1
|
Maniglio M, Haydon N, Roner S, Baltzer HL. A systematic review of axon count measurement and reporting for nerve transfers in the upper extremity. J Plast Reconstr Aesthet Surg 2025; 106:27-34. [PMID: 40367649 DOI: 10.1016/j.bjps.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/09/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Axon counts in the literature vary by source and method, and no single source summarizes all brachial plexus nerves. This review aims to compile these counts in one article and assess comparability across studies. METHODS A systematic review was conducted in November 2023, according to the PRISMA guidelines. Four databases were assessed using different variations of the terms "nerve axon count* AND "upper extremity". 539 articles were found and screened, and after full text assessment of the pre-selected articles, 54 articles were finally retained. For these articles, the axon counts, SD, and ranges were collected for all upper extremities' nerves. If more than one article counted the axons of a specific nerve and if the difference between the counts was less than 100%, an average count was calculated. RESULTS In the 54 articles a total of 56 nerves were assessed. Axon counts of 18 nerves were done only in a single study. In the comparison between the averages in between studies, in 20 nerves the difference excided 100% between the highest and lowest value. For 16 nerves a metanalysis could been performed and presented in the article. CONCLUSIONS Our study revealed enormous differences in axon counts across various studies, reaching up to a factor of 87 between the averages from one study to another. Additionally, the quality of the methods of these studies varies, particularly since axon count is frequently reported as a secondary or tertiary outcome. This insight cautions surgeons against using axon counts from studies with differing methodologies to plan nerve transfers.
Collapse
Affiliation(s)
- Mauro Maniglio
- Department of Hand Surgery, The Balgrist, University Clinic, Zürich, Switzerland.
| | - Nicholas Haydon
- Department of Plastic Surgery, North Shore Private Hospital, Sydney, Australia.
| | - Simon Roner
- Department of Hand and Plastic Surgery, University Hospital Zurich, Zürich, Switzerland.
| | - Heather L Baltzer
- Department of Hand and Plastic Surgery, Toronto Western Hospital, UHN University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Mosa AJ, Randall ZD, Navarro BJ, Hunter DA, Brogan DM, Dy CJ. Superficial Peroneal Nerve Motor Branch Transfer to the Deep Peroneal Nerve: Cadaveric Study and Case Report. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6781. [PMID: 40353209 PMCID: PMC12063788 DOI: 10.1097/gox.0000000000006781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025]
Abstract
Background Foot drop carries substantial morbidity and is often due to deep peroneal (DPN) or common peroneal nerve (CPN) injury. Treatment options are limited. This study explored a new surgical approach by transferring a superficial peroneal nerve (SPN) branch to DPN. Cadaveric analysis, manual histomorphometry, and a case report are presented. Methods Twenty-one limbs were analyzed. A reproducible surgical approach was used to identify CPN and trace it to the bifurcation into SPN and DPN, and then to the insertions into the peroneus longus (PL) and tibialis anterior (TA) muscles, respectively. Measurements were made from the superior most aspect of the fibular head to the bifurcation of the CPN, the insertion of the first and second SPN motor branches to the PL, and to the insertion of the DPN into the TA. The first SPN motor branch to the PL and DPN into the TA nerves were harvested, and histomorphological measurements of axonal densities were obtained. Results Histomorphological analysis showed similar axonal densities between the transferred and target nerves, indicating a comparable potential for effective reinnervation. The mean distances from fibular head to various nerve branches were recorded to ensure tension-free transfer. No significant differences were found between nerve groups regarding axon density, total fascicle area, or total axon counts. Conclusions This study supported feasibility of this nerve transfer technique, with initial results suggesting it represents a viable treatment option for foot drop secondary to DPN injury. Further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Adam J. Mosa
- From the Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Zachary D. Randall
- From the Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Brendan J. Navarro
- From the Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Daniel A. Hunter
- From the Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - David M. Brogan
- From the Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Christopher J. Dy
- From the Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Ziółkowska EA, Jablonka-Shariff A, Williams LL, Jansen MJ, Wang SH, Eultgen EM, Wood MD, Hunter DA, Sharma J, Sardiello M, Bradley RP, Whiteman IT, Reese R, Pestronk A, Sands MS, Heuckeroth RO, Snyder-Warwick AK, Cooper JD. Identifying and treating CLN3 disease outside the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635518. [PMID: 39975385 PMCID: PMC11838464 DOI: 10.1101/2025.01.29.635518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
CLN3 disease causes profound neurological deficits in affected children, but less well recognized are a variety of peripheral neuromuscular and gastrointestinal problems. We hypothesized that in addition to central nervous system (CNS) degeneration, CLN3 deficiency may also directly affect neuronal and/or glial cell populations in the rest of the body. Therefore, we examined the neuromuscular and enteric nervous system in Cln3 Δex7/8 mice. There was no overt sciatic nerve axon loss or demyelination in Cln3 Δex7/8 mice, but significant loss of terminal Schwann cells (tSCs) at lower limb neuromuscular junctions (NMJ), and progressive NMJ denervation. This was accompanied by pronounced myofiber atrophy, with fewer and displaced myofibril nuclei, with similar pathology seen in a human CLN3 muscle biopsy. Atrophy was also evident in bowel smooth muscle with Cln3 Δex7/8 mice displaying slow bowel transit, and significant loss of both enteric neurons and glial cells throughout the bowel. Similar enteric pathology was evident at autopsy in the small intestine and colon of a human CLN3 case. Neonatal administration of intravenous gene therapy to Cln3 Δex7/8 mice using an AAV9-hCLN3 vector completely prevented tSCs and NMJ pathology, atrophy of both skeletal and smooth muscle, positively impacted bowel transit and largely prevented the loss of enteric neurons and glia. These findings reveal an underappreciated, but profound, impact of CLN3 disease outside the CNS and suggest these novel aspects of disease may be treatable using gene therapy. Graphical abstract
Collapse
|
4
|
Chi D, Pinni S, Maloy S, Llaneras N, Hunter DA, Wood MD, Tenenbaum MM, Mackinnon SE. Peripheral Nerve Injury After Deoxycholic Acid (ATX-101) Injection in an Experimental Rat Model. Aesthet Surg J 2025; 45:186-193. [PMID: 39316008 DOI: 10.1093/asj/sjae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Deoxycholic acid (ATX-101) is a drug administered by subcutaneous injection for local fat reduction. However, ATX-101 treatment has been reported to cause marginal mandibular nerve injury with noticeable functional deficits when targeting submental fat. As a cytolytic agent with some selectivity for adipocytes, ATX-101 may damage the lipid-rich myelin surrounding peripheral nerves. OBJECTIVES The aim of this study was to characterize nerve injury caused by ATX-101 injection in an experimental rat sciatic nerve model. METHODS Injuries to the sciatic nerve caused by intrafascicular and extrafascicular injections of ATX-101, and by lidocaine (positive control) and saline (negative control) injections, were compared. Nerves were harvested at a 2-week endpoint for histomorphometric analysis. RESULTS The cross-sectional area of nerve injury was significantly increased by ATX-101 injection. The damaged areas amounted to 75% ± 15% with intrafascicular ATX-101 (P < .001), 41% ± 21% with extrafascicular ATX-101 (P < .01), and 38% ± 20% with positive-control lidocaine (P < .01), compared with 7% ± 13% with negative-control saline. Demyelinating injury was a significant mechanism of injury in the affected nerve fibers compared with uninjured nerve fibers (P < .04), but there was no difference in the axon-to-myelin area ratio between the lidocaine and ATX-101 cohorts. After 2 weeks, Wallerian degeneration was evident with only small regenerating nerve fibers present in the ATX-101-injured groups compared with saline (average fiber width, 2.54 ± 0.26 μm vs 5.03 ± 0.44 μm, P < .001). CONCLUSIONS ATX-101 can cause extensive nerve injury in rats. The mechanism of action for ATX-101 does not preferentially target myelin more than other common neurotoxic agents. Appropriate knowledge of surgical anatomy and injection technique is necessary for any practitioners administering ATX-101 injections.
Collapse
|
5
|
Chang PS, Lee TY, Kneiber D, Dy CJ, Ward PM, Kazarian G, Apostolakos J, Brogan DM. Design and In Vivo Testing of an Anatomic 3D-Printed Peripheral Nerve Conduit in a Rat Sciatic Nerve Model. HSS J 2024:15563316241299368. [PMID: 39583892 PMCID: PMC11583172 DOI: 10.1177/15563316241299368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Background: Three-dimensional (3D) printer technology has seen a surge in use in medicine, particularly in orthopedics. A recent area of research is its use in peripheral nerve repair, which often requires a graft or conduit to bridge segmental defects. Currently, nerve gaps are bridged using autografts, allografts, or synthetic conduits. Purpose: We sought to improve upon the current design of simple hollow, cylindrical conduits that often result in poor nerve regeneration. Previous attempts were made at reducing axonal dispersion with the use of multichanneled conduits. To our knowledge, none has attempted to mimic and test the anatomical topography of the nerve. Methods: Using serial histology sections, 3D reconstruction software, and computer-aided design, a scaffold was created based on the fascicular topography of a rat sciatic nerve. A 3D printer produced both cylindrical conduits and topography-based scaffolds. These were implanted in 12 Lewis rats: 6 rats with the topographical scaffold and 6 rats with the cylindrical conduit. Each rodent's uninjured contralateral limb was used as a control for comparison of functional and histologic outcomes. Walking track analysis was performed, and the Sciatic Functional Index (SFI) was calculated with the Image J software. After 6 weeks, rats were sacrificed and analyses performed on the regenerated nerve tissue. Primary outcomes measured included nerve (fiber) density, nerve fiber width, total number of nerve fibers, G-ratio (ratio of axon width to total fiber width), and percent debris. Secondary outcomes measured included electrophysiology studies of electromyography (EMG) latency and EMG amplitude and isometric force output by the gastrocnemius and tibialis anterior. Results: There were no differences observed between the cylindrical conduit and topographical scaffold in terms of histological outcomes, muscle force, EMG, or SFI. Conclusion: This study of regeneration of the sciatic nerve in a rat model suggests the feasibility of 3D-printed topographical scaffolds. More research is required to quantify the functional outcomes of this technology for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Peter S. Chang
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tony Y. Lee
- School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - David Kneiber
- Department of Anesthesiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Christopher J. Dy
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Patrick M. Ward
- Department of Orthopaedic Surgery, University of Chicago, Chicago, IL, USA
| | | | - John Apostolakos
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - David M. Brogan
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
6
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
7
|
Chen M, Xiong HR, Hu Y, Wang S, Zhou F, Xiang C, Zhao X. Electroacupuncture alleviates sciatic nerve injury and inhibits autophagy in rats. Acupunct Med 2024; 42:268-274. [PMID: 39340157 DOI: 10.1177/09645284241280074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
BACKGROUND Sciatic nerve injury is a common form of peripheral nerve injury (PNI). It has been suggested that electroacupuncture (EA) stimulation at GB30 and ST36 can improve nerve dysfunction post-PNI. Autophagy is an important factor in the regeneration of sciatic nerves and recovery of motor function. Therefore, we investigated the biological effects of EA and examined whether these were mediated by autophagy in sciatic nerve injury. METHODS Mechanical clamping of the sciatic nerve in Sprague-Dawley rats was performed to establish an experimental model of sciatic nerve injury. EA stimulation was administered once daily for 15 min for seven consecutive days beginning 1 week after successful modeling. The recovery of sciatic nerve function was examined via the sciatic functional index (SFI) test. Morphometric analysis was conducted by staining nerve samples with toluidine blue. Autophagy-associated protein levels were measured via Western blotting. RESULTS EA stimulation at GB30 and ST36 significantly increased the number of myelinated fibers, axonal and fiber diameters, and the thickness of the myelin sheath in our rat model of sciatic nerve injury. In addition, EA stimulation greatly facilitated nerve regeneration following sciatic nerve injury. Moreover, sciatic nerve injury-induced autophagy was inhibited by EA stimulation. CONCLUSION EA facilitates recovery of injured sciatic nerves and inhibits autophagy in a rat model.
Collapse
Affiliation(s)
- Meiling Chen
- Department of Cardiology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - He Ran Xiong
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yanping Hu
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Song Wang
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Fan Zhou
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Chao Xiang
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xin Zhao
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Naseri S, Samaram H, Naghavi N, Rassouli MB, Mousavinezhad M. Types of Short-Duration Electrical Stimulation-Induced Efficiency in the Axonal Regeneration and Recovery: Comparative in Vivo Study in Rat Model of Repaired Sciatic Nerve and its Tibial Branch after Transection Injury. Neurochem Res 2024; 49:2469-2479. [PMID: 38856888 DOI: 10.1007/s11064-024-04154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The restoration of adequate function and sensation in nerves following an injury is often insufficient. Electrical stimulation (ES) applied during nerve repair can promote axon regeneration, which may enhance the likelihood of successful functional recovery. However, increasing operation time and complexity are associated with limited clinical use of ES. This study aims to better assess whether short-duration ES types (voltage mode vs. current mode) are able to produce enhanced regenerative activity following peripheral nerve repair in rat models. Wistar rats were randomly divided into 3 groups: no ES (control), 30-minute ES with a current pulse, and 30-minute ES with a voltage pulse. All groups underwent sciatic nerve transection and repair using a silicone tube to bridge the 6-mm gap between the stumps. In the 2 groups other than the control, ES was applied after the surgical repair. Outcomes were evaluated using electrophysiology, histology, and serial walking track analysis. Biweekly walking tracks test over 12 weeks revealed that subjects that underwent ES experienced more rapid functional improvement than subjects that underwent repair alone. Electrophysiological analysis of the newly intratubular sciatic nerve at week 12 revealed strong motor function recovery in rats that underwent 30-minute ES. Histologic analysis of the sciatic nerve and its tibial branch at 12 weeks demonstrated robust axon regrowth in all groups. Both types of short-duration ES applied during nerve repair can promote axon regrowth and enhance the chances of successful functional recovery.
Collapse
Affiliation(s)
- Sareh Naseri
- Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Razavi Khorasan Province, 9177948374, Iran
| | - Hosein Samaram
- Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Razavi Khorasan Province, 9177948374, Iran
| | - Nadia Naghavi
- Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Razavi Khorasan Province, 9177948374, Iran.
| | | | - Maryam Mousavinezhad
- Biology Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
9
|
Acevedo Cintrón JA, Hunter DA, Schellhardt L, Pan D, Mackinnon SE, Wood MD. Limited Nerve Regeneration across Acellular Nerve Allografts (ANAs) Coincides with Changes in Blood Vessel Morphology and the Development of a Pro-Inflammatory Microenvironment. Int J Mol Sci 2024; 25:6413. [PMID: 38928119 PMCID: PMC11204013 DOI: 10.3390/ijms25126413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The use of acellular nerve allografts (ANAs) to reconstruct long nerve gaps (>3 cm) is associated with limited axon regeneration. To understand why ANA length might limit regeneration, we focused on identifying differences in the regenerative and vascular microenvironment that develop within ANAs based on their length. A rat sciatic nerve gap model was repaired with either short (2 cm) or long (4 cm) ANAs, and histomorphometry was used to measure myelinated axon regeneration and blood vessel morphology at various timepoints (2-, 4- and 8-weeks). Both groups demonstrated robust axonal regeneration within the proximal graft region, which continued across the mid-distal graft of short ANAs as time progressed. By 8 weeks, long ANAs had limited regeneration across the ANA and into the distal nerve (98 vs. 7583 axons in short ANAs). Interestingly, blood vessels within the mid-distal graft of long ANAs underwent morphological changes characteristic of an inflammatory pathology by 8 weeks post surgery. Gene expression analysis revealed an increased expression of pro-inflammatory cytokines within the mid-distal graft region of long vs. short ANAs, which coincided with pathological changes in blood vessels. Our data show evidence of limited axonal regeneration and the development of a pro-inflammatory environment within long ANAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.A.C.); (D.A.H.); (L.S.); (D.P.); (S.E.M.)
| |
Collapse
|
10
|
Krasnoff C, Ferrin P, Peters BR. Donor and Recipient Nerve Axon Counts in Gender-affirming Radial Forearm Phalloplasty: Informing Choice of Nerve Coaptations. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4971. [PMID: 37180984 PMCID: PMC10171577 DOI: 10.1097/gox.0000000000004971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/13/2023] [Indexed: 05/16/2023]
Abstract
A key component of success of a nerve transfer is the innervation density, which is directly affected by the donor nerve axonal density and donor-to-recipient (D:R) axon ratio. Optimal D:R axon ratio for a nerve transfer is quoted at 0.7:1 or greater. In phalloplasty surgery, there are currently minimal data available to help inform selection of donor and recipient nerves, including unavailability of axon counts. Methods Five transmasculine people who underwent gender-affirming radial forearm phalloplasty had nerve specimens processed with histomorphometric evaluation to determine axon counts and approximate donor-to-recipient axon ratios. Results Mean axon counts for recipient nerves were 6957 ± 1098 [the lateral antebrachial (LABC)], 1866 ± 590 [medial antebrachial (MABC)], and 1712 ± 121 [posterior antebrachial cutaneous (PABC)]. Mean axon counts for donor nerves were 2301 ± 551 [ilioinguinal (IL)] and 5140 ± 218 [dorsal nerve of the clitoris (DNC)]. D:R axon ratios using mean axon counts were DNC:LABC 0.739 (0.61-1.03), DNC:MABC 2.754 (1.83-5.91), DNC:PABC 3.002 (2.71-3.53), IL:LABC 0.331 (0.24-0.46), IL:MABC 1.233 (0.86-1.17), and IL:PABC 1.344 (0.85-1.82). Conclusions The DNC is the more powerful donor nerve with greater than two times the axon count of the IL. The IL nerve may be under-powered to re-innervate the LABC based on an axon ratio consistently less than 0.7:1. All other mean D:R are more than 0.7:1. DNC axon counts may be excessive for re-innervation of the MABC or PABC alone with D:R of more than 2.5:1, potentially increasing risk of neuroma formation at the coaptation site.
Collapse
Affiliation(s)
- Chloe Krasnoff
- From the Division of Plastic Surgery, Oregon Health and Science University, Portland, Oreg
| | - Peter Ferrin
- From the Division of Plastic Surgery, Oregon Health and Science University, Portland, Oreg
| | - Blair R. Peters
- From the Division of Plastic Surgery, Oregon Health and Science University, Portland, Oreg
- Transgender Health Program, Oregon Health and Science University, Portland, Oreg
| |
Collapse
|
11
|
Peters BR, Wood MD, Hunter DA, Mackinnon SE. Acellular Nerve Allografts in Major Peripheral Nerve Repairs: An Analysis of Cases Presenting With Limited Recovery. Hand (N Y) 2023; 18:236-243. [PMID: 33880944 PMCID: PMC10035101 DOI: 10.1177/15589447211003175] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acellular nerve allografts have been used successfully and with increasing frequency to reconstruct nerve injuries. As their use has been expanded to treat longer gap, larger diameter nerve injuries, some failed cases have been reported. We present the histomorphometry of 5 such cases illustrating these limitations and review the current literature of acellular nerve allografts. METHODS Between 2014 and 2019, 5 patients with iatrogenic nerve injuries to the median or ulnar nerve reconstructed with an AxoGen AVANCE nerve allograft at an outside hospital were treated in our center with allograft excision and alternative reconstruction. These patients had no clinical or electrophysiological evidence of recovery, and allograft specimens at the time of surgery were sent for histomorphological examination. RESULTS Three patients with a median and 2 with ulnar nerve injury were included. Histology demonstrated myelinated axons present in all proximal native nerve specimens. In 2 cases, axons failed to regenerate into the allograft and in 3 cases, axonal regeneration diminished or terminated within the allograft. CONCLUSIONS The reported cases demonstrate the importance of evaluating the length and the function of nerves undergoing acellular nerve allograft repair. In long length, large-diameter nerves, the use of acellular nerve allografts should be carefully considered.
Collapse
Affiliation(s)
- Blair R. Peters
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Oregon Health & Science Univeristy, Portland, OR, USA
| | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Birenbaum NK, Yan Y, Odabas A, Chandra NS, Ray WZ, MacEwan MR. Multiple sessions of therapeutic electrical stimulation using implantable thin-film wireless nerve stimulators improve functional recovery after sciatic nerve isograft repair. Muscle Nerve 2023; 67:244-251. [PMID: 36533970 DOI: 10.1002/mus.27776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION/AIMS Although therapeutic electrical stimulation (TES) of injured peripheral nerve promotes axon regeneration and functional recovery, clinical applications of this therapy are limited to the intraoperative timeframe. Implantable, thin-film wireless nerve stimulators offer a potential solution to this problem by enabling delivery of electrical stimuli to an injured nerve over a period of several days post-surgery. The aim of this study was to determine the optimal time course of stimulation for maximizing functional recovery in a rat sciatic nerve isograft repair model. METHODS Adult male Lewis rats underwent thin-film wireless nerve stimulator implantation following sciatic nerve transection and 40 mm nerve isograft repair. Immediately after surgery, animals began a daily regimen of TES for up to 12 consecutive days. Functional recovery was assessed by compound muscle action potential (CMAP), evoked muscle force, wet muscle mass, and axon counting. RESULTS Serial CMAP measurements increased in amplitude over the course of the study, yet no significant difference between cohorts for serial or terminal CMAPs was observed. Axon counts and wet muscle mass measurements were greatest in the 6-day stimulation group, which correlated with a significant increase in evoked muscle force for the 6-day stimulation group at the terminal time point. DISCUSSION Six daily sessions of TES were found to be most effective for augmenting functional recovery compared to other time courses of stimulation. Future studies should incorporate additional subjects and track axonal sprouting or measure neurotrophin levels during the therapeutic window to further elucidate the mechanisms behind, and ideal amount of, TES.
Collapse
Affiliation(s)
- Nathan K Birenbaum
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Arman Odabas
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Nikhil S Chandra
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wilson Z Ray
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Uloko M, Isabey EP, Peters BR. How many nerve fibers innervate the human glans clitoris: a histomorphometric evaluation of the dorsal nerve of the clitoris. J Sex Med 2023; 20:247-252. [PMID: 36763957 DOI: 10.1093/jsxmed/qdac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION It is frequently quoted in mainstream media that the clitoris has "8000 nerve endings." However, no study has yet quantified the number of nerve fibers (axons) innervating the human clitoris. The dorsal nerves of the clitoris (DNCs) are the primary source of sensation and somatic clitoral innervation. Therefore, reporting the number of axons in the DNCs is an important step in our understanding of clitoral innervation and sexual response with implications for many fields of medical practice. The purpose of this study is to quantify the mean number of axons in the human DNCs and to report the approximate mean number of nerve fibers that innervate the human glans clitoris. METHODS DNC samples were obtained from 7 transmasculine patients undergoing gender-affirming phalloplasty surgery. At the time of nerve coaptation, a small excess of the DNC (5 mm) was collected for analysis at the proximal level of the clitoral body, just distal of the emergence of the DNCs from underneath the pubic symphysis. Samples were placed into 3% glutaraldehyde fixative, postfixed in 1% osmium tetroxide, and serially dehydrated in ethanol and toluene. Samples were then embedded in araldite, sectioned on an ultramicrotome into 1-μm cross sections, and counterstained with 1% toluidine blue. Histomorphometric evaluation was performed at 1000x magnification with a Leitz Laborlux S microscope and image analysis software (Clemex Vision Professional) to obtain an axon counts. Descriptive statistics were performed to yield a mean and standard deviation of the number of axons in the DNCs. Assuming anatomic symmetry between bilateral DNCs, mean total number of somatic nerve fibers innervating the human glans clitoris was obtained by doubling the mean count of the DNCs. RESULTS Seven sample DNCs were collected. Of those, 5 were analyzed as 2 did not have sufficient nerve tissue present. The mean number of nerve fibers in the human DNCs was 5140 (SD = 218.4). The mean number of myelinated nerve fibers innervating the human clitoris was 10,281 (SD = 436.8). CONCLUSION This study is the first to report the number of axons in the human DNC, at a mean 5140. Given the bilateral nature of clitoral innervation and symmetry of anatomic structures, the approximate mean number of myelinated axons that innervate the human glans clitoris is 10,280. When the uncaptured unmyelinated fibers and contributions from the cavernosal innervation are accounted for, it is clear that far Moree than 8000 axons innervate the human clitoris.
Collapse
Affiliation(s)
- Maria Uloko
- Department of Urology, University of California San Diego, San Diego, CA 92121, United States
| | - Erika P Isabey
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg R3E EP5, Canada
| | - Blair R Peters
- Transgender Health Program, Oregon Health & Science University, Portland, OR 97239, United States.,Division of Plastic Surgery, Oregon Health & Science University, Portland, OR 97239, United States
| |
Collapse
|
14
|
Kumar P, Sharma S, Kaur C, Pal I, Bhardwaj DN, Nag TC, Roy TS, Jacob TG. Nerve fibre morphometry with transmission electron microscopy: Application of the nucleator probe in ImageJ. MethodsX 2023; 10:102085. [PMID: 36926271 PMCID: PMC10011813 DOI: 10.1016/j.mex.2023.102085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Stereology and semiautomated binary image histomorphometry are two common methods used for morphometry of nerve fibres. Nucleator probe can be used for the estimation of morphometric parameters like diameter, perimeter, area and volume of a structure that is approximately either a circle or a sphere. In this study, we estimated these parameters with the help of ImageJ software on calibrated transmission electron micrographs. We procured samples of the cochlear nerve (CN) during winter months, within 6-12 hours of death, to reduce post-mortem autolytic changes. The temporal bones containing the CN were fixed by immersion in chilled paraformaldehyde. After dissecting out from the petrous part of the temporal bone, the CN were osmicated and processed for embedding in resin. From the resin blocks, silver coloured (70 nm) ultrathin sections were cut and picked on 300-mesh copper grids, stained with uranyl acetate and lead citrate and viewed under Tecnai G2-20 transmission electron microscope. The transmission electron micrographs had scale bars embedded into them by the software at the time of imaging, and the morphometric parameters of randomly selected nerve fibres were measured using the ImageJ software. The ImageJ software could become a low-cost and dependable tool for nerve fibre morphometry.•Nucleator probe is used for the estimation of morphometric parameters like diameter, perimeter, area or volume•Morphometric parameters were estimated by the ImageJ software on calibrated transmission electron micrographs•The ImageJ software could become a low-cost and dependable tool for nerve fibre morphometry.
Collapse
Key Words
- Application of the nucleator probe with ImageJ
- Axon
- CN, cochlear nerve
- DDSA, Dodecenyl Succinic Anhydride
- DDW, double distilled water
- DMP-30, 2,4,6- Tri (dimethylaminomethyl) Phenol-30
- IAM, internal acoustic meatus: M, myelin
- MNA, Methyl Nadic Anhydride
- Myelin
- PB, phosphate buffer
- RT, room temperature
- Stereology
- axe, axon
Collapse
Affiliation(s)
- Punit Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Sharma
- Department of Anatomy, Dr. Baba Saheb Ambedkar Medical College & Hospital, Delhi, India
| | - Charanjeet Kaur
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Dept of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA, United States
| | - Indra Pal
- Department of Neurobiology School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daya Nand Bhardwaj
- Department of Forensic Medicine & Toxicology, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tara Sankar Roy
- Department of Anatomy, North DMC Medical College & Hindu Rao Hospital, New Delhi, India
| | - Tony George Jacob
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Keane GC, Marsh EB, Hunter DA, Schellhardt L, Walker ER, Wood MD. Lidocaine Nerve Block Diminishes the Effects of Therapeutic Electrical Stimulation to Enhance Nerve Regeneration in Rats. Hand (N Y) 2023; 18:119S-125S. [PMID: 35579211 PMCID: PMC9896284 DOI: 10.1177/15589447221093668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although electrical stimulation (ES) can improve nerve regeneration, the impact of nerve block, such as lidocaine (Lido), on the therapeutic benefits of ES remains unclear. We used a rat tibial nerve transection-and-repair model to explore how either preoperative (PreOp) or postoperative (PostOp) nerve block affects ES-related improvement in regeneration. METHODS Lewis rats were used in 1 of 2 studies. The first evaluated the effects of extraneural Lido on both healthy and injured nerves. In the second study, rats were randomized to 5 experimental groups: No ES (negative control), PreOp Lido, ES + PreOp Lido, PostOp + ES, and ES (positive control). All groups underwent tibial nerve transection and repair. In both studies, nerves were harvested for histological analysis of regeneration distal to the injury site. RESULTS Application of extraneural Lido did not damage healthy or injured nerve based on qualitative histological observations. In the context of nerve transection and repair, the ES group exhibited improved axon regeneration at 21 days measured by the total number of myelinated fibers compared with No ES. Fiber density and percentage of neural tissue in the ES group were greater than those in both No ES and PreOp Lido + ES groups. ES + PostOp Lido was not different from No ES or ES group. CONCLUSIONS Extraneural application of Lido did not damage nerves. Electrical stimulation augmented nerve regeneration, but Lido diminished the ES-related improvement in nerve regeneration. Clinical studies on the effects of ES to nerve regeneration may need to consider nerve block as a variable affecting ES outcome.
Collapse
Affiliation(s)
- Grace C. Keane
- Washington University School of
Medicine in St. Louis, MO, USA
| | - Evan B. Marsh
- Washington University School of
Medicine in St. Louis, MO, USA
| | | | | | | | - Matthew D. Wood
- Washington University School of
Medicine in St. Louis, MO, USA
| |
Collapse
|
16
|
Marsh EB, Schellhardt L, Hunter DA, Mackinnon SE, Snyder-Warwick AK, Wood MD. Electrical stimulation or tacrolimus (FK506) alone enhances nerve regeneration and recovery after nerve surgery, while dual use reduces variance and combines strengths of each in promoting enhanced outcomes. Muscle Nerve 2023; 67:78-87. [PMID: 36333946 DOI: 10.1002/mus.27748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS Repaired nerve injuries can fail to achieve functional recovery. Therapeutic options beyond surgery, such as systemic tacrolimus (FK506) and electrical stimulation (E-stim), can improve recovery. We tested whether dual administration of FK506 and E-stim enhances regeneration and recovery more than either therapeutic alone. METHODS Rats were randomized to four groups: E-stim, FK506, FK506 + E-stim, and repair alone. All groups underwent tibial nerve transection and repair. Two sets of animals were created to measure outcomes of early nerve regeneration using nerve histology (n = 36) and functional recovery (n = 42) (21- and 42-day endpoints, respectively). Functional recovery was measured by behavioral analyses (walking track and grid walk) and, at the endpoint, muscle mass and force. RESULTS Dual E-stim and FK506 administration produced histomorphometric measurements of nerve regeneration no different than either therapeutic alone. All treatments were superior to repair alone (FK506, P < .0001; E-stim, P < .05; FK506 + E-stim, P < .05). The E-stim and FK506 + E-stim groups had improved behavioral recovery compared with repair alone (at 6 weeks: E-stim, P < .05; FK506 + E-stim, P < .01). The FK506 group had improved recovery based on walking-track analysis (at 6 weeks: P < .001) and muscle force and mass (P < .05). The concurrent use of both therapies ensured earlier functional recovery and decreased variability in functional outcomes compared with either therapy alone, suggesting a moderate benefit. DISCUSSION Dual administration of FK506 and E-stim showed minimal additive effects to further improve regeneration or recovery compared with either therapy alone. The data suggest the combination of FK506 and E-stim appears to combine the relative strengths of each therapeutic.
Collapse
Affiliation(s)
- Evan B Marsh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Brogan DM, Dy CJ, Rioux-Forker D, Wever J, Leversedge FJ. Influences of Repair Site Tension and Conduit Splinting on Peripheral Nerve Reconstruction. Hand (N Y) 2022; 17:1048-1054. [PMID: 33356577 PMCID: PMC9608270 DOI: 10.1177/1558944720974117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the use of a conduit splinting technique to mitigate tension at the coaptation site of a rodent nerve defect model to determine the optimal reconstruction method for segmental nerve defects. METHODS A rat sciatic nerve segmental defect model was created by excising 5mm of the sciatic nerve unilaterally. Four groups of 10 rats were each reconstructed using 1 of 4 techniques: primary repair, repair with conduit splinting, reverse isograft with conduit splinting, and reverse isograft without splinting. Functional outcomes were assessed at 6 weeks by measurement of Sciatic Functional Index (SFI), and sciatic nerves were harvested at the nonsurvival surgery. Histomorphologic measurements were reported as a value normalized to the average measurements of the control side. The primary outcomes were assessment of nerve continuity and the proportion of nerve fibers in the regenerating nerve compared with the uninjured side. RESULTS The number of repair site rupture rates was lower when a conduit splint was used-less than half of the primary repairs under tension remained intact at 6 weeks. No difference was seen in axon number, size, and density between primary repairs and those augmented by conduit splints, but worse functional outcomes and more debris were present compared with the intact primary repairs. CONCLUSIONS Nerve conduit splinting reduced rupture rates, particularly for nerve repairs associated with a segmental defect. No significant difference was seen in the number of axons among techniques. Primary nerve repair under tension that did not rupture demonstrated superior SFI.
Collapse
|
18
|
Grimm PD, Wheatley BM, Tomasino A, Leonhardt C, Hunter DA, Wood MD, Moore AM, Davis TA, Tintle SM. Controlling axonal regeneration with acellular nerve allograft limits neuroma formation in peripheral nerve transection: An experimental study in a swine model. Microsurgery 2022; 42:603-610. [PMID: 35925036 DOI: 10.1002/micr.30943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Symptomatic neuromata are a common indication for revision surgery following amputation. Previously described treatments, including traction neurectomy, nerve transposition, targeted muscle re-innervation, and nerve capping, have provided inconsistent results or are technically challenging. Prior research using acellular nerve allografts (ANA) has shown controlled termination of axonal regrowth in long grafts. The purpose of this study was to determine the ability of a long ANA to prevent neuroma formation following transection of a peripheral nerve in a swine model. MATERIALS AND METHODS Twenty-two adult female Yucatan miniature swine (Sus scrofa; 4-6 months, 15-25 kg) were assigned to control (ulnar nerve transection only, n = 10), treatment (ulnar transection and coaptation of 50 mm ANA, n = 10), or donor (n = 2) groups. Nerves harvested from donor group animals were treated to create the ANA. After 20 weeks, the transected nerves including any neuroma or graft were harvested. Both qualitative (nerve architecture, axonal sprouting) and quantitative histologic analyses (myelinated axon number, cross sectional area of nerve tissue) were performed. RESULTS Qualitative histologic analysis of control specimens revealed robust axon growth into dense scar tissue. In contrast, the treatment group revealed dwindling axons in the terminal tissue, consistent with attenuated neuroma formation. Quantitative analysis revealed a significantly decreased number of myelinated axons in the treatment group (1232 ± 540) compared to the control group (44,380 ± 7204) (p < .0001). Cross sectional area of nerve tissue was significantly smaller in treatment group (2.83 ± 1.53 mm2 ) compared to the control group (9.14 ± 1.19 mm2 ) (p = .0012). CONCLUSIONS Aberrant axonal growth is controlled to termination with coaptation of a 50 mm ANA in a swine model of nerve injury. These early results suggest further investigation of this technique to prevent and/or treat neuroma formation.
Collapse
Affiliation(s)
- Patrick D Grimm
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| | - Benjamin M Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| | - Allison Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Crystal Leonhardt
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Amy M Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Scott M Tintle
- Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Outcome Analysis of Medial Triceps Motor Nerve Transfer to Axillary Nerve in Isolated and Brachial Plexus-Associated Axillary Nerve Palsy. Plast Reconstr Surg 2022; 149:1380-1390. [PMID: 35613287 DOI: 10.1097/prs.0000000000009148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Since 2007, the authors have performed the triceps-to-axillary nerve transfer using the medial triceps branch to reconstruct axillary nerve function in brachial plexus and isolated axillary nerve palsies. METHODS A retrospective chart review was undertaken of patients reconstructed with this transfer, recording patient and injury demographics and time to surgery. Preoperative and postoperative function was graded using the Medical Research Council scale and the Disabilities of the Arm, Shoulder, and Hand questionnaire. RESULTS Postoperatively, 31 patients (64.6 percent) reached Medical Research Council grade 3 or higher at final follow-up. The median Disabilities of the Arm, Shoulder, and Hand score was 59.9 (interquartile range, 38.8 to 70.5) preoperatively and 25.0 (interquartile range, 11.3 to 61.4) at final follow-up. Sixteen patients (33 percent) had isolated axillary nerve injury; the median Medical Research Council grade was 4.25 (interquartile range, 3 to 4.25), with 14 patients (87.6 percent) achieving grade 3 or higher. Thirty-two patients (77 percent) had brachial plexus-associated injury; median Medical Research Council grade was 3 (interquartile range, 2 to 3), with 17 patients (53.1 percent) achieving grade 3 or higher. CONCLUSION Medial triceps nerve branch is a strong donor for triceps-to-axillary nerve transfer; however, injury factors may limit the motor recovery in this complex patient population, particularly in axillary nerve palsy associated with brachial plexus injury. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, IV.
Collapse
|
20
|
Keane GC, Pan D, Roh J, Larson EL, Schellhardt L, Hunter DA, Snyder-Warwick AK, Moore AM, Mackinnon SE, Wood MD. The Effects of Intraoperative Electrical Stimulation on Regeneration and Recovery After Nerve Isograft Repair in a Rat Model. Hand (N Y) 2022; 17:540-548. [PMID: 32666827 PMCID: PMC9112755 DOI: 10.1177/1558944720939200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Therapeutic electrical stimulation (ES) applied to repaired nerve is a promising treatment option to improve regeneration. However, few studies address the impact of ES following nerve graft reconstruction. The purpose of this study was to determine if ES applied to a nerve repair using nerve isograft in a rodent model could improve nerve regeneration and functional recovery. Methods: Adult rats were randomized to 2 groups: "ES" and "Control." Rats received a tibial nerve transection that was repaired using a tibial nerve isograft (1.0 cm length), where ES was applied immediately after repair in the applicable group. Nerve was harvested 2 weeks postrepair for immunohistochemical analysis of axon growth and macrophage accumulation. Independently, rats were assessed using walking track and grid-walk analysis for up to 21 weeks. Results: At 2 weeks, more robust axon regeneration and greater macrophage accumulation was observed within the isografts for the ES compared to Control groups. Both walking track and grid-walk analysis revealed that return of functional recovery was accelerated by ES. The ES group demonstrated improved functional recovery over time, as well as improved recovery compared to the Control group at 21 weeks. Conclusions: ES improved early axon regeneration into a nerve isograft and was associated with increased macrophage and beneficial M2 macrophage accumulation within the isograft. ES ultimately improved functional recovery compared to isograft repair alone. This study supports the clinical potential of ES to improve the management of nerve injuries requiring a nerve graft repair.
Collapse
Affiliation(s)
| | - Deng Pan
- Washington University in St. Louis, MO, USA
| | - Joseph Roh
- Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | - Matthew D. Wood
- Washington University in St. Louis, MO, USA,Matthew D. Wood, Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Washington University in St. Louis, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Daeschler SC, Bourget MH, Derakhshan D, Sharma V, Asenov SI, Gordon T, Cohen-Adad J, Borschel GH. Rapid, automated nerve histomorphometry through open-source artificial intelligence. Sci Rep 2022; 12:5975. [PMID: 35396530 PMCID: PMC8993871 DOI: 10.1038/s41598-022-10066-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/21/2022] [Indexed: 12/23/2022] Open
Abstract
We aimed to develop and validate a deep learning model for automated segmentation and histomorphometry of myelinated peripheral nerve fibers from light microscopic images. A convolutional neural network integrated in the AxonDeepSeg framework was trained for automated axon/myelin segmentation using a dataset of light-microscopic cross-sectional images of osmium tetroxide-stained rat nerves including various axonal regeneration stages. In a second dataset, accuracy of automated segmentation was determined against manual axon/myelin labels. Automated morphometry results, including axon diameter, myelin sheath thickness and g-ratio were compared against manual straight-line measurements and morphometrics extracted from manual labels with AxonDeepSeg as a reference standard. The neural network achieved high pixel-wise accuracy for nerve fiber segmentations with a mean (± standard deviation) ground truth overlap of 0.93 (± 0.03) for axons and 0.99 (± 0.01) for myelin sheaths, respectively. Nerve fibers were identified with a sensitivity of 0.99 and a precision of 0.97. For each nerve fiber, the myelin thickness, axon diameter, g-ratio, solidity, eccentricity, orientation, and individual x -and y-coordinates were determined automatically. Compared to manual morphometry, automated histomorphometry showed superior agreement with the reference standard while reducing the analysis time to below 2.5% of the time needed for manual morphometry. This open-source convolutional neural network provides rapid and accurate morphometry of entire peripheral nerve cross-sections. Given its easy applicability, it could contribute to significant time savings in biomedical research while extracting unprecedented amounts of objective morphologic information from large image datasets.
Collapse
Affiliation(s)
- Simeon Christian Daeschler
- SickKids Research Institute, Neuroscience and Mental Health Program, Hospital for Sick Children (SickKids), Toronto, ON, Canada.
| | - Marie-Hélène Bourget
- NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | | | - Vasudev Sharma
- NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,University of Toronto, Toronto, ON, Canada
| | - Stoyan Ivaylov Asenov
- NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Tessa Gordon
- SickKids Research Institute, Neuroscience and Mental Health Program, Hospital for Sick Children (SickKids), Toronto, ON, Canada.,Division of Plastic and Reconstructive Surgery, the Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Cohen-Adad
- NeuroPoly Laboratory, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada.,Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Gregory Howard Borschel
- SickKids Research Institute, Neuroscience and Mental Health Program, Hospital for Sick Children (SickKids), Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada.,Division of Plastic and Reconstructive Surgery, the Hospital for Sick Children, Toronto, ON, Canada.,Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Roh J, Schellhardt L, Keane GC, Hunter DA, Moore AM, Snyder-Warwick AK, Mackinnon SE, Wood MD. Short-Duration, Pulsatile, Electrical Stimulation Therapy Accelerates Axon Regeneration and Recovery following Tibial Nerve Injury and Repair in Rats. Plast Reconstr Surg 2022; 149:681e-690e. [PMID: 35139047 PMCID: PMC8969122 DOI: 10.1097/prs.0000000000008924] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Repair of nerve injuries can fail to achieve adequate functional recovery. Electrical stimulation applied at the time of nerve repair can accelerate axon regeneration, which may improve the likelihood of recovery. However, widespread use of electrical stimulation may be limited by treatment protocols that increase operative time and complexity. This study evaluated whether a short-duration electrical stimulation protocol (10 minutes) was efficacious to enhance regeneration following nerve repair using rat models. METHODS Lewis and Thy1-green fluorescent protein rats were randomized to three groups: 0 minutes of electrical stimulation (no electrical stimulation; control), 10 minutes of electrical stimulation, and 60 minutes of electrical stimulation. All groups underwent tibial nerve transection and repair. In the intervention groups, electrical stimulation was delivered after nerve repair. Outcomes were assessed using immunohistochemistry, histology, and serial walking track analysis. RESULTS Two weeks after nerve repair, Thy1-green fluorescent protein rats demonstrated increased green fluorescent protein-positive axon outgrowth from the repair site with electrical stimulation compared to no electrical stimulation. Serial measurement of walking tracks after nerve repair revealed recovery was achieved more rapidly in both electrical stimulation groups as compared to no electrical stimulation. Histologic analysis of nerve distal to the repair at 8 weeks revealed robust axon regeneration in all groups. CONCLUSIONS As little as 10 minutes of intraoperative electrical stimulation therapy increased early axon regeneration and facilitated functional recovery following nerve transection with repair. Also, as early axon outgrowth increased following electrical stimulation with nerve repair, these findings suggest electrical stimulation facilitated recovery because of earlier axon growth across the suture-repaired site into the distal nerve to reach end-organ targets. CLINICAL RELEVANCE STATEMENT Brief (10-minute) electrical stimulation therapy can provide similar benefits to the 60-minute protocol in an acute sciatic nerve transection/repair rat model and merit further studies, as they represent a translational advantage.
Collapse
Affiliation(s)
- Joseph Roh
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Grace C. Keane
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Amy M. Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Alison K. Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
23
|
Bai J, Liu C, Kong L, Tian S, Yu K, Tian D. Electrospun Polycaprolactone (PCL)-Amnion Nanofibrous Membrane Promotes Nerve Regeneration and Prevents Fibrosis in a Rat Sciatic Nerve Transection Model. Front Surg 2022; 9:842540. [PMID: 35372465 PMCID: PMC8971199 DOI: 10.3389/fsurg.2022.842540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Functional recovery after peripheral nerve injury repair is typically unsatisfactory. An anastomotically poor microenvironment and scarring at the repair site are important factors impeding nerve regeneration. In this study, an electrospun poly-e-caprolactone (PCL)-amnion nanofibrous membrane comprising an amnion membrane and nonwoven electrospun PCL was used to wrap the sciatic nerve repair site in the rat model of a sciatic nerve transection. The effect of the PCL-amnion nanofibrous membrane on improving nerve regeneration and preventing scarring at the repair site was evaluated by expression of the inflammatory cytokine, sciatic functional index (SFI), electrophysiology, and histological analyses. Four weeks after repair, the degree of nerve adhesion, collagen deposition, and intraneural macrophage invasion of the PCL-amnion nanofibrous membrane group were significantly decreased compared with those of the Control group. Moreover, the PCL-amnion nanofibrous membrane decreased the expression of pro-inflammatory cytokines such as interleukin(IL)-6, Tumor Necrosis Factor(TNF)-a and the number of pro-inflammatory M1 macrophages, and increased the expression of anti-inflammatory cytokine such as IL-10, IL-13 and anti-inflammatory M2 macrophages. At 16 weeks, the PCL-amnion nanofibrous membrane improved functional recovery, including promoting nerve Schwann cell proliferation, axon regeneration, and reducing the time of muscle denervation. In summary, the PCL-amnion nanofibrous membrane effectively improved nerve regeneration and prevent fibrosis after nerve repair, which has good clinical application prospect for tissue repair.
Collapse
Affiliation(s)
- Jiangbo Bai
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunjie Liu
- Department of Orthopedics, Tangshan Workers Hospital, Tangshan, China
| | - Lingde Kong
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siyu Tian
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kunlun Yu
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dehu Tian
- Department of Hand Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dehu Tian
| |
Collapse
|
24
|
Plebani E, Biscola NP, Havton LA, Rajwa B, Shemonti AS, Jaffey D, Powley T, Keast JR, Lu KH, Dundar MM. High-throughput segmentation of unmyelinated axons by deep learning. Sci Rep 2022; 12:1198. [PMID: 35075171 PMCID: PMC8786854 DOI: 10.1038/s41598-022-04854-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Axonal characterizations of connectomes in healthy and disease phenotypes are surprisingly incomplete and biased because unmyelinated axons, the most prevalent type of fibers in the nervous system, have largely been ignored as their quantitative assessment quickly becomes unmanageable as the number of axons increases. Herein, we introduce the first prototype of a high-throughput processing pipeline for automated segmentation of unmyelinated fibers. Our team has used transmission electron microscopy images of vagus and pelvic nerves in rats. All unmyelinated axons in these images are individually annotated and used as labeled data to train and validate a deep instance segmentation network. We investigate the effect of different training strategies on the overall segmentation accuracy of the network. We extensively validate the segmentation algorithm as a stand-alone segmentation tool as well as in an expert-in-the-loop hybrid segmentation setting with preliminary, albeit remarkably encouraging results. Our algorithm achieves an instance-level [Formula: see text] score of between 0.7 and 0.9 on various test images in the stand-alone mode and reduces expert annotation labor by 80% in the hybrid setting. We hope that this new high-throughput segmentation pipeline will enable quick and accurate characterization of unmyelinated fibers at scale and become instrumental in significantly advancing our understanding of connectomes in both the peripheral and the central nervous systems.
Collapse
Affiliation(s)
- Emanuele Plebani
- Department of Computer and Information Sciences, Indiana University, Purdue University, Indianapolis, IN, 46202, USA
| | - Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leif A Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47906, USA
| | | | - Deborah Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Terry Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kun-Han Lu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - M Murat Dundar
- Department of Computer and Information Sciences, Indiana University, Purdue University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
25
|
Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Mol Neurodegener 2022; 17:1. [PMID: 34991663 PMCID: PMC8739729 DOI: 10.1186/s13024-021-00511-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/17/2021] [Indexed: 03/31/2023] Open
Abstract
Background In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. Methods To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. Results Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. Conclusions These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00511-x.
Collapse
Affiliation(s)
- A Joseph Bloom
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Xianrong Mao
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Amy Strickland
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Jeffrey Milbrandt
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
26
|
Sayanagi J, Acevedo-Cintrón JA, Pan D, Schellhardt L, Hunter DA, Snyder-Warwick AK, Mackinnon SE, Wood MD. Brief Electrical Stimulation Accelerates Axon Regeneration and Promotes Recovery Following Nerve Transection and Repair in Mice. J Bone Joint Surg Am 2021; 103:e80. [PMID: 34668879 DOI: 10.2106/jbjs.20.01965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Clinical outcomes following nerve injury repair can be inadequate. Pulsed-current electrical stimulation (ES) is a therapeutic method that facilitates functional recovery by accelerating axon regeneration. However, current clinical ES protocols involve the application of ES for 60 minutes during surgery, which can increase operative complexity and time. Shorter ES protocols could be a strategy to facilitate broader clinical adoption. The purpose of the present study was to determine if a 10-minute ES protocol could improve outcomes. METHODS C57BL/6J mice were randomized to 3 groups: no ES, 10 minutes of ES, and 60 minutes of ES. In all groups, the sciatic nerve was transected and repaired, and, in the latter 2 groups, ES was applied after repair. Postoperatively, changes to gene expression from dorsal root ganglia were measured after 24 hours. The number of motoneurons regenerating axons was determined by retrograde labeling at 7 days. Histomorphological analyses of the nerve were performed at 14 days. Function was evaluated serially with use of behavioral tests up to 56 days postoperatively, and relative muscle weight was evaluated. RESULTS Compared with the no-ES group, both ES groups demonstrated increased regeneration-associated gene expression within dorsal root ganglia. The 10-minute and 60-minute ES groups demonstrated accelerated axon regeneration compared with the no-ES group based on increased numbers of labeled motoneurons regenerating axons (mean difference, 202.0 [95% confidence interval (CI), 17.5 to 386.5] and 219.4 [95% CI, 34.9 to 403.9], respectively) and myelinated axon counts (mean difference, 559.3 [95% CI, 241.1 to 877.5] and 339.4 [95% CI, 21.2 to 657.6], respectively). The 10-minute and 60-minute ES groups had improved behavioral recovery, including on grid-walking analysis, compared with the no-ES group (mean difference, 11.9% [95% CI, 3.8% to 20.0%] and 10.9% [95% CI, 2.9% to 19.0%], respectively). There was no difference between the ES groups in measured outcomes. CONCLUSIONS A 10-minute ES protocol accelerated axon regeneration and facilitated functional recovery. CLINICAL RELEVANCE The brief (10-minute) ES protocol provided similar benefits to the 60-minute protocol in an acute sciatic nerve transection/repair mice model and merits further studies.
Collapse
Affiliation(s)
- Junichi Sayanagi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu T, Zhu J, Strickland A, Ko KW, Sasaki Y, Dingwall CB, Yamada Y, Figley MD, Mao X, Neiner A, Bloom AJ, DiAntonio A, Milbrandt J. Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss. Cell Rep 2021; 37:109872. [PMID: 34686345 PMCID: PMC8638332 DOI: 10.1016/j.celrep.2021.109872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
SARM1 is an inducible TIR-domain NAD+ hydrolase that mediates pathological axon degeneration. SARM1 is activated by an increased ratio of NMN to NAD+, which competes for binding to an allosteric activating site. When NMN binds, the TIR domain is released from autoinhibition, activating its NAD+ hydrolase activity. The discovery of this allosteric activating site led us to hypothesize that other NAD+-related metabolites might activate SARM1. Here, we show the nicotinamide analog 3-acetylpyridine (3-AP), first identified as a neurotoxin in the 1940s, is converted to 3-APMN, which activates SARM1 and induces SARM1-dependent NAD+ depletion, axon degeneration, and neuronal death. In mice, systemic treatment with 3-AP causes rapid SARM1-dependent death, while local application to the peripheral nerve induces SARM1-dependent axon degeneration. We identify 2-aminopyridine as another SARM1-dependent neurotoxin. These findings identify SARM1 as a candidate mediator of environmental neurotoxicity and suggest that SARM1 agonists could be developed into selective agents for neurolytic therapy.
Collapse
Affiliation(s)
- Tong Wu
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Zhu
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA
| | - Amy Strickland
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Kwang Woo Ko
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Caitlin B Dingwall
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Yurie Yamada
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Matthew D Figley
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Xianrong Mao
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - Alicia Neiner
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA.
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University Medical School, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in Saint Louis, St. Louis, MO 63114, USA.
| |
Collapse
|
28
|
McInnes CW, Ha AY, Power HA, Tung TH, Moore AM. Femoral nerve decompression and sartorius-to-quadriceps nerve transfers for partial femoral nerve injury: a cadaveric study and early case series. J Neurosurg 2021; 135:904-911. [PMID: 33157531 DOI: 10.3171/2020.6.jns20251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Partial femoral nerve injuries cause significant disability with ambulation. Due to their more proximal and superficial location, sartorius branches are often spared in femoral nerve injuries. In this article, the authors report the benefits of femoral nerve decompression, demonstrate the feasibility of sartorius-to-quadriceps nerve transfers in a cadaveric study, describe the surgical technique, and report clinical results. METHODS Four fresh-frozen cadaveric lower limbs were dissected for anatomical analysis of the sartorius nerve. In addition, a retrospective review of patients with partial femoral nerve injuries treated with femoral nerve decompression and sartorius-to-quadriceps nerve transfers was conducted. Pre- and postoperative knee extension Medical Research Council (MRC) grades and pain scores (visual analog scale) were collected. RESULTS Up to 6 superficial femoral branches innervate the sartorius muscle just distal to the inguinal ligament. Each branch yielded an average of 672 nerve fibers (range 99-1850). Six patients underwent femoral nerve decompression and sartorius-to-quadriceps nerve transfers. Four patients also had concomitant obturator-to-quadriceps nerve transfers. At final follow-up (average 13.4 months), all patients achieved MRC grade 4-/5 or greater knee extension. The average preoperative pain score was 5.2, which decreased to 2.2 postoperatively (p = 0.03). CONCLUSIONS Femoral nerve decompression and nerve transfer using sartorius branches are a viable tool for restoring function in partial femoral nerve injuries. Sartorius branches serve as ideal donors in quadriceps nerve transfers because they are expendable, are close to their recipients, and have an adequate supply of nerve fibers.
Collapse
Affiliation(s)
- Colin W McInnes
- 1Department of Surgery, Division of Plastic Surgery, Fraser Health Authority/University of British Columbia, New Westminster, British Columbia, Canada
| | - Austin Y Ha
- 2Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University School of Medicine in St. Louis, Missouri
| | - Hollie A Power
- 3Department of Surgery, Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada; and
| | - Thomas H Tung
- 2Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University School of Medicine in St. Louis, Missouri
| | - Amy M Moore
- 4Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
29
|
Brogan DM, Dy CJ, Lee TY, Rioux-Forker D, Wever J, Leversedge FJ. Histologic and Functional Outcomes of Conduit Wrapping for Peripheral Nerve Repair: Early Results in a Rat Model. J Reconstr Microsurg 2021; 37:559-565. [PMID: 33517567 DOI: 10.1055/s-0040-1722762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The concept of utilizing a nerve conduit for augmentation of a primary nerve repair has been advocated as a method to prevent neural scarring and decrease adhesions. Despite clinical use, little is known about the effects of a nerve conduit wrapped around a primary repair. To better understand this, we investigated the histologic and functional effects of use of a nerve conduit wrapped around a rat sciatic nerve repair without tension. METHODS Twenty Lewis' rats were divided into two groups of 10 rats each. In each group, unilateral sciatic nerve transection and repair were performed, with the opposite limb utilized as a matched control. In the first group, direct repair alone was performed; in the second group, this repair was augmented with a porcine submucosa conduit wrapped around the repair site. Sciatic functional index (SFI) was measured at 6 weeks with walking track analysis in both groups. Nonsurvival surgeries were then performed in all animals to harvest both the experimental and control nerves to measure histomorphometric parameters of recovery. Histomorphometric parameters assessed included total number of neurons, nerve fiber density, nerve fiber width, G-ratio, and percentage of debris. Unpaired t-test was used to compare outcomes between the two groups. RESULTS All nerves healed uneventfully but compared with direct repair; conduit usage was associated with greater histologic debris, decreased axonal density, worse G-ratio, and worse SFI. No significant differences were found in total axon count or gastrocnemius weight. CONCLUSION In the absence of segmental defects, conduit wrapping primary nerve repairs seem to be associated with worse functional and mixed histologic outcomes at 6 weeks, possibly due to debris from conduit resorption. While clinical implications are unclear, more basic science and clinical studies should be performed prior to widespread adoption of this practice.
Collapse
Affiliation(s)
- David M Brogan
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Christopher J Dy
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Tony Y Lee
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Dana Rioux-Forker
- Division of Plastic Surgery, University of Missouri, Columbia, Missouri
| | - Jason Wever
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | | |
Collapse
|
30
|
Histomorphometry in Peripheral Nerve Regeneration: Comparison of Different Axon Counting Methods. J Surg Res 2021; 268:354-362. [PMID: 34403855 DOI: 10.1016/j.jss.2021.06.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Histomorphometry quantitatively evaluates nerve regeneration. Total myelinated fiber count (TMFC) is most accurately obtained manually across full nerve cross-sections, but most researchers opt for automated, sampled analysis. Few of the numerous techniques available have been validated. The goal of this study was to compare common histomorphometric methods (full manual [FM], sampled manual [SM], and sampled automatic [SA]) to determine their reliability and consistency. MATERIAL AND METHODS Twenty-four rats underwent sciatic nerve (SN) repair with 20mm isografts; SNs distal to the graft were analyzed. TMFC was manually determined in each full cross-section. Counts were also extrapolated from sampled fields, both manually and automatically with ImageJ software. Myelinated fiber diameter, axon diameter, and myelin sheath thickness were measured manually in full and sampled fields; G-ratio was calculated. Repeated-measures MANOVA, Spearman correlation, and Wilcoxon signed-rank tests were performed. A systematic review of histomorphometry in rat SN repair was performed to analyze the variability of techniques in the literature. RESULTS FM TMFC was 13,506 ± 4,217. Both sampled methods yielded significantly different TMFCs (SM:14.4 ± 13.4%, P< 0.001; SA:21.8 ± 44.7%, P = 0.037). All three methods strongly correlated with each other, especially FM and SM (rs = 0.912, P< 0.001). FM fiber diameter, axon diameter, and myelin sheath thickness did not differ from SM (P = 0.493, 0.209, and 0.331, respectively). 65% of papers used sampling; 78% utilized automated or semi-automated analysis. Software, sampling, and histomorphometric parameters varied widely. CONCLUSION SM and SA analysis are reliable with standardized, systematic sampling. Transparency is essential to allow comparison of data; meanwhile, researchers must be cognizant of the wide variety of methodologies in the literature.
Collapse
|
31
|
Enhanced Nerve Regeneration by Exosomes Secreted by Adipose-Derived Stem Cells with or without FK506 Stimulation. Int J Mol Sci 2021; 22:ijms22168545. [PMID: 34445251 PMCID: PMC8395161 DOI: 10.3390/ijms22168545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes secreted by adipose-derived stem cells (ADSC-exo) reportedly improve nerve regeneration after peripheral nerve injury. Herein, we investigated whether pretreatment of ADSCs with FK506, an immunosuppressive drug that enhances nerve regeneration, could secret exosomes (ADSC-F-exo) that further augment nerve regeneration. Designed exosomes were topically applied to injured nerve in a mouse model of sciatic nerve crush injury to assess the nerve regeneration efficacy. Outcomes were determined by histomorphometric analysis of semi-thin nerve sections stained with toluidine blue, mouse neurogenesis PCR array, and neurotrophin expression in distal nerve segments. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile potential exosomal proteins facilitating nerve regeneration. We observed that locally applied ADSC-exo and ADSC-F-exo significantly enhanced nerve regeneration after nerve crush injury. Pretreatment of ADSCs with FK506 failed to produce exosomes possessing more potent molecules for enhanced nerve regeneration. Proteomic analysis revealed that of 192 exosomal proteins detected in both ADSC-exo and ADSC-F-exo, histone deacetylases (HDACs), amyloid-beta A4 protein (APP), and integrin beta-1 (ITGB1) might be involved in enhancing nerve regeneration.
Collapse
|
32
|
Costa AL, Papadopulos N, Porzionato A, Natsis K, Bassetto F, Tiengo C, Giunta R, Soldado F, Bertelli JA, Baeza AR, Battiston B, Titolo P, Tos P, Radtke C, Aszmann O, Moschella F, Cordova A, Toia F, Perrotta RE, Ronchi G, Geuna S, Colonna MR. Studying nerve transfers: Searching for a consensus in nerve axons count. J Plast Reconstr Aesthet Surg 2021; 74:2731-2736. [PMID: 33962889 DOI: 10.1016/j.bjps.2021.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/13/2021] [Indexed: 11/26/2022]
Abstract
Axonal count is the base for efficient nerve transfer; despite its capital importance, few studies have been published on human material, most research approaches being performed on experimental animal models of nerve injury. Thus, standard analysis methods are still lacking. Quantitative data obtained have to be reproducible and comparable with published data by other research groups. To share results with the scientific community, the standardization of quantitative analysis is a fundamental step. For this purpose, the experiences of the Italian, Austrian, German, Greek, and Iberian-Latin American groups have been compared with each other and with the existing literature to reach a consensus in the fiber count and draw up a protocol that can make future studies from different centers comparable. The search for a standardization of the methodology was aimed to reduce all the factors that are associated with an increase in the variability of the results. All the preferential methods to be used have been suggested. On the other hand, alternative methods and different methods have been identified to achieve the same goal, which in our experience are completely comparable; therefore, they can be used indifferently by the different centers according to their experience and availability.
Collapse
Affiliation(s)
- Alfio Luca Costa
- Department of Human Pathology of the Adult, the Child and the Adolescent, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Nikolaos Papadopulos
- Department of Plastic Surgery and Burns, Alexandroupoli University Hospital, Democritus University of Thace, Alexandroupoli, Greece
| | - Andrea Porzionato
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, (Chairperson: Professor Dr. K. NATSIS), Medical School, Aristotle University of Thessaloniki, Greece
| | - Franco Bassetto
- Clinic of Plastic Surgery, Padova University Hospital, Padova, Italy
| | - Cesare Tiengo
- Clinic of Plastic Surgery, Padova University Hospital, Padova, Italy
| | - Riccardo Giunta
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University (LMU), Pettenkoferstraße. 8a, 80336 Munich, Germany
| | - Francisco Soldado
- Pediatric Upper Extremity Surgery and Microsurgery, Vithas San Jose Hospital, Vitoria and Hospital HM nens, Barcelona, Spain
| | - Jayme Augusto Bertelli
- Department of Orthopedic Surgery, Governador Celso Ramos Hospital, Florianópolis, Brazil
| | - Alfonso Rodrìguez Baeza
- Unit of Human Anatomy and Embryology, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193 Barcelona, Spain
| | - Bruno Battiston
- Human Anatomy Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paolo Titolo
- Human Anatomy Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pierluigi Tos
- Azienda Ospedaliero-Universitaria Citta della Salute e della Scienza di Torino, Depatment of Traumatology, Turin, Italy
| | - Christine Radtke
- Hand Surgery and Reconstructive Microsurgery Unit, ASST G Pini-CTO, Milano, Italy
| | - Oscar Aszmann
- Hand Surgery and Reconstructive Microsurgery Unit, ASST G Pini-CTO, Milano, Italy
| | - Francesco Moschella
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Adriana Cordova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesca Toia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Rosario Emanuele Perrotta
- Section of Plastic and Reconstructive Surgery. Department of Surgical, Oncological and Oral Sciences. University of Palermo, Italy
| | - Guilia Ronchi
- Department of Plastic and Reconstructive Surgery, University of Catania, Catania 95100, Italy; Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Stefano Geuna
- Department of Plastic and Reconstructive Surgery, University of Catania, Catania 95100, Italy
| | - Michele Rosario Colonna
- Department of Human Pathology of the Adult, the Child and the Adolescent, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
33
|
Hong T, Wood I, Hunter DA, Yan Y, Mackinnon SE, Wood MD, Moore AM. Neuroma Management: Capping Nerve Injuries With an Acellular Nerve Allograft Can Limit Axon Regeneration. Hand (N Y) 2021; 16:157-163. [PMID: 31137979 PMCID: PMC8041431 DOI: 10.1177/1558944719849115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Management of painful neuromas continues to challenge clinicians. Controlling axon growth to prevent neuroma has gained considerable traction. A logical extension of this idea is to therefore develop an approach to control and arrest axon growth. Given the limits in axonal regeneration across acellular nerve allografts (ANAs), these constructs could provide a means to reliably terminate axon regeneration from an injured nerve. The purpose of this study was to determine if attaching an ANA to an injured nerve could provide a means to control and limit axon regeneration in a predictable manner. Methods: Twenty (20) adult rats received a sciatic nerve transection, where only the proximal nerve was repaired using an ANA of variable length (0.5, 2.5, and 5.0 cm) or left unrepaired (control). The nerves were harvested 5 weeks post-operatively for gross and histomorphometric analysis. The extent of myelinated axons in regenerated tissue was quantified. Results: At 5 weeks, limited axon regeneration within the ANAs was observed. All lengths of ANAs lead to reduced myelinated axon numbers in the most terminal tissue region compared to untreated injured nerve (P = .002). Additionally, ANA length 2.5 cm or greater did not contain any axons at the most terminal tissue region. Conclusions: This study demonstrates a proof of concept that ANAs attached to the proximal end of an injured nerve can limit axon growth in a controlled manner. Furthermore, the extent of axon growth from the injured nerve into the ANA is dependent on the ANA length.
Collapse
Affiliation(s)
- Thomas Hong
- Washington University School of Medicine, St. Louis, MO, USA
| | - Ian Wood
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ying Yan
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - Matthew D. Wood
- Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M. Moore
- Washington University School of Medicine, St. Louis, MO, USA,Amy M. Moore, Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA.
| |
Collapse
|
34
|
Kerns JM, Walter JS, Patetta MJ, Sood A, Hussain AK, Chung JJ, Deshpande A, DesLaurier JT, Dieter RA, Siemionow M, Seiler FA, Amirouche FML, Gonzalez MH. Histological Assessment of Wallerian Degeneration of the Rat Tibial Nerve Following Crush and Transection Injuries. J Reconstr Microsurg 2020; 37:391-404. [PMID: 32971546 DOI: 10.1055/s-0040-1716870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Wallerian degeneration (WD) following peripheral nerve injury (PNI) is an area of growing focus for pharmacological developments. Clinically, WD presents challenges in achieving full functional recovery following PNI, as prolonged denervation of distal tissues for an extended period of time can irreversibly destabilize sensory and motor targets with secondary tissue atrophy. Our objective is to improve upon histological assessments of WD. METHODS Conventional methods utilize a qualitative system simply describing the presence or absence of WD in nerve fibers. We propose a three-category assessment that allows more quantification: A fibers appear normal, B fibers have moderate WD (altered axoplasm), and C fibers have extensive WD (myelin figures). Analysis was by light microscopy (LM) on semithin sections stained with toluidine blue in three rat tibial nerve lesion models (crush, partial transection, and complete transection) at 5 days postop and 5 mm distal to the injury site. The LM criteria were verified at the ultrastructural level. This early outcome measure was compared with the loss of extensor postural thrust and the absence of muscle atrophy. RESULTS The results showed good to excellent internal consistency among counters, demonstrating a significant difference between the crush and transection lesion models. A significant decrease in fiber density in the injured nerves due to inflammation/edema was observed. The growth cones of regenerating axons were evident in the crush lesion group. CONCLUSION The ABC method of histological assessment is a consistent and reliable method that will be useful to quantify the effects of different interventions on the WD process.
Collapse
Affiliation(s)
- James M Kerns
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - James S Walter
- Hines Veterans Affairs Hospital Research Service, Hines, Illinois
| | - Michael J Patetta
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Anshum Sood
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Awais K Hussain
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Joyce J Chung
- University of Illinois College of Medicine, Chicago, Illinois
| | | | | | - Raymond A Dieter
- Hines Veterans Affairs Hospital Research Service, Hines, Illinois
| | - Maria Siemionow
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Figen A Seiler
- Research Resources Center, University of Illinois Chicago, Chicago, Illinois
| | - Farid M L Amirouche
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| | - Mark H Gonzalez
- Department Orthopaedic Surgery, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
35
|
Pan D, Hunter DA, Schellhardt L, Fuchs A, Halevi AE, Snyder-Warwick AK, Mackinnon SE, Wood MD. T cells modulate IL-4 expression by eosinophil recruitment within decellularized scaffolds to repair nerve defects. Acta Biomater 2020; 112:149-163. [PMID: 32434080 DOI: 10.1016/j.actbio.2020.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
Decellularized nerve, or acellular nerve allografts (ANAs), are an increasingly used alternative to nerve autografts to repair nerve gaps to facilitate regeneration. The adaptive immune system, specifically T cells, plays a role in promoting regeneration upon these ANA scaffolds. However, how T cells promote regeneration across ANAs is not clear. Here, we show that T cells accumulate within ANAs repairing nerve gaps resulting in regulation of cytokine expression within the ANA environment. This in turn ultimately leads to robust nerve regeneration and functional recovery. Nerve regeneration across ANAs and functional recovery in Rag1KO mice was limited compared to wild-type (WT) mice. Prior to appreciable nerve regeneration, ANAs from Rag1KO mice contained fewer eosinophils and reduced IL-4 expression compared to ANAs from WT mice. During this period, both T cells and eosinophils regulated IL-4 expression within ANAs. Eosinophils represented the majority of IL-4 expressing cells within ANAs, while T cells regulated IL-4 expression. Finally, an essential role for IL-4 during nerve regeneration across ANAs was confirmed as nerves repaired using ANAs had reduced regeneration in IL-4 KO mice compared to WT mice. Our data demonstrate T cells regulate the expression of IL-4 within the ANA environment via their effects on eosinophils. STATEMENT OF SIGNIFICANCE: The immune system has been emerging as a critical component for tissue regeneration, especially when regeneration is supported upon biomaterials. The role of T cells, and their roles in the regeneration of nerve repaired with biomaterials, is still unclear. We demonstrated that when nerves are repaired with decellularized nerve scaffolds, T cells contribute to regeneration by regulating cytokines. We focused on their regulation of cytokine IL-4. Unexpectedly, T cells do not produce IL-4, but instead regulate IL-4 by recruiting eosinophils, which are major cellular sources of IL-4 within these scaffolds. Thus, our work demonstrated how IL-4 is regulated in a model biomaterial, and has implications for improving the design of biomaterials and understanding immune responses to biomaterials.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Anja Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexandra E Halevi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Dannen SD, Cornelison L, Durham P, Morley JE, Shahverdi K, Du J, Zhou H, Sudlow LC, Hunter D, Wood MD, Berezin MY, Gerasimchuk N. New in vitro highly cytotoxic platinum and palladium cyanoximates with minimal side effects in vivo. J Inorg Biochem 2020; 208:111082. [PMID: 32413634 PMCID: PMC7518941 DOI: 10.1016/j.jinorgbio.2020.111082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 11/26/2022]
Abstract
Several biologically active bivalent Pd and Pt complexes with two structurally similar cyanoxime ligands abbreviated as H(DECO): 2-oximino-2-cyano-N,N'-diethylacetamide, and H(PyrCO): 2-oximino-2-cyan-N-pyrrolidine acetamide were synthesized and characterized using spectroscopic methods, thermal analysis and X-ray crystallography. Structures revealed planar cis-geometry of studied complexes. Freshly obtained Pt(DECO)2, Pd(DECO)2, Pt(PyrCO)2 and Pd(PyrCO)2 complexes were used in for in vitro cytotoxicity assays using two different etiology human cancer cell lines HeLa and WiDr cells. Investigated compounds showed cytotoxicity levels at or above cisplatin. Pt(DECO)2 was also tested in vivo in healthy C57BL/6 mice. The complex was administered at three different dosage (0, 7.5, 15 mg/kg, i.p. once/week), over a total period of 8 weeks. No changes were observed in the animal weight in the treated mice compared to the control dextrose-treated group. The levels of erythrocytes, leukocytes, and hemoglobin were within the normal level suggesting low myelotoxicity. Negligible cardiotoxicity was observed from the histological evaluation of the hearts from the treated animals. Results from the tail nerve conduction velocity (NCV) and nerve histomorphometry suggested no impact of Pt(DECO)2 on peripheral nerves. The complex, however, induced certain hepatotoxicity and lead to the elevation of IL-6, a pro-inflammatory cytokine. Overall, Pt(DECO)2 showed minimal in vivo toxicity, thus presenting a promising candidate for future testing in animal models of cancer.
Collapse
Affiliation(s)
- Stephanie D Dannen
- Department of Chemistry, Temple Hall 431, Missouri State University, 901 S. National, Springfield, MO 65897, USA
| | - Lauren Cornelison
- Department of Biology, Missouri State University, MC/Center for Biomedical & Life Sciences, Springfield, MO 65897, USA
| | - Paul Durham
- Department of Biology, Missouri State University, MC/Center for Biomedical & Life Sciences, Springfield, MO 65897, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University, St. Louis, MO 63110, USA
| | - Kiana Shahverdi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Junwei Du
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haiying Zhou
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Hunter
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Nikolay Gerasimchuk
- Department of Chemistry, Temple Hall 431, Missouri State University, 901 S. National, Springfield, MO 65897, USA.
| |
Collapse
|
37
|
Coto Hernández I, Yang W, Mohan S, Jowett N. Label-free histomorphometry of peripheral nerve by stimulated Raman spectroscopy. Muscle Nerve 2020; 62:137-142. [PMID: 32304246 DOI: 10.1002/mus.26895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Conventional processing of nerve for histomorphometry is resource-intensive, precluding use in intraoperative assessment of nerve quality during nerve transfer procedures. Stimulated Raman scattering (SRS) microscopy is a label-free technique that enables rapid and high-resolution histology. METHODS Segments of healthy murine sciatic nerve, healthy human obturator nerve, and human cross-facial nerve autografts were imaged on a custom SRS microscope. Myelinated axon quantification was performed through segmentation using a random forest machine learning algorithm in commercial software. RESULTS High contrast, high-resolution imaging of nerve morphology was obtained with SRS imaging. Automated myelinated axon quantification from cross-sections of healthy human nerve imaged using SRS was achieved. CONCLUSIONS Herein, we demonstrate the use of a label-free technique for rapid imaging of murine and human peripheral nerve cryosections. We illustrate the potential of this technique to inform intraoperative decision-making through rapid automated quantification of myelinated axons using a machine learning algorithm.
Collapse
Affiliation(s)
- Iván Coto Hernández
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Wenlong Yang
- Center for Advanced Imaging, Harvard University, Cambridge, Massachusetts
| | - Suresh Mohan
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Nate Jowett
- Surgical Photonics and Engineering Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Design-Based stereology and binary image histomorphometry in nerve assessment. J Neurosci Methods 2020; 336:108635. [PMID: 32070676 PMCID: PMC8045463 DOI: 10.1016/j.jneumeth.2020.108635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Stereology and histomorphometry are widely used by investigators to quantify nerve characteristics in normal and pathological states, including nerve injury and regeneration. While these methods of analysis are complementary, no study to date has systematically compared both approaches in peripheral nerve. This study investigated the reliability of design-based stereology versus semi-automated binary imaging histomorphometry for assessing healthy peripheral nerve characteristics. NEW METHOD Stereological analysis was compared to histomorphometry with binary image analysis on uninjured sciatic nerves to determine nerve fiber number, nerve area, neural density, and fiber distribution. RESULTS Sciatic nerves were harvested from 6 male Lewis rats, aged 8-12 weeks for comprehensive analysis of 6 nerve specimens. From each animal, sciatic nerve specimens were fixed, stained, and sectioned for analysis by light and electron microscopy. Both histomorphometry and stereological peripheral nerve analyses were performed on all specimens by two blinded and independent investigators who quantified nerve fiber count, fiber width, density, and related distribution parameters. COMPARISON WITH EXISTING METHODS Histomorphometry and stereological analysis provided similar outcomes in nerve fiber number and total nerve area. However, the light microscopy, but not electron microscopy, stereological analysis yielded higher nerve fiber area compared to histomorphometry or manual measurement. CONCLUSION Both methods measure similar fiber number and overall nerve fiber area; however, stereology with light microscopy quantified higher fiber area. Histomorphometry optimizes throughput and comprehensive analysis but requires user thresholding.
Collapse
|
39
|
Engelmann S, Ruewe M, Geis S, Taeger CD, Kehrer M, Tamm ER, Bleys RLAW, Zeman F, Prantl L, Kehrer A. Rapid and Precise Semi-Automatic Axon Quantification in Human Peripheral Nerves. Sci Rep 2020; 10:1935. [PMID: 32029860 PMCID: PMC7005293 DOI: 10.1038/s41598-020-58917-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
We developed a time-efficient semi-automated axon quantification method using freeware in human cranial nerve sections stained with paraphenylenediamine (PPD). It was used to analyze a total of 1238 facial and masseteric nerve biopsies. The technique was validated by comparing manual and semi-automated quantification of 129 (10.4%) randomly selected biopsies. The software-based method demonstrated a sensitivity of 94% and a specificity of 87%. Semi-automatic axon counting was significantly faster (p < 0.001) than manual counting. It took 1 hour and 47 minutes for all 129 biopsies (averaging 50 sec per biopsy, 0.04 seconds per axon). The counting process is automatic and does not need to be supervised. Manual counting took 21 hours and 6 minutes in total (average 9 minutes and 49 seconds per biopsy, 0.52 seconds per axon). Our method showed a linear correlation to the manual counts (R = 0.944 Spearman rho). Attempts have been made by several research groups to automate axonal load quantification. These methods often require specific hard- and software and are therefore only accessible to a few specialized laboratories. Our semi-automated axon quantification is precise, reliable and time-sparing using publicly available software and should be useful for an effective axon quantification in various human peripheral nerves.
Collapse
Affiliation(s)
- S Engelmann
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Ruewe
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - S Geis
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - C D Taeger
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - M Kehrer
- Department of Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - E R Tamm
- Institute of Human Anatomy, University of Regensburg, Regensburg, Germany
| | - R L A W Bleys
- Department of Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F Zeman
- Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - L Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - A Kehrer
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
40
|
Jain NS, Hill EJR, Zaidman CM, Novak CB, Hunter DA, Juknis N, Ruvinskaya R, Kennedy CR, Vetter J, Mackinnon SE, Fox IK. Evaluation for Late Nerve Transfer Surgery in Spinal Cord Injury: Predicting the Degree of Lower Motor Neuron Injury. J Hand Surg Am 2020; 45:95-103. [PMID: 31866150 DOI: 10.1016/j.jhsa.2019.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 09/12/2019] [Accepted: 11/05/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE Nerve transfer surgery is used to restore upper extremity function following cervical spinal cord injury (SCI) with substantial variation in outcomes. The injury pattern in SCI is complex and can include isolated upper motor neuron (UMN) and combined UMN/lower motor neuron (LMN) dysfunction. The purpose of the study was to determine the most effective diagnostic technique for determining suitable candidates for nerve transfer surgery in SCI. METHODS Medical records were reviewed of patients who had nerve transfers to restore upper extremity function in SCI. Data collected included (1) preoperative clinical examination and electrodiagnostic testing; (2) intraoperative neuromuscular stimulation (NMS); and (3) nerve histopathology. Preoperative, intraoperative, and postoperative data were compared to identify predictors of isolated UMN versus combined UMN/LMN injury patterns. RESULTS The study sample included 22 patients with 50 nerve transfer surgeries and included patients ranging from less than 1 year to over a decade post-SCI. Normal recipient nerve conduction studies (NCS) before surgery corresponded to the intraoperative presence of recipient NMS and postoperative histopathology that showed normal nerve architecture. Conversely, abnormal recipient NCS before surgery corresponded with the absence of recipient NMS during surgery and patterns of denervation on postoperative histopathology. Normal donor preoperative manual muscle testing corresponded with the presence of donor NMS during surgery and normal nerve architecture on postoperative histopathology. An EMG of corresponding musculature did not correspond with intraoperative donor or recipient NMS or histopathological findings. CONCLUSIONS NCS better predict patterns of injury in SCI than EMG. This is important information for clinicians evaluating people for late nerve transfer surgery even years post-SCI. TYPE OF STUDY/LEVEL OF EVIDENCE Diagnostic II.
Collapse
Affiliation(s)
- Nirbhay S Jain
- Division of Plastic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Elspeth J R Hill
- Division of Plastic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Craig M Zaidman
- Department of Neurology, Washington University, St. Louis, MO
| | | | - Daniel A Hunter
- Division of Plastic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Neringa Juknis
- Department of Neurology, Washington University, St. Louis, MO
| | | | - Carie R Kennedy
- Division of Plastic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Joel Vetter
- Division of Plastic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Susan E Mackinnon
- Division of Plastic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Ida K Fox
- Division of Plastic Surgery, Washington University School of Medicine, St. Louis, MO; Plastic and Reconstructive Surgery Core, VA St. Louis Health Care System, St. Louis, MO.
| |
Collapse
|
41
|
Klingbeil EA, Cawthon C, Kirkland R, de La Serre CB. Potato-Resistant Starch Supplementation Improves Microbiota Dysbiosis, Inflammation, and Gut-Brain Signaling in High Fat-Fed Rats. Nutrients 2019; 11:E2710. [PMID: 31717368 PMCID: PMC6893629 DOI: 10.3390/nu11112710] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
(1) High-fat (HF) diet leads to gut microbiota dysbiosis which is associated with systemic inflammation. Bacterial-driven inflammation is sufficient to alter vagally mediated satiety and induce hyperphagia. Promoting bacterial fermentation improves gastrointestinal (GI) epithelial barrier function and reduces inflammation. Resistant starch escape digestion and can be fermented by bacteria in the distal gut. Therefore, we hypothesized that potato RS supplementation in HF-fed rats would lead to compositional changes in microbiota composition associated with improved inflammatory status and vagal signaling. (2) Male Wistar rats (n = 8/group) were fed a low-fat chow (LF, 13% fat), HF (45% fat), or an isocaloric HF supplemented with 12% potato RS (HFRS) diet. (3) The HFRS-fed rats consumed significantly less energy than HF animals throughout the experiment. Systemic inflammation and glucose homeostasis were improved in the HFRS compared to HF rats. Cholecystokinin-induced satiety was abolished in HF-fed rats and restored in HFRS rats. HF feeding led to a significant decrease in positive c fiber staining in the brainstem which was averted by RS supplementation. (4) The RS supplementation prevented dysbiosis and systemic inflammation. Additionally, microbiota manipulation via dietary potato RS prevented HF-diet-induced reorganization of vagal afferent fibers, loss in CCK-induced satiety, and hyperphagia.
Collapse
Affiliation(s)
| | | | | | - Claire B. de La Serre
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA (C.C.); (R.K.)
| |
Collapse
|
42
|
Sarhane KA, Tuffaha SH, Ibrahim Z, Cashman CR, Krick K, Martin R, Broyles JM, Cooney DS, Lee WPA, Mi R, Mao HQ, Höke A, Brandacher G. Glial Cell Line-Derived Neurotrophic Factor and Chondroitinase Promote Axonal Regeneration in a Chronic Denervation Animal Model. Neurotherapeutics 2019; 16:1283-1295. [PMID: 31148054 PMCID: PMC6985423 DOI: 10.1007/s13311-019-00745-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functional recovery following nerve injury declines when target re-innervation is delayed. Currently, no intervention exists to improve outcomes after prolonged denervation. We explored the neuroregenerative effects of glial cell line-derived neurotrophic factor (GDNF) and chondroitinase (CDN) in a chronic denervation animal model. A fibrin-based sustained delivery method for growth factors was optimized in vitro and in vivo, and then tested in our animal model. GDNF, CDN, and GDNF+CDN were injected into the denervated stump at the time of nerve repair. Histomorphometry and retrograde labeling were used to assess axonal regeneration. The mechanisms promoting such regeneration were explored with immunofluorescence. Five weeks after repair, the GDNF+CDN group had the highest number and maturity of axons. GDNF was noted to preferentially promote axonal maturity, whereas CDN predominantly increased the number of axons. GDNF favored motor neuron regeneration, and upregulated Ki67 in Schwann cells. CDN did not favor motor versus sensory regeneration and was noted to cleave inhibitory endoneurial proteoglycans. Early measures of nerve regeneration after delayed repair are improved by activating Schwann cells and breaking down the inhibitory proteoglycans in the distal nerve segment, suggesting a role for GDNF+CDN to be translated for human nerve repairs.
Collapse
Affiliation(s)
- Karim A Sarhane
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA
- Department of Surgery, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Sami H Tuffaha
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA
| | - Zuhaib Ibrahim
- Institute for Advanced Reconstruction, Shrewsbury, New Jersey, USA
| | - Christopher R Cashman
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kellin Krick
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell Martin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin M Broyles
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA
| | - Damon S Cooney
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA
| | - W P Andrew Lee
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ahmet Höke
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
43
|
Zellmer ER, MacEwan MR, Moran DW. Modelling the impact of altered axonal morphometry on the response of regenerative nervous tissue to electrical stimulation through macro-sieve electrodes. J Neural Eng 2019; 15:026009. [PMID: 29192607 DOI: 10.1088/1741-2552/aa9e96] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). APPROACH A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. MAIN RESULTS Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. SIGNIFICANCE Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
Collapse
Affiliation(s)
- Erik R Zellmer
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
| | | | | |
Collapse
|
44
|
Shafer B, Welle C, Vasudevan S. A rat model for assessing the long-term safety and performance of peripheral nerve electrode arrays. J Neurosci Methods 2019; 328:108437. [PMID: 31526764 DOI: 10.1016/j.jneumeth.2019.108437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/05/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND High-resolution peripheral nerve interfaces (PNIs) can provide amputees with intuitive motor control and sensory feedback. Current PNIs are limited by early device failure and suboptimal long-term stability. The present study aims to incorporate functional assessment into an in vivo test platform to assess the long-term safety and performance of PNIs for recording and stimulation. NEW METHODS Utah electrode arrays (EA) were implanted in the rat sciatic nerve along with electromyography wires in the gastrocnemius and tibialis anterior. Cranial EEG screws were implanted in the somatosensory cortex for 12 weeks. Spontaneous neural activity was recorded using the implanted EA and stimulation-induced activity was monitored throughout the experiment. The impedance of each electrode was measured, and nerve function tests were conducted throughout the EA lifetime. Post-hoc safety assessments included scanning electron microscopy (SEM) of the EA and nerve histomorphometric analysis. RESULTS EA recordings were stable, and stimulation with EA elicited somatosensory evoked potentials and muscle contractions. Motor and sensory function tests indicated minimal deficits. Histomorphometric analysis indicated changes in nerve microstructure. SEM indicated EA-tip fracture, while lead wire breakage primarily caused device failure. COMPARISON WITH EXISTING METHODS We improved our prior platform with the addition of functional assessments of sensory pathways, a robust EMG array design to increase device longevity, and quantitative analysis of nerve microstructure. CONCLUSION We present a test platform for long-term assessment of peripheral nerve interfaces for stimulation and recording. Using this platform, we demonstrate recording and stimulation with minimal impact on nerve function, while EA lead wire breakage and tip fracture could limit long-term device use.
Collapse
Affiliation(s)
- Benjamin Shafer
- U. S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, USA
| | - Cristin Welle
- University of Colorado, Anschutz Medical Campus, Departments of Neurosurgery and Bioengineering, Aurora, CO, 80045, USA
| | - Srikanth Vasudevan
- U. S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, USA.
| |
Collapse
|
45
|
Jo S, Pan D, Halevi AE, Roh J, Schellhardt L, Hunter Ra DA, Snyder-Warwick AK, Moore AM, Mackinnon SE, Wood MD. Comparing electrical stimulation and tacrolimus (FK506) to enhance treating nerve injuries. Muscle Nerve 2019; 60:629-636. [PMID: 31397919 DOI: 10.1002/mus.26659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Neuroenhancing therapies are desired because repair of nerve injuries can fail to achieve recovery. We compared two neuroenhancing therapies, electrical stimulation (ES) and systemic tacrolimus (FK506), for their capabilities to enhance regeneration in the context of a rat model. METHODS Rats were randomized to four groups: ES 0.5 mA, ES 2.0 mA, FK506, and repair alone. All groups underwent tibial nerve transection and repair, and outcomes were assessed by using twice per week walking track analysis, cold allodynia response, relative muscle mass, and nerve histology. RESULTS Electrical stimulation and FK506 groups demonstrated improved functional recovery and myelinated axon counts distal to the repair compared with repair alone. Electrical stimulation provided improvements in nerve regeneration that were not different from optimized FK506 systemic administration. DISCUSSION Providing ES after nerve repair improved regeneration and recovery in rats, with minimal differences in therapeutic efficacy to FK506, further demonstrating its clinical potential to improve management of nerve injuries.
Collapse
Affiliation(s)
- Sally Jo
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Alexandra E Halevi
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Joseph Roh
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Lauren Schellhardt
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Daniel A Hunter Ra
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Amy M Moore
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
46
|
Vasudevan S, Vo J, Shafer B, Nam AS, Vakoc BJ, Hammer DX. Toward optical coherence tomography angiography-based biomarkers to assess the safety of peripheral nerve electrostimulation. J Neural Eng 2019; 16:036024. [PMID: 30917357 PMCID: PMC6583899 DOI: 10.1088/1741-2552/ab1405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Peripheral nerves serve as a link between the central nervous system and its targets. Altering peripheral nerve activity through targeted electrical stimulation is being investigated as a therapy for modulating end organ function. To support rapid advancement in the field, novel approaches to predict and prevent nerve injury resulting from electrical stimulation must be developed to overcome the limitations of traditional histological methods. The present study aims to develop an optical imaging-based approach for real-time assessment of peripheral nerve injury associated with electrical stimulation. APPROACH We developed an optical coherence tomography (OCT) angiography system and a 3D printed stimulating nerve stabilizer (sNS) to assess the real-time microvascular and blood flow changes associated with electrical stimulation of peripheral nerves. We then compared the microvascular changes with established nerve function analysis and immunohistochemistry to correlate changes with nerve injury. MAIN RESULTS Electrical stimulation of peripheral nerves has a direct influence on vessel diameter and capillary flow. The stimulation used in this study did not alter motor function significantly, but a delayed onset of mechanical allodynia at lower thresholds was observed using a sensory function test. Immunohistochemical analysis pointed to an increased number of macrophages within nerve fascicles and axon sprouting potentially related to nerve injury. SIGNIFICANCE This study is the first to demonstrate the ability to image peripheral nerve microvasculature changes during electrical stimulation. This expands the knowledge in the field and can be used to develop potential biomarkers to predict nerve injury resulting from electrical stimulation.
Collapse
Affiliation(s)
- Srikanth Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Jesse Vo
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Benjamin Shafer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Ahhyun S Nam
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
| | - Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| |
Collapse
|
47
|
Pan D, Hunter DA, Schellhardt L, Jo S, Santosa KB, Larson EL, Fuchs AG, Snyder-Warwick AK, Mackinnon SE, Wood MD. The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration. Exp Neurol 2019; 318:216-231. [PMID: 31085199 DOI: 10.1016/j.expneurol.2019.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Repair of traumatic nerve injuries can require graft material to bridge the defect. The use of alternatives to bridge the defect, such as acellular nerve allografts (ANAs), is becoming more common and desired. Although ANAs support axon regeneration across short defects (<3 cm), axon regeneration across longer defects (>3 cm) is limited. It is unclear why alternatives, including ANAs, are functionally limited by length. After repairing Lewis rat nerve defects using short (2 cm) or long (4 cm) ANAs, we showed that long ANAs have severely reduced axon regeneration across the grafts and contain Schwann cells with a unique phenotype. But additionally, we found that long ANAs have disrupted angiogenesis and altered leukocyte infiltration compared to short ANAs as early as 2 weeks after repair. In particular, long ANAs contained fewer T cells compared to short ANAs. These outcomes were accompanied with reduced expression of select cytokines, including IFN-γ and IL-4, within long versus short ANAs. T cells within ANAs did not express elevated levels of IL-4, but expressed elevated levels of IFN-γ. We also directly assessed the contribution of T cells to regeneration across nerve grafts using athymic rats. Interestingly, T cell deficiency had minimal impact on axon regeneration across nerve defects repaired using isografts. Conversely, T cell deficiency reduced axon regeneration across nerve defects repaired using ANAs. Our data demonstrate that T cells contribute to nerve regeneration across ANAs and suggest that reduced T cells accumulation within long ANAs could contribute to limiting axon regeneration across these long ANAs.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel A Hunter
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sally Jo
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B Santosa
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ellen L Larson
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anja G Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
48
|
Imaging Peripheral Nerve Regeneration: A New Technique for 3D Visualization of Axonal Behavior. J Surg Res 2019; 242:207-213. [PMID: 31085369 DOI: 10.1016/j.jss.2019.04.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Peripheral nerve assessment has traditionally been studied through histological and immunological staining techniques in a limited cross-sectional modality, making detailed analysis difficult. A new application of serial section electron microscopy is presented to overcome these limitations. METHODS Direct nerve repairs were performed on the posterior auricular nerve of transgenic YFP-H mice. Six weeks postoperatively the nerves were imaged using confocal fluorescent microscopy then excised and embedded in resin. Resin blocks were sequentially sectioned at 100 nm, and sections were serially imaged with an electron microscope. Images were aligned and autosegmented to allow for 3D reconstruction. RESULTS Basic morphometry and axonal counts were fully automated. Using full 3D reconstructions, the relationships between the axons, the Nodes of Ranvier, and Schwann cells could be fully appreciated. Interactions of individual axons with their surrounding environment could be visualized and explored in a virtual three-dimensional space. CONCLUSIONS Serial section electron microscopy allows the detailed pathway of the regenerating axon to be visualized in a 3D virtual space in comparison to isolated individual traditional histological techniques. Fully automated histo-morphometry can now give accurate axonal counts, provide information regarding the quality of nerve regeneration, and reveal the cell-to-cell interaction at a super-resolution scale. It is possible to fully visualize and "fly-through" the nerve to help understand the behavior of a regenerating axon within its environment. This technique provides future opportunities to evaluate the effect different treatment modalities have on the neuroregenerative potential and help us understand the impact different surgical techniques have when treating nerve injuries.
Collapse
|
49
|
Hendry JM, Alvarez-Veronesi MC, Chiang C, Gordon T, Borschel GH. Neurofilament-histomorphometry comparison in the evaluation of unmyelinated axon regeneration following peripheral nerve injury: An alternative to electron microscopy. J Neurosci Methods 2019; 320:37-43. [DOI: 10.1016/j.jneumeth.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022]
|
50
|
Sarhane KA, Ibrahim Z, Martin R, Krick K, Cashman CR, Tuffaha SH, Broyles JM, Prasad N, Yao ZC, Cooney DS, Mi R, Lee WPA, Hoke A, Mao HQ, Brandacher G. Macroporous nanofiber wraps promote axonal regeneration and functional recovery in nerve repair by limiting fibrosis. Acta Biomater 2019; 88:332-345. [PMID: 30807875 DOI: 10.1016/j.actbio.2019.02.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Functional outcomes following nerve repair remain suboptimal. Scarring at the repair site is a major impediment to regeneration. A biomaterial scaffold applied around the coaptation site that decreases inflammation holds great potential in reducing scarring, enhancing axonal growth, and improving functional recovery. In this study, we evaluated the effect of a macroporous nanofiber wrap, comprised of nonwoven electrospun poly-ε-caprolactone (PCL), in improving axonal regeneration in a rat sciatic nerve cut and direct repair model. Controls consisted of conventional epineurial repair. We also evaluated our wrap against the commercially available AxoGuard wrap. At five weeks following repair, the nanofiber wrap group showed a significantly decreased intraneural macrophage invasion and collagen deposition at the repair site. This was associated with increased expression of the anti-inflammatory cytokine (IL-10), decreased expression of the pro-inflammatory cytokine (TNF-α), and a decrease in the M1:M2 macrophage phenotype ratio. These findings suggest that this nanofiber wrap, with its unique macroporosity, is modulating the inflammatory response at the repair site by polarizing macrophages towards a pro-regenerative M2 phenotype. Concomitantly, a higher number of regenerated axons was noted. At sixteen weeks, the nanofiber wrap resulted in enhanced functional recovery as demonstrated by electrophysiology, neuromuscular re-innervation, and muscle histology. When compared to the AxoGuard wrap, the nanofiber wrap showed similar inflammation at the repair site and similar nerve morphometric findings, but there was a trend towards a lower overall number of macrophages invading the wrap wall. These results demonstrate favorable outcomes of the macroporous nanofiber wrap in promoting neuroregeneration and functional recovery following nerve repair. STATEMENT OF SIGNIFICANCE: Electrospun nanofiber scaffolds, with specific fiber and pore sizes, were shown to modulate the immune response and create a regenerative environment. In this paper, we present a macroporous nanofiber wrap, made of poly-ε-caprolactone, to be applied at the coaptation site in primary nerve repair. We show that it regulates the inflammatory response at the repair site and decreases scarring/fibrosis. This results in enhanced axonal regeneration, