - George Chong
- Molecular Pathology Centre, Jewish General Hospital-McGill University, Montreal, Quebec, Canada
| | - Véronique Dalstein
- Laboratoire de Biopathologie, Unité INSERM UMR-S 1250, CHU Reims, Reims, France
| | - Lorand L Kis
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Jon A Lorentzen
- Molecular Pathology Unit, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Snjezana Tomić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Split, Split, Croatia
| | - Keeley Thwaites
- Histopathology Department, Barking, Havering and Redbridge University Hospitals NHS Trust, Queen's Hospital, Romford, UK
| | - Martina Putzová
- Bioptická laboratoř s.r.o., Laboratory of Molecular Genetics, Plzeň, Czech Republic
- ÚBLG FN Motol, Praha, Czech Republic
- LF UK, Plzeň, Czech Republic
| | | | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Johr Town, Lahore, Pakistan
| | - Vanessa Primmer
- Pathologisch-Bakteriologisches Institut Kaiser-Franz-Josef-Spital, Vienna, Austria
| | | | - Javier Hernández-Losa
- Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | | | - Asaf A Gertler
- Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Michal Kalman
- Department of Pathologic Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
- Martin's Biopsy Center Ltd., Martin, Slovak Republic
| | - Chris Wong
- Hong Kong Molecular Pathology Diagnostic Centre, Hong Kong Special Administrative Region of the People's Republic of China, Hong Kong, People's Republic of China
| | - Dirce M Carraro
- Genomics and Molecular Biology Group, International Research Center/CIPE, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Ana C Sousa
- GenoMed, Diagnósticos de Medicina Molecular, SA, Lisbon, Portugal
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre and University of Melbourne, Vic, Australia
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Marie Brevet
- Department of Pathology, Hospices Civils de Lyon, Université Lyon 1, Bron, France & Cypath, Villeurbanne, France
| | | | - Richard Colling
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Ryan Yee Wei Teo
- Department of Pathology, Tan Tock Seng Hospital, Novena, Republic of Singapore
| | - Nicky D'Haene
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Nolet
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, Québec, Canada
| | - Ari Ristimäki
- Department of Pathology, Research Programs Unit and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Väisänen
- Oulu University Hospital and Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | | | - Afsaneh Soruri
- Institut für Pathologie und Molekularpathologie, Pforzheim, Germany
| | - Tina Unger
- Institut für Pathologie, University of Leipzig, Leipzig, Germany
| | - Johanna Wecgowiec
- Institut für Pathologie, Evangelisches Krankenhaus BETHESDA Zu Duisburg GmbH, Duisburg, Germany
| | - Michele Biscuola
- Department of Pathology, Molecular Pathology Laboratory, Hospital Universitario Virgen del Rocío-IBIS, Seville, Spain
| | - Milo Frattini
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Anna Long
- Cellular Pathology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Xavier Matias-Guiu
- Departments of Pathology and Molecular Genetics, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida, IRBLLEIDA, IDIBELL, CIBERONC, Av. Alcalde Rovira Roure, 80 25198, Lleida, Spain
| |
Collapse
|
24
|
Gilson P, Merlin JL, Harlé A. Detection of Microsatellite Instability: State of the Art and Future Applications in Circulating Tumour DNA (ctDNA). Cancers (Basel) 2021; 13:cancers13071491. [PMID: 33804907 PMCID: PMC8037825 DOI: 10.3390/cancers13071491] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Microsatellite instability (MSI) is a molecular fingerprint for defects in the mismatch repair system (dMMR) and is associated with higher risks of cancers. MSI/dMMR tumours are characterized by the accumulation of mutations throughout the genome, and particularly in microsatellite (MS) DNA repeat sequences. MSI stands as a major biomarker for familial cancer risk assessment, cancer prognosis, and therapeutic choices. Standard-of-care classification of MSI/dMMR tumours is most frequently achieved using immunohistochemistry or PCR-based assay directed against a set of five MS regions. However, novel molecular methods based on tumour tissue or plasma samples have been developed and could enter in the future trends of MSI testing. Here, we provide insights into these emerging approaches and discuss their advantages and limitations. Abstract Microsatellite instability (MSI) is a molecular scar resulting from a defective mismatch repair system (dMMR) and associated with various malignancies. MSI tumours are characterized by the accumulation of mutations throughout the genome and particularly clustered in highly repetitive microsatellite (MS) regions. MSI/dMMR status is routinely assessed in solid tumours for the initial screening of Lynch syndrome, the evaluation of cancer prognosis, and treatment decision-making. Currently, pentaplex PCR-based methods and MMR immunohistochemistry on tumour tissue samples are the standard diagnostic methods for MSI/dMMR. Other tissue methods such as next-generation sequencing or real-time PCR-based systems have emerged and represent viable alternatives to standard MSI testing in specific settings. The evolution of the standard molecular techniques has offered the opportunity to extend MSI determination to liquid biopsy based on the analysis of cell-free DNA (cfDNA) in plasma. This review aims at synthetizing the standard and emerging techniques used on tumour tissue samples for MSI/dMMR determination. We also provide insights into the MSI molecular techniques compatible with liquid biopsy and the potential clinical consequences for patients with solid cancers.
Collapse
Affiliation(s)
- Pauline Gilson
- Correspondence: ; Tel.: +33-(0)3-8365-6035; Fax: +33-(0)3-8365-6152
| | | | | |
Collapse
|
25
|
Gallon R, Gawthorpe P, Phelps RL, Hayes C, Borthwick GM, Santibanez-Koref M, Jackson MS, Burn J. How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies. Cancers (Basel) 2021; 13:406. [PMID: 33499123 PMCID: PMC7865939 DOI: 10.3390/cancers13030406] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
International guidelines for the diagnosis of Lynch syndrome (LS) recommend molecular screening of colorectal cancers (CRCs) to identify patients for germline mismatch repair (MMR) gene testing. As our understanding of the LS phenotype and diagnostic technologies have advanced, there is a need to review these guidelines and new screening opportunities. We discuss the barriers to implementation of current guidelines, as well as guideline limitations, and highlight new technologies and knowledge that may address these. We also discuss alternative screening strategies to increase the rate of LS diagnoses. In particular, the focus of current guidance on CRCs means that approximately half of Lynch-spectrum tumours occurring in unknown male LS carriers, and only one-third in female LS carriers, will trigger testing for LS. There is increasing pressure to expand guidelines to include molecular screening of endometrial cancers, the most frequent cancer in female LS carriers. Furthermore, we collate the evidence to support MMR deficiency testing of other Lynch-spectrum tumours to screen for LS. However, a reliance on tumour tissue limits preoperative testing and, therefore, diagnosis prior to malignancy. The recent successes of functional assays to detect microsatellite instability or MMR deficiency in non-neoplastic tissues suggest that future diagnostic pipelines could become independent of tumour tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (P.G.); (R.L.P.); (C.H.); (G.M.B.); (M.S.-K.); (M.S.J.)
| |
Collapse
|
26
|
Farmkiss L, Hopkins I, Jones M. Idylla microsatellite instability assay versus mismatch repair immunohistochemistry: a retrospective comparison in gastric adenocarcinoma. J Clin Pathol 2020; 74:604-607. [PMID: 33020177 DOI: 10.1136/jclinpath-2020-207033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022]
Abstract
Up to 22% of all gastric adenocarcinomas are of the microsatellite instability (MSI) subtype. This subtype may not benefit from conventional adjuvant chemotherapy but does respond to novel immunotherapies. A proportion of MSI gastric adenocarcinomas are associated with inherited disease, inferring an opportunity to screen for further cancers in the patient while also identifying at-risk relatives. Although the importance of MSI subtyping is clear, the methods of detection vary. The main techniques are MSI testing and mismatch repair (MMR) immunohistochemistry (IHC). This study compares a novel Idylla (Biocartis) MSI assay to MMR IHC across 50 biopsies of gastric adenocarcinoma. The methods were concordant across 48 cases. The two discrepant results demonstrated known difficulties in the interpretation of IHC. Idylla MSI testing presents several advantages over MMR IHC but both methods are well established in detecting this subtype of gastric adenocarcinoma. The methods are best regarded as complementary tests, performing most optimally when combined.
Collapse
Affiliation(s)
- Luke Farmkiss
- Histopathology Department, Plymouth Hospitals NHS Foundation Trust, Plymouth, UK
| | - Ilona Hopkins
- Department of Diagnostic and Molecular Pathology, Royal Cornwall Hospitals NHS Trust, Truro, Cornwall, UK
| | - Mary Jones
- Department of Diagnostic and Molecular Pathology, Royal Cornwall Hospitals NHS Trust, Truro, Cornwall, UK
| |
Collapse
|
27
|
Evaluation of 3 molecular-based assays for microsatellite instability detection in formalin-fixed tissues of patients with endometrial and colorectal cancers. Sci Rep 2020; 10:16386. [PMID: 33009475 PMCID: PMC7532161 DOI: 10.1038/s41598-020-73421-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Microsatellite instability (MSI) status is routinely assessed in patients with colorectal and endometrial cancers as it contributes to Lynch syndrome initial screening, tumour prognosis and selecting patients for immunotherapy. Currently, standard reference methods recommended for MSI/dMMR (deficient MisMatch Repair) testing consist of immunohistochemistry and pentaplex PCR-based assays, however, novel molecular-based techniques are emerging. Here, we aimed to evaluate the performance of a custom capture-based NGS method and the Bio-Rad ddPCR and Idylla approaches for the determination of MSI status for theranostic purposes in 30 formalin-fixed paraffin embedded (FFPE) tissue samples from patients with endometrial (n = 15) and colorectal (n = 15) cancers. All samples were previously characterised using IHC and Promega MSI Analysis System and these assays set as golden standard. Overall agreement, sensitivity and specificity of our custom-built NGS panel were 93.30%, 93.75% and 92.86% respectively. Overall agreement, sensitivity and specificity were 100% with the Idylla MSI system. The Bio-Rad ddPCR MSI assay showed a 100% concordance, sensitivity and specificity. The custom capture-based NGS, Bio-Rad ddPCR and Idylla approaches represent viable and complementary options to IHC and Promega MSI Analysis System for the detection of MSI. Bio-Rad ddPCR and Idylla MSI assays accounts for easy and fast screening assays while the NGS approach offers the advantages to simultaneously detect MSI and clinically relevant genomic alterations.
Collapse
|
28
|
Pécriaux A, Favre L, Calderaro J, Charpy C, Derman J, Pujals A. Detection of microsatellite instability in a panel of solid tumours with the Idylla MSI Test using extracted DNA. J Clin Pathol 2020; 74:36-42. [PMID: 32513848 DOI: 10.1136/jclinpath-2020-206581] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
AIM During the last few years, determination of microstatellite instability (MSI) status has become a routine part of clinical practice, essentially to detect Lynch syndrome. Recently, MSI testing has increased with the development of immunotherapy and has expanded to a large panel of solid tumours. The aim of our work was to evaluate a fully automated system developed by Biocartis, the Idylla MSI Test, which performs an MSI analysis within 150 min. METHODS A comparison between pentaplex PCR, immunohistochemistry and Idylla MSI Test was performed in 53 colorectal carcinoma samples, 7 small intestine adenocarcinomas, 15 duodenal and pancreatic adenocarcinomas, 16 gastric tumours, 15 endometrial adenocarcinomas, 5 ovarian carcinomas and 4 cases of urinary tract tumours using extracted DNA. Limit-of-detection (LOD) experiment was also done using a commercial DNA known to harbour MSI phenotype. RESULTS The overall sensitivity was 94% and the overall specificity was 100%. Two invalid and three false-negative results were observed. Our experiments showed that the amount of DNA loaded into the cartridge was decisive and should be superior to 25 ng. LOD comprised between 4% and 8%. CONCLUSION Overall, we have demonstrated that the Idylla MSI Test is a rapid and valid option to detect MSI phenotype which can be used in a large panel of solid tumours.
Collapse
Affiliation(s)
| | - Loetitia Favre
- Department of Pathology, CHU Henri Mondor, Créteil, France.,Université Paris-Est Créteil Val de Marne Faculté de médecine, Creteil, France
| | - Julien Calderaro
- Department of Pathology, CHU Henri Mondor, Créteil, France.,Université Paris-Est Créteil Val de Marne Faculté de médecine, Creteil, France
| | - Cécile Charpy
- Department of Pathology, CHU Henri Mondor, Créteil, France
| | | | - Anaïs Pujals
- Department of Pathology, CHU Henri Mondor, Créteil, France .,Université Paris-Est Créteil Val de Marne Faculté de médecine, Creteil, France
| |
Collapse
|
29
|
Kolenčík D, Shishido SN, Pitule P, Mason J, Hicks J, Kuhn P. Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges. Cancers (Basel) 2020; 12:E1376. [PMID: 32471160 PMCID: PMC7352156 DOI: 10.3390/cancers12061376] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.
Collapse
Affiliation(s)
- Drahomír Kolenčík
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (P.P.)
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| | - Pavel Pitule
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (P.P.)
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (J.M.); (J.H.)
| |
Collapse
|