1
|
Zhang D, Zhang H, Yang Y, Jin Y, Chen Y, Wu C. Advancing tissue analysis: Integrating mass tags with mass spectrometry imaging and immunohistochemistry. J Proteomics 2025; 316:105436. [PMID: 40180154 DOI: 10.1016/j.jprot.2025.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
In biological and biomedical research, it's a crucial task to detect or quantify proteins or proteomes accurately across multiple samples. Immunohistochemistry (IHC) and spatial proteomics based on mass spectrometry imaging (MSI) are used to detect proteins in tissue samples. IHC can detect precisely but has a limited throughput, whereas MSI can simultaneously visualize thousands of specific chemical components but hindered by detailed protein annotation. Thereby, the introduction of mass tags may be adopted to expand the potential for integrating MSI and IHC. By enriching optical information for IHC and enhancing MS signals, mass tags can boost the accuracy of qualitative, localization, and quantitative detection of specific proteins in tissue sections, thereby widening the scope of protein detection and annotation results. Consequently, more comprehensive information regarding biological processes and disease states can be obtained, which aids in understanding complex biological processes and disease mechanisms and provides additional perspectives for clinical diagnosis and treatment. In the current review, we aim to discuss the role of different mass tags (e.g., mass tags based on inorganic molecules and organic molecules) in the combined application of MSI and IHC.
Collapse
Affiliation(s)
- Dandan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hairong Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yuexin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yingjie Chen
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen University, Xiamen 361102, China.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Fields L, Miles HN, Adrian AE, Patrenets E, Ricke WA, Li L. MSIght: A Modular Platform for Improved Confidence in Global, Untargeted Mass Spectrometry Imaging Annotation. J Proteome Res 2025; 24:2478-2490. [PMID: 40197022 DOI: 10.1021/acs.jproteome.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Mass spectrometry imaging (MSI) has gained popularity in clinical analyses due to its high sensitivity, specificity, and throughput. However, global profiling experiments are often still restricted to LC-MS/MS analyses that lack spatial localization due to low-throughput methods for on-tissue peptide identification and confirmation. Additionally, the integration of parallel LC-MS/MS peptide confirmation, as well as histological stains for accurate mapping of identifications, presents a large bottleneck for data analysis, limiting throughput for untargeted profiling experiments. Here, we present a novel platform, termed MSIght, which automates the integration of these multiple modalities into an accessible and modular platform. Histological stains of tissue sections are coregistered to their respective MSI data sets to improve spatial localization and resolution of identified peptides. MS/MS peptide identifications via untargeted LC-MS/MS are used to confirm putative MSI identifications, thus generating MS images with greater confidence in a high-throughput, global manner. This platform has the potential to enable large-scale clinical cohorts to utilize MSI in the future for global proteomic profiling that uncovers novel biomarkers in a spatially resolved manner, thus widely expanding the utility of MSI in clinical discovery.
Collapse
Affiliation(s)
- Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hannah N Miles
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Alexis E Adrian
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Elliot Patrenets
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Integrative Biology, University of Wisconsin-Madison, 250 N Mills St, Madison, Wisconsin 53706, United States
| | - William A Ricke
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Vanderschoot KA, Bender KJ, De Caro CM, Steineman KA, Neumann EK. Multimodal Mass Spectrometry Imaging in Atlas Building: A Review. Semin Nephrol 2025:151578. [PMID: 40246671 DOI: 10.1016/j.semnephrol.2025.151578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In the era of precision medicine, scientists are creating atlases of the human body to map cells at the molecular level, providing insight into what fundamentally makes each cell different. In these atlas efforts, multimodal imaging techniques that include mass spectrometry imaging (MSI) have revolutionized the way biomolecules, such as lipids, peptides, proteins, and small metabolites, are visualized in the native spatial context of biological tissue. As such, MSI has become a fundamental arm of major cell atlasing efforts, as it can analyze the spatial distribution of hundreds of molecules in diverse sample types. These rich molecular data are then correlated with orthogonal assays, including histologic staining, proteomics, and transcriptomics, to analyze molecular classes that are not traditionally detected by MSI. Additional computational methods enable further examination of the correlations between biomolecular classes and creation of visualizations that serve as a powerful resource for researchers and clinicians trying to understand human health and disease. In this review, we examine modern multimodal imaging methods and how they contribute to precision medicine and the understanding of fundamental disease mechanisms. Semin Nephrol 36:x-xx © 20XX Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
| | - Kayle J Bender
- Chemistry Department, University of California at Davis, Davis, CA
| | | | | | | |
Collapse
|
4
|
