1
|
Tessmer MH, Stoll S. Protein Modeling with DEER Spectroscopy. Annu Rev Biophys 2025; 54:35-57. [PMID: 39689263 DOI: 10.1146/annurev-biophys-030524-013431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Double electron-electron resonance (DEER) combined with site-directed spin labeling can provide distance distributions between selected protein residues to investigate protein structure and conformational heterogeneity. The utilization of the full quantitative information contained in DEER data requires effective protein and spin label modeling methods. Here, we review the application of DEER data to protein modeling. First, we discuss the significance of spin label modeling for accurate extraction of protein structural information and review the most popular label modeling methods. Next, we review several important aspects of protein modeling with DEER, including site selection, how DEER restraints are applied, common artifacts, and the unique potential of DEER data for modeling structural ensembles and conformational landscapes. Finally, we discuss common applications of protein modeling with DEER data and provide an outlook.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
2
|
Cina NP, Klug CS. Conformational investigation of the asymmetric periplasmic domains of E. coli LptB 2FGC using SDSL CW EPR spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:141-158. [PMID: 38645307 PMCID: PMC11025719 DOI: 10.1007/s00723-023-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 04/23/2024]
Abstract
The majority of pathogenic Gram-negative bacteria benefit from intrinsic antibiotic resistance, attributed primarily to the lipopolysaccharide (LPS) coating of the bacterial envelope. To effectively coat the bacterial cell envelope, LPS is transported from the inner membrane by the LPS transport (Lpt) system, which comprises seven distinct Lpt proteins, LptA-G, that form a stable protein bridge spanning the periplasm to connect the inner and outer membranes. The driving force of this process, LptB2FG, is an asymmetric ATP binding cassette (ABC) transporter with a novel architecture and function that ejects LPS from the inner membrane and facilitates transfer to the periplasmic bridge. Here, we utilize site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy to probe conformational differences between the periplasmic domains of LptF and LptG. We show that LptC solely interacts with the edge β-strand of LptF and does not directly interact with LptG. We also quantify the interaction of periplasmic LptC with LptF. Additionally, we show that LPS cannot enter the protein complex externally, supporting the unidirectional LPS transport model. Furthermore, we present our findings that the presence of LPS within the LptB2FGC binding cavity and the membrane reconstitution environment affect the structural orientation of the periplasmic domains of LptF and LptG, but overall are relatively fixed with respect to one another. This study will provide insight into the structural asymmetry associated with the newly defined type VI ABC transporter class.
Collapse
Affiliation(s)
- Nicholas P. Cina
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
3
|
Parthasarathy D, Pothula KR, Dam KMA, Ratnapriya S, Benet HC, Parsons R, Huang X, Sammour S, Janowska K, Harris M, Sacco S, Sodroski J, Bridges MD, Hubbell WL, Acharya P, Herschhorn A. Conformational flexibility of HIV-1 envelope glycoproteins modulates transmitted / founder sensitivity to broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557082. [PMID: 37745449 PMCID: PMC10515946 DOI: 10.1101/2023.09.13.557082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
HIV-1 envelope glycoproteins (Envs) mediate viral entry and are the sole target of neutralizing antibodies. Envs of most primary HIV-1 strains exist in a closed conformation and occasionally sample more open states. Thus, current knowledge guides immunogen design to mimic the closed Env conformation as the preferred target for eliciting broadly neutralizing antibodies (bnAbs) to block HIV-1 entry. Here we show that Env-preferred conformations of 6 out of 13 (46%) transmitted/founder (T/F) strains tested are incompletely closed. As a result, entry of these T/Fs into target cells is sensitive to antibodies that recognize internal epitopes exposed on open Env conformations. A cryo-electron microscopy structure of unliganded, incompletely closed T/F Envs (1059-SOSIP) at 3.6 Å resolution exhibits an asymmetric configuration of Env protomers with increased sampling of states with incompletely closed trimer apex. Double electron-electron resonance spectroscopy provided further evidence for enriched occupancy of more open Env conformations. Consistent with conformational flexibility, 1059 Envs were associated with resistance to most bnAbs that exhibit reduced potency against functional Env intermediates. To follow the fate of incompletely closed Env in patients, we reconstructed de novo the post-transmission evolutionary pathway of a second T/F Env (CH040), which is sensitive to the V3-targeting antibody 19b and highly resistant to most bnAbs. Evolved viruses exhibited increased resistance to cold, soluble CD4 and 19b, all of which correlate with closing of the adapted Env trimer. Lastly, we show a correlation between efficient neutralization of multiple Env conformations and increased antiviral breadth of CD4-binding site (CD4bs) bnAbs. In particular, N6 bnAb, which uniquely recognizes different Env conformations, efficiently neutralizes 50% of the HIV-1 strains that were resistant to VRC01 and transmitted during the first-in-humans antibody-mediated prevention trial (HVTN 704). VRC01-resistant Envs are incompletely closed based on their sensitivity to cold and on partial sensitivity to antibodies targeting internal, typically occluded, epitopes. Most VRC01-resistant Envs retain the VRC01 epitope according to VRC01 binding to their gp120 subunit at concentrations that have no significant effect on virus entry, and they exhibit cross resistance to other CD4bs bnAbs that poorly recognize functional Env intermediates. Our findings refine current knowledge of Env conformational states and provide guidance for developing new strategies for bnAb immunotherapy and Env-based immunogen design.
