1
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
2
|
Tagami K, Thicklin R, Jain S, Equbal A, Li M, Zens T, Siaw A, Han S. Design of a cryogen-free high field dual EPR and DNP probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107351. [PMID: 36599253 DOI: 10.1016/j.jmr.2022.107351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We present the design and construction of a cryogen free, dual electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) probe for novel dynamic nuclear polarization (DNP) experiments and concurrent "in situ" analysis of DNP mechanisms. We focus on the probe design that meets the balance between EPR, NMR, and low temperature performance, while maintaining a high degree of versatility: allowing multi-nuclear NMR detection as well as broadband DNP/EPR excitation/detection. To accomplish high NMR/EPR performance, we implement a novel inductively coupled double resonance NMR circuit (1H-13C) in a solid state probe operating at cryogenic temperatures. The components of the circuit were custom built to provide maximum NMR performance, and the physical layout of this circuit was numerically optimized via magnetic field simulations to allow maximum microwave transmission to the sample for optimal EPR performance. Furthermore this probe is based around a cryogen free gas exchange cryostat and has been designed to allow unlimited experiment times down to 8.5 Kelvin with minimal cost. The affordability of EPR/DNP experiment is an extremely important aspect for broader impact with magnetic resonance measurements. The purpose of this article is to provide as complete information as we have available for others with interest in building a dual DNP/EPR instrument based around a cryogen-free cryostat.
Collapse
Affiliation(s)
- Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raymond Thicklin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Miranda Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Toby Zens
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Anthony Siaw
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
3
|
Denysenkov V, Dai D, Prisner TF. A triple resonance (e, 1H, 13C) probehead for liquid-state DNP experiments at 9.4 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107185. [PMID: 35276481 DOI: 10.1016/j.jmr.2022.107185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
In DNP experiments, NMR signal intensity is increased by transferring the much larger electron spin polarization to nuclear spins via microwave irradiation. Here we describe the design and performance of a probehead that makes it possible to perform Overhauser DNP experiments at 1H and 13C in liquid samples with a volume of up to 100 nl. We demonstrate on a 13C-labeled sodium pyruvate sample in water that proton decoupling under DNP conditions is possible with this new triple-resonance DNP probehead. In addition, the heat dissipation from the sample has been greatly improved with our new probe design. This makes it possible to keep liquid samples at a constant temperature under irradiation with a high-frequency 263 GHz microwave gyrotron with a few watts of output power. This improved performance opens up the possibility to disentangle the role of sample temperature and applied microwave power for DNP efficiency in liquids and to obtain a quantitative determination of EPR saturation by observing the suppression of paramagnetic shift as a function of microwave power.
Collapse
Affiliation(s)
- Vasyl Denysenkov
- Institute for Physical Chemistry, and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Danhua Dai
- Institute for Physical Chemistry, and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute for Physical Chemistry, and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
5
|
Kuzhelev AA, Dai D, Denysenkov V, Prisner TF. Solid-like Dynamic Nuclear Polarization Observed in the Fluid Phase of Lipid Bilayers at 9.4 T. J Am Chem Soc 2022; 144:1164-1168. [PMID: 35029974 DOI: 10.1021/jacs.1c12837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic nuclear polarization (DNP) is a powerful method to enhance NMR sensitivity. Much progress has been achieved recently to optimize DNP performance at high magnetic fields in solid-state samples, mostly by utilizing the solid or the cross effect. In liquids, only the Overhauser mechanism is active, which exhibits a DNP field profile matching the EPR line shape of the radical, distinguishable from other DNP mechanisms. Here, we observe DNP enhancements with a field profile indicative of the solid effect and thermal mixing at ∼320 K and a magnetic field of 9.4 T in the fluid phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers doped with the radical BDPA (1,3-bis(diphenylene)-2-phenylallyl). This interesting observation might open up new perspectives for DNP applications in macromolecular systems at ambient temperatures.
Collapse
Affiliation(s)
- Andrei A Kuzhelev
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Danhua Dai
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Vasyl Denysenkov
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Dai D, Wang X, Liu Y, Yang XL, Glaubitz C, Denysenkov V, He X, Prisner T, Mao J. Room-temperature dynamic nuclear polarization enhanced NMR spectroscopy of small biological molecules in water. Nat Commun 2021; 12:6880. [PMID: 34824218 PMCID: PMC8616939 DOI: 10.1038/s41467-021-27067-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful and popular technique for probing the molecular structures, dynamics and chemical properties. However the conventional NMR spectroscopy is bottlenecked by its low sensitivity. Dynamic nuclear polarization (DNP) boosts NMR sensitivity by orders of magnitude and resolves this limitation. In liquid-state this revolutionizing technique has been restricted to a few specific non-biological model molecules in organic solvents. Here we show that the carbon polarization in small biological molecules, including carbohydrates and amino acids, can be enhanced sizably by in situ Overhauser DNP (ODNP) in water at room temperature and at high magnetic field. An observed connection between ODNP 13C enhancement factor and paramagnetic 13C NMR shift has led to the exploration of biologically relevant heterocyclic compound indole. The QM/MM MD simulation underscores the dynamics of intermolecular hydrogen bonds as the driving force for the scalar ODNP in a long-living radical-substrate complex. Our work reconciles results obtained by DNP spectroscopy, paramagnetic NMR and computational chemistry and provides new mechanistic insights into the high-field scalar ODNP.
Collapse
Affiliation(s)
- Danhua Dai
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xianwei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, China
| | - Yiwei Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Liang Yang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Clemens Glaubitz
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jiafei Mao
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Nevzorov AA, Marek A, Milikisiyants S, Smirnov AI. Characterization of photonic band resonators for DNP NMR of thin film samples at 7 T magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106893. [PMID: 33418455 PMCID: PMC8362290 DOI: 10.1016/j.jmr.2020.106893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Polarization of nuclear spins via Dynamic Nuclear Polarization (DNP) relies on generating sufficiently high mm-wave B1e fields over the sample, which could be achieved by developing suitable resonance structures. Recently, we have introduced one-dimensional photonic band gap (1D PBG) resonators for DNP and reported on prototype devices operating at ca. 200 GHz electron resonance frequency. Here we systematically compare the performance of five (5) PBG resonators constructed from various alternating dielectric layers by monitoring the DNP effect on natural-abundance 13C spins in synthetic diamond microparticles embedded into a commercial polyester-based lapping film of just 3 mil (76 μm) thickness. An odd-numbered configuration of dielectric layers for 1D PBG resonator was introduced to achieve further B1e enhancements. Among the PBG configurations tested, combinations of high-ε perovskite LiTaO3 together with AlN as well as AlN with optical quartz wafers have resulted in ca. 40 to over 50- fold gains in the average mm-wave power over the sample vs. the mirror-only configuration. The results are rationalized in terms of the electromagnetic energy distribution inside the resonators obtained analytically and from COMSOL simulations. It was found that average of B1e2 over the sample strongly depends on the arrangement of the dielectric layers that are the closest to the sample, which favors odd-numbered PBG resonator configurations for their use in DNP.
Collapse
Affiliation(s)
- Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| | - Antonin Marek
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
8
|
Fedotov A, Kurakin I, Fischer S, Vogl T, Prisner T, Denysenkov V. Increased flow rate of hyperpolarized aqueous solution for dynamic nuclear polarization-enhanced magnetic resonance imaging achieved by an open Fabry-Pérot type microwave resonator. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:275-284. [PMID: 37904825 PMCID: PMC10500708 DOI: 10.5194/mr-1-275-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 11/01/2023]
Abstract
A continuous flow dynamic nuclear polarization (DNP) employing the Overhauser effect at ambient temperatures can be used among other methods to increase sensitivity of magnetic resonance imaging (MRI). The hyperpolarized state of water protons can be achieved by flowing aqueous liquid through a microwave resonator placed directly in the bore of a 1.5 T MRI magnet. Here we describe a new open Fabry-Pérot resonator as DNP polarizer, which exhibits a larger microwave exposure volume for the flowing liquid in comparison with a cylindrical TE013 microwave cavity. The Fabry-Pérot resonator geometry was designed using quasi-optical theory and simulated by CST software. Performance of the new polarizer was tested by MRI DNP experiments on a TEMPOL aqueous solution using a blood-vessel phantom. The Fabry-Pérot resonator revealed a 2-fold larger DNP enhancement with a 4-fold increased flow rate compared to the cylindrical microwave resonator. This increased yield of hyperpolarized liquid allows MRI applications on larger target objects.
