1
|
Moloney B, Li X, Hirano M, Saad Eddin A, Lim JY, Biswas D, Kazerouni AS, Tudorica A, Li I, Bryant ML, Wille C, Pyle C, Rahbar H, Hsieh SK, Rice-Stitt TL, Dintzis SM, Bashir A, Hobbs E, Zimmer A, Specht JM, Phadke S, Fleege N, Holmes JH, Partridge SC, Huang W. Initial experience in implementing quantitative DCE-MRI to predict breast cancer therapy response in a multi-center and multi-vendor platform setting. Front Oncol 2024; 14:1395502. [PMID: 39678499 PMCID: PMC11638047 DOI: 10.3389/fonc.2024.1395502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Quantitative dynamic contrast-enhanced (DCE) MRI as a promising method for the prediction of breast cancer response to neoadjuvant chemotherapy (NAC) has been demonstrated mostly in single-center and single-vendor platform studies. This preliminary study reports the initial experience in implementing quantitative breast DCE-MRI in multi-center (MC) and multi-vendor platform (MP) settings to predict NAC response. MRI data, including B1 mapping, variable flip angle (VFA) measurements of native tissue R1 (R1,0), and DCE-MRI, were acquired during NAC at three sites using 3T systems with Siemens, Philips, and GE platforms, respectively. High spatiotemporal resolution DCE-MRI was performed using similar vendor product sequences with k-space undersampling during acquisition and view sharing during reconstruction. A breast phantom was used for quality assurance/quality control (QA/QC) across sites. The Tofts model (TM) and shutter-speed model (SSM) were used for pharmacokinetic (PK) analysis of the DCE data. Additionally, tumor region of interest (ROI)- vs. voxel-based analyses in combination with the use of VFA-measured R1,0 vs. fixed, literature-reported R1,0 were investigated to determine the optimal analysis approach. Results from 15 patients who completed the study are reported. Voxel-based PK analysis using fixed R1,0 was deemed the optimal approach, which allowed the inclusion of data from one vendor platform where VFA measurements produced ≥100% overestimation of R1,0. The semi-quantitative signal enhancement ratio (SER) and quantitative PK parameters outperformed the tumor longest diameter (LD) in the prediction of pathologic complete response (pCR) vs. non-pCR after the first NAC cycle, whereas Ktrans consistently provided more accurate predictions than both SER and LD after the first NAC cycle and at the NAC midpoint. Both TM and SSM Ktrans and kep were excellent predictors of response at the NAC midpoint with ROC AUC >0.90, while the SSM parameters (AUC ≥0.80) performed better than their TM counterparts (AUC <0.80) after the first NAC cycle. The initial experience of this ongoing study indicates the importance of QA/QC using a phantom and suggests that deploying voxel-based PK analysis using a fixed R1,0 may mitigate random errors from R1,0 measurements across platforms and potentially eliminate the need for B1 and VFA acquisitions in MC and MP trials.
Collapse
Affiliation(s)
- Brendan Moloney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Michael Hirano
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Assim Saad Eddin
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Jeong Youn Lim
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Debosmita Biswas
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Anum S. Kazerouni
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Alina Tudorica
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, United States
| | - Isabella Li
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Mary Lynn Bryant
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Courtney Wille
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States
| | - Chelsea Pyle
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, United States
| | - Habib Rahbar
- Department of Radiology, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Su Kim Hsieh
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Travis L. Rice-Stitt
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| | - Suzanne M. Dintzis
- Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Amani Bashir
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Evthokia Hobbs
- Hematology and Medical Oncology Division, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Alexandra Zimmer
- Hematology and Medical Oncology Division, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Jennifer M. Specht
- Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| | - Sneha Phadke
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Nicole Fleege
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - James H. Holmes
- Department of Radiology, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Savannah C. Partridge
- Department of Radiology, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Shi D, Liu F, Li S, Chen L, Jiang X, Gore JC, Zheng Q, Guo H, Xu J. Restriction-induced time-dependent transcytolemmal water exchange: Revisiting the Kӓrger exchange model. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 367:107760. [PMID: 39241283 DOI: 10.1016/j.jmr.2024.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The Kӓrger model and its derivatives have been widely used to incorporate transcytolemmal water exchange rate, an essential characteristic of living cells, into analyses of diffusion MRI (dMRI) signals from tissues. The Kӓrger model consists of two homogeneous exchanging components coupled by an exchange rate constant and assumes measurements are made with sufficiently long diffusion time and slow water exchange. Despite successful applications, it remains unclear whether these assumptions are generally valid for practical dMRI sequences and biological tissues. In particular, barrier-induced restrictions to diffusion produce inhomogeneous magnetization distributions in relatively large-sized compartments such as cancer cells, violating the above assumptions. The effects of this inhomogeneity are usually overlooked. We performed computer simulations to quantify how restriction effects, which in images produce edge enhancements at compartment boundaries, influence different variants of the Kӓrger-model. The results show that the edge enhancement effect will produce larger, time-dependent estimates of exchange rates in e.g., tumors with relatively large cell sizes (>10 μm), resulting in overestimations of water exchange as previously reported. Moreover, stronger diffusion gradients, longer diffusion gradient durations, and larger cell sizes, all cause more pronounced edge enhancement effects. This helps us to better understand the feasibility of the Kärger model in estimating water exchange in different tissue types and provides useful guidance on signal acquisition methods that may mitigate the edge enhancement effect. This work also indicates the need to correct the overestimated transcytolemmal water exchange rates obtained assuming the Kärger-model.
Collapse
Affiliation(s)
- Diwei Shi
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Li Chen
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
| | - Quanshui Zheng
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
3
|
Shi D, Li S, Liu F, Jiang X, Wu L, Chen L, Zheng Q, Bao H, Guo H, Xu J. Comprehensive characterization of tumor therapeutic response with simultaneous mapping cell size, density, and transcytolemmal water exchange. ARXIV 2024:arXiv:2408.01918v1. [PMID: 39130198 PMCID: PMC11312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Early assessment of tumor therapeutic response is an important topic in precision medicine to optimize personalized treatment regimens and reduce unnecessary toxicity, cost, and delay. Although diffusion MRI (dMRI) has shown potential to address this need, its predictive accuracy is limited, likely due to its unspecific sensitivity to overall pathological changes. In this work, we propose a new quantitative dMRI-based method dubbed EXCHANGE (MRI of water Exchange, Confined and Hindered diffusion under Arbitrary Gradient waveform Encodings) for simultaneous mapping of cell size, cell density, and transcytolemmal water exchange. Such rich microstructural information comprehensively evaluates tumor pathologies at the cellular level. Validations using numerical simulations and in vitro cell experiments confirmed that the EXCHANGE method can accurately estimate mean cell size, density, and water exchange rate constants. The results from in vivo animal experiments show the potential of EXCHANGE for monitoring tumor treatment response. Finally, the EXCHANGE method was implemented in breast cancer patients with neoadjuvant chemotherapy, demonstrating its feasibility in assessing tumor therapeutic response in clinics. In summary, a new, quantitative dMRI-based EXCHANGE method was proposed to comprehensively characterize tumor microstructural properties at the cellular level, suggesting a unique means to monitor tumor treatment response in clinical practice.