Collapse
Affiliation(s)
- Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- These authors contributed equally: Durgadevi Parthasarathy and Karunakar Reddy Pothula
| | - Karunakar Reddy Pothula
- Duke Human Vaccine Institute, Durham, NC, USA
- These authors contributed equally: Durgadevi Parthasarathy and Karunakar Reddy Pothula
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Héctor Cervera Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Xiao Huang
- Duke Human Vaccine Institute, Durham, NC, USA
| | | | | | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Samuel Sacco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Michael D. Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Wayne L. Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, and Department of Biochemistry, Duke University, Durham, NC, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program; The College of Veterinary Medicine Graduate Program; and the Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Chen M, Kálai T, Cascio D, Bridges MD, Whitelegge JP, Elgeti M, Hubbell WL. A Highly Ordered Nitroxide Side Chain for Distance Mapping and Monitoring Slow Structural Fluctuations in Proteins. APPLIED MAGNETIC RESONANCE 2023; 55:251-277. [PMID: 38357006 PMCID: PMC10861403 DOI: 10.1007/s00723-023-01618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 02/16/2024]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is an established tool for exploring protein structure and dynamics. Although nitroxide side chains attached to a single cysteine via a disulfide linkage are commonly employed in SDSL-EPR, their internal flexibility complicates applications to monitor slow internal motions in proteins and to structure determination by distance mapping. Moreover, the labile disulfide linkage prohibits the use of reducing agents often needed for protein stability. To enable the application of SDSL-EPR to the measurement of slow internal dynamics, new spin labels with hindered internal motion are desired. Here, we introduce a highly ordered nitroxide side chain, designated R9, attached at a single cysteine residue via a non-reducible thioether linkage. The reaction to introduce R9 is highly selective for solvent-exposed cysteine residues. Structures of R9 at two helical sites in T4 Lysozyme were determined by X-ray crystallography and the mobility in helical sequences was characterized by EPR spectral lineshape analysis, Saturation Transfer EPR, and Saturation Recovery EPR. In addition, interspin distance measurements between pairs of R9 residues are reported. Collectively, all data indicate that R9 will be useful for monitoring slow internal structural fluctuations, and applications to distance mapping via dipolar spectroscopy and relaxation enhancement methods are anticipated. Supplementary Information The online version contains supplementary material available at 10.1007/s00723-023-01618-8.
Collapse
Affiliation(s)
- Mengzhen Chen
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Szigeti St. 12, Pecs, 7624 Hungary
| | - Duilio Cascio
- Department of Biological Chemistry, UCLA-DOE Institute, Howard Hughes Medical Institute, and Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| | - Michael D. Bridges
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 USA
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095 USA
| | - Matthias Elgeti
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 USA
- Present Address: Institute for Drug Discovery, Leipzig University Medical Center, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
5
|
Scheyer MW, Campbell C, William PL, Hussain M, Begum A, Fonseca SE, Asare IK, Dabney P, Dabney-Smith C, Lorigan GA, Sahu ID. Electron paramagnetic resonance spectroscopic characterization of the human KCNE3 protein in lipodisq nanoparticles for structural dynamics of membrane proteins. Biophys Chem 2023; 301:107080. [PMID: 37531799 PMCID: PMC11708962 DOI: 10.1016/j.bpc.2023.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
One of the major challenges in solubilization of membrane proteins is to find the optimal physiological environment for their biophysical studies. EPR spectroscopy is a powerful biophysical technique for studying the structural and dynamic properties of macromolecules. However, the challenges in the membrane protein sample preparation and flexible motion of the spin label limit the utilization of EPR spectroscopy to a majority of membrane protein systems in a physiological membrane-bound state. Recently, lipodisq nanoparticles or styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) have emerged as a membrane mimetic system for investigating the structural studies of membrane proteins. However, its detail characterization for membrane protein studies is still poorly understood. Recently, we characterized the potassium channel membrane protein KCNQ1 voltage sensing domain (KCNQ1-VSD) and KCNE1 reconstituted into lipodisq nanoparticles using EPR spectroscopy. In this study, the potassium channel accessory protein KCNE3 containing flexible N- and C-termini was encapsulated into proteoliposomes and lipodisq nanoparticles and characterized for studying its structural and dynamic properties using nitroxide based site-directed spin labeling EPR spectroscopy. CW-EPR lineshape analysis data indicated an increase in spectral line broadenings with the addition of the styrene-maleic acid (SMA) polymer which approaches close to the rigid limit providing a homogeneous stabilization of the protein-lipid complex. Similarly, EPR DEER measurements indicated an enhanced quality of distance measurements with an increase in the phase memory time (Tm) values upon incorporation of the sample into lipodisq nanoparticles, when compared to proteoliposomes. These results agree with the solution NMR structural structure of the KCNE3 and EPR studies of other membrane proteins in lipodisq nanoparticles. This study along with our earlier studies will provide the reference characterization data that will provide benefit to the membrane protein researchers for studying structural dynamics of challenging membrane proteins.
Collapse
Affiliation(s)
- Matthew W Scheyer
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Conner Campbell
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Patrick L William
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Mustakim Hussain
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Afsana Begum
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | | | - Isaac K Asare
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Peyton Dabney
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA; Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
6
|
Vitali V, Ackermann K, Hagelueken G, Bode BE. Spectroscopically Orthogonal Labelling to Disentangle Site-Specific Nitroxide Label Distributions. APPLIED MAGNETIC RESONANCE 2023; 55:187-205. [PMID: 38357007 PMCID: PMC10861635 DOI: 10.1007/s00723-023-01611-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 02/16/2024]
Abstract
Biomolecular applications of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) are becoming increasingly valuable in structural biology. Site-directed spin labelling of proteins is routinely performed using nitroxides, with paramagnetic metal ions and other organic radicals gaining popularity as alternative spin centres. Spectroscopically orthogonal spin labelling using different types of labels potentially increases the information content available from a single sample. When analysing experimental distance distributions between two nitroxide spin labels, the site-specific rotamer information has been projected into the distance and is not readily available, and the contributions of individual labelling sites to the width of the distance distribution are not obvious from the PDS data. Here, we exploit the exquisite precision of labelling double-histidine (dHis) motifs with CuII chelate complexes. The contribution of this label to the distance distribution widths in model protein GB1 has been shown to be negligible. By combining a dHis CuII labelling site with cysteine-specific nitroxide labelling, we gather insights on the label rotamers at two distinct sites, comparing their contributions to distance distributions based on different in silico modelling approaches and structural models. From this study, it seems advisable to consider discrepancies between different in silico modelling approaches when selecting labelling sites for PDS studies. Supplementary Information The online version contains supplementary material available at 10.1007/s00723-023-01611-1.
Collapse
Affiliation(s)
- Valentina Vitali
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
| | - Gregor Hagelueken
- Institute of Structural Biology, Biomedical Center, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
| |
Collapse
|
7
|
VanZeeland NE, Schultz KM, Klug CS, Kristich CJ. Multisite Phosphorylation Regulates GpsB Function in Cephalosporin Resistance of Enterococcus faecalis. J Mol Biol 2023; 435:168216. [PMID: 37517789 PMCID: PMC10528945 DOI: 10.1016/j.jmb.2023.168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Enterococci are normal human commensals and major causes of hospital-acquired infections. Enterococcal infections can be difficult to treat because enterococci harbor intrinsic and acquired antibiotic resistance, such as resistance to cephalosporins. In Enterococcus faecalis, the transmembrane kinase IreK, a member of the bacterial PASTA kinase family, is essential for cephalosporin resistance. The activity of IreK is boosted by the cytoplasmic protein GpsB, which promotes IreK autophosphorylation and signaling to drive cephalosporin resistance. A previous phosphoproteomics study identified eight putative IreK-dependent phosphorylation sites on GpsB, but the functional importance of GpsB phosphorylation was unknown. Here we used genetic and biochemical approaches to define three sites of phosphorylation on GpsB that functionally impact IreK activity and cephalosporin resistance. Phosphorylation at two sites (S80 and T84) serves to impair the ability of GpsB to activate IreK in vivo, suggesting phosphorylation of these sites acts as a means of negative feedback for IreK. The third site of phosphorylation (T133) occurs in a segment of GpsB termed the C-terminal extension that is unique to enterococcal GpsB homologs. The C-terminal extension is highly mobile in solution, suggesting it is largely unstructured, and phosphorylation of T133 appears to enable efficient phosphorylation at S80 / T84. Overall our results are consistent with a model in which multisite phosphorylation of GpsB impairs its ability to activate IreK, thereby diminishing signal transduction through the IreK-dependent pathway and modulating phenotypic cephalosporin resistance.
Collapse
Affiliation(s)
- Nicole E VanZeeland
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
8
|
Tessmer MH, Stoll S. chiLife: An open-source Python package for in silico spin labeling and integrative protein modeling. PLoS Comput Biol 2023; 19:e1010834. [PMID: 37000838 PMCID: PMC10096462 DOI: 10.1371/journal.pcbi.1010834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Here we introduce chiLife, a Python package for site-directed spin label (SDSL) modeling for electron paramagnetic resonance (EPR) spectroscopy, in particular double electron-electron resonance (DEER). It is based on in silico attachment of rotamer ensemble representations of spin labels to protein structures. chiLife enables the development of custom protein analysis and modeling pipelines using SDSL EPR experimental data. It allows the user to add custom spin labels, scoring functions and spin label modeling methods. chiLife is designed with integration into third-party software in mind, to take advantage of the diverse and rapidly expanding set of molecular modeling tools available with a Python interface. This article describes the main design principles of chiLife and presents a series of examples.
Collapse
Affiliation(s)
- Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| |
Collapse
|
9
|
Tessmer MH, Canarie ER, Stoll S. Comparative evaluation of spin-label modeling methods for protein structural studies. Biophys J 2022; 121:3508-3519. [PMID: 35957530 PMCID: PMC9515001 DOI: 10.1016/j.bpj.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Site-directed spin-labeling electron paramagnetic resonance spectroscopy is a powerful technique for the investigation of protein structure and dynamics. Accurate spin-label modeling methods are essential to make full quantitative use of site-directed spin-labeling electron paramagnetic resonance data for protein modeling and model validation. Using a set of double electron-electron resonance data from seven different site pairs on maltodextrin/maltose-binding protein under two different conditions using five different spin labels, we compare the ability of two widely used spin-label modeling methods, based on accessible volume sampling and rotamer libraries, to predict experimental distance distributions. We present a spin-label modeling approach inspired by canonical side-chain modeling methods and compare modeling accuracy with the established methods.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington
| | | | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
10
|
Yang Z, Dam KMA, Bridges MD, Hoffmann MAG, DeLaitsch AT, Gristick HB, Escolano A, Gautam R, Martin MA, Nussenzweig MC, Hubbell WL, Bjorkman PJ. Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer. Nat Commun 2022; 13:732. [PMID: 35136084 PMCID: PMC8826976 DOI: 10.1038/s41467-022-28424-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Broadly-neutralizing antibodies (bNAbs) against HIV-1 Env can protect from infection. We characterize Ab1303 and Ab1573, heterologously-neutralizing CD4-binding site (CD4bs) antibodies, isolated from sequentially-immunized macaques. Ab1303/Ab1573 binding is observed only when Env trimers are not constrained in the closed, prefusion conformation. Fab-Env cryo-EM structures show that both antibodies recognize the CD4bs on Env trimer with an 'occluded-open' conformation between closed, as targeted by bNAbs, and fully-open, as recognized by CD4. The occluded-open Env trimer conformation includes outwardly-rotated gp120 subunits, but unlike CD4-bound Envs, does not exhibit V1V2 displacement, 4-stranded gp120 bridging sheet, or co-receptor binding site exposure. Inter-protomer distances within trimers measured by double electron-electron resonance spectroscopy suggest an equilibrium between occluded-open and closed Env conformations, consistent with Ab1303/Ab1573 binding stabilizing an existing conformation. Studies of Ab1303/Ab1573 demonstrate that CD4bs neutralizing antibodies that bind open Env trimers can be raised by immunization, thereby informing immunogen design and antibody therapeutic efforts.