Lu Y, Han S, Srivastava A, Shaik N, Chan M, Diallo A, Kumar N, Paruchuri N, Deosthali H, Ravikumar V, Cornell K, Stommel E, Punshon T, Jackson B, Kolling F, Vahdat L, Vaickus L, Marotti J, Ho S, Levy J. Integrative co-registration of elemental imaging and histopathology for enhanced spatial multimodal analysis of tissue sections through TRACE. BIOINFORMATICS ADVANCES 2025; 5:vbaf001. [PMID: 39829713 PMCID: PMC11742137 DOI: 10.1093/bioadv/vbaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Summary Elemental imaging provides detailed profiling of metal bioaccumulation, offering more precision than bulk analysis by targeting specific tissue areas. However, accurately identifying comparable tissue regions from elemental maps is challenging, requiring the integration of hematoxylin and eosin (H&E) slides for effective comparison. Facilitating the streamlined co-registration of whole slide images (WSI) and elemental maps, TRACE enhances the analysis of tissue regions and elemental abundance in various pathological conditions. Through an interactive containerized web application, TRACE features real-time annotation editing, advanced statistical tools, and data export, supporting comprehensive spatial analysis. Notably, it allows for comparison of elemental abundances across annotated tissue structures and enables integration with other spatial data types through WSI co-registration. Availability and implementation Available on the following platforms-GitHub: jlevy44/trace_app, PyPI: trace_app, Docker: joshualevy44/trace_app, Singularity: docker://joshualevy44/trace_app.
Collapse
Affiliation(s)
- Yunrui Lu
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, United States
- Dartmouth College, Geisel School of Medicine, Hanover, NH 03766, United States
| | - Serin Han
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, United States
| | | | - Neha Shaik
- Cupertino High School, Cupertino, CA 95014, United States
| | - Matthew Chan
- Dartmouth College, Geisel School of Medicine, Hanover, NH 03766, United States
| | - Alos Diallo
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, United States
| | - Naina Kumar
- Langley High School, McLean, VA 22101, United States
| | - Nishita Paruchuri
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, United States
| | | | | | - Kevin Cornell
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, United States
- Department of Neurology, Dartmouth Health, Lebanon, NH 03766, United States
| | - Elijah Stommel
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, United States
- Department of Neurology, Dartmouth Health, Lebanon, NH 03766, United States
| | - Tracy Punshon
- Dartmouth College, Geisel School of Medicine, Hanover, NH 03766, United States
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03766, United States
| | - Brian Jackson
- Dartmouth College, Geisel School of Medicine, Hanover, NH 03766, United States
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03766, United States
| | - Fred Kolling
- Dartmouth College, Geisel School of Medicine, Hanover, NH 03766, United States
- Dartmouth Cancer Center, Lebanon, NH 03766, United States
| | - Linda Vahdat
- Dartmouth Cancer Center, Lebanon, NH 03766, United States
- Department of Medicine, Dartmouth Health, Lebanon, NH 03766, United States
| | - Louis Vaickus
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, United States
| | - Jonathan Marotti
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH 03766, United States
| | - Sunita Ho
- School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - Joshua Levy
- Department of Pathology and Laboratory Medicine, , Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
5
|
Kwon Y, Fulcher JM, Paša-Tolić L, Qian WJ. Spatial Proteomics towards cellular Resolution. Expert Rev Proteomics 2024:1-10. [PMID: 39710940 DOI: 10.1080/14789450.2024.2445809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Spatial biology is an emerging interdisciplinary field facilitating biological discoveries through the use of spatial omics technologies. Recent advancements in spatial transcriptomics, spatial genomics (e.g. genetic mutations and epigenetic marks), multiplexed immunofluorescence, and spatial metabolomics/lipidomics have enabled high-resolution spatial profiling of gene expression, genetic variation, protein expression, and metabolites/lipids profiles in tissue. These developments contribute to a deeper understanding of the spatial organization within tissue microenvironments at the molecular level. AREAS COVERED This report provides an overview of the untargeted, bottom-up mass spectrometry (MS)-based spatial proteomics workflow. It highlights recent progress in tissue dissection, sample processing, bioinformatics, and liquid chromatography (LC)-MS technologies that are advancing spatial proteomics toward cellular resolution. EXPERT OPINION The field of untargeted MS-based spatial proteomics is rapidly evolving and holds great promise. To fully realize the potential of spatial proteomics, it is critical to advance data analysis and develop automated and intelligent tissue dissection at the cellular or subcellular level, along with high-throughput LC-MS analyses of thousands of samples. Achieving these goals will necessitate significant advancements in tissue dissection technologies, LC-MS instrumentation, and computational tools.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
6
|
Hu S, Tang Y, Li X, Li W, Zeng Y, Jiang M, Chen R, Zheng P, Yang L, Song Z, Xie D, Chen Y, Yuan Y. Hsp90aa1/JUN/Ccl2 regulatory axis mediates migration and differentiation of NSPCs, promoting the onset and progression of early post-ischemic stroke epilepsy. Neurobiol Dis 2024; 200:106635. [PMID: 39128813 DOI: 10.1016/j.nbd.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Early-onset epilepsy following ischemic stroke is a severe neurological condition, the pathogenesis of which remains incompletely understood. Recent studies suggest that Neural stem/progenitor cells (NSPCs) play a crucial role in the disease process, yet the precise molecular mechanisms regulating NSPCs have not been thoroughly investigated. This study utilized single-cell transcriptome sequencing and bioinformatics analysis to identify disease-related genes, which were subsequently validated in both in vitro and in vivo experiments. The findings revealed that Hsp90aa1 (heat shock protein 90 kDa alpha, class A member 1), Jun proto-oncogene (JUN), and CC Motif Ligation 2 (Ccl2) constitute an important regulatory axis influencing the migration and differentiation of NSPCs, potentially impacting the onset and progression of early-onset epilepsy post-ischemic stroke. Additionally, the expression of Hsp90aa1 was found to influence the likelihood of seizure occurrence and the severity of brain ischemia.
Collapse
Affiliation(s)
- Shuntong Hu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhong Tang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yini Zeng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mi Jiang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Ru Chen
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Liang Yang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dujie Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yiwei Chen
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yi Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Shi D, Grey AC, Guo G. An isotopically-labelled temporal mass spectrometry imaging data analysis workflow to reveal glucose spatial metabolism patterns in bovine lens tissue. Sci Rep 2024; 14:18843. [PMID: 39138264 PMCID: PMC11322647 DOI: 10.1038/s41598-024-69507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Application of stable isotopically labelled (SIL) molecules in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) over a series of time points allows the temporal and spatial dynamics of biochemical reactions to be tracked in a biological system. However, these large kinetic MSI datasets and the inherent variability of biological replicates presents significant challenges to the rapid analysis of the data. In addition, manual annotation of downstream SIL metabolites involves human input to carefully analyse the data based on prior knowledge and personal expertise. To overcome these challenges to the analysis of spatiotemporal MALDI-MSI data and improve the efficiency of SIL metabolite identification, a bioinformatics pipeline has been developed and demonstrated by analysing normal bovine lens glucose metabolism as a model system. The pipeline consists of spatial alignment to mitigate the impact of sample variability and ensure spatial comparability of the temporal data, dimensionality reduction to rapidly map regional metabolic distinctions within the tissue, and metabolite annotation coupled with pathway enrichment modules to summarise and display the metabolic pathways induced by the treatment. This pipeline will be valuable for the spatial metabolomics community to analyse kinetic MALDI-MSI datasets, enabling rapid characterisation of spatio-temporal metabolic patterns from tissues of interest.
Collapse
Affiliation(s)
- Dingchang Shi
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.
| | - George Guo
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
8
|
Zhang H, Lu KH, Ebbini M, Huang P, Lu H, Li L. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. NPJ IMAGING 2024; 2:20. [PMID: 39036554 PMCID: PMC11254763 DOI: 10.1038/s44303-024-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The recent upswing in the integration of spatial multi-omics for conducting multidimensional information measurements is opening a new chapter in biological research. Mapping the landscape of various biomolecules including metabolites, proteins, nucleic acids, etc., and even deciphering their functional interactions and pathways is believed to provide a more holistic and nuanced exploration of the molecular intricacies within living systems. Mass spectrometry imaging (MSI) stands as a forefront technique for spatially mapping the metabolome, lipidome, and proteome within diverse tissue and cell samples. In this review, we offer a systematic survey delineating different MSI techniques for spatially resolved multi-omics analysis, elucidating their principles, capabilities, and limitations. Particularly, we focus on the advancements in methodologies aimed at augmenting the molecular sensitivity and specificity of MSI; and depict the burgeoning integration of MSI-based spatial metabolomics, lipidomics, and proteomics, encompassing the synergy with other imaging modalities. Furthermore, we offer speculative insights into the potential trajectory of MSI technology in the future.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Kelly H. Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Malik Ebbini
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
9
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
10
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Croslow SW, Trinklein TJ, Sweedler JV. Advances in multimodal mass spectrometry for single-cell analysis and imaging enhancement. FEBS Lett 2024; 598:591-601. [PMID: 38243373 PMCID: PMC10963143 DOI: 10.1002/1873-3468.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Multimodal mass spectrometry (MMS) incorporates an imaging modality with probe-based mass spectrometry (MS) to enable precise, targeted data acquisition and provide additional biological and chemical data not available by MS alone. Two categories of MMS are covered; in the first, an imaging modality guides the MS probe to target individual cells and to reduce acquisition time by automatically defining regions of interest. In the second category, imaging and MS data are coupled in the data analysis pipeline to increase the effective spatial resolution using a higher resolution imaging method, correct for tissue deformation, and incorporate fine morphological features in an MS imaging dataset. Recent methodological and computational developments are covered along with their application to single-cell and imaging analyses.
Collapse
Affiliation(s)
- Seth W. Croslow
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy J. Trinklein
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Rajbhandari P, Neelakantan TV, Hosny N, Stockwell BR. Spatial pharmacology using mass spectrometry imaging. Trends Pharmacol Sci 2024; 45:67-80. [PMID: 38103980 PMCID: PMC10842749 DOI: 10.1016/j.tips.2023.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The emerging and powerful field of spatial pharmacology can map the spatial distribution of drugs and their metabolites, as well as their effects on endogenous biomolecules including metabolites, lipids, proteins, peptides, and glycans, without the need for labeling. This is enabled by mass spectrometry imaging (MSI) that provides previously inaccessible information in diverse phases of drug discovery and development. We provide a perspective on how MSI technologies and computational tools can be implemented to reveal quantitative spatial drug pharmacokinetics and toxicology, tissue subtyping, and associated biomarkers. We also highlight the emerging potential of comprehensive spatial pharmacology through integration of multimodal MSI data with other spatial technologies. Finally, we describe how to overcome challenges including improving reproducibility and compound annotation to generate robust conclusions that will improve drug discovery and development processes.
Collapse
Affiliation(s)
- Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Noreen Hosny
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
14
|
Djambazova KV, van Ardenne JM, Spraggins JM. Advances in Imaging Mass Spectrometry for Biomedical and Clinical Research. Trends Analyt Chem 2023; 169:117344. [PMID: 38045023 PMCID: PMC10688507 DOI: 10.1016/j.trac.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Imaging mass spectrometry (IMS) allows for the untargeted mapping of biomolecules directly from tissue sections. This technology is increasingly integrated into biomedical and clinical research environments to supplement traditional microscopy and provide molecular context for tissue imaging. IMS has widespread clinical applicability in the fields of oncology, dermatology, microbiology, and others. This review summarizes the two most widely employed IMS technologies, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI), and covers technological advancements, including efforts to increase spatial resolution, specificity, and throughput. We also highlight recent biomedical applications of IMS, primarily focusing on disease diagnosis, classification, and subtyping.
Collapse
Affiliation(s)
- Katerina V. Djambazova
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacqueline M. van Ardenne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Maciel LÍL, Bernardo RA, Martins RO, Batista Junior AC, Oliveira JVA, Chaves AR, Vaz BG. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04783-8. [PMID: 37329466 DOI: 10.1007/s00216-023-04783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
16
|
Rittel MF, Schmidt S, Weis CA, Birgin E, van Marwick B, Rädle M, Diehl SJ, Rahbari NN, Marx A, Hopf C. Spatial Omics Imaging of Fresh-Frozen Tissue and Routine FFPE Histopathology of a Single Cancer Needle Core Biopsy: A Freezing Device and Multimodal Workflow. Cancers (Basel) 2023; 15:2676. [PMID: 37345020 DOI: 10.3390/cancers15102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/16/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
The complex molecular alterations that underlie cancer pathophysiology are studied in depth with omics methods using bulk tissue extracts. For spatially resolved tissue diagnostics using needle biopsy cores, however, histopathological analysis using stained FFPE tissue and the immunohistochemistry (IHC) of a few marker proteins is currently the main clinical focus. Today, spatial omics imaging using MSI or IRI is an emerging diagnostic technology for the identification and classification of various cancer types. However, to conserve tissue-specific metabolomic states, fast, reliable, and precise methods for the preparation of fresh-frozen (FF) tissue sections are crucial. Such methods are often incompatible with clinical practice, since spatial metabolomics and the routine histopathology of needle biopsies currently require two biopsies for FF and FFPE sampling, respectively. Therefore, we developed a device and corresponding laboratory and computational workflows for the multimodal spatial omics analysis of fresh-frozen, longitudinally sectioned needle biopsies to accompany standard FFPE histopathology of the same biopsy core. As a proof-of-concept, we analyzed surgical human liver cancer specimens using IRI and MSI with precise co-registration and, following FFPE processing, by sequential clinical pathology analysis of the same biopsy core. This workflow allowed for a spatial comparison between different spectral profiles and alterations in tissue histology, as well as a direct comparison for histological diagnosis without the need for an extra biopsy.
Collapse
Affiliation(s)
- Miriam F Rittel
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stefan Schmidt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Emrullah Birgin
- Department of Surgery, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Björn van Marwick
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Matthias Rädle
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Steffen J Diehl
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Clinic of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nuh N Rahbari
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Surgery, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Alexander Marx
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Institute of Pathology, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
17
|
Wehrli P, Ge J, Michno W, Koutarapu S, Dreos A, Jha D, Zetterberg H, Blennow K, Hanrieder J. Correlative Chemical Imaging and Spatial Chemometrics Delineate Alzheimer Plaque Heterogeneity at High Spatial Resolution. JACS AU 2023; 3:762-774. [PMID: 37006756 PMCID: PMC10052239 DOI: 10.1021/jacsau.2c00492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
We present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 μm). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution. We demonstrate the method's potential through its application toward delineating chemical traits of Alzheimer's disease (AD) pathology. Here, trimodal MALDI MSI of transgenic AD mouse brain delineates beta-amyloid (Aβ) plaque-associated co-localization of lipids and Aβ peptides. Finally, we establish an improved image fusion approach for correlative MSI and functional fluorescence microscopy. This allowed for high spatial resolution (300 nm) prediction of correlative, multimodal MSI signatures toward distinct amyloid structures within single plaque features critically implicated in Aβ pathogenicity.
Collapse
Affiliation(s)
- Patrick
M. Wehrli
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Junyue Ge
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
| | - Wojciech Michno
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Srinivas Koutarapu
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Ambra Dreos
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Durga Jha
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, U.K.
- U.
K. Dementia Research Institute at University College London, London WC1N 3BG, U.K.
- Hong
Kong Center for Neurodegenerative Diseases, Sha Tin, N.T. 1512-1518, Hong Kong, China
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute
of Neuroscience and Physiology, Sahlgrenska Academy, University of
Gothenburg, Mölndal 431 80, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital Mölndal, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, U.K.
| |
Collapse
|
18
|
Bunch DR, Holmes DT. Clinical pathology and the data science revolution. J Mass Spectrom Adv Clin Lab 2022; 24:41-42. [PMID: 35340694 PMCID: PMC8942826 DOI: 10.1016/j.jmsacl.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Dustin R. Bunch
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Corresponding author at: Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA.
| | - Daniel T. Holmes
- St. Paul’s Hospital, Department of Pathology and Laboratory Medicine, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- University of British Columbia, Department of Pathology and Laboratory Medicine, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
19
|
Contemporary Research Progress on the Detection of Polycyclic Aromatic Hydrocarbons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052790. [PMID: 35270481 PMCID: PMC8910359 DOI: 10.3390/ijerph19052790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of the most common and widespread contaminants. The accumulation of PAHs has made a certain impact on the environment and is seriously threatening human health. Numerous general analytical methods suitable for PAHs were developed. With the development of economy, the environmental problems of PAHs in modern society are more extensive and prominent, and attract more attention from environmental scientists and analysts. Deeper understanding of the properties of PAHs depends on the advent of detection methods, which can also be more conducive to promoting the protection of the environment. Till now, more sensitive, more high-speed and more high-throughput analytical tools are being invented and have played important roles in the research of PAHs. In this short review article, we focused mainly on the contemporary analytical methods about PAHs. We started with a brief review on the hazards, migration, distribution and traditional analysis methods of PAHs in recent years, including liquid chromatography, gas chromatography, surface enhanced Raman spectroscopy and so on. We also presented the applications of the modern ambient mass spectrometry, especially microwave plasma torch mass spectrometry, in the detection of PAHs, as well as the far out novel results in our lab by using microwave plasma torch (MPT) mass spectrometry; for example, some new insights about Birch reduction, regular hydrogen addition and the robustness of molecular structure. These studies have demonstrated the versatility of MPT MS as a platform in the research of PAHs.
Collapse
|