Collapse
Affiliation(s)
- Diwei Shi
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lei Wu
- Qinghai University Affiliated Hospital, Qinghai, Xining 810000, China
| | - Li Chen
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Quanshui Zheng
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Haihua Bao
- Qinghai University Affiliated Hospital, Qinghai, Xining 810000, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Di Gregorio E, Papi C, Conti L, Di Lorenzo A, Cavallari E, Salvatore M, Cavaliere C, Ferrauto G, Aime S. A Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer (MRI-CEST) Method for the Detection of Water Cycling across Cellular Membranes. Angew Chem Int Ed Engl 2024; 63:e202313485. [PMID: 37905585 DOI: 10.1002/anie.202313485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Water cycling across the membrane transporters is considered a hallmark of cellular metabolism and it could be of high diagnostic relevance in the characterization of tumors and other diseases. The method relies on the response of intracellular proton exchanging molecules to the presence of extracellular Gd-based contrast agents (GBCAs). Paramagnetic GBCAs enhances the relaxation rate of water molecules in the extracellular compartment and, through membrane exchange, the relaxation enhancement is transferred to intracellular molecules. The effect is detected at the MRI-CEST (Magnetic Resonance Imaging - Chemical Exchange Saturation Transfer) signal of intracellular proton exchanging molecules. The magnitude of the change in the CEST response reports on water cycling across the membrane. The method has been tested on Red Blood Cells and on orthotopic murine models of breast cancer with different degree of malignancy (4T1, TS/A and 168FARN). The distribution of voxels reporting on membrane permeability fits well with the cells' aggressiveness and acts as an early reporter to monitor therapeutic treatments.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Papi
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Marco Salvatore
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Carlo Cavaliere
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvio Aime
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| |
Collapse
|
5
|
Kiser K, Zhang J, Das AB, Tranos JA, Wadghiri YZ, Kim SG. Evaluation of cellular water exchange in a mouse glioma model using dynamic contrast-enhanced MRI with two flip angles. Sci Rep 2023; 13:3007. [PMID: 36810898 PMCID: PMC9945648 DOI: 10.1038/s41598-023-29991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
This manuscript aims to evaluate the robustness and significance of the water efflux rate constant (kio) parameter estimated using the two flip-angle Dynamic Contrast-Enhanced (DCE) MRI approach with a murine glioblastoma model at 7 T. The repeatability of contrast kinetic parameters and kio measurement was assessed by a test-retest experiment (n = 7). The association of kio with cellular metabolism was investigated through DCE-MRI and FDG-PET experiments (n = 7). Tumor response to a combination therapy of bevacizumab and fluorouracil (5FU) monitored by contrast kinetic parameters and kio (n = 10). Test-retest experiments demonstrated compartmental volume fractions (ve and vp) remained consistent between scans while the vascular functional measures (Fp and PS) and kio showed noticeable changes, most likely due to physiological changes of the tumor. The standardized uptake value (SUV) of tumors has a linear correlation with kio (R2 = 0.547), a positive correlation with Fp (R2 = 0.504), and weak correlations with ve (R2 = 0.150), vp (R2 = 0.077), PS (R2 = 0.117), Ktrans (R2 = 0.088) and whole tumor volume (R2 = 0.174). In the treatment study, the kio of the treated group was significantly lower than the control group one day after bevacizumab treatment and decreased significantly after 5FU treatment compared to the baseline. This study results support the feasibility of measuring kio using the two flip-angle DCE-MRI approach in cancer imaging.
Collapse
Affiliation(s)
- Karl Kiser
- Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, WMC Box 141, USA.
| | - Jin Zhang
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 WMC Box 141, USA
| | - Ayesha Bharadwaj Das
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 WMC Box 141, USA
| | - James A. Tranos
- grid.137628.90000 0004 1936 8753Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Youssef Zaim Wadghiri
- grid.137628.90000 0004 1936 8753Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, NY USA
| | - Sungheon Gene Kim
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 WMC Box 141, USA
| |
Collapse
|
6
|
Springer CS, Baker EM, Li X, Moloney B, Pike MM, Wilson GJ, Anderson VC, Sammi MK, Garzotto MG, Kopp RP, Coakley FV, Rooney WD, Maki JH. Metabolic activity diffusion imaging (MADI): II. Noninvasive, high-resolution human brain mapping of sodium pump flux and cell metrics. NMR IN BIOMEDICINE 2023; 36:e4782. [PMID: 35654761 DOI: 10.1002/nbm.4782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
We introduce a new 1 H2 O magnetic resonance approach: metabolic activity diffusion imaging (MADI). Numerical diffusion-weighted imaging decay simulations characterized by the mean cellular water efflux (unidirectional) rate constant (kio ), mean cell volume (V), and cell number density (ρ) are produced from Monte Carlo random walks in virtual stochastically sized/shaped cell ensembles. Because of active steady-state trans-membrane water cycling (AWC), kio reflects the cytolemmal Na+ , K+ ATPase (NKA) homeostatic cellular metabolic rate (c MRNKA ). A digital 3D "library" contains thousands of simulated single diffusion-encoded (SDE) decays. Library entries match well with disparate, animal, and human experimental SDE decays. The V and ρ values are consistent with estimates from pertinent in vitro cytometric and ex vivo histopathological literature: in vivo V and ρ values were previously unavailable. The library allows noniterative pixel-by-pixel experimental SDE decay library matchings that can be used to advantage. They yield proof-of-concept MADI parametric mappings of the awake, resting human brain. These reflect the tissue morphology seen in conventional MRI. While V is larger in gray matter (GM) than in white matter (WM), the reverse is true for ρ. Many brain structures have kio values too large for current, invasive methods. For example, the median WM kio is 22s-1 ; likely reflecting mostly exchange within myelin. The kio •V product map displays brain tissue c MRNKA variation. The GM activity correlates, quantitatively and qualitatively, with the analogous resting-state brain 18 FDG-PET tissue glucose consumption rate (t MRglucose ) map; but noninvasively, with higher spatial resolution, and no pharmacokinetic requirement. The cortex, thalamus, putamen, and caudate exhibit elevated metabolic activity. MADI accuracy and precision are assessed. The results are contextualized with literature overall homeostatic brain glucose consumption and ATP production/consumption measures. The MADI/PET results suggest different GM and WM metabolic pathways. Preliminary human prostate results are also presented.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric M Baker
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Brendan Moloney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Gregory J Wilson
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark G Garzotto
- Department of Urology, Portland VA Center, Portland, Oregon, USA
- Department of Urology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ryan P Kopp
- Department of Urology, Portland VA Center, Portland, Oregon, USA
- Department of Urology, Oregon Health & Science University, Portland, Oregon, USA
| | - Fergus V Coakley
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey H Maki
- Department of Radiology, Anschutz Medical Center, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
7
|
Springer CS, Baker EM, Li X, Moloney B, Wilson GJ, Pike MM, Barbara TM, Rooney WD, Maki JH. Metabolic activity diffusion imaging (MADI): I. Metabolic, cytometric modeling and simulations. NMR IN BIOMEDICINE 2023; 36:e4781. [PMID: 35654608 DOI: 10.1002/nbm.4781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Evidence mounts that the steady-state cellular water efflux (unidirectional) first-order rate constant (kio [s-1 ]) magnitude reflects the ongoing, cellular metabolic rate of the cytolemmal Na+ , K+ -ATPase (NKA), c MRNKA (pmol [ATP consumed by NKA]/s/cell), perhaps biology's most vital enzyme. Optimal 1 H2 O MR kio determinations require paramagnetic contrast agents (CAs) in model systems. However, results suggest that the homeostatic metabolic kio biomarker magnitude in vivo is often too large to be reached with allowable or possible CA living tissue distributions. Thus, we seek a noninvasive (CA-free) method to determine kio in vivo. Because membrane water permeability has long been considered important in tissue water diffusion, we turn to the well-known diffusion-weighted MRI (DWI) modality. To analyze the diffusion tensor magnitude, we use a parsimoniously primitive model featuring Monte Carlo simulations of water diffusion in virtual ensembles comprising water-filled and -immersed randomly sized/shaped contracted Voronoi cells. We find this requires two additional, cytometric properties: the mean cell volume (V [pL]) and the cell number density (ρ [cells/μL]), important biomarkers in their own right. We call this approach metabolic activity diffusion imaging (MADI). We simulate water molecule displacements and transverse MR signal decays covering the entirety of b-space from pure water (ρ = V = 0; kio undefined; diffusion coefficient, D0 ) to zero diffusion. The MADI model confirms that, in compartmented spaces with semipermeable boundaries, diffusion cannot be described as Gaussian: the nanoscopic D (Dn ) is diffusion time-dependent, a manifestation of the "diffusion dispersion". When the "well-mixed" (steady-state) condition is reached, diffusion becomes limited, mainly by the probabilities of (1) encountering (ρ, V), and (2) permeating (kio ) cytoplasmic membranes, and less so by Dn magnitudes. Importantly, for spaces with large area/volume (A/V; claustrophobia) ratios, this can happen in less than a millisecond. The model matches literature experimental data well, with implications for DWI interpretations.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric M Baker
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Brendan Moloney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Gregory J Wilson
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Bayer Healthcare, Radiology, New Jersey, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas M Barbara
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey H Maki
- Anschutz Medical Center Department of Radiology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Anderson VC, Tagge IJ, Doud A, Li X, Springer CS, Quinn JF, Kaye JA, Wild KV, Rooney WD. DCE-MRI of Brain Fluid Barriers: In Vivo Water Cycling at the Human Choroid Plexus. Tissue Barriers 2021; 10:1963143. [PMID: 34542012 DOI: 10.1080/21688370.2021.1963143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Metabolic deficits at brain-fluid barriers are an increasingly recognized feature of cognitive decline in older adults. At the blood-cerebrospinal fluid barrier, water is transported across the choroid plexus (CP) epithelium against large osmotic gradients via processes tightly coupled to activity of the sodium/potassium pump. Here, we quantify CP homeostatic water exchange using dynamic contrast-enhanced MRI and investigate the association of the water efflux rate constant (kco) with cognitive dysfunction in older individuals. Temporal changes in the longitudinal relaxation rate constant (R1) after contrast agent bolus injection were measured in a CP region of interest in 11 participants with mild cognitive dysfunction [CI; 73 ± 6 years] and 28 healthy controls [CN; 72 ± 7 years]. kco was determined from a modified two-site pharmacokinetic exchange analysis of the R1 time-course. Ktrans, a measure of contrast agent extravasation to the interstitial space was also determined. Cognitive function was assessed by neuropsychological test performance. kco averages 5.8 ± 2.7 s-1 in CN individuals and is reduced by 2.4 s-1 [ca. 40%] in CI subjects. Significant associations of kco with global cognition and multiple cognitive domains are observed. Ktrans averages 0.13 ± 0.07 min-1 and declines with age [-0.006 ± 0.002 min-1 yr-1], but shows no difference between CI and CN individuals or association with cognitive performance. Our findings suggest that the CP water efflux rate constant is associated with cognitive dysfunction and shows an age-related decline in later life, consistent with the metabolic disturbances that characterize brain aging.