Collapse
Affiliation(s)
- Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kim-Marie A Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael D Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Magnus A G Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew T DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
11
|
Ackermann K, Chapman A, Bode BE. A Comparison of Cysteine-Conjugated Nitroxide Spin Labels for Pulse Dipolar EPR Spectroscopy. Molecules 2021; 26:7534. [PMID: 34946616 PMCID: PMC8706713 DOI: 10.3390/molecules26247534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The structure-function and materials paradigms drive research on the understanding of structures and structural heterogeneity of molecules and solids from materials science to structural biology. Functional insights into complex architectures are often gained from a suite of complementary physicochemical methods. In the context of biomacromolecular structures, the use of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) has become increasingly popular. The main interest in PDS is providing long-range nanometre distance distributions that allow for identifying macromolecular topologies, validating structural models and conformational transitions as well as docking of quaternary complexes. Most commonly, cysteines are introduced into protein structures by site-directed mutagenesis and modified site-specifically to a spin-labelled side-chain such as a stable nitroxide radical. In this contribution, we investigate labelling by four different commercial labelling agents that react through different sulfur-specific reactions. Further, the distance distributions obtained are between spin-bearing moieties and need to be related to the protein structure via modelling approaches. Here, we compare two different approaches to modelling these distributions for all four side-chains. The results indicate that there are significant differences in the optimum labelling procedure. All four spin-labels show differences in the ease of labelling and purification. Further challenges arise from the different tether lengths and rotamers of spin-labelled side-chains; both influence the modelling and translation into structures. Our comparison indicates that the spin-label with the shortest tether in the spin-labelled side-group, (bis-(2,2,5,5-Tetramethyl-3-imidazoline-1-oxyl-4-yl) disulfide, may be underappreciated and could increase the resolution of structural studies by PDS if labelling conditions are optimised accordingly.
Collapse
Affiliation(s)
| | | | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (K.A.); (A.C.)
| |
Collapse
|
12
|
Elgeti M, Hubbell WL. DEER Analysis of GPCR Conformational Heterogeneity. Biomolecules 2021; 11:778. [PMID: 34067265 PMCID: PMC8224605 DOI: 10.3390/biom11060778] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large class of transmembrane helical proteins which are involved in numerous physiological signaling pathways and therefore represent crucial pharmacological targets. GPCR function and the action of therapeutic molecules are defined by only a few parameters, including receptor basal activity, ligand affinity, intrinsic efficacy and signal bias. These parameters are encoded in characteristic receptor conformations existing in equilibrium and their populations, which are thus of paramount interest for the understanding of receptor (mal-)functions and rational design of improved therapeutics. To this end, the combination of site-directed spin labeling and EPR spectroscopy, in particular double electron-electron resonance (DEER), is exceedingly valuable as it has access to sub-Angstrom spatial resolution and provides a detailed picture of the number and populations of conformations in equilibrium. This review gives an overview of existing DEER studies on GPCRs with a focus on the delineation of structure/function frameworks, highlighting recent developments in data analysis and visualization. We introduce "conformational efficacy" as a parameter to describe ligand-specific shifts in the conformational equilibrium, taking into account the loose coupling between receptor segments observed for different GPCRs using DEER.
Collapse
Affiliation(s)
- Matthias Elgeti
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Chen Q, Zhuo Y, Sharma P, Perez I, Francis DJ, Chakravarthy S, Vishnivetskiy SA, Berndt S, Hanson SM, Zhan X, Brooks EK, Altenbach C, Hubbell WL, Klug CS, Iverson TM, Gurevich VV. An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins. J Mol Biol 2021; 433:166790. [PMID: 33387531 PMCID: PMC7870585 DOI: 10.1016/j.jmb.2020.166790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms "infinite" chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ivette Perez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Derek J Francis
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Susan M Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Evan K Brooks
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Wayne L Hubbell
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Zhuo Y, Gurevich VV, Vishnivetskiy SA, Klug CS, Marchese A. A non-GPCR-binding partner interacts with a novel surface on β-arrestin1 to mediate GPCR signaling. J Biol Chem 2020; 295:14111-14124. [PMID: 32753481 PMCID: PMC7549033 DOI: 10.1074/jbc.ra120.015074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
The multifaceted adaptor protein β-arr1 (β-arrestin1) promotes activation of focal adhesion kinase (FAK) by the chemokine receptor CXCR4, facilitating chemotaxis. This function of β-arr1 requires the assistance of the adaptor protein STAM1 (signal-transducing adaptor molecule 1) because disruption of the interaction between STAM1 and β-arr1 reduces CXCR4-mediated activation of FAK and chemotaxis. To begin to understand the mechanism by which β-arr1 together with STAM1 activates FAK, we used site-directed spin-labeling EPR spectroscopy-based studies coupled with bioluminescence resonance energy transfer-based cellular studies to show that STAM1 is recruited to activated β-arr1 by binding to a novel surface on β-arr1 at the base of the finger loop, at a site that is distinct from the receptor-binding site. Expression of a STAM1-deficient binding β-arr1 mutant that is still able to bind to CXCR4 significantly reduced CXCL12-induced activation of FAK but had no impact on ERK-1/2 activation. We provide evidence of a novel surface at the base of the finger loop that dictates non-GPCR interactions specifying β-arrestin-dependent signaling by a GPCR. This surface might represent a previously unidentified switch region that engages with effector molecules to drive β-arrestin signaling.
Collapse
Affiliation(s)
- Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Probing the Y 2 Receptor on Transmembrane, Intra- and Extra-Cellular Sites for EPR Measurements. Molecules 2020; 25:molecules25184143. [PMID: 32927734 PMCID: PMC7571237 DOI: 10.3390/molecules25184143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
The function of G protein-coupled receptors is intrinsically linked to their conformational dynamics. In conjugation with site-directed spin labeling, electron paramagnetic resonance (EPR) spectroscopy provides powerful tools to study the highly dynamic conformational states of these proteins. Here, we explored positions for nitroxide spin labeling coupled to single cysteines, introduced at transmembrane, intra- and extra-cellular sites of the human neuropeptide Y2 receptor. Receptor mutants were functionally analyzed in cell culture system, expressed in Escherichia coli fermentation with yields of up to 10 mg of purified protein per liter expression medium and functionally reconstituted into a lipid bicelle environment. Successful spin labeling was confirmed by a fluorescence assay and continuous wave EPR measurements. EPR spectra revealed mobile and immobile populations, indicating multiple dynamic conformational states of the receptor. We found that the singly mutated positions by MTSL ((1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl) methyl methanesulfonothioate) have a water exposed immobilized conformation as their main conformation, while in case of the IDSL (bis(1-oxyl-2,2,5,5-tetramethyl-3-imidazolin-4-yl) disulfide) labeled positions, the main conformation are mainly of hydrophobic nature. Further, double cysteine mutants were generated and examined for potential applications of distance measurements by double electron–electron resonance (DEER) pulsed EPR technique on the receptor.
Collapse
|
16
|
Sahu ID, Dixit G, Reynolds WD, Kaplevatsky R, Harding BD, Jaycox CK, McCarrick RM, Lorigan GA. Characterization of the Human KCNQ1 Voltage Sensing Domain (VSD) in Lipodisq Nanoparticles for Electron Paramagnetic Resonance (EPR) Spectroscopic Studies of Membrane Proteins. J Phys Chem B 2020; 124:2331-2342. [PMID: 32130007 DOI: 10.1021/acs.jpcb.9b11506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane proteins are responsible for conducting essential biological functions that are necessary for the survival of living organisms. In spite of their physiological importance, limited structural information is currently available as a result of challenges in applying biophysical techniques for studying these protein systems. Electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study the structural and dynamic properties of membrane proteins. However, the application of EPR spectroscopy to membrane proteins in a native membrane-bound state is extremely challenging due to the complexity observed in inhomogeneity sample preparation and the dynamic motion of the spin label. Detergent micelles are very popular membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is important to test whether the protein structure in a micelle environment is the same as that of its membrane-bound state. Lipodisq nanoparticles or styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) have been introduced as a potentially good membrane-mimetic system for structural studies of membrane proteins. Recently, we reported on the EPR characterization of the KCNE1 membrane protein having a single transmembrane incorporated into lipodisq nanoparticles. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the more complicated membrane protein system human KCNQ1 voltage sensing domain (Q1-VSD) having four transmembrane helices using site-directed spin-labeling EPR spectroscopy. Characterization of spin-labeled Q1-VSD incorporated into lipodisq nanoparticles was carried out using CW-EPR spectral line shape analysis and pulsed EPR double-electron electron resonance (DEER) measurements. The CW-EPR spectra indicate an increase in spectral line broadening with the addition of the styrene-maleic acid (SMA) polymer which approaches close to the rigid limit providing a homogeneous stabilization of the protein-lipid complex. Similarly, EPR DEER measurements indicated a superior quality of distance measurement with an increase in the phase memory time (Tm) values upon incorporation of the sample into lipodisq nanoparticles when compared to proteoliposomes. These results are consistent with the solution NMR structural studies on the Q1-VSD. This study will be beneficial for researchers working on investigating the structural and dynamic properties of more complicated membrane protein systems using lipodisq nanoparticles.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Gunjan Dixit
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Warren D Reynolds
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Ryan Kaplevatsky
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Benjamin D Harding
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Colleen K Jaycox
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
17
|
Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations. Cell 2019; 176:468-478.e11. [PMID: 30639099 DOI: 10.1016/j.cell.2018.12.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Accepted: 12/04/2018] [Indexed: 01/14/2023]
Abstract
"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or β-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations. Ligands from different functional classes have distinct, characteristic effects on the conformational heterogeneity of the receptor. Compared to angiotensin II, the endogenous agonist, agonists with enhanced Gq coupling more strongly stabilize an "open" conformation with an accessible transducer-binding site. β-arrestin-biased agonists deficient in Gq coupling do not stabilize this open conformation but instead favor two more occluded conformations. These data suggest a structural mechanism for biased ligand action at the angiotensin receptor that can be exploited to rationally design GPCR-targeting drugs with greater specificity of action.
Collapse
|
18
|
Gamble Jarvi A, Ranguelova K, Ghosh S, Weber RT, Saxena S. On the Use of Q-Band Double Electron–Electron Resonance To Resolve the Relative Orientations of Two Double Histidine-Bound Cu2+ Ions in a Protein. J Phys Chem B 2018; 122:10669-10677. [DOI: 10.1021/acs.jpcb.8b07727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kalina Ranguelova
- Bruker BioSpin, Inc., EPR Division, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ralph T. Weber
- Bruker BioSpin, Inc., EPR Division, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Schultz KM, Fischer MA, Noey EL, Klug CS. Disruption of the E. coli LptC dimerization interface and characterization of lipopolysaccharide and LptA binding to monomeric LptC. Protein Sci 2018; 27:1407-1417. [PMID: 29672978 PMCID: PMC6153404 DOI: 10.1002/pro.3429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 11/10/2022]
Abstract
Lipopolysaccharide (LPS) is an essential element of nearly all Gram-negative bacterial outer membranes and serves to protect the cell from adverse environmental stresses. Seven members of the lipopolysaccharide transport (Lpt) protein family function together to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of bacteria such as Escherichia coli. Each of these proteins has a solved crystal structure, including LptC, which is a largely periplasmic protein that is associated with the IM LptB2 FG complex and anchored to the membrane by an N-terminal helix. LptC directly binds LPS and is hypothesized to be involved in the transfer of LPS to another periplasmic protein, LptA. Purified and in solution, LptC forms a dimer. Here, point mutations designed to disrupt formation of the dimer are characterized using site-directed spin labeling double electron electron resonance (DEER) spectroscopy, light scattering, circular dichroism, and computational modeling. The computational studies reveal the molecular interactions that drive dimerization of LptC and elucidate how the disruptive mutations change this interaction, while the DEER and light scattering studies identify which mutants disrupt the dimer. And, using electron paramagnetic resonance spectroscopy and comparing the results to the previous quantitative characterization of the interactions between dimeric LptC and LPS and LptA, the functional consequences of monomeric LptC were also determined. These results indicate that disruption of the dimer does not affect LPS or LptA binding and that monomeric LptC binds LPS and LptA at levels similar to dimeric LptC.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | - Matthew A. Fischer