Collapse
Affiliation(s)
- Alexey Fedotov
- Institute of Applied Physics of the Russian Academy of Sciences,
Nizhny Novgorod, 603950, Russia
| | - Ilya Kurakin
- Institute of Applied Physics of the Russian Academy of Sciences,
Nizhny Novgorod, 603950, Russia
| | - Sebastian Fischer
- Institute of Diagnostic and Interventional Radiology, University
Hospital Frankfurt, Frankfurt am Main 60590, Germany
| | - Thomas Vogl
- Institute of Diagnostic and Interventional Radiology, University
Hospital Frankfurt, Frankfurt am Main 60590, Germany
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of
Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main 60438, Germany
| | - Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry and Center of
Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main 60438, Germany
| |
Collapse
|
9
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|
10
|
Chen PH, Gao C, Barnes AB. Perspectives on microwave coupling into cylindrical and spherical rotors with dielectric lenses for magic angle spinning dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106518. [PMID: 31345770 DOI: 10.1016/j.jmr.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Continuous wave dynamic nuclear polarization (DNP) increases the sensitivity of NMR, yet intense microwave fields are required to transition magic angle spinning (MAS) DNP to the time domain. Here we describe and analyze Teflon lenses for cylindrical and spherical MAS rotors that focus microwave power and increase the electron Rabi frequency, ν1s. Using a commercial simulation package, we solve the Maxwell equations and determine the propagation and focusing of millimeter waves (198 GHz). We then calculate the microwave intensity in a time-independent fashion to compute the ν1s. With a nominal microwave power input of 5 W, the average ν1s is 0.38 MHz within a 22 μL sample volume in a 3.2 mm outer diameter (OD) cylindrical rotor without a Teflon lens. Decreasing the sample volume to 3 μL and focusing the microwave beam with a Teflon lens increases the ν1s to 1.5 MHz. Microwave polarization and intensity perturbations associated with diffraction through the radiofrequency coil, losses from penetration through the rotor wall, and mechanical limitations of the separation between the lens and sample are significant challenges to improving microwave coupling in MAS DNP instrumentation. To overcome these issues, we introduce a novel focusing strategy using dielectric microwave lenses installed within spinning rotors. One such 9.5 mm OD cylindrical rotor assembly implements a Teflon focusing lens to increase the ν1s to 2.7 MHz within a 2 μL sample. Further, to access high spinning frequencies while also increasing ν1s, we analyze microwave coupling into MAS spheres. For 9.5 mm OD spherical rotors, we compute a ν1s of 0.36 MHz within a sample volume of 161 μL, and 2.5 MHz within a 3 μL sample placed at the focal point of a novel double lens insert. We conclude with an analysis and discussion of sub-millimeter diamond spherical rotors for time domain DNP at spinning frequencies >100 kHz. Sub-millimeter spherical rotors better overlap a tightly focused microwave beam, resulting in a ν1s of 2.2 MHz. Lastly, we propose that sub-millimeter dielectric spherical microwave resonators will provide a means to substantially improve electron spin control in the future.
Collapse
Affiliation(s)
- Pin-Hui Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chukun Gao
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Dev B, Gujjala CR, Maly T. Thermo-mechanical analysis of a probe for electron paramagnetic resonance spectroscopy operating at cryogenic temperatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:045123. [PMID: 31043030 PMCID: PMC6482044 DOI: 10.1063/1.5088695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
In this article, we present the thermo-mechanical analysis of an electron paramagnetic resonance (EPR) probe operating at cryogenic temperatures using finite element analysis. Thermo-mechanical analysis plays a key role in the mechanical design evaluation process as EPR probes are often subjected to large stresses under such extreme conditions. For simplification, we assume thermal conduction to be the dominant mode of heat transfer over convection and radiation. The simulation model consists of a cryostat-probe assembly with appropriate thermal and structural boundary conditions. The predicted temperature distributions from the steady-state thermal analysis is then used for the stress analysis of the EPR probe. The stress analysis indicated that stresses in the EPR probe are below the ultimate strengths of each component, and thus safe for running EPR experiments. Furthermore, the simulation results were confirmed experimentally, and we found that the predicted heat losses for the EPR probe assembly and the sample holder are in excellent agreement with the experimental measurements.
Collapse
Affiliation(s)
| | | | - Thorsten Maly
- Author to whom correspondence should be addressed: . URL: http://www.bridge12.com
| |
Collapse
|
12
|
Giannoulis A, Yang Y, Gong YJ, Tan X, Feintuch A, Carmieli R, Bahrenberg T, Liu Y, Su XC, Goldfarb D. DEER distance measurements on trityl/trityl and Gd(iii)/trityl labelled proteins. Phys Chem Chem Phys 2019; 21:10217-10227. [DOI: 10.1039/c8cp07249c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trityl–trityl and trityl–Gd(iii) DEER distance measurements in proteins are performed using a new trityl spin label affording thioether–protein conjugation.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yin Yang
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Akiva Feintuch
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Raanan Carmieli
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
13
|
Orlando T, Dervişoğlu R, Levien M, Tkach I, Prisner TF, Andreas LB, Denysenkov VP, Bennati M. Dynamic Nuclear Polarization of 13
C Nuclei in the Liquid State over a 10 Tesla Field Range. Angew Chem Int Ed Engl 2018; 58:1402-1406. [DOI: 10.1002/anie.201811892] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Tomas Orlando
- Research Group of EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
| | - Rıza Dervişoğlu
- Department of NMR Based Structural Biology; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
| | - Marcel Levien
- Research Group of EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
- Department of Chemistry; Georg-August-University; Tammannstrasse 4 Göttingen Germany
| | - Igor Tkach
- Research Group of EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance; Goethe University; Max-von-Laue-Strasse 7 Frankfurt am Main Germany
| | - Loren B. Andreas
- Department of NMR Based Structural Biology; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
| | - Vasyl P. Denysenkov
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance; Goethe University; Max-von-Laue-Strasse 7 Frankfurt am Main Germany
| | - Marina Bennati
- Research Group of EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
- Department of Chemistry; Georg-August-University; Tammannstrasse 4 Göttingen Germany
| |
Collapse
|
14
|
Orlando T, Dervişoğlu R, Levien M, Tkach I, Prisner TF, Andreas LB, Denysenkov VP, Bennati M. Dynamic Nuclear Polarization of 13
C Nuclei in the Liquid State over a 10 Tesla Field Range. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomas Orlando
- Research Group of EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
| | - Rıza Dervişoğlu
- Department of NMR Based Structural Biology; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
| | - Marcel Levien
- Research Group of EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
- Department of Chemistry; Georg-August-University; Tammannstrasse 4 Göttingen Germany
| | - Igor Tkach
- Research Group of EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance; Goethe University; Max-von-Laue-Strasse 7 Frankfurt am Main Germany
| | - Loren B. Andreas
- Department of NMR Based Structural Biology; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
| | - Vasyl P. Denysenkov
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance; Goethe University; Max-von-Laue-Strasse 7 Frankfurt am Main Germany
| | - Marina Bennati
- Research Group of EPR Spectroscopy; Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen Germany
- Department of Chemistry; Georg-August-University; Tammannstrasse 4 Göttingen Germany
| |
Collapse
|
15
|
Franck JM, Han S. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained. Methods Enzymol 2018; 615:131-175. [PMID: 30638529 DOI: 10.1016/bs.mie.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We outline the physical properties of hydration water that are captured by Overhauser Dynamic Nuclear Polarization (ODNP) relaxometry and explore the insights that ODNP yields about the water and the surface that this water is coupled to. As ODNP relies on the pairwise cross-relaxation between the electron spin of a spin probe and a proton nuclear spin of water, it captures the dynamics of single-particle diffusion of an ensemble of water molecules moving near the spin probe. ODNP principally utilizes the same physics as other nuclear magnetic resonance (NMR) relaxometry (i.e., relaxation measurement) techniques. However, in ODNP, electron paramagnetic resonance (EPR) excites the electron spins probes and their high net polarization acts as a signal amplifier. Furthermore, it renders ODNP parameters highly sensitive to water moving at rates commensurate with the EPR frequency of the spin probe (typically 10GHz). Also, ODNP selectively enhances the NMR signal contributions of water moving within close proximity to the spin label. As a result, ODNP can capture ps-ns movements of hydration waters with high sensitivity and locality, even in samples with protein concentrations as dilute as 10 µM. To date, the utility of the ODNP technique has been demonstrated for two major applications: the characterization of the spatial variation in the properties of the hydration layer of proteins or other surfaces displaying topological diversity, and the identification of structural properties emerging from highly disordered proteins and protein domains. The former has been shown to correlate well with the properties of hydration water predicted by MD simulations and has been shown capable of evaluating the hydrophilicity or hydrophobicity of a surface. The latter has been demonstrated for studies of an interhelical loop of proteorhodopsin, the partial structure of α-synuclein embedded at the lipid membrane surface, incipient structures adopted by tau proteins en route to fibrils, and the structure and hydration profile of a transmembrane peptide. This chapter focuses on offering a mechanistic understanding of the ODNP measurement and the molecular dynamics encoded in the ODNP parameters. In particular, it clarifies how the electron-nuclear dipolar coupling encodes information about the molecular dynamics in the nuclear spin self-relaxation and, more importantly, the electron-nuclear spin cross-relaxation rates. The clarification of the molecular dynamics underlying ODNP should assist in establishing a connection to theory and computer simulation that will offer far richer interpretations of ODNP results in future studies.
Collapse
Affiliation(s)
- John M Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, United States.