Collapse
Affiliation(s)
- Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Ian J Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Doud
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey A Kaye
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Katherine V Wild
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
9
|
Zhang J, Lemberskiy G, Moy L, Fieremans E, Novikov DS, Kim SG. Measurement of cellular-interstitial water exchange time in tumors based on diffusion-time-dependent diffusional kurtosis imaging. NMR IN BIOMEDICINE 2021; 34:e4496. [PMID: 33634508 PMCID: PMC8170918 DOI: 10.1002/nbm.4496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/08/2021] [Indexed: 05/10/2023]
Abstract
PURPOSE To assess the feasibility of using diffusion-time-dependent diffusional kurtosis imaging (tDKI) to measure cellular-interstitial water exchange time (τex ) in tumors, both in animals and in humans. METHODS Preclinical tDKI studies at 7 T were performed with the GL261 glioma model and the 4T1 mammary tumor model injected into the mouse brain. Clinical studies were performed at 3 T with women who had biopsy-proven invasive ductal carcinoma. tDKI measurement was conducted using a diffusion-weighted STEAM pulse sequence with multiple diffusion times (20-800 ms) at a fixed echo time, while keeping the b-values the same (0-3000 s/mm2 ) by adjusting the diffusion gradient strength. The tDKI data at each diffusion time t were used for a weighted linear least-squares fit method to estimate the diffusion-time-dependent diffusivity, D(t), and diffusional kurtosis, K(t). RESULTS Both preclinical and clinical studies showed that, when diffusion time t ≥ 200 ms, D(t) did not have a noticeable change while K(t) decreased monotonically with increasing diffusion time in tumors and t ≥ 100 ms for the cortical ribbon of the mouse brain. The estimated τex averaged median and interquartile range (IQR) of GL261 and 4T1 tumors were 93 (IQR = 89) ms and 68 (78) ms, respectively. For the cortical ribbon, the estimated τex averaged median and IQR were 41 (34) ms for C57BL/6 and 30 (17) ms for BALB/c. For invasive ductal carcinoma, the estimated τex median and IQR of the two breast cancers were 70 (94) and 106 (92) ms. CONCLUSION The results of this proof-of-concept study substantiate the feasibility of using tDKI to measure cellular-interstitial water exchange time without using an exogenous contrast agent.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Gregory Lemberskiy
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Linda Moy
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
10
|
Zhou X, Fan X, Mustafi D, Pineda F, Markiewicz E, Zamora M, Sheth D, Olopade OI, Oto A, Karczmar GS. Comparison of DCE-MRI of murine model cancers with a low dose and high dose of contrast agent. Phys Med 2021; 81:31-39. [PMID: 33373779 DOI: 10.1016/j.ejmp.2020.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
There are increasing concerns regarding intracellular accumulation of gadolinium (Gd) after multiple dynamic contrast enhanced (DCE) MRI scans. We investigated whether a low dose (LD) of Gd-based contrast agent is as effective as a high dose (HD) for quantitative analysis of DCE-MRI data, and evaluated the use of a split dose protocol to obtain new diagnostic parameters. Female C3H mice (n = 6) were injected with mammary carcinoma cells in the hind leg. MRI experiments were performed on 9.4 T scanner. DCE-MRI data were acquired with 1.5 s temporal resolution before and after a LD (0.04 mmol/kg), then again after 30 min followed by a HD (0.2 mmol/kg) bolus injection of Omniscan. The standard Tofts model was used to extract physiological parameters (Ktrans and ve) with the arterial input function derived from muscle reference tissue. In addition, an empirical mathematical model was used to characterize maximum contrast agent uptake (A), contrast agent uptake rate (α) and washout rate (β and γ). There were moderate to strong correlations (r = 0.69-0.97, p < 0001) for parameters Ktrans, ve, A, α and β from LD versus HD data. On average, tumor parameters obtained from LD data were significantly larger (p < 0.05) than those from HD data. The parameter ratios, Ktrans, ve, A and α calculated from the LD data divided by the HD data, were all significantly larger than 1.0 (p < 0.003) for tumor. T2* changes following contrast agent injection affected parameters calculated from HD data, but this was not the case for LD data. The results suggest that quantitative analysis of LD data may be at least as effective for cancer characterization as quantitative analysis of HD data. In addition, the combination of parameters from two different doses may provide useful diagnostic information.
Collapse
Affiliation(s)
- Xueyan Zhou
- School of Technology, Harbin University, Harbin, China; Department of Radiology, The University of Chicago, Chicago, IL 60637, United States
| | - Xiaobing Fan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, United States
| | - Devkumar Mustafi
- Department of Radiology, The University of Chicago, Chicago, IL 60637, United States
| | - Federico Pineda
- Department of Radiology, The University of Chicago, Chicago, IL 60637, United States
| | - Erica Markiewicz
- Department of Radiology, The University of Chicago, Chicago, IL 60637, United States
| | - Marta Zamora
- Department of Radiology, The University of Chicago, Chicago, IL 60637, United States
| | - Deepa Sheth
- Department of Radiology, The University of Chicago, Chicago, IL 60637, United States
| | | | - Aytekin Oto
- Department of Radiology, The University of Chicago, Chicago, IL 60637, United States
| | - Gregory S Karczmar
- Department of Radiology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
11
|
Chawla S, Kim SG, Loevner LA, Wang S, Mohan S, Lin A, Poptani H. Prediction of distant metastases in patients with squamous cell carcinoma of head and neck using DWI and DCE-MRI. Head Neck 2020; 42:3295-3306. [PMID: 32737951 DOI: 10.1002/hed.26386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/30/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The primary purpose was to evaluate the prognostic potential of diffusion imaging (DWI) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in predicting distant metastases in squamous cell carcinoma of head and neck (HNSCC) patients. The secondary aim was to examine differences in DWI and DCE-MRI-derived parameters on the basis of human papilloma virus (HPV) status, differentiation grade, and nodal stage of HNSCC. METHODS Fifty-six patients underwent pretreatment DWI and DCE-MRI. Patients were divided into groups who subsequently did (n = 12) or did not develop distant metastases (n = 44). Median values of apparent diffusion coefficient (ADC), volume transfer constant (Ktrans ), and mean intracellular water-lifetime (τi ) and volume were computed from metastatic lymph nodes and were compared between two groups. Prognostic utility of HPV status, differentiation grading, and nodal staging was also evaluated both in isolation or in combination with MRI parameters in distinguishing patients with and without distant metastases. Additionally, MRI parameters were compared between two groups based on dichotomous HPV status, differentiation grade, and nodal stage. RESULTS Lower but not significantly different Ktrans (0.51 ± 0.15 minute-1 vs 0.60 ± 0.05 minute-1 ) and not significantly different τi (0.13 ± 0.03 second vs 0.19 ± 0.02 second) were observed in patients who developed distant metastases than those who did not. Additionally, no significant differences in ADC or volume were found. τi, was the best parameter in discriminating two groups with moderate sensitivity (67%) and specificity (61.4%). Multivariate logistic regression analyses did not improve the overall prognostic performance for combination of all variables. A trend toward higher τi was observed in HPV-positive patients than those with HPV-negative patients. Also, a trend toward higher Ktrans was observed in poorly differentiated HNSCCs than those with moderately differentiated HNSCCs. CONCLUSION Pretreatment DCE-MRI may be useful in predicting distant metastases in HNSCC.
