1
|
Sahin Solmaz N, Farsi R, Boero G. 200 GHz single chip microsystems for dynamic nuclear polarization enhanced NMR spectroscopy. Nat Commun 2024; 15:5485. [PMID: 38942752 PMCID: PMC11213862 DOI: 10.1038/s41467-024-49767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Dynamic nuclear polarization (DNP) is one of the most powerful and versatile hyperpolarization methods to enhance nuclear magnetic resonance (NMR) signals. A major drawback of DNP is the cost and complexity of the required microwave hardware, especially at high magnetic fields and low temperatures. To overcome this drawback and with the focus on the study of nanoliter and subnanoliter samples, this work demonstrates 200 GHz single chip DNP microsystems where the microwave excitation/detection are performed locally on chip without the need of external microwave generators and transmission lines. The single chip integrated microsystems consist of a single or an array of microwave oscillators operating at about 200 GHz for ESR excitation/detection and an RF receiver operating at about 300 MHz for NMR detection. This work demonstrates the possibility of using the single chip approach for the realization of probes for DNP studies at high frequency, high field, and low temperature.
Collapse
Affiliation(s)
- Nergiz Sahin Solmaz
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Reza Farsi
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Giovanni Boero
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Brás EM, Zimmermann C, Fausto R, Suhm MA. Benchmarking the anisotropy of nitroxyl radical solvation with IR spectroscopy. Phys Chem Chem Phys 2024; 26:5822-5829. [PMID: 38314587 DOI: 10.1039/d3cp05668f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Two simple nitroxyl radicals, di-tert-butyl nitroxyl (DTBN) and 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) are solvated by one or two water, methanol, tert-butyl alcohol or phenol molecules. The resulting low temperature IR spectra of the vacuum-isolated microsolvates in the OH stretching range are assigned based on harmonic DFT predictions for closed shell solvent dimers and trimers and their offset from experiment, to minimise theory-guided assignment bias. Systematic conformational preferences for the first and second solvent molecule are observed, depending on the conformational rigidity of the radical. These assignments are collected into an experimental benchmark data set and used to assess the spectral predicting power of different DFT approaches. The goal is to find inexpensive computational methods which provide reliable spectral predictions for this poorly explored class of microsolvates.
Collapse
Affiliation(s)
- Elisa M Brás
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Charlotte Zimmermann
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University, Ataköy Campus, Bakirköy 34156, Istanbul, Turkey
| | - Martin A Suhm
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
3
|
Sezer D, Dai D, Prisner T. The solid effect of dynamic nuclear polarization in liquids - accounting for g-tensor anisotropy at high magnetic fields. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:243-269. [PMID: 38111486 PMCID: PMC10726030 DOI: 10.5194/mr-4-243-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/15/2023] [Indexed: 12/20/2023]
Abstract
In spite of its name, the solid effect of dynamic nuclear polarization (DNP) is also operative in viscous liquids, where the dipolar interaction between the polarized nuclear spins and the polarizing electrons is not completely averaged out by molecular diffusion on the timescale of the electronic spin-spin relaxation time. Under such slow-motional conditions, it is likely that the tumbling of the polarizing agent is similarly too slow to efficiently average the anisotropies of its magnetic tensors on the timescale of the electronic T 2 . Here we extend our previous analysis of the solid effect in liquids to account for the effect of g -tensor anisotropy at high magnetic fields. Building directly on the mathematical treatment of slow tumbling in electron spin resonance , we calculate solid-effect DNP enhancements in the presence of both translational diffusion of the liquid molecules and rotational diffusion of the polarizing agent. To illustrate the formalism, we analyze high-field (9.4 T) DNP enhancement profiles from nitroxide-labeled lipids in fluid lipid bilayers. By properly accounting for power broadening and motional broadening, we successfully decompose the measured DNP enhancements into their separate contributions from the solid and Overhauser effects.
Collapse
Affiliation(s)
- Deniz Sezer
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Danhua Dai
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Sezer D. The solid effect of dynamic nuclear polarization in liquids. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:153-174. [PMID: 37904804 PMCID: PMC10583289 DOI: 10.5194/mr-4-153-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 11/01/2023]
Abstract
The solid-state effect of dynamic nuclear polarization (DNP) is operative also in viscous liquids where the dipolar interaction between the electronic and nuclear spins is partially averaged. The proper way to quantify the degree of averaging, and thus calculate the efficiency of the effect, should be based on the time-correlation function of the dipolar interaction. Here we use the stochastic Liouville equation formalism to develop a general theoretical description of the solid effect in liquids. The derived expressions can be used with different dipolar correlations functions depending on the assumed motional model. At high magnetic fields, the theory predicts DNP enhancements at small offsets, far from the classical solid-effect positions that are displaced by one nuclear Larmor frequency from the electronic resonance. The predictions are in quantitative agreement with such enhancement peaks observed at 9.4 T . These non-canonical peaks are not due to thermal mixing or the cross effect but exactly follow the dispersive component of the EPR line.
Collapse
Affiliation(s)
- Deniz Sezer
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Concilio MG, Frydman L. Microwave-free J-driven dynamic nuclear polarization: A proposal for enhancing the sensitivity of solution-state NMR. Phys Rev E 2023; 107:035303. [PMID: 37073023 DOI: 10.1103/physreve.107.035303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
J-driven dynamic nuclear polarization (JDNP) was recently proposed for enhancing the sensitivity of solution-state nuclear magnetic resonance (NMR), while bypassing the limitations faced by conventional (Overhauser) DNP at magnetic fields of interest in analytical applications. Like Overhauser DNP, JDNP also requires saturating the electronic polarization using high-frequency microwaves known to have poor penetration and associated heating effects in most liquids. The present microwave-free JDNP (MF-JDNP) proposal seeks to enhance solution NMR's sensitivity by shuttling the sample between higher and lower magnetic fields, with one of these fields providing an electron Larmor frequency that matches the interelectron exchange coupling J_{ex}. If spins cross this so-called JDNP condition sufficiently fast, we predict that a sizable nuclear polarization will be created without microwave irradiation. This MF-JDNP proposal requires radicals whose singlet-triplet self-relaxation rates are dominated by dipolar hyperfine relaxation, and shuttling times that can compete with these electron relaxation processes. This paper discusses the theory behind the MF-JDNP, as well as proposals for radicals and conditions that could enable this new approach to NMR sensitivity enhancement.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
7
|
Tagami K, Thicklin R, Jain S, Equbal A, Li M, Zens T, Siaw A, Han S. Design of a cryogen-free high field dual EPR and DNP probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107351. [PMID: 36599253 DOI: 10.1016/j.jmr.2022.107351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We present the design and construction of a cryogen free, dual electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) probe for novel dynamic nuclear polarization (DNP) experiments and concurrent "in situ" analysis of DNP mechanisms. We focus on the probe design that meets the balance between EPR, NMR, and low temperature performance, while maintaining a high degree of versatility: allowing multi-nuclear NMR detection as well as broadband DNP/EPR excitation/detection. To accomplish high NMR/EPR performance, we implement a novel inductively coupled double resonance NMR circuit (1H-13C) in a solid state probe operating at cryogenic temperatures. The components of the circuit were custom built to provide maximum NMR performance, and the physical layout of this circuit was numerically optimized via magnetic field simulations to allow maximum microwave transmission to the sample for optimal EPR performance. Furthermore this probe is based around a cryogen free gas exchange cryostat and has been designed to allow unlimited experiment times down to 8.5 Kelvin with minimal cost. The affordability of EPR/DNP experiment is an extremely important aspect for broader impact with magnetic resonance measurements. The purpose of this article is to provide as complete information as we have available for others with interest in building a dual DNP/EPR instrument based around a cryogen-free cryostat.
Collapse
Affiliation(s)
- Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raymond Thicklin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Miranda Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Toby Zens
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Anthony Siaw
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
8
|
Soundararajan M, Dubroca T, van Tol J, Hill S, Frydman L, Wi S. Proton-detected solution-state NMR at 14.1 T based on scalar-driven 13C Overhauser dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 343:107304. [PMID: 36228539 DOI: 10.1016/j.jmr.2022.107304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Overhauser dynamic nuclear polarization (ODNP) NMR of solutions at high fields is usually mediated by scalar couplings that polarize the nuclei of heavier, electron-rich atoms. This leaves 1H-detected NMR outside the realm of such studies. This study presents experiments that deliver 1H-detected NMR experiments on relatively large liquid volumes (60 ∼ 100 μL) and at high fields (14.1 T), while relying on ODNP enhancements. To this end 13C NMR polarizations were first enhanced by relying on a mechanism that utilizes e--13C scalar coupling interactions; the nuclear spin alignment thus achieved was then passed on to neighboring 1H for observation, by a reverse INEPT scheme relying on one-bond JCH-couplings. Such 13C →1H polarization transfer ported the 13C ODNP gains into the 1H, permitting detection at higher frequencies and with higher potential sensitivities. For a model solution of labeled 13CHCl3 comixed with a nitroxide-based TEMPO derivative as polarizing agent, an ODNP enhancement factor of ca. 5x could thus be imparted to the 1H signal. When applied to bigger organic molecules like 2-13C-phenylacetylene and 13C8-indole, ODNP enhancements in the 1.2-3x range were obtained. Thus, although handicapped by the lower γ of the 13C, enhancements could be imparted on the 1H thermal acquisitions in all cases. We also find that conventional 1H-13C nuclear Overhauser enhancements (NOEs) are largely absent in these solutions due to the presence of co-dissolved radicals, adding negligible gains and playing negligible roles on the scalar e-→13C ODNP transfer. Potential rationalizations of these effects as well as extensions of these experiments, are briefly discussed.
Collapse
Affiliation(s)
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Johan van Tol
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA; Department of Chemical and Biological Physics, Weizmann Institute of Sciences, 76100001 Rehovot, Israel.
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA.
| |
Collapse
|
9
|
Rao Y, Venkatesh A, Moutzouri P, Emsley L. 1H Hyperpolarization of Solutions by Overhauser Dynamic Nuclear Polarization with 13C- 1H Polarization Transfer. J Phys Chem Lett 2022; 13:7749-7755. [PMID: 35969266 PMCID: PMC9421900 DOI: 10.1021/acs.jpclett.2c01956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Dynamic nuclear polarization (DNP) is a method that can significantly increase the sensitivity of nuclear magnetic resonance. The only effective DNP mechanism for in situ hyperpolarization in solution is Overhauser DNP, which is inefficient for 1H at high magnetic fields. Here we demonstrate the possibility of generating significant 1H hyperpolarization in solution at room temperature. To counter the poor direct 1H Overhauser DNP, we implement steady-state 13C Overhauser DNP in solutions and then transfer the 13C hyperpolarization to 1H via a reverse insensitive nuclei enhanced by polarization transfer scheme. We demonstrate this approach using a 400 MHz gyrotron-equipped 3.2 mm magic angle spinning DNP system to obtain 1H DNP enhancement factors of 48, 8, and 6 for chloroform, tetrachloroethane, and phenylacetylene, respectively, at room temperature.
Collapse
|
10
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
11
|
Concilio MG, Kuprov I, Frydman L. J-Driven dynamic nuclear polarization for sensitizing high field solution state NMR. Phys Chem Chem Phys 2022; 24:2118-2125. [PMID: 35024715 DOI: 10.1039/d1cp04186j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B0, unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings Jex of the order of the electron Larmor frequency ωE. Numerical and analytical calculations show that in such Jex ≈ ±ωE cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton, UK
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel. .,National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| |
Collapse
|
12
|
Fehling P, Buckenmaier K, Dobrynin SA, Morozov DA, Polienko YF, Khoroshunova YV, Borozdina Y, Mayer P, Engelmann J, Scheffler K, Angelovski G, Kirilyuk IA. The effects of nitroxide structure upon 1H Overhauser dynamic nuclear polarization efficacy at ultralow-field. J Chem Phys 2021; 155:144203. [PMID: 34654311 DOI: 10.1063/5.0064342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The efficacy in 1H Overhauser dynamic nuclear polarization in liquids at ultralow magnetic field (ULF, B0 = 92 ± 0.8 µT) and polarization field (Bp = 1-10 mT) was studied for a broad variety of 26 different spin probes. Among others, piperidine, pyrrolidine, and pyrroline radicals specifically synthesized for this study, along with some well-established commercially available nitroxides, were investigated. Isotope-substituted variants, some sterically shielded reduction-resistant nitroxides, and some biradicals were included in the measurements. The maximal achievable enhancement, Emax, and the radio frequency power, P1/2, needed for reaching Emax/2 were measured. Physico-chemical features such as molecular weight, spectral linewidth, heterocyclic structure, different types of substituents, deuteration, and 15N-labeling as well as the difference between monoradicals and biradicals were investigated. For the unmodified nitroxide radicals, the Emax values correlate with the molecular weight. The P1/2 values correlate with the spectral linewidth and are additionally influenced by the type of substituents neighboring the nitroxide group. The nitroxide biradicals with high intramolecular spin-spin coupling show low performance. Nitroxides enriched with 15N and/or 2H afford significantly higher |Emax| and require lower power to do so, compared to their unmodified counterparts containing at natural abundance predominantly 14N and 1H. The results allow for a correlation of chemical features with physical hyperpolarization-related properties and indicate that small nitroxides with narrow spectral lines have clear advantages for the use in Overhauser dynamic nuclear polarization experiments. Perdeuteration and 15N-labeling can be used to additionally boost the spin probe performance.
Collapse
Affiliation(s)
- Paul Fehling
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Kai Buckenmaier
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Sergey A Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Denis A Morozov
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yulia V Khoroshunova
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yulia Borozdina
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Philipp Mayer
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Jörn Engelmann
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Goran Angelovski
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Igor A Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Zhang Z, Jiang Y, Pi H, Chen H, Liu C, Feng J, Liu M. THz-enhanced dynamic nuclear polarized liquid spectrometer. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 330:107044. [PMID: 34352701 DOI: 10.1016/j.jmr.2021.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) technology can be utilized to dramatically enhance NMR signal. In this paper, we report on the development of a self-constructed 5 T DNP spectrometer for liquid samples and the 13C DNP enhancement achieved with this spectrometer. The DNP spectrometer is comprised of a wide-bore superconducting magnet, a home-made console, a dual resonance probe and a self-built 140 GHz microwave source for the spectrometer. Specifically, a microwave source of traveling wave tube (TWT) amplifier has been developed, which can provide a maximum power output of 4.4 W and a wide frequency tuning range of 1 GHz. The excellent performance of our built liquid-state DNP spectrometer is verified by the observation of more than 100-fold DNP enhancement of the 13C NMR signal for liquid 13CCl4 sample. Our result shows the superiority of DNP technology in the liquid-state high-field NMR spectrometer.
Collapse
Affiliation(s)
- Zhekai Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jiang
- Institute of Applied Electronics of CAEP, Mianyang 621900, China
| | - Haiya Pi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Chen
- Institute of Applied Electronics of CAEP, Mianyang 621900, China.
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Concilio MG, Soundararajan M, Frydman L, Kuprov I. High-field solution state DNP using cross-correlations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 326:106940. [PMID: 33865207 DOI: 10.1016/j.jmr.2021.106940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
At the magnetic fields of common NMR instruments, electron Zeeman frequencies are too high for efficient electron-nuclear dipolar cross-relaxation to occur in solution. The rate of that process fades with the electron Zeeman frequency as ω-2 - in the absence of isotropic hyperfine couplings, liquid state dynamic nuclear polarisation (DNP) in high-field magnets is therefore impractical. However, contact coupling and dipolar cross-relaxation are not the only mechanisms that can move electron magnetisation to nuclei in liquids: multiple cross-correlated (CC) relaxation processes also exist, involving various combinations of interaction tensor anisotropies. The rates of some of those processes have more favourable high-field behaviour than dipolar cross-relaxation, but due to the difficulty of their numerical - and particularly analytical - treatment, they remain largely uncharted. In this communication, we report analytical evaluation of every rotationally driven relaxation process in liquid state for 1e1n and 2e1n spin systems, as well as numerical optimisations of the steady-state DNP with respect to spin Hamiltonian parameters. A previously unreported cross-correlated DNP (CCDNP) mechanism was identified for the 2e1n system, involving multiple relaxation interference effects and inter-electron exchange coupling. Using simulations, we found realistic spin Hamiltonian parameters that yield stronger nuclear polarisation at high magnetic fields than dipolar cross-relaxation.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; School of Chemistry, University of Southampton, Southampton, UK.
| | | | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; National High Magnetic Field Laboratory, Tallahassee, FL, USA.
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton, UK.
| |
Collapse
|
15
|
Levien M, Hiller M, Tkach I, Bennati M, Orlando T. Nitroxide Derivatives for Dynamic Nuclear Polarization in Liquids: The Role of Rotational Diffusion. J Phys Chem Lett 2020; 11:1629-1635. [PMID: 32003568 PMCID: PMC7307959 DOI: 10.1021/acs.jpclett.0c00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/31/2020] [Indexed: 06/07/2023]
Abstract
Polarization transfer efficiency in liquid-state dynamic nuclear polarization (DNP) depends on the interaction between polarizing agents (PAs) and target nuclei modulated by molecular motions. We show how translational and rotational diffusion differently affect the DNP efficiency. These contributions were disentangled by measuring 1H-DNP enhancements of toluene and chloroform doped with nitroxide derivatives at 0.34 T as a function of either the temperature or the size of the PA. The results were employed to analyze 13C-DNP data at higher fields, where the polarization transfer is also driven by the Fermi contact interaction. In this case, bulky nitroxide PAs perform better than the small TEMPONE radical due to structural fluctuations of the ring conformation. These findings will help in designing PAs with features specifically optimized for liquid-state DNP at various magnetic fields.
Collapse
Affiliation(s)
- M. Levien
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Chemistry, Georg-August University, Göttingen 37077, Germany
| | - M. Hiller
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| | - I. Tkach
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| | - M. Bennati
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Chemistry, Georg-August University, Göttingen 37077, Germany
| | - T. Orlando
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
16
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|
17
|
Dey A, Banerjee A. Unusual Overhauser Dynamic Nuclear Polarization Behavior of Fluorinated Alcohols at Room Temperature. J Phys Chem B 2019; 123:10463-10469. [PMID: 31714083 DOI: 10.1021/acs.jpcb.9b08144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of fluorinated alcohols is a matter of considerable interest in view of wide-ranging biomolecular applications. The microheterogeneity of fluorinated alcohols in the liquid state, in particular, has been a matter of debate and discussion in recent years using experimental and theoretical methods, including neutron or X-ray diffraction, as well as density functional theory (DFT) and molecular dynamics (MD) simulations. Here, we show that 1H and 19F Overhauser dynamic nuclear polarization (ODNP) buildup curves in solution state at room temperature show unusual behavior that could offer a novel approach to investigate the structural heterogeneity and dynamics of such homogeneous liquids with improved sensitivity. A detailed analysis of multiexponential ODNP buildup curves as a function of microwave irradiation time is shown to evidence microheterogeneity in such systems. Experimental ODNP buildup rates are interpreted using simple motional models that yield the motional correlation times of the relevant species in solution. It may be emphasized that this information is not available from standard approaches of high-resolution nuclear magnetic resonance (NMR) spectroscopy. While the present study focuses on fluorinated alcohols, it is to be anticipated that this approach would be valuable in the study of molecular assemblies in the solution state, including peptides, surfactant systems, etc.
Collapse
Affiliation(s)
- Arnab Dey
- MRI-MRS Centre and Department of Chemistry , Indian Institute of Technology-Madras , Chennai 600036 , Tamil Nadu , India
| | - Abhishek Banerjee
- MRI-MRS Centre and Department of Chemistry , Indian Institute of Technology-Madras , Chennai 600036 , Tamil Nadu , India
| |
Collapse
|
18
|
Nevzorov AA, Milikisiyants S, Marek AN, Smirnov AI. Multi-resonant photonic band-gap/saddle coil DNP probehead for static solid state NMR of microliter volume samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:113-123. [PMID: 30380458 PMCID: PMC6894392 DOI: 10.1016/j.jmr.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 05/04/2023]
Abstract
The most critical condition for performing Dynamic Nuclear Polarization (DNP) NMR experiments is achieving sufficiently high electronic B1e fields over the sample at the matched EPR frequencies, which for modern high-resolution NMR instruments fall into the millimeter wave (mmW) range. Typically, mmWs are generated by powerful gyrotrons and/or extended interaction klystrons (EIKs) sources and then focused onto the sample by dielectric lenses. However, further development of DNP methods including new DNP pulse sequences may require B1e fields higher than one could achieve with the current mmW technology. In order to address the challenge of significantly enhancing the mmW field at the sample, we have constructed and tested one-dimensional photonic band-gap (PBG) mmW resonator that was incorporated inside a double-tuned radiofrequency (rf) NMR saddle coil. The photonic crystal is formed by stacking ceramic discs with alternating high and low dielectric constants and thicknesses of λ/4 or 3λ/4, where λ is the wavelength of the incident mmW field in the corresponding dielectric material. When the mmW frequency is within the band gap of the photonic crystal, a defect created in the middle of the crystal confines the mmW energy, thus forming a resonant structure. An aluminum mirror in the middle of the defect has been used to substitute one-half of the structure with its mirror image in order to reduce the resonator size and simplify its tuning. The latter is achieved by adjusting the width of the defect by moving the aluminum mirror with respect to the dielectric stack using a gear mechanism. The 1D PBG resonator was the key element for constructing a multi-resonant integrated DNP/NMR probehead operating at 190-199 GHz EPR/300 MHz 1H/75.5 MHz 13C NMR frequencies. Initial tests of the multi-resonant DNP/NMR probehead were carried out using a quasioptical mmW bridge and a Bruker Biospin Avance II spectrometer equipped with a standard Bruker 7 T wide-bore 89 mm magnet parked at 300.13 MHz 1H NMR frequency. The mmW bridge built with all solid-state active components allows for the frequency tuning between ca. 190 and ca. 199 GHz with the output power up to 27 dBm (0.5 W) at 192 GHz and up to 23 dBm (0.2 W) at 197.5 GHz. Room temperature DNP experiments with a synthetic single crystal high-pressure high-temperature (HPHT) diamond (0.3 × 0.3 × 3.0 mm3) demonstrated dramatic 1500-fold enhancement of 13C natural abundance NMR signal at full incident mmW power. Significant 13C DNP enhancement (of about 90) have been obtained at incident mmW powers of as low as <100 μW. Further tests of the resonator performance have been carried out with a thin (ca. 100 μm thickness) composite polystyrene-microdiamond film by controlling the average mmW power at the optimal DNP conditions via a gated mode of operation. From these experiments, the PBG resonator with loaded Q ≃ 250 and finesse F≈75 provides up to 12-fold or 11 db gain in the average mmW power vs. the non-resonant probehead configuration employing only a reflective mirror.
Collapse
Affiliation(s)
- Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Antonin N Marek
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
19
|
Yoon D, Dimitriadis AI, Soundararajan M, Caspers C, Genoud J, Alberti S, de Rijk E, Ansermet JP. High-Field Liquid-State Dynamic Nuclear Polarization in Microliter Samples. Anal Chem 2018; 90:5620-5626. [PMID: 29620353 DOI: 10.1021/acs.analchem.7b04700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear hyperpolarization in the liquid state by dynamic nuclear polarization (DNP) has been of great interest because of its potential use in NMR spectroscopy of small samples of biological and chemical compounds in aqueous media. Liquid state DNP generally requires microwave resonators in order to generate an alternating magnetic field strong enough to saturate electron spins in the solution. As a consequence, the sample size is limited to dimensions of the order of the wavelength, and this restricts the sample volume to less than 100 nL for DNP at 9 T (∼260 GHz). We show here a new approach that overcomes this sample size limitation. Large saturation of electron spins was obtained with a high-power (∼150 W) gyrotron without microwave resonators. Since high power microwaves can cause serious dielectric heating in polar solutions, we designed a planar probe which effectively alleviates dielectric heating. A thin liquid sample of 100 μm of thickness is placed on a block of high thermal conductivity aluminum nitride, with a gold coating that serves both as a ground plane and as a heat sink. A meander or a coil were used for NMR. We performed 1H DNP at 9.2 T (∼260 GHz) and at room temperature with 10 μL of water, a volume that is more than 100× larger than reported so far. The 1H NMR signal is enhanced by a factor of about -10 with 70 W of microwave power. We also demonstrated the liquid state of 31P DNP in fluorobenzene containing triphenylphosphine and obtained an enhancement of ∼200.
Collapse
Affiliation(s)
- Dongyoung Yoon
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Alexandros I Dimitriadis
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,SWISSto12 SA, 1015 , Lausanne , Switzerland
| | - Murari Soundararajan
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Christian Caspers
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Jeremy Genoud
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Swiss Plasma Center , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Stefano Alberti
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Swiss Plasma Center , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Emile de Rijk
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,SWISSto12 SA, 1015 , Lausanne , Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| |
Collapse
|
20
|
Plainchont B, Berruyer P, Dumez JN, Jannin S, Giraudeau P. Dynamic Nuclear Polarization Opens New Perspectives for NMR Spectroscopy in Analytical Chemistry. Anal Chem 2018; 90:3639-3650. [PMID: 29481058 DOI: 10.1021/acs.analchem.7b05236] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic nuclear polarization (DNP) can boost sensitivity in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. This Feature illustrates how the coupling of DNP with both liquid- and solid-state NMR spectroscopy has the potential to considerably extend the range of applications of NMR in analytical chemistry.
Collapse
Affiliation(s)
- Bertrand Plainchont
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France
| | - Pierrick Berruyer
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Univ. Paris Sud, Université Paris-Saclay , 91190 Gif-sur Yvette , France
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CNRS, ENS de Lyon , Institut des Sciences Analytiques, UMR 5280 , 5 Rue de la Doua , 69100 Villeurbanne , France
| | - Patrick Giraudeau
- Université de Nantes , CNRS, CEISAM UMR 6230 , 44322 Nantes Cedex 03 , France.,Institut Universitaire de France , 75005 Paris , France
| |
Collapse
|
21
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
22
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
23
|
Dey A, Banerjee A, Chandrakumar N. Transferred Overhauser DNP: A Fast, Efficient Approach for Room Temperature 13C ODNP at Moderately Low Fields and Natural Abundance. J Phys Chem B 2017; 121:7156-7162. [PMID: 28658577 DOI: 10.1021/acs.jpcb.7b05081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overhauser dynamic nuclear polarization (ODNP) is investigated at a moderately low field (1.2 T) for natural abundance 13C NMR of small molecules in solution state at room temperature. It is shown that ODNP transferred from 1H to 13C by NMR coherence transfer is in general significantly more efficient than direct ODNP of 13C. Compared to direct 13C ODNP, we demonstrate over 4-fold higher 13C sensitivity (signal-to-noise ratio, SNR), achieved in one-eighth of the measurement time by transferred ODNP (t-ODNP). Compared to the 13C signal arising from Boltzmann equilibrium in a fixed measurement time, this is equivalent to about 1500-fold enhancement of 13C signal by t-ODNP, as against a direct 13C ODNP signal enhancement of about 45-fold, both at a moderate ESR saturation factor of about 0.25. This owes in part to the short polarization times characteristic of 1H. Typically, t-ODNP reflects the essentially uniform ODNP enhancements of all protons in a molecule. Although the purpose of this work is to establish the superiority of t-ODNP vis-à-vis direct 13C ODNP, a comparison is also made of the SNR in t-ODNP experiments with standard high resolution NMR as well. Finally, the potential of t-ODNP experiments for 2D heteronuclear correlation spectroscopy of small molecules is demonstrated in 2D 1H-13C HETCOR experiments at natural abundance, with decoupling in both dimensions.
Collapse
Affiliation(s)
- Arnab Dey
- MRI-MRS Centre and Deparment of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| | - Abhishek Banerjee
- MRI-MRS Centre and Deparment of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| | - Narayanan Chandrakumar
- MRI-MRS Centre and Deparment of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| |
Collapse
|
24
|
Meenakumari V, Utsumi H, Jawahar A, Franklin Benial AM. Concentration dependence of nitroxyl spin probes in liposomal solution: electron spin resonance and overhauser-enhanced magnetic resonance studies. J Liposome Res 2016; 28:87-96. [PMID: 27892752 DOI: 10.1080/08982104.2016.1264960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this work, the detailed studies of electron spin resonance (ESR) and overhauser-enhanced magnetic resonance imaging (OMRI) were carried out for permeable nitroxyl spin probe, MC-PROXYL as a function of agent concentration in liposomal solution. In order to compare the impermeable nature of nitroxyl radical, the study was also carried out only at 2 mM concentration of carboxy-PROXYL. The ESR parameters were estimated using L-band and 300 MHz ESR spectrometers. The line width broadening was measured as a function of agent concentration in liposomal solution. The estimated rotational correlation time is proportional to the agent concentration, which indicates that less mobile nature of nitroxyl spin probe in liposomal solution. The partition parameter and permeability values indicate that the diffusion of nitroxyl spin probe distribution into the lipid phase is maximum at 2 mM concentration of MC-PROXYL. The dynamic nuclear polarization (DNP) parameters such as DNP factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for 2 mM MC-PROXYL in 400 mM liposomal dispersion. The spin lattice relaxation time was shortened in liposomal solution, which leads to the high relaxivity. Reduction in coupling factor is due to less interaction between the electron and nuclear spins, which causes the reduction in enhancement. The leakage factor increases with increasing agent concentration. The increase in DNP enhancement was significant up to 2 mM in liposomal solution. These results paves the way for choosing optimum agent concentration and OMRI scan parameters used in intra and extra membrane water by loading the liposome vesicles with a lipid permeable nitroxyl spin probes in OMRI experiments.
Collapse
Affiliation(s)
- V Meenakumari
- a Department of Physics , NMSSVN College , Madurai , Tamilnadu India
| | - Hideo Utsumi
- b Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka , Japan , and
| | - A Jawahar
- c Department of Chemistry , NMSSVN College , Madurai , Tamilnadu , India
| | | |
Collapse
|
25
|
Neudert O, Mattea C, Stapf S. A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 271:7-14. [PMID: 27526396 DOI: 10.1016/j.jmr.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
A new probehead was developed enabling Dynamic Nuclear Polarization (DNP)-enhanced Fast-Field-Cycling relaxometry at 340mT polarization field strength. It is based on a dielectric cavity resonator operating in the TM110 mode at 9.5GHz, which is suitable for both transverse and axial magnet geometries with a bore access of at least 20mm. The probehead includes a planar radio frequency coil for NMR detection and is compatible with standard 3mm NMR tubes. The resonator was assessed in terms of the microwave conversion factor and microwave-induced sample heating effects. Due to the compact size of the cavity, appreciable microwave magnetic field strengths were observed even with only moderate quality factors. Exemplary DNP experiments at 9.5GHz and 2.0GHz microwave frequency are compared for three different viscous samples, demonstrating the advantage of DNP at 9.5GHz for such systems. This new probehead enables new applications of DNP-enhanced Fast-Field-Cycling relaxometry of viscous and solid systems.
Collapse
Affiliation(s)
- Oliver Neudert
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany.
| | - Carlos Mattea
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany
| | - Siegfried Stapf
- Institute of Physics, Ilmenau University of Technology, D-98693 Ilmenau, Germany
| |
Collapse
|
26
|
Chen H, Maryasov AG, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Bowman MK. Electron spin dynamics and spin-lattice relaxation of trityl radicals in frozen solutions. Phys Chem Chem Phys 2016; 18:24954-65. [PMID: 27560644 PMCID: PMC5482570 DOI: 10.1039/c6cp02649d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron spin-lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach-Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP.
Collapse
Affiliation(s)
- Hanjiao Chen
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Abstract
Dynamic nuclear polarization (DNP) is a methodology to increase the sensitivity of nuclear magnetic resonance (NMR) spectroscopy. It relies on the transfer of the electron spin polarization from a radical to coupled nuclear spins, driven by microwave excitation resonant with the electron spin transitions. In this work we explore the potential of pulsed multi-frequency microwave excitation in liquids. Here, the relevant DNP mechanism is the Overhauser effect. The experiments were performed with TEMPOL radicals in aqueous solution at room temperature using a Q-band frequency (1.2 T) electron paramagnetic resonance (EPR) spectrometer combined with a Minispec NMR spectrometer. A fast arbitrary waveform generator (AWG) enabled the generation of multi-frequency pulses used to either sequentially or simultaneously excite all three 14N-hyperfine lines of the nitroxide radical. The multi-frequency excitation resulted in a doubling of the observed DNP enhancements compared to single-frequency microwave excitation. Q-band free induction decay (FID) signals of TEMPOL were measured as a function of the excitation pulse length allowing the efficiency of the electron spin manipulation by the microwave pulses to be extracted. Based on this knowledge we could quantitatively model our pulsed DNP enhancements at 1.2 T by numerical solution of the Bloch equations, including electron spin relaxation and experimental parameters. Our results are in good agreement with theoretical predictions. Whereas for a narrow and homogeneous single EPR line continuous wave excitation leads to more efficient DNP enhancements compared to pulsed excitation for the same amount of averaged microwave power. The situation is different for radicals with several hyperfine lines or in the presence of inhomogeneous line broadening. In such cases pulsed single/multi-frequency excitation can lead to larger DNP enhancements.
Collapse
Affiliation(s)
- Philipp Schöps
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Philipp E. Spindler
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Küçük SE, Sezer D. Multiscale computational modeling of 13C DNP in liquids. Phys Chem Chem Phys 2016; 18:9353-7. [DOI: 10.1039/c6cp01028h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative prediction of 13C DNP coupling factors is achieved for acetone in water and pure chloroform.
Collapse
Affiliation(s)
- Sami Emre Küçük
- Faculty of Engineering and Natural Sciences
- Sabancı University
- 34956 Istanbul
- Turkey
| | - Deniz Sezer
- Faculty of Engineering and Natural Sciences
- Sabancı University
- 34956 Istanbul
- Turkey
| |
Collapse
|