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States; Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
16
|
Nevzorov AA, Milikisiyants S, Marek AN, Smirnov AI. Multi-resonant photonic band-gap/saddle coil DNP probehead for static solid state NMR of microliter volume samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:113-123. [PMID: 30380458 PMCID: PMC6894392 DOI: 10.1016/j.jmr.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 05/04/2023]
Abstract
The most critical condition for performing Dynamic Nuclear Polarization (DNP) NMR experiments is achieving sufficiently high electronic B1e fields over the sample at the matched EPR frequencies, which for modern high-resolution NMR instruments fall into the millimeter wave (mmW) range. Typically, mmWs are generated by powerful gyrotrons and/or extended interaction klystrons (EIKs) sources and then focused onto the sample by dielectric lenses. However, further development of DNP methods including new DNP pulse sequences may require B1e fields higher than one could achieve with the current mmW technology. In order to address the challenge of significantly enhancing the mmW field at the sample, we have constructed and tested one-dimensional photonic band-gap (PBG) mmW resonator that was incorporated inside a double-tuned radiofrequency (rf) NMR saddle coil. The photonic crystal is formed by stacking ceramic discs with alternating high and low dielectric constants and thicknesses of λ/4 or 3λ/4, where λ is the wavelength of the incident mmW field in the corresponding dielectric material. When the mmW frequency is within the band gap of the photonic crystal, a defect created in the middle of the crystal confines the mmW energy, thus forming a resonant structure. An aluminum mirror in the middle of the defect has been used to substitute one-half of the structure with its mirror image in order to reduce the resonator size and simplify its tuning. The latter is achieved by adjusting the width of the defect by moving the aluminum mirror with respect to the dielectric stack using a gear mechanism. The 1D PBG resonator was the key element for constructing a multi-resonant integrated DNP/NMR probehead operating at 190-199 GHz EPR/300 MHz 1H/75.5 MHz 13C NMR frequencies. Initial tests of the multi-resonant DNP/NMR probehead were carried out using a quasioptical mmW bridge and a Bruker Biospin Avance II spectrometer equipped with a standard Bruker 7 T wide-bore 89 mm magnet parked at 300.13 MHz 1H NMR frequency. The mmW bridge built with all solid-state active components allows for the frequency tuning between ca. 190 and ca. 199 GHz with the output power up to 27 dBm (0.5 W) at 192 GHz and up to 23 dBm (0.2 W) at 197.5 GHz. Room temperature DNP experiments with a synthetic single crystal high-pressure high-temperature (HPHT) diamond (0.3 × 0.3 × 3.0 mm3) demonstrated dramatic 1500-fold enhancement of 13C natural abundance NMR signal at full incident mmW power. Significant 13C DNP enhancement (of about 90) have been obtained at incident mmW powers of as low as <100 μW. Further tests of the resonator performance have been carried out with a thin (ca. 100 μm thickness) composite polystyrene-microdiamond film by controlling the average mmW power at the optimal DNP conditions via a gated mode of operation. From these experiments, the PBG resonator with loaded Q ≃ 250 and finesse F≈75 provides up to 12-fold or 11 db gain in the average mmW power vs. the non-resonant probehead configuration employing only a reflective mirror.
Collapse
Affiliation(s)
- Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Antonin N Marek
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
17
|
Milikisiyants S, Nevzorov AA, Smirnov AI. Photonic band-gap resonators for high-field/high-frequency EPR of microliter-volume liquid aqueous samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:152-164. [PMID: 30268940 PMCID: PMC6235713 DOI: 10.1016/j.jmr.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 05/12/2023]
Abstract
High-field EPR provides significant advantages for studying structure and dynamics of molecular systems possessing an unpaired electronic spin. However, routine use of high-field EPR in biophysical research, especially for aqueous biological samples, is still facing substantial technical difficulties stemming from high dielectric millimeter wave (mmW) losses associated with non-resonant absorption by water and other polar molecules. The strong absorbance of mmW's by water also limits the penetration depth to just fractions of mm or even less, thus making fabrication of suitable sample containers rather challenging. Here we describe a radically new line of high Q-factor mmW resonators that are based on forming lattice defects in one-dimensional photonic band-gap (PBG) structures composed of low-loss ceramic discs of λ/4 in thickness and having alternating dielectric constants. A sample (either liquid or solid) is placed within the E = 0 node of the standing mm wave confined within the defect. A resonator prototype has been built and tested at 94.3 GHz. The resonator performance is enhanced by employing ceramic nanoporous membranes as flat sample holders of controllable thickness and tunable effective dielectric constant. The experimental Q-factor of an empty resonator was ≈ 420. The Q-factor decreased slightly to ≈ 370 when loaded with a water-containing nanoporous disc of 50 μm in thickness. The resonator has been tested with a number of liquid biological samples and demonstrated about tenfold gain in concentration sensitivity vs. a high-Q cylindrical TE012-type cavity. Detailed HFSS Ansys simulations have shown that the resonator structure could be further optimized by properly choosing the thickness of the aqueous sample and employing metallized surfaces. The PBG resonator design is readily scalable to higher mmW frequencies and is capable of accommodating significantly larger sample volumes than previously achieved with either Fabry-Perot or cylindrical resonators.
Collapse
Affiliation(s)
- Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
18
|
Yoon D, Dimitriadis AI, Soundararajan M, Caspers C, Genoud J, Alberti S, de Rijk E, Ansermet JP. High-Field Liquid-State Dynamic Nuclear Polarization in Microliter Samples. Anal Chem 2018; 90:5620-5626. [PMID: 29620353 DOI: 10.1021/acs.analchem.7b04700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear hyperpolarization in the liquid state by dynamic nuclear polarization (DNP) has been of great interest because of its potential use in NMR spectroscopy of small samples of biological and chemical compounds in aqueous media. Liquid state DNP generally requires microwave resonators in order to generate an alternating magnetic field strong enough to saturate electron spins in the solution. As a consequence, the sample size is limited to dimensions of the order of the wavelength, and this restricts the sample volume to less than 100 nL for DNP at 9 T (∼260 GHz). We show here a new approach that overcomes this sample size limitation. Large saturation of electron spins was obtained with a high-power (∼150 W) gyrotron without microwave resonators. Since high power microwaves can cause serious dielectric heating in polar solutions, we designed a planar probe which effectively alleviates dielectric heating. A thin liquid sample of 100 μm of thickness is placed on a block of high thermal conductivity aluminum nitride, with a gold coating that serves both as a ground plane and as a heat sink. A meander or a coil were used for NMR. We performed 1H DNP at 9.2 T (∼260 GHz) and at room temperature with 10 μL of water, a volume that is more than 100× larger than reported so far. The 1H NMR signal is enhanced by a factor of about -10 with 70 W of microwave power. We also demonstrated the liquid state of 31P DNP in fluorobenzene containing triphenylphosphine and obtained an enhancement of ∼200.
Collapse
Affiliation(s)
- Dongyoung Yoon
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Alexandros I Dimitriadis
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,SWISSto12 SA, 1015 , Lausanne , Switzerland
| | - Murari Soundararajan
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Christian Caspers
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Jeremy Genoud
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Swiss Plasma Center , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Stefano Alberti
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Swiss Plasma Center , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Emile de Rijk
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,SWISSto12 SA, 1015 , Lausanne , Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| |
Collapse
|
19
|
Butler MC, Mehta HS, Chen Y, Reardon PN, Renslow RS, Khbeis M, Irish D, Mueller KT. Toward high-resolution NMR spectroscopy of microscopic liquid samples. Phys Chem Chem Phys 2018; 19:14256-14261. [PMID: 28534571 DOI: 10.1039/c7cp01933e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 μL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed, as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume ≪5 μL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.
Collapse
Affiliation(s)
- Mark C Butler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
21
|
Prisner T, Denysenkov V, Sezer D. Liquid state DNP at high magnetic fields: Instrumentation, experimental results and atomistic modelling by molecular dynamics simulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:68-77. [PMID: 26920832 DOI: 10.1016/j.jmr.2015.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 05/14/2023]
Abstract
Dynamic nuclear polarization (DNP) at high magnetic fields has recently become one of the major research areas in magnetic resonance spectroscopy and imaging. Whereas much work has been devoted to experiments where the polarization transfer from the electron spin to the nuclear spin is performed in the solid state, only a few examples exist of experiments where the polarization transfer is performed in the liquid state. Here we describe such experiments at a magnetic field of 9.2 T, corresponding to a nuclear Larmor frequency of 400 MHz for proton spins and an excitation frequency of 263 GHz for the electron spins. The technical requirements to perform such experiments are discussed in the context of the double resonance structures that we have implemented. The experimental steps that allowed access to the enhancement factors for proton spins of several organic solvents with nitroxide radicals as polarizing agents are described. A computational scheme for calculating the coupling factors from molecular dynamics (MD) simulations is outlined and used to highlight the limitations of the classical models based on translational and rotational motion that are typically employed to quantify the observed coupling factors. The ability of MD simulations to predict enhancements for a variety of radicals and solvent molecules at any magnetic field strength should prove useful in optimizing experimental conditions for DNP in the liquid state.
Collapse
Affiliation(s)
- Thomas Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany.
| | - Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany
| | - Deniz Sezer
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
22
|
van Bentum J, van Meerten B, Sharma M, Kentgens A. Perspectives on DNP-enhanced NMR spectroscopy in solutions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:59-67. [PMID: 26920831 DOI: 10.1016/j.jmr.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 05/03/2023]
Abstract
More than 60 years after the seminal work of Albert Overhauser on dynamic nuclear polarization by dynamic cross relaxation of coupled electron-nuclear spin systems, the quest for sensitivity enhancement in NMR spectroscopy is as pressing as ever. In this contribution we will review the status and perspectives for dynamic nuclear polarization in the liquid state. An appealing approach seems to be the use of supercritical solvents that may allow an extension of the Overhauser mechanism towards common high magnetic fields. A complementary approach is the use of solid state DNP on frozen solutions, followed by a rapid dissolution or in-situ melting step and NMR detection with substantially enhanced polarization levels in the liquid state. We will review recent developments in the field and discuss perspectives for the near future.
Collapse
|
23
|
Guy ML, Zhu L, Ramanathan C. Design and characterization of a W-band system for modulated DNP experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:11-8. [PMID: 26524649 PMCID: PMC4971581 DOI: 10.1016/j.jmr.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 05/05/2023]
Abstract
Magnetic-field and microwave-frequency modulated DNP experiments have been shown to yield improved enhancements over conventional DNP techniques, and even to shorten polarization build-up times. The resulting increase in signal-to-noise ratios can lead to significantly shorter acquisition times in signal-limited multi-dimensional NMR experiments and pave the way to the study of even smaller sample volumes. In this paper we describe the design and performance of a broadband system for microwave frequency- and amplitude-modulated DNP that has been engineered to minimize both microwave and thermal losses during operation at liquid helium temperatures. The system incorporates a flexible source that can generate arbitrary waveforms at 94GHz with a bandwidth greater than 1GHz, as well as a probe that efficiently transmits the millimeter waves from room temperature outside the magnet to a cryogenic environment inside the magnet. Using a thin-walled brass tube as an overmoded waveguide to transmit a hybrid HE11 mode, it is possible to limit the losses to 1dB across a 2GHz bandwidth. The loss is dominated by the presence of a quartz window used to isolate the waveguide pipe. This performance is comparable to systems with corrugated waveguide or quasi-optical components. The overall excitation bandwidth of the probe is seen to be primarily determined by the final antenna or resonator used to excite the sample and its coupling to the NMR RF coil. Understanding the instrumental limitations imposed on any modulation scheme is key to understanding the observed DNP results and potentially identifying the underlying mechanisms. We demonstrate the utility of our design with a set of triangular frequency-modulated DNP experiments.
Collapse
Affiliation(s)
- Mallory L Guy
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
| | - Lihuang Zhu
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
24
|
Jakdetchai O, Denysenkov V, Becker-Baldus J, Dutagaci B, Prisner TF, Glaubitz C. Dynamic nuclear polarization-enhanced NMR on aligned lipid bilayers at ambient temperature. J Am Chem Soc 2014; 136:15533-6. [PMID: 25333422 DOI: 10.1021/ja509799s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynamic nuclear polarization (DNP)-enhanced solid-state NMR spectroscopy has been shown to hold great potential for functional studies of membrane proteins at low temperatures due to its great sensitivity improvement. There are, however, numerous applications for which experiments at ambient temperature are desirable and which would also benefit from DNP signal enhancement. Here, we demonstrate as a proof of concept that a significant signal increase for lipid bilayers under room-temperature conditions can be achieved by utilizing the Overhauser effect. Experiments were carried out on aligned bilayers at 400 MHz/263 GHz using a stripline structure combined with a Fabry-Perot microwave resonator. A signal enhancement of protons of up to -10 was observed. Our results demonstrate that Overhauser DNP at high field provides efficient polarization transfer within insoluble samples, which is driven by fast local molecular fluctuations. Furthermore, our experimental setup offers an attractive option for DNP-enhanced solid-state NMR on ordered membranes and provides a general perspective toward DNP at ambient temperatures.