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sungheon G Kim
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Laurie A Loevner
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sumei Wang
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander Lin
- Department of Radiation Oncology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harish Poptani
- Department of Radiology, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Bai R, Wang B, Jia Y, Wang Z, Springer CS, Li Z, Lan C, Zhang Y, Zhao P, Liu Y. Shutter-Speed DCE-MRI Analyses of Human Glioblastoma Multiforme (GBM) Data. J Magn Reson Imaging 2020; 52:850-863. [PMID: 32167637 DOI: 10.1002/jmri.27118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The shutter-speed model dynamic contrast-enhanced (SSM-DCE) MRI pharmacokinetic analysis adds a metabolic dimension to DCE-MRI. This is of particular interest in cancers, since abnormal metabolic activity might happen. PURPOSE To develop a DCE-MRI SSM analysis framework for glioblastoma multiforme (GBM) cases considering the heterogeneous tissue found in GBM. STUDY TYPE Prospective. SUBJECTS Ten GBM patients. FIELD STRENGTH/SEQUENCE 3T MRI with DCE-MRI. ASSESSMENTS The corrected Akaike information criterion (AICc ) was used to automatically separate DCE-MRI data into proper SSM versions based on the contrast agent (CA) extravasation in each pixel. The supra-intensive parameters, including the vascular water efflux rate constant (kbo ), the cellular efflux rate constant (kio ), and the CA vascular efflux rate constant (kpe ), together with intravascular and extravascular-extracellular water mole fractions (pb and po , respectively) were determined. Further error analyses were also performed to eliminate unreliable estimations on kio and kbo . STATISTICAL TESTS Student's t-test. RESULTS For tumor pixels of all subjects, 88% show lower AICc with SSM than with the Tofts model. Compared to normal-appearing white matter (NAWM), tumor tissue showed significantly larger pb (0.045 vs. 0.011, P < 0.001) and higher kpe (3.0 × 10-2 s-1 vs. 6.1 × 10-4 s-1 , P < 0.001). In the contrast, significant kbo reduction was observed from NAWM to GBM tumor tissue (2.8 s-1 vs. 1.0 s-1 , P < 0.001). In addition, kbo is four orders and two orders of magnitude greater than kpe in the NAWM and GBM tumor, respectively. These results indicate that CA and water molecule have different transmembrane pathways. The mean tumor kio of all subjects was 0.57 s-1 . DATA CONCLUSION We demonstrate the feasibility of applying SSM models in GBM cases. Within the proposed SSM analysis framework, kio and kbo could be estimated, which might be useful biomarkers for GBM diagnosis and survival prediction in future. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;52:850-863.
Collapse
Affiliation(s)
- Ruiliang Bai
- Department of Physical Medicine and Rehabilitation, Interdisciplinary Institute of Neuroscience and Technology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yinhang Jia
- Department of Physical Medicine and Rehabilitation, Interdisciplinary Institute of Neuroscience and Technology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zejun Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Zhaoqing Li
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Chuanjin Lan
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Peng Zhao
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Zhang J, Kim SG. Estimation of cellular-interstitial water exchange in dynamic contrast enhanced MRI using two flip angles. NMR IN BIOMEDICINE 2019; 32:e4135. [PMID: 31348580 PMCID: PMC6817382 DOI: 10.1002/nbm.4135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 05/10/2023]
Abstract
PURPOSE To investigate the feasibility of using multiple flip angles in dynamic contrast enhanced (DCE) MRI to reduce the uncertainty in estimation of intracellular water lifetime (τi ). METHODS Numerical simulation studies were conducted to assess the uncertainty in estimation of τi using dynamic contrast enhanced MRI with one or two flip angles. In vivo experiments with a murine brain tumor model were conducted at 7T using two flip angles. The in vivo data were used to compare τi estimation using the single-flip-angle (SFA) protocol with that using the double-flip-angle (DFA) protocol. Data analysis was conducted using the two-compartment exchange model combined with the three-site-two-exchange model for water exchange. RESULTS In the numerical simulation studies with a range of contrast kinetic parameters and signal-to-noise ratio = 20, the median bias of τi estimation decreased from 72 ms with SFA to 65 ms with DFA, and the corresponding median inter-quartile range reduced from 523 ms to 156 ms. In the in vivo studies, τi estimation with SFA was not successful in most voxels in the tumors, as the estimated τi values reached the upper limit of the parameter range (2 s). In contrast, the estimated τi values with DFA were mostly between 0.2 and 1.5 s and homogeneously distributed spatially across the tumor. The τi estimation with DFA was less sensitive to arterial input function scaling but more sensitive to pre-contrast T1 than the other contrast kinetic parameters. CONCLUSION This study results demonstrate the feasibility of using multiple flip angles to encode the post-contrast time-intensity curve with different weighting of water exchange effect to reduce the uncertainty in τi estimation.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Li X, Mangia S, Lee JH, Bai R, Springer CS. NMR shutter-speed elucidates apparent population inversion of 1 H 2 O signals due to active transmembrane water cycling. Magn Reson Med 2019; 82:411-424. [PMID: 30903632 PMCID: PMC6593680 DOI: 10.1002/mrm.27725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Purpose The desire to quantitatively discriminate the extra‐ and intracellular tissue 1H2O MR signals has gone hand‐in‐hand with the continual, historic increase in MRI instrument magnetic field strength [B0]. However, recent studies have indicated extremely valuable, novel metabolic information can be readily accessible at ultra–low B0. The two signals can be distinguished, and the homeostatic activity of the cell membrane sodium/potassium pump (Na+,K+,ATPase) detected. The mechanism allowing 1H2O MRI to do this is the newly discovered active transmembrane water cycling (AWC) phenomenon, which we found using paramagnetic extracellular contrast agents at clinical B0 values. AWC is important because Na+,K+,ATPase can be considered biology’s most vital enzyme, and its in vivo steady‐state activity has not before been measurable, let alone amenable to mapping with high spatial resolution. Recent reports indicate AWC correlates with neuronal firing rate, with malignant tumor metastatic potential, and inversely with cellular reducing equivalent fraction. We wish to systematize the ways AWC can be precisely measured. Methods We present a theoretical longitudinal relaxation analysis of considerable scope: it spans the low‐ and high–field situations. Results We show the NMR shutter‐speed organizing principle is pivotal in understanding how trans–membrane steady–state water exchange kinetics are manifest throughout the range. Our findings illuminate an aspect, apparent population inversion, which is crucial in understanding ultra‐low field results. Conclusions Without an appreciation of apparent population inversion, significant misinterpretations of future data are likely. These could have unfortunate diagnostic consequences.
Collapse
Affiliation(s)
- Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
15
|
Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, Aryal MP, LaViolette PS, Oborski MJ, O'Sullivan F, Abramson RG, Jafari-Khouzani K, Afzal A, Tudorica A, Moloney B, Gupta SN, Besa C, Kalpathy-Cramer J, Mountz JM, Laymon CM, Muzi M, Kinahan PE, Schmainda K, Cao Y, Chenevert TL, Taouli B, Yankeelov TE, Fennessy F, Li X. The Impact of Arterial Input Function Determination Variations on Prostate Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis Challenge, Part II. Tomography 2019; 5:99-109. [PMID: 30854447 PMCID: PMC6403046 DOI: 10.18383/j.tom.2018.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This multicenter study evaluated the effect of variations in arterial input function (AIF) determination on pharmacokinetic (PK) analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data using the shutter-speed model (SSM). Data acquired from eleven prostate cancer patients were shared among nine centers. Each center used a site-specific method to measure the individual AIF from each data set and submitted the results to the managing center. These AIFs, their reference tissue-adjusted variants, and a literature population-averaged AIF, were used by the managing center to perform SSM PK analysis to estimate Ktrans (volume transfer rate constant), ve (extravascular, extracellular volume fraction), kep (efflux rate constant), and τi (mean intracellular water lifetime). All other variables, including the definition of the tumor region of interest and precontrast T1 values, were kept the same to evaluate parameter variations caused by variations in only the AIF. Considerable PK parameter variations were observed with within-subject coefficient of variation (wCV) values of 0.58, 0.27, 0.42, and 0.24 for Ktrans, ve, kep, and τi, respectively, using the unadjusted AIFs. Use of the reference tissue-adjusted AIFs reduced variations in Ktrans and ve (wCV = 0.50 and 0.10, respectively), but had smaller effects on kep and τi (wCV = 0.39 and 0.22, respectively). kep is less sensitive to AIF variation than Ktrans, suggesting it may be a more robust imaging biomarker of prostate microvasculature. With low sensitivity to AIF uncertainty, the SSM-unique τi parameter may have advantages over the conventional PK parameters in a longitudinal study.
Collapse
Affiliation(s)
- Wei Huang
- Oregon Health and Science University, Portland, OR
| | - Yiyi Chen
- Oregon Health and Science University, Portland, OR
| | - Andriy Fedorov
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xia Li
- General Electric Global Research, Niskayuna, NY
| | | | | | | | | | | | | | | | | | - Aneela Afzal
- Oregon Health and Science University, Portland, OR
| | | | | | | | - Cecilia Besa
- Icahn School of Medicine at Mt Sinai, New York, NY
| | | | | | | | - Mark Muzi
- University of Washington, Seattle, WA; and
| | | | | | - Yue Cao
- University of Michigan, Ann Arbor, MI
| | | | | | | | - Fiona Fennessy
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xin Li
- Oregon Health and Science University, Portland, OR
| |
Collapse
|
16
|
Inglese M, Cavaliere C, Monti S, Forte E, Incoronato M, Nicolai E, Salvatore M, Aiello M. A multi-parametric PET/MRI study of breast cancer: Evaluation of DCE-MRI pharmacokinetic models and correlation with diffusion and functional parameters. NMR IN BIOMEDICINE 2019; 32:e4026. [PMID: 30379384 DOI: 10.1002/nbm.4026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
46 patients with histologically confirmed breast cancer were enrolled and imaged with a 3T hybrid PET/MRI system, at staging. Diffusion, functional and perfusion parameters (measured by Tofts and shutter speed models) were compared. Results showed a good correlation between pharmacokinetic parameters and the SUV.