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | - Elizabeth L. Noey
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| |
Collapse
|
20
|
Stadtmueller BM, Bridges MD, Dam KM, Lerch MT, Huey-Tubman KE, Hubbell WL, Bjorkman PJ. DEER Spectroscopy Measurements Reveal Multiple Conformations of HIV-1 SOSIP Envelopes that Show Similarities with Envelopes on Native Virions. Immunity 2018; 49:235-246.e4. [PMID: 30076100 PMCID: PMC6104740 DOI: 10.1016/j.immuni.2018.06.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/15/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
Abstract
HIV-1 Envelope (Env) mediates viral-host membrane fusion after binding host-receptor CD4 and coreceptor. Soluble envelopes (SOSIPs), designed to mimic prefusion conformational states of virion-bound envelopes, are proposed immunogens for eliciting neutralizing antibodies, yet only static structures are available. To evaluate conformational landscapes of ligand-free, CD4-bound, inhibitor-bound, and antibody-bound SOSIPs, we measured inter-subunit distances throughout spin-labeled SOSIPs using double electron-electron resonance (DEER) spectroscopy and compared results to soluble and virion-bound Env structures, and single-molecule fluorescence resonance energy transfer (smFRET)-derived dynamics of virion-bound Envs. Unliganded SOSIP measurements were consistent with closed, neutralizing antibody-bound structures and shielding of non-neutralizing epitopes, demonstrating homogeneity at Env apex, increased flexibility near Env base, and no evidence for the intra-subunit flexibility near Env apex suggested by smFRET. CD4 binding increased inter-subunit distances and heterogeneity, consistent with rearrangements required for coreceptor binding. Results suggest similarities between SOSIPs and virion-bound Envs and demonstrate DEER’s relevance for immunogen design. SOSIP Env apex is 3-fold symmetric and consistent with closed prefusion structures Unliganded Env base and CD4-bound Env apex and base exhibit flexibility SOSIPs retain desired properties of immunogens; e.g., burying non-neutralizing epitopes Results allow interpretation of smFRET studies and SOSIP and virion Env structures
Collapse
Affiliation(s)
- Beth M Stadtmueller
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael D Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Kim-Marie Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael T Lerch
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Kathryn E Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Schultz KM, Klug CS. Characterization of and lipopolysaccharide binding to the E. coli LptC protein dimer. Protein Sci 2018; 27:381-389. [PMID: 29024084 PMCID: PMC5775163 DOI: 10.1002/pro.3322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/22/2017] [Accepted: 10/08/2017] [Indexed: 01/15/2023]
Abstract
Lipopolysaccharide (LPS, endotoxin) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium. LPS is a large lipid containing several acyl chains as its hydrophobic base and numerous sugars as its hydrophilic core and O-antigen domains, and is an essential element of the organisms' natural defenses in adverse environmental conditions. LptC is one of seven members of the lipopolysaccharide transport (Lpt) protein family that functions to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of the bacterium. LptC is anchored to the IM and associated with the IM LptFGB2 complex. It is hypothesized that LPS binds to LptC at the IM, transfers to LptA to cross the periplasm, and is inserted by LptDE into the outer leaflet of the outer membrane. The studies described here comprehensively characterize and quantitate the binding of LPS to LptC. Site-directed spin labeling electron paramagnetic resonance spectroscopy was utilized to characterize the LptC dimer in solution and monitor spin label mobility changes at 10 sites across the protein upon addition of exogenous LPS. The results indicate that soluble LptC forms concentration-independent N-terminal dimers in solution, LptA binding does not change the conformation of the LptC dimer nor appreciably disrupt the LptC dimer in vitro, and LPS binding affects the entire LptC protein, with the center and C-terminal regions showing a greater affinity for LPS than the N-terminal domain, which has similar dissociation constants to LptA.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| |
Collapse
|
22
|
Chen Q, Perry NA, Vishnivetskiy SA, Berndt S, Gilbert NC, Zhuo Y, Singh PK, Tholen J, Ohi MD, Gurevich EV, Brautigam CA, Klug CS, Gurevich VV, Iverson TM. Structural basis of arrestin-3 activation and signaling. Nat Commun 2017; 8:1427. [PMID: 29127291 PMCID: PMC5681653 DOI: 10.1038/s41467-017-01218-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underlie coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nathaniel C Gilbert
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Prashant K Singh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jonas Tholen
- University of Applied Sciences Emden/Leer, Emden, 26723, Germany
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
23
|
Sahu ID, Craig AF, Dunagum MM, McCarrick RM, Lorigan GA. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy. J Phys Chem B 2017; 121:9185-9195. [PMID: 28877443 DOI: 10.1021/acs.jpcb.7b07631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a distance of 17 Å. This study demonstrates the utility of investigating the structural and dynamic properties of membrane proteins in physiologically relevant membrane mimetics using BSLs.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Andrew F Craig
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Megan M Dunagum
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
24
|
Suliman M, Santosh V, Seegar TCM, Dalton AC, Schultz KM, Klug CS, Barton WA. Directed evolution provides insight into conformational substrate sampling by SrtA. PLoS One 2017; 12:e0184271. [PMID: 28859178 PMCID: PMC5578623 DOI: 10.1371/journal.pone.0184271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
The Sortase family of transpeptidases are found in numerous gram-positive bacteria and involved in divergent physiological processes including anchoring of surface proteins to the cell wall as well as pili assembly. As essential proteins, sortase enzymes have been the focus of considerable interest for the development of novel anti-microbials, however, more recently their function as unique transpeptidases has been exploited for the synthesis of novel bio-conjugates. Yet, for synthetic purposes, SrtA-mediated conjugation suffers from the enzyme's inherently poor catalytic efficiency. Therefore, to identify SrtA variants with improved catalytic efficiency, we used directed evolution to select a catalytically enhanced SrtA enzyme. An analysis of improved SrtA variants in the context of sequence conservation, NMR and x-ray crystal structures, and kinetic data suggests a novel mechanism for catalysis involving large conformational changes that delivers substrate to the active site pocket. Indeed, using DEER-EPR spectroscopy, we reveal that upon substrate binding, SrtA undergoes a large scissors-like conformational change that simultaneously translates the sort-tag substrate to the active site in addition to repositioning key catalytic residues for esterification. A better understanding of Sortase dynamics will significantly enhance future engineering and drug discovery efforts.
Collapse
Affiliation(s)
- Muna Suliman
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vishaka Santosh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tom C. M. Seegar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Annamarie C. Dalton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kathryn M. Schultz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - William A. Barton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sahu ID, Zhang R, Dunagan MM, Craig AF, Lorigan GA. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins. J Phys Chem B 2017; 121:5312-5321. [DOI: 10.1021/acs.jpcb.7b01705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rongfu Zhang
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Megan M. Dunagan
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Andrew F. Craig
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and
Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
26
|
Balo AR, Feyrer H, Ernst OP. Toward Precise Interpretation of DEER-Based Distance Distributions: Insights from Structural Characterization of V1 Spin-Labeled Side Chains. Biochemistry 2016; 55:5256-63. [PMID: 27532325 DOI: 10.1021/acs.biochem.6b00608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulsed electron paramagnetic resonance experiments can measure individual distances between two spin-labeled side chains in proteins in the range of ∼1.5-8 nm. However, the flexibility of traditional spin-labeled side chains leads to diffuse spin density loci and thus distance distributions with relatively broad peaks, thereby complicating the interpretation of protein conformational states. Here we analyzed the spin-labeled V1 side chain, which is internally anchored and hence less flexible. Crystal structures of V1-labeled T4 lysozyme constructs carrying the V1 side chain on α-helical segments suggest that V1 side chains adopt only a few discrete rotamers. In most cases, only one rotamer is observed at a given site, explaining the frequently observed narrow distance distribution for doubly V1-labeled proteins. We used the present data to derive guidelines that may allow distance interpretation of other V1-labeled proteins for higher-precision structural modeling.
Collapse
Affiliation(s)
- Aidin R Balo
- Department of Biochemistry and ‡Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Hannes Feyrer
- Department of Biochemistry and ‡Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Oliver P Ernst
- Department of Biochemistry and ‡Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
27
|
Sahu ID, Craig AF, Dunagan MM, Troxel KR, Zhang R, Meiberg AG, Harmon CN, McCarrick RM, Kroncke BM, Sanders CR, Lorigan GA. Probing Structural Dynamics and Topology of the KCNE1 Membrane Protein in Lipid Bilayers via Site-Directed Spin Labeling and Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2015; 54:6402-12. [PMID: 26418890 DOI: 10.1021/acs.biochem.5b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
KCNE1 is a single transmembrane protein that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in the genes encoding either protein can result in diseases such as congenital deafness, long QT syndrome, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Despite the biological significance of KCNE1, the structure and dynamic properties of its physiologically relevant native membrane-bound state are not fully understood. In this study, the structural dynamics and topology of KCNE1 in bilayered lipid vesicles was investigated using site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy. A 53-residue nitroxide EPR scan of the KCNE1 protein sequence including all 27 residues of the transmembrane domain (45-71) and 26 residues of the N- and C-termini of KCNE1 in lipid bilayered vesicles was analyzed in terms of nitroxide side-chain motion. Continuous wave-EPR spectral line shape analysis indicated the nitroxide spin label side-chains located in the KCNE1 TMD are less mobile when compared to the extracellular region of KCNE1. The EPR data also revealed that the C-terminus of KCNE1 is more mobile when compared to the N-terminus. EPR power saturation experiments were performed on 41 sites including 18 residues previously proposed to reside in the transmembrane domain (TMD) and 23 residues of the N- and C-termini to determine the topology of KCNE1 with respect to the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayers. The results indicated that the transmembrane domain is indeed buried within the membrane, spanning the width of the lipid bilayer. Power saturation data also revealed that the extracellular region of KCNE1 is solvent-exposed with some of the portions partially or weakly interacting with the membrane surface. These results are consistent with the previously published solution NMR structure of KCNE1 in micelles.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Andrew F Craig
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Megan M Dunagan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Kaylee R Troxel
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Andrew G Meiberg
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Corrinne N Harmon
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Brett M Kroncke
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
28
|
Alvarez FJD, Orelle C, Huang Y, Bajaj R, Everly RM, Klug CS, Davidson AL. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol Microbiol 2015; 98:878-94. [PMID: 26268698 DOI: 10.1111/mmi.13165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 01/31/2023]
Abstract
MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP.
Collapse
Affiliation(s)
| | - Cédric Orelle
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruchika Bajaj
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - R Michael Everly
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
29
|
Altenbach C, López CJ, Hideg K, Hubbell WL. Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. Methods Enzymol 2015; 564:59-100. [PMID: 26477248 DOI: 10.1016/bs.mie.2015.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structural and dynamical characterization of proteins is of central importance in understanding the mechanisms underlying their biological functions. Site-directed spin labeling (SDSL) combined with continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy has shown the capability of providing this information with site-specific resolution under physiological conditions for proteins of any degree of complexity, including those associated with membranes. This chapter introduces methods commonly employed for SDSL and describes selected CW EPR-based methods that can be applied to (1) map secondary and tertiary protein structure, (2) determine membrane protein topology, (3) measure protein backbone flexibility, and (4) reveal the existence of conformational exchange at equilibrium.
Collapse
Affiliation(s)
- Christian Altenbach
- Department of Chemistry and Biochemistry, Jules Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Carlos J López
- Department of Chemistry and Biochemistry, Jules Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Wayne L Hubbell
- Department of Chemistry and Biochemistry, Jules Stein Eye Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
30
|
Aitha M, Moritz L, Sahu ID, Sanyurah O, Roche Z, McCarrick R, Lorigan GA, Bennett B, Crowder MW. Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy. J Biol Inorg Chem 2015; 20:585-94. [PMID: 25827593 PMCID: PMC4733638 DOI: 10.1007/s00775-015-1244-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Previous crystallographic and mutagenesis studies have implicated the role of a position-conserved hairpin loop in the metallo-β-lactamases in substrate binding and catalysis. In an effort to probe the motion of that loop during catalysis, rapid-freeze-quench double electron-electron resonance (RFQ-DEER) spectroscopy was used to interrogate metallo-β-lactamase CcrA, which had a spin label at position 49 on the loop and spin labels (at positions 82, 126, or 233) 20-35 Å away from residue 49, during catalysis. At 10 ms after mixing, the DEER spectra show distance increases of 7, 10, and 13 Å between the spin label at position 49 and the spin labels at positions 82, 126, and 233, respectively. In contrast to previous hypotheses, these data suggest that the loop moves nearly 10 Å away from the metal center during catalysis and that the loop does not clamp down on the substrate during catalysis. This study demonstrates that loop motion during catalysis can be interrogated on the millisecond time scale.
Collapse
Affiliation(s)
- Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Lindsay Moritz
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Omar Sanyurah
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Zahilyn Roche
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Robert McCarrick
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Brian Bennett
- Physics Department, Marquette University, 540 N. 15th Street, Milwaukee, Wisconsin 53233, USA, and Department of Biophysics, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| |
Collapse
|
31
|
Cunningham TF, Putterman MR, Desai A, Horne WS, Saxena S. The double-histidine Cu²⁺-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements. Angew Chem Int Ed Engl 2015; 54:6330-4. [PMID: 25821033 DOI: 10.1002/anie.201501968] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/07/2022]
Abstract
The development of ESR methods that measure long-range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein-backbone structure. Herein we present the double-histidine (dHis) Cu(2+)-binding motif as a rigid spin probe for double electron-electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X-ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 Å of the experimental value. Cu(2+) DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein-backbone structure and flexibility.
Collapse
Affiliation(s)
- Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA)
| | - Miriam R Putterman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA)
| | - Astha Desai
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA)
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA).
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260 (USA).
| |
Collapse
|
32
|
Cunningham TF, Putterman MR, Desai A, Horne WS, Saxena S. The Double-Histidine Cu2+-Binding Motif: A Highly Rigid, Site-Specific Spin Probe for Electron Spin Resonance Distance Measurements. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Abstract
Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.
Collapse
Affiliation(s)
- Nicholas J. Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
34
|
Liu Q, Shi C, Yu L, Zhang L, Xiong Y, Tian C. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations. Biochem Biophys Res Commun 2015; 457:467-72. [PMID: 25600810 DOI: 10.1016/j.bbrc.2015.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022]
Abstract
Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of (15)N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S(2)) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S(2)) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S(2) values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S(2) parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S(2) calculated from the experimental NMR relaxation measurements, in a site-specific manner.
Collapse
Affiliation(s)
- Qing Liu
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chaowei Shi
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Lu Yu
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031, PR China
| | - Longhua Zhang
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ying Xiong
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
35
|
Yang Z, Bridges M, Lerch MT, Altenbach C, Hubbell WL. Saturation Recovery EPR and Nitroxide Spin Labeling for Exploring Structure and Dynamics in Proteins. Methods Enzymol 2015; 564:3-27. [DOI: 10.1016/bs.mie.2015.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS. Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 2014; 289:20991-21002. [PMID: 24867953 PMCID: PMC4110305 DOI: 10.1074/jbc.m114.560680] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/13/2014] [Indexed: 12/25/2022] Open
Abstract
The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.
Collapse
Affiliation(s)
- Ya Zhuo
- From the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Sergey A Vishnivetskiy
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Xuanzhi Zhan
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Vsevolod V Gurevich
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Candice S Klug
- From the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
37
|
Florin N, Schiemann O, Hagelueken G. High-resolution crystal structure of spin labelled (T21R1) azurin from Pseudomonas aeruginosa: a challenging structural benchmark for in silico spin labelling algorithms. BMC STRUCTURAL BIOLOGY 2014; 14:16. [PMID: 24884565 PMCID: PMC4055355 DOI: 10.1186/1472-6807-14-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/08/2014] [Indexed: 01/23/2023]
Abstract
Background EPR-based distance measurements between spin labels in proteins have become a valuable tool in structural biology. The direct translation of the experimental distances into structural information is however often impaired by the intrinsic flexibility of the spin labelled side chains. Different algorithms exist that predict the approximate conformation of the spin label either by using pre-computed rotamer libraries of the labelled side chain (rotamer approach) or by simply determining its accessible volume (accessible volume approach). Surprisingly, comparisons with many experimental distances have shown that both approaches deliver the same distance prediction accuracy of about 3 Å. Results Here, instead of comparing predicted and experimental distances, we test the ability of both approaches to predict the actual conformations of spin labels found in a new high-resolution crystal structure of spin labelled azurin (T21R1). Inside the crystal, the label is found in two very different environments which serve as a challenging test for the in silico approaches. Conclusions Our results illustrate why simple and more sophisticated programs lead to the same prediciton error. Thus, a more precise treatment of the complete environment of the label and also its interactions with the environment will be needed to increase the accuracy of in silico spin labelling algorithms.
Collapse
Affiliation(s)
| | | | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr, 12, Bonn, NRW 53115, Germany.
| |
Collapse
|
38
|
Wright K, d'Aboville E, Scola J, Margola T, Toffoletti A, De Zotti M, Crisma M, Formaggio F, Toniolo C. A Quaternary Nitronyl Nitroxide α-Amino Acid: Synthesis, Configurational and Conformational Assignments, and Physicochemical Properties. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|