Collapse
Affiliation(s)
- Orawan Jakdetchai
- Institute of Biophysical Chemistry and ‡Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance Frankfurt, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Neudert O, Raich HP, Mattea C, Stapf S, Münnemann K. An Alderman-Grant resonator for S-Band Dynamic Nuclear Polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:79-85. [PMID: 24607825 DOI: 10.1016/j.jmr.2014.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 06/03/2023]
Abstract
An Alderman-Grant resonator with resonance at 2GHz (S-Band) was simulated, developed and constructed for Dynamic Nuclear Polarization (DNP) experiments at 73mT. The resonator fits into magnet bores with a minimum diameter of 20mm and is compatible with standard 3mm NMR tubes. The compact resonator design achieves good separation of electric and magnetic fields and therefore can be used with comparatively large sample volumes with only small sample heating effects comparable to those obtained with optimized X- and W-Band DNP setups. The saturation efficiency and sample heating effects were investigated for Overhauser DNP experiments of aqueous solutions of TEMPOL radical, showing relative saturation better than 0.9 and sample heating not exceeding a few Kelvin even at high microwave power and long irradiation time. An application is demonstrated, combining the DNP setup with a commercial fast field cycling NMR relaxometer. Using this resonator design at low microwave frequencies can provide DNP polarization for a class of low-field and time-domain NMR experiments and therefore may enable new applications that benefit from increased sensitivity.
Collapse
Affiliation(s)
- Oliver Neudert
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | - Hans-Peter Raich
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| | - Carlos Mattea
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany.
| | - Siegfried Stapf
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany.
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
| |
Collapse
|
26
|
Franck JM, Pavlova A, Scott JA, Han S. Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 74:33-56. [PMID: 24083461 PMCID: PMC3798041 DOI: 10.1016/j.pnmrs.2013.06.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/10/2013] [Indexed: 05/03/2023]
Abstract
Liquid state Overhauser effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (∼10GHz), frequency and ¹H nuclear magnetic resonance (NMR) at ∼15 MHz. It requires only a standard continuous wave (cw) ESR spectrometer with an NMR probe inserted or built into an X-band cavity. We focus on reviewing a new and powerful manifestation of ODNP as a high frequency NMR relaxometry tool that probes dipolar cross relaxation between the electron spins and the ¹H nuclear spins at X-band frequencies. This technique selectively measures the translational mobility of water within a volume extending 0.5-1.5 nm outward from a nitroxide radical spin probe that is attached to a targeted site of a macromolecule. It allows one to study the dynamics of water that hydrates or permeates the surface or interior of proteins, polymers, and lipid membrane vesicles. We begin by reviewing the recent advances that have helped develop ODNP into a tool for mapping the dynamic landscape of hydration water with sub-nanometer locality. In order to bind this work coherently together and to place it in the context of the extensive body of research in the field of NMR relaxometry, we then rephrase the analytical model and extend the description of the ODNP-derived NMR signal enhancements. This extended model highlights several aspects of ODNP data analysis, including the importance of considering all possible effects of microwave sample heating, the need to consider the error associated with various relaxation rates, and the unique ability of ODNP to probe the electron-¹H cross-relaxation process, which is uniquely sensitive to fast (tens of ps) dynamical processes. By implementing the relevant corrections in a stepwise fashion, this paper draws a consensus result from previous ODNP procedures and then shows how such data can be further corrected to yield clear and reproducible saturation of the NMR hyperpolarization process. Finally, drawing on these results, we broadly survey the previous ODNP dynamics literature. We find that the vast number of published, empirical hydration dynamics data can be reproducibly classified into regimes of surface, interfacial, vs. buried water dynamics.
Collapse
Affiliation(s)
- John M Franck
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | | | | | | |
Collapse
|
27
|
Neugebauer P, Krummenacker JG, Denysenkov VP, Parigi G, Luchinat C, Prisner TF. Liquid state DNP of water at 9.2 T: an experimental access to saturation. Phys Chem Chem Phys 2013; 15:6049-56. [PMID: 23493879 DOI: 10.1039/c3cp44461a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have performed liquid state ("Overhauser") Dynamic Nuclear Polarization (DNP) experiments at high magnetic field (9.2 T, corresponding to 260 GHz EPR and 400 MHz (1)H-NMR resonance frequency) on aqueous solutions of (14)N-TEMPOL nitroxide radicals. Integrated signal enhancements exceeding -80 were observed for the water protons at microwave superheated temperatures (160 °C) and still -14 at ambient temperatures (45 °C) relevant to biological applications. Different contributions contributing to the DNP enhancement such as saturation factor, leakage factor and sample temperature under microwave irradiation could be determined independently for a high spin concentration of 1 M, allowing the calculation of the coupling factors as a function of temperature and a quantitative comparison of this parameter with values derived from field dependent relaxation measurements or predictions from MD simulation.
Collapse
Affiliation(s)
- Petr Neugebauer
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Sezer D. Computation of DNP coupling factors of a nitroxide radical in toluene: seamless combination of MD simulations and analytical calculations. Phys Chem Chem Phys 2013; 15:526-40. [DOI: 10.1039/c2cp42430d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|