Collapse
Affiliation(s)
- Marianna Inglese
- IRCCS SDN, Naples, Italy
- Department of Computer, Control and Management Engineering Antonio Ruberti, University of Rome 'La Sapienza', Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
He D, Chatterjee A, Fan X, Wang S, Eggener S, Yousuf A, Antic T, Oto A, Karczmar GS. Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis. Invest Radiol 2018; 53:609-615. [PMID: 29702525 PMCID: PMC6512866 DOI: 10.1097/rli.0000000000000466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES This study investigates whether administration of low doses of gadolinium-based contrast agent (GBCA) for dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) can be as effective as a standard dose in distinguishing prostate cancer (PCa) from benign tissue. In addition, we evaluated the combination of kinetic parameters from the low- and high-dose injection as a new diagnostic marker. MATERIALS AND METHODS Patients (n = 17) with histologically confirmed PCa underwent preoperative 3 T MRI. Dynamic contrast-enhanced MRI images were acquired at 8.3-second temporal resolution with a low dose (0.015 mmol/kg) and close to the standard dose (0.085 mmol/kg) of gadobentate dimeglumine bolus injections. Low-dose images were acquired for 3.5 minutes, followed by a 5-minute gap before acquiring standard dose images for 8.3 minutes. The data were analyzed qualitatively to investigate whether lesions could be detected based on early focal enhancement and quantitatively by fitting signal intensity as a function of time with an empirical mathematical model to obtain a maximum enhancement projection (MEP) and signal enhancement rate (α). RESULTS Both low- and standard-dose DCE-MRI showed similar sensitivity (13/26 = 50%) and lesion conspicuity score (4.0 ± 1.0 vs 4.2 ± 0.9; P = 0.317) for PCa diagnosis on qualitative analysis. Prostate cancer showed significantly increased α compared with benign tissue for low (9.98 ± 5.84 vs 5.12 ± 2.95 s) but not for standard (4.27 ± 2.20 vs 3.35 ± 1.48 s) dose. The ratio of low-dose α to standard-dose α was significantly greater (P = 0.02) for PCa (2.8 ± 2.3) than for normal prostate (1.6 ± 0.9), suggesting changes in water exchange and T2* effects associated with cancer. In addition, decreases in the percentage change in T1 relaxation rate as a function of increasing contrast media concentration (ie, the "saturation effect") can also contribute to the observed differences in high-dose and low-dose α. Area under the receiver operating characteristic curve for differentiating PCa from benign tissue using α was higher for low dose (0.769) compared with standard dose (0.625). There were no significant differences between MEP calculated for PCa and normal tissue at the low and standard doses. Moderate significant Pearson correlation for DCE parameters, MEP (r = 0.53) and α (r = 0.58), was found between low and standard doses of GBCA. CONCLUSIONS These preliminary results suggest that DCE-MRI with a low GBCA dose distinguishes PCa from benign prostate tissue more effectively than does the standard GBCA dose, based on signal enhancement rate. Diagnostic accuracy is similar on qualitative assessment. Prostate cancer diagnosis may be feasible with DCE-MRI with low-dose GBCA. In addition, comparison of enhancement kinetics after low and high doses of contrast media may provide diagnostically useful information.
Collapse
Affiliation(s)
- Dianning He
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA,Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | | | - Xiaobing Fan
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Shiyang Wang
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Scott Eggener
- Department of Urology, The University of Chicago, Chicago, Illinois, USA
| | - Ambereen Yousuf
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Tatjana Antic
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Aytekin Oto
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
18
|
Springer CS. Using 1H 2O MR to measure and map sodium pump activity in vivo. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:110-126. [PMID: 29705043 DOI: 10.1016/j.jmr.2018.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 05/26/2023]
Abstract
The cell plasma membrane Na+,K+-ATPase [NKA] is one of biology's most [if not the most] significant enzymes. By actively transporting Na+ out [and K+ in], it maintains the vital trans-membrane ion concentration gradients and the membrane potential. The forward NKA reaction is shown in the Graphical Abstract [which is elaborated in the text]. Crucially, NKA does not operate in isolation. There are other transporters that conduct K+ back out of [II, Graphical Abstract] and Na+ back into [III, Graphical Abstract] the cell. Thus, NKA must function continually. Principal routes for ATP replenishment include mitochondrial oxidative phosphorylation, glycolysis, and creatine kinase [CrK] activity. However, it has never been possible to measure, let alone map, this integrated, cellular homeostatic NKA activity in vivo. Active trans-membrane water cycling [AWC] promises a way to do this with 1H2O MR. Inthe Graphical Abstract, the AWC system is characterized by active contributions totheunidirectional rate constants for steady-state water efflux and influx, respectively, kio(a) and koi(a). The discovery, validation, and initial exploration of active water cycling are reviewed here. Promising applications in cancer, cardiological, and neurological MRI are covered. This initial work employed paramagnetic Gd(III)chelate contrast agents [CAs]. However, the significant problems associated with in vivo CA use are also reviewed. A new analysis of water diffusion-weighted MRI [DWI] is presented. Preliminary results suggest a non-invasive way to measure the cell number density [ρ (cells/μL)], the mean cell volume [V (pL)], and the cellular NKA metabolic rate [cMRNKA(fmol(ATP)/s/cell)] with high spatial resolution. These crucial cell biology properties have not before been accessible invivo. Furthermore, initial findings indicate their absolute values can be determined.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
19
|
Wang S, Lu Z, Fan X, Medved M, Jiang X, Sammet S, Yousuf A, Pineda F, Oto A, Karczmar GS. Comparison of arterial input functions measured from ultra-fast dynamic contrast enhanced MRI and dynamic contrast enhanced computed tomography in prostate cancer patients. Phys Med Biol 2018; 63:03NT01. [PMID: 29300175 PMCID: PMC6040820 DOI: 10.1088/1361-6560/aaa51b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to evaluate the accuracy of arterial input functions (AIFs) measured from dynamic contrast enhanced (DCE) MRI following a low dose of contrast media injection. The AIFs measured from DCE computed tomography (CT) were used as 'gold standard'. A total of twenty patients received CT and MRI scans on the same day. Patients received 120 ml Iohexol in DCE-CT and a low dose of (0.015 mM kg-1) of gadobenate dimeglumine in DCE-MRI. The AIFs were measured in the iliac artery and normalized to the CT and MRI contrast agent doses. To correct for different temporal resolution and sampling periods of CT and MRI, an empirical mathematical model (EMM) was used to fit the AIFs first. Then numerical AIFs (AIFCT and AIFMRI) were calculated based on fitting parameters. The AIFMRI was convolved with a 'contrast agent injection' function ([Formula: see text]) to correct for the difference between MRI and CT contrast agent injection times (~1.5 s versus 30 s). The results show that the EMMs accurately fitted AIFs measured from CT and MRI. There was no significant difference (p > 0.05) between the maximum peak amplitude of AIFs from CT (22.1 ± 4.1 mM/dose) and MRI after convolution (22.3 ± 5.2 mM/dose). The shapes of the AIFCT and [Formula: see text] were very similar. Our results demonstrated that AIFs can be accurately measured by MRI following low dose contrast agent injection.
Collapse
|
20
|
Chawla S, Loevner LA, Kim SG, Hwang WT, Wang S, Verma G, Mohan S, LiVolsi V, Quon H, Poptani H. Dynamic Contrast-Enhanced MRI-Derived Intracellular Water Lifetime (τ i ): A Prognostic Marker for Patients with Head and Neck Squamous Cell Carcinomas. AJNR Am J Neuroradiol 2017; 39:138-144. [PMID: 29146716 DOI: 10.3174/ajnr.a5440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/04/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Shutter-speed model analysis of dynamic contrast-enhanced MR imaging allows estimation of mean intracellular water molecule lifetime (a measure of cellular energy metabolism) and volume transfer constant (a measure of hemodynamics). The purpose of this study was to investigate the prognostic utility of pretreatment mean intracellular water molecule lifetime and volume transfer constant in predicting overall survival in patients with squamous cell carcinomas of the head and neck and to stratify p16-positive patients based upon survival outcome. MATERIALS AND METHODS A cohort of 60 patients underwent dynamic contrast-enhanced MR imaging before treatment. Median, mean intracellular water molecule lifetime and volume transfer constant values from metastatic nodes were computed from each patient. Kaplan-Meier analyses were performed to associate mean intracellular water molecule lifetime and volume transfer constant and their combination with overall survival for the first 2 years, 5 years, and beyond (median duration, >7 years). RESULTS By the last date of observation, 18 patients had died, and median follow-up for surviving patients (n = 42) was 8.32 years. Patients with high mean intracellular water molecule lifetime (4 deaths) had significantly (P = .01) prolonged overall survival by 5 years compared with those with low mean intracellular water molecule lifetime (13 deaths). Similarly, patients with high mean intracellular water molecule lifetime (4 deaths) had significantly (P = .006) longer overall survival at long-term duration than those with low mean intracellular water molecule lifetime (14 deaths). However, volume transfer constant was a significant predictor for only the 5-year follow-up period. There was some evidence (P < .10) to suggest that mean intracellular water molecule lifetime and volume transfer constant were associated with overall survival for the first 2 years. Patients with high mean intracellular water molecule lifetime and high volume transfer constant were associated with significantly (P < .01) longer overall survival compared with other groups for all follow-up periods. In addition, p16-positive patients with high mean intracellular water molecule lifetime and high volume transfer constant demonstrated a trend toward the longest overall survival. CONCLUSIONS A combined analysis of mean intracellular water molecule lifetime and volume transfer constant provided the best model to predict overall survival in patients with squamous cell carcinomas of the head and neck.
Collapse
Affiliation(s)
- S Chawla
- From the Departments of Radiology (S.C., L.A.L., S.G.K., S.W., G.V., S.M., H.P.)
| | - L A Loevner
- From the Departments of Radiology (S.C., L.A.L., S.G.K., S.W., G.V., S.M., H.P.)
| | - S G Kim
- From the Departments of Radiology (S.C., L.A.L., S.G.K., S.W., G.V., S.M., H.P.).,Department of Radiology (S.G.K.), New York University, New York, New York
| | - W-T Hwang
- Biostatistics and Epidemiology (W.-T.H.)
| | - S Wang
- From the Departments of Radiology (S.C., L.A.L., S.G.K., S.W., G.V., S.M., H.P.)
| | - G Verma
- From the Departments of Radiology (S.C., L.A.L., S.G.K., S.W., G.V., S.M., H.P.)
| | - S Mohan
- From the Departments of Radiology (S.C., L.A.L., S.G.K., S.W., G.V., S.M., H.P.)
| | - V LiVolsi
- Pathology and Lab Medicine (V.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - H Quon
- Radiation Oncology (H.Q.).,Department of Radiation Oncology and Molecular Radiation Sciences (H.Q.), Johns Hopkins University, Baltimore, Maryland
| | - H Poptani
- From the Departments of Radiology (S.C., L.A.L., S.G.K., S.W., G.V., S.M., H.P.) .,Department of Cellular and Molecular Physiology (H.P.), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Li X, Cai Y, Moloney B, Chen Y, Huang W, Woods M, Coakley FV, Rooney WD, Garzotto MG, Springer CS. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:104-112. [PMID: 27288764 PMCID: PMC4958517 DOI: 10.1016/j.jmr.2016.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 05/25/2023]
Abstract
Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging biomarkers for cross-platform, multicenter applications. Data from our limited study cohort show that kio correlates with Gleason scores, suggesting that it may be a useful biomarker for prostate cancer disease progression monitoring.
Collapse
Affiliation(s)
- Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
| | - Yu Cai
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Brendan Moloney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Yiyi Chen
- Division of Biostatistics, Dept. of Public Health and Preventive Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, United States
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Mark Woods
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States; Department of Chemistry, Portland State University, Portland, OR 97207, United States
| | - Fergus V Coakley
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, United States
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Mark G Garzotto
- Department of Urology, Oregon Health & Science University, Portland, OR 97239, United States; Portland VA Medical Center, Portland, OR 97239, United States
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| |
Collapse
|
22
|
Goldfarb JW, Zhao W. Effects of transcytolemmal water exchange on the assessment of myocardial extracellular volume with cardiovascular MRI. NMR IN BIOMEDICINE 2016; 29:499-506. [PMID: 26866306 DOI: 10.1002/nbm.3488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/13/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Quantitative analysis of the myocardial interstitial space is gaining increased interest as a biomarker in the MRI and clinical cardiovascular communities. To investigate the effect of water exchange on the calculation of myocardial extracellular volume (ECV), we employed two tissue models: the standard ECV two-point model (SM) and the shutter speed model (SSM). Twenty individuals (18 men and two women; age 61.9 ± 10.3 years) underwent MRI at 1.5 T with pre-contrast and post-contrast dynamic T1 quantification. Means, standard deviations and ranges for SM and SSM model parameters were calculated. Infarct and viable myocardial model parameters as well as apparent ECV values calculated with the SM and SSM were statistically compared. Viable ECV(SM) remained temporally constant (27.3-28.0%: P = 0.5) and infarcted myocardial ECV(SM) changed significantly (49.3-58.8%; P < 0.001), reaching a steady-state value after 15 min. The intracellular lifetime of water was three times greater in infarcted myocardium when compared with viable myocardium (τi: 66.6 ± 115 versus 208.7 ± 72.7 ms) and accompanied a twofold increase in ECV (ECV(SSM) : 30.3 ± 11.1 versus 71.0 ± 13.1%; P < 0.001). There was a consistent significant difference in ECV values of infarcted myocardium at different timepoints between the SM and SSM, but not viable myocardium, presumably due to slower water exchange. In summary, we found a significant change in apparent ECV and water exchange in infarcted myocardium when compared with viable myocardium. This was visualized by changes in dynamic contrast enhanced curve shapes and quantified using the SSM as not only an increase in apparent ECV but also a decrease in water exchange.
Collapse
Affiliation(s)
- James W Goldfarb
- Department of Research and Education, Saint Francis Hospital, Roslyn, New York, USA
- Program in Biomedical Engineering, SUNY Stony Brook, Stony Brook, New York, USA
| | - Wenguo Zhao
- Department of Research and Education, Saint Francis Hospital, Roslyn, New York, USA
| |
Collapse
|
23
|
Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, Aryal MP, LaViolette PS, Oborski MJ, O'Sullivan F, Abramson RG, Jafari-Khouzani K, Afzal A, Tudorica A, Moloney B, Gupta SN, Besa C, Kalpathy-Cramer J, Mountz JM, Laymon CM, Muzi M, Schmainda K, Cao Y, Chenevert TL, Taouli B, Yankeelov TE, Fennessy F, Li X. The Impact of Arterial Input Function Determination Variations on Prostate Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis Challenge. ACTA ACUST UNITED AC 2016; 2:56-66. [PMID: 27200418 PMCID: PMC4869732 DOI: 10.18383/j.tom.2015.00184] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in tumor detection and therapy response evaluation. Pharmacokinetic analysis of DCE-MRI time-course data allows estimation of quantitative imaging biomarkers such as Ktrans(rate constant for plasma/interstitium contrast reagent (CR) transfer) and ve (extravascular and extracellular volume fraction). However, the use of quantitative DCE-MRI in clinical prostate imaging islimited, with uncertainty in arterial input function (AIF, i.e., the time rate of change of the concentration of CR in the blood plasma) determination being one of the primary reasons. In this multicenter data analysis challenge to assess the effects of variations in AIF quantification on estimation of DCE-MRI parameters, prostate DCE-MRI data acquired at one center from 11 prostate cancer patients were shared among nine centers. Each center used its site-specific method to determine the individual AIF from each data set and submitted the results to the managing center. Along with a literature population averaged AIF, these AIFs and their reference-tissue-adjusted variants were used by the managing center to perform pharmacokinetic analysis of the DCE-MRI data sets using the Tofts model (TM). All other variables including tumor region of interest (ROI) definition and pre-contrast T1 were kept the same to evaluate parameter variations caused by AIF variations only. Considerable pharmacokinetic parameter variations were observed with the within-subject coefficient of variation (wCV) of Ktrans obtained with unadjusted AIFs as high as 0.74. AIF-caused variations were larger in Ktrans than ve and both were reduced when reference-tissue-adjusted AIFs were used. The parameter variations were largely systematic, resulting in nearly unchanged parametric map patterns. The CR intravasation rate constant, kep (= Ktrans/ve), was less sensitive to AIF variation than Ktrans (wCV for unadjusted AIFs: 0.45 for kepvs. 0.74 for Ktrans), suggesting that it might be a more robust imaging biomarker of prostate microvasculature than Ktrans.
Collapse
Affiliation(s)
- Wei Huang
- Oregon Health and Science University, Portland, OR
| | - Yiyi Chen
- Oregon Health and Science University, Portland, OR
| | - Andriy Fedorov
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xia Li
- General ElectricGlobal Research, Niskayuna, NY
| | | | | | | | | | | | | | | | | | - Aneela Afzal
- Oregon Health and Science University, Portland, OR
| | | | | | | | - Cecilia Besa
- Icahn School ofMedicine at Mount Sinai, New York, NY
| | | | | | | | - Mark Muzi
- University of Washington, Seattle, WA
| | | | - Yue Cao
- University of Michigan, Ann Arbor, MI
| | | | - Bachir Taouli
- Icahn School ofMedicine at Mount Sinai, New York, NY
| | | | - Fiona Fennessy
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xin Li
- Oregon Health and Science University, Portland, OR
| |
Collapse
|
24
|
Rooney WD, Li X, Sammi MK, Bourdette DN, Neuwelt EA, Springer CS. Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging. NMR IN BIOMEDICINE 2015; 28:607-23. [PMID: 25914365 PMCID: PMC4920360 DOI: 10.1002/nbm.3294] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 05/25/2023]
Abstract
Shutter-speed analysis of dynamic-contrast-agent (CA)-enhanced normal, multiple sclerosis (MS), and glioblastoma (GBM) human brain data gives the mean capillary water molecule lifetime (τ(b)) and blood volume fraction (v(b); capillary density-volume product (ρ(†)V)) in a high-resolution (1)H2O MRI voxel (40 μL) or ROI. The equilibrium water extravasation rate constant, k(po) (τ(b)(-1)), averages 3.2 and 2.9 s(-1) in resting-state normal white matter (NWM) and gray matter (NGM), respectively (n = 6). The results (italicized) lead to three major conclusions. (A) k(po) differences are dominated by capillary water permeability (P(W)(†)), not size, differences. NWM and NGM voxel k(po) and v(b) values are independent. Quantitative analyses of concomitant population-averaged k(po), v(b) variations in normal and normal-appearing MS brain ROIs confirm P(W)(†) dominance. (B) P(W)(†) is dominated (>95%) by a trans(endothelial)cellular pathway, not the P(CA)(†) paracellular route. In MS lesions and GBM tumors, P(CA)(†) increases but P(W)(†) decreases. (C) k(po) tracks steady-state ATP production/consumption flux per capillary. In normal, MS, and GBM brain, regional k(po) correlates with literature MRSI ATP (positively) and Na(+) (negatively) tissue concentrations. This suggests that the P(W)(†) pathway is metabolically active. Excellent agreement of the relative NGM/NWM k(po)v(b) product ratio with the literature (31)PMRSI-MT CMR(oxphos) ratio confirms the flux property. We have previously shown that the cellular water molecule efflux rate constant (k(io)) is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic cooperativities, polar brain endothelial, neuroglial, and neuronal cells form "gliovascular units." We hypothesize that a chain of water cycling processes transmits brain metabolic activity to k(po), letting it report neurogliovascular unit Na(+),K(+)-ATPase activity. Cerebral k(po) maps represent metabolic (functional) neuroimages. The NGM 2.9 s(-1) k(po) means an equilibrium unidirectional water efflux of ~10(15) H2O molecules s(-1) per capillary (in 1 μL tissue): consistent with the known ATP consumption rate and water co-transporting membrane symporter stoichiometries.
Collapse
Affiliation(s)
- William D. Rooney
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
- Department of NeurologyOregon Health and Science UniversityPortlandORUSA
| | - Xin Li
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
| | - Manoj K. Sammi
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
| | | | - Edward A. Neuwelt
- Blood‐Brain Barrier ProgramOregon Health and Science UniversityPortlandORUSA
| | - Charles S. Springer
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
| |
Collapse
|
25
|
Rukat T, Walker-Samuel S, Reinsberg SA. Dynamic contrast-enhanced MRI in mice: an investigation of model parameter uncertainties. Magn Reson Med 2015; 73:1979-87. [PMID: 25052296 DOI: 10.1002/mrm.25319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/13/2014] [Accepted: 05/23/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE To establish the experimental factors that dominate the uncertainty of hemodynamic parameters in commonly used pharmacokinetic models. METHODS By fitting simulation results from a multiregion tissue exchange model (Multiple path, Multiple tracer, Indicator Dilution, 4 region), the precision and accuracy of hemodynamic parameters in dynamic contrast-enhanced MRI with four tracer kinetic models is investigated. The impact of various injection rates as well as imprecise knowledge of the arterial input functions is examined. RESULTS Fast injections are beneficial for K(trans) precision within the extended Tofts model and within the two-compartment exchange model but do not affect the other models under investigation. Biases from errors in the arterial input functions are mostly consistent in size and direction for the simple and the extended Tofts model, while they are hardly predictable for the other models. Errors in the hematocrit introduce the greatest loss in parameter accuracy, amounting to an average K(trans) bias of 40% for a 30% overestimation throughout all models. CONCLUSION This simulation study allows the detailed inspection of the isolated impact from various experimental conditions on parameter uncertainty. Because parameter uncertainty comparable to human studies was found, this study represents a validation of preclinical dynamic contrast-enhanced MRI for modeling human tumor physiology.
Collapse
Affiliation(s)
- Tammo Rukat
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada; Department of Physics, Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
26
|
Patrick PS, Kettunen MI, Tee SS, Rodrigues TB, Serrao E, Timm KN, McGuire S, Brindle KM. Detection of transgene expression using hyperpolarized 13C urea and diffusion-weighted magnetic resonance spectroscopy. Magn Reson Med 2015; 73:1401-6. [PMID: 24733406 DOI: 10.1002/mrm.25254] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/01/2014] [Accepted: 03/25/2014] [Indexed: 01/30/2023]
Abstract
PURPOSE To assess the potential of a gene reporter system, based on a urea transporter (UTB) and hyperpolarized [(13) C]urea. METHODS Mice were implanted subcutaneously with either unmodified control cells or otherwise identical cells expressing UTB. After injection of hyperpolarized [(13) C]urea, a spin echo sequence was used to measure urea concentration, T1 , and diffusion in control and UTB-expressing tissue. RESULTS The apparent diffusion coefficient of hyperpolarized urea was 21% lower in tissue expressing UTB, in comparison with control tissue (P < 0.05, 1-tailed t-test, n = 6 in each group). No difference in water apparent diffusion coefficient or cellularity between these tissues was found, indicating that they were otherwise similar in composition. CONCLUSION Expression of UTB, by mediating cell uptake of urea, lowers the apparent diffusion coefficient of hyperpolarized (13) C urea in tissue and thus the transporter has the potential to be used as a magnetic resonance-based gene reporter in vivo. Magn Reson Med 73:1401-1406, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- P Stephen Patrick
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Khalifa F, Soliman A, El-Baz A, Abou El-Ghar M, El-Diasty T, Gimel'farb G, Ouseph R, Dwyer AC. Models and methods for analyzing DCE-MRI: a review. Med Phys 2014; 41:124301. [PMID: 25471985 DOI: 10.1118/1.4898202] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To present a review of most commonly used techniques to analyze dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), discusses their strengths and weaknesses, and outlines recent clinical applications of findings from these approaches. METHODS DCE-MRI allows for noninvasive quantitative analysis of contrast agent (CA) transient in soft tissues. Thus, it is an important and well-established tool to reveal microvasculature and perfusion in various clinical applications. In the last three decades, a host of nonparametric and parametric models and methods have been developed in order to quantify the CA's perfusion into tissue and estimate perfusion-related parameters (indexes) from signal- or concentration-time curves. These indexes are widely used in various clinical applications for the detection, characterization, and therapy monitoring of different diseases. RESULTS Promising theoretical findings and experimental results for the reviewed models and techniques in a variety of clinical applications suggest that DCE-MRI is a clinically relevant imaging modality, which can be used for early diagnosis of different diseases, such as breast and prostate cancer, renal rejection, and liver tumors. CONCLUSIONS Both nonparametric and parametric approaches for DCE-MRI analysis possess the ability to quantify tissue perfusion.
Collapse
Affiliation(s)
- Fahmi Khalifa
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292 and Electronics and Communication Engineering Department, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Soliman
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292
| | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Tarek El-Diasty
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Georgy Gimel'farb
- Department of Computer Science, University of Auckland, Auckland 1142, New Zealand
| | - Rosemary Ouseph
- Kidney Transplantation-Kidney Disease Center, University of Louisville, Louisville, Kentucky 40202
| | - Amy C Dwyer
- Kidney Transplantation-Kidney Disease Center, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
28
|
Zhang J, Kim S. Uncertainty in MR tracer kinetic parameters and water exchange rates estimated from T1-weighted dynamic contrast enhanced MRI. Magn Reson Med 2014. [PMID: 24006341 DOI: 10.1002/mrm.24927/asset/supinfo/mrm24927-sup-0003-suppinfo.tif] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE The aim of this study was to assess the uncertainty in estimation of MR tracer kinetic parameters and water exchange rates in T1-weighted dynamic contrast enhanced (DCE) MRI. METHODS Simulated DCE-MRI data were used to assess four kinetic models; general kinetic model with a vascular compartment (GKM2), GKM2 combined with water exchange (SSM2), adiabatic approximation of the tissue homogeneity model (ATH), and ATH combined with water exchange (ATHX). RESULTS In GKM2 and SSM2, increase in transfer constant (K(trans)) led to underestimation of vascular volume fraction (vb), and increase in vb led to overestimation of K(trans). Such coupling between K(trans) and vb was not observed in ATH and ATHX. The precision of estimated intracellular water lifetime (τi) was substantially improved in both SSM2 and ATHX when K(trans) > 0.3 min(-1). K(trans) and vb from ATHX model had significantly smaller errors than those from ATH model (P < 0.05). CONCLUSION The results of this study demonstrated the feasibility of measuring τi from DCE-MRI data albeit low precision. While the inclusion of water exchange improved the accuracy of K(trans), vb, and the interstitial volume fraction estimation (ve), it lowered the precision of other kinetic model parameters within the conditions investigated in this study.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University, School of Medicine, New York, USA
| | | |
Collapse
|
29
|
Springer CS, Li X, Tudorica LA, Oh KY, Roy N, Chui SYC, Naik AM, Holtorf ML, Afzal A, Rooney WD, Huang W. Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer? NMR IN BIOMEDICINE 2014; 27:760-73. [PMID: 24798066 PMCID: PMC4174415 DOI: 10.1002/nbm.3111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 05/10/2023]
Abstract
Shutter-speed pharmacokinetic analysis of dynamic-contrast-enhanced (DCE)-MRI data allows evaluation of equilibrium inter-compartmental water interchange kinetics. The process measured here - transcytolemmal water exchange - is characterized by the mean intracellular water molecule lifetime (τi). The τi biomarker is a true intensive property not accessible by any formulation of the tracer pharmacokinetic paradigm, which inherently assumes it is effectively zero when applied to DCE-MRI. We present population-averaged in vivo human breast whole tumor τi changes induced by therapy, along with those of other pharmacokinetic parameters. In responding patients, the DCE parameters change significantly after only one neoadjuvant chemotherapy cycle: while K(trans) (measuring mostly contrast agent (CA) extravasation) and kep (CA intravasation rate constant) decrease, τi increases. However, high-resolution, (1 mm)(2), parametric maps exhibit significant intratumor heterogeneity, which is lost by averaging. A typical 400 ms τi value means a trans-membrane water cycling flux of 10(13) H2O molecules s(-1)/cell for a 12 µm diameter cell. Analyses of intratumor variations (and therapy-induced changes) of τi in combination with concomitant changes of ve (extracellular volume fraction) indicate that the former are dominated by alterations of the equilibrium cell membrane water permeability coefficient, PW, not of cell size. These can be interpreted in light of literature results showing that τi changes are dominated by a PW (active) component that reciprocally reflects the membrane driving P-type ATPase ion pump turnover. For mammalian cells, this is the Na(+), K(+)-ATPase pump. These results promise the potential to discriminate metabolic and microenvironmental states of regions within tumors in vivo, and their changes with therapy.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- *Correspondence to: C. S. Springer, Jr, Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA. E-mail:
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Luminita A Tudorica
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Karen Y Oh
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Nicole Roy
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Stephen Y-C Chui
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Hematology/Oncology, Oregon Health and Science UniversityPortland, OR, USA
| | - Arpana M Naik
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Surgical Oncology, Oregon Health and Science UniversityPortland, OR, USA
| | - Megan L Holtorf
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Clinical Trials Office, Oregon Health and Science UniversityPortland, OR, USA
| | - Aneela Afzal
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
30
|
Wilson GJ, Woods M, Springer CS, Bastawrous S, Bhargava P, Maki JH. Human whole-blood (1)H2O longitudinal relaxation with normal and high-relaxivity contrast reagents: influence of trans-cell-membrane water exchange. Magn Reson Med 2013; 72:1746-54. [PMID: 24357240 DOI: 10.1002/mrm.25064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/29/2013] [Accepted: 11/07/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE Accurate characterization of contrast reagent (CR) longitudinal relaxivity in whole blood is required to predict arterial signal intensity in contrast-enhanced MR angiography (CE-MRA). This study measured the longitudinal relaxation rate constants (R1 ) over a concentration range for non-protein-binding and protein-binding CRs in ex vivo whole blood and plasma at 1.5 and 3.0 Tesla (T) under physiologic arterial conditions. METHODS Relaxivities of gadoteridol, gadobutrol, gadobenate, and gadofosveset were measured for [CR] from 0 to 18 mM [mmol(CR)/L(blood)]: the latter being the upper limit of what may be expected in CE-MRA. RESULTS In plasma, the (1) H2 O R1 [CR]-dependence was nonlinear for gadobenate and gadofosveset secondary to CR interactions with the serum macromolecule albumin, and was well described by an analytical expression for effective 1:1 binding stoichiometry. In whole blood, the (1) H2 O R1 [CR]-dependence was markedly non-linear for all CRs, and was well-predicted by an expression for equilibrium exchange of water molecules between plasma and intracellular spaces using a priori parameter values only. CONCLUSION In whole blood, (1) H2 O R1 exhibits a nonlinear relationship with [CR] over 0 to 18 mM CR. The nonlinearity is well described by exchange of water between erythrocyte and plasma compartments, and is particularly evident for high relaxivity CRs.
Collapse
|
31
|
Practical dynamic contrast enhanced MRI in small animal models of cancer: data acquisition, data analysis, and interpretation. Pharmaceutics 2013; 4:442-78. [PMID: 23105959 PMCID: PMC3480221 DOI: 10.3390/pharmaceutics4030442] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics).
Collapse
|
32
|
Zhang J, Kim S. Uncertainty in MR tracer kinetic parameters and water exchange rates estimated from T1-weighted dynamic contrast enhanced MRI. Magn Reson Med 2013; 72:534-45. [PMID: 24006341 DOI: 10.1002/mrm.24927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 01/02/2023]
Abstract
PURPOSE The aim of this study was to assess the uncertainty in estimation of MR tracer kinetic parameters and water exchange rates in T1-weighted dynamic contrast enhanced (DCE) MRI. METHODS Simulated DCE-MRI data were used to assess four kinetic models; general kinetic model with a vascular compartment (GKM2), GKM2 combined with water exchange (SSM2), adiabatic approximation of the tissue homogeneity model (ATH), and ATH combined with water exchange (ATHX). RESULTS In GKM2 and SSM2, increase in transfer constant (K(trans)) led to underestimation of vascular volume fraction (vb), and increase in vb led to overestimation of K(trans). Such coupling between K(trans) and vb was not observed in ATH and ATHX. The precision of estimated intracellular water lifetime (τi) was substantially improved in both SSM2 and ATHX when K(trans) > 0.3 min(-1). K(trans) and vb from ATHX model had significantly smaller errors than those from ATH model (P < 0.05). CONCLUSION The results of this study demonstrated the feasibility of measuring τi from DCE-MRI data albeit low precision. While the inclusion of water exchange improved the accuracy of K(trans), vb, and the interstitial volume fraction estimation (ve), it lowered the precision of other kinetic model parameters within the conditions investigated in this study.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University, School of Medicine, New York, USA
| | | |
Collapse
|
33
|
Li X, Priest RA, Woodward WJ, Tagge IJ, Siddiqui F, Huang W, Rooney WD, Beer TM, Garzotto MG, Springer CS. Feasibility of shutter-speed DCE-MRI for improved prostate cancer detection. Magn Reson Med 2012; 69:171-8. [PMID: 22457233 DOI: 10.1002/mrm.24211] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/26/2011] [Accepted: 01/19/2012] [Indexed: 01/28/2023]
Abstract
The feasibility of shutter-speed model dynamic-contrast-enhanced MRI pharmacokinetic analyses for prostate cancer detection was investigated in a prebiopsy patient cohort. Differences of results from the fast-exchange-regime-allowed (FXR-a) shutter-speed model version and the fast-exchange-limit-constrained (FXL-c) standard model are demonstrated. Although the spatial information is more limited, postdynamic-contrast-enhanced MRI biopsy specimens were also examined. The MRI results were correlated with the biopsy pathology findings. Of all the model parameters, region-of-interest-averaged K(trans) difference [ΔK(trans) ≡ K(trans)(FXR-a) - K(trans)(FXL-c)] or two-dimensional K(trans)(FXR-a) vs. k(ep)(FXR-a) values were found to provide the most useful biomarkers for malignant/benign prostate tissue discrimination (at 100% sensitivity for a population of 13, the specificity is 88%) and disease burden determination. (The best specificity for the fast-exchange-limit-constrained analysis is 63%, with the two-dimensional plot.) K(trans) and k(ep) are each measures of passive transcapillary contrast reagent transfer rate constants. Parameter value increases with shutter-speed model (relative to standard model) analysis are larger in malignant foci than in normal-appearing glandular tissue. Pathology analyses verify the shutter-speed model (FXR-a) promise for prostate cancer detection. Parametric mapping may further improve pharmacokinetic biomarker performance.
Collapse
Affiliation(s)
- Xin Li
- W. M. Keck Foundation High-Field MRI Laboratory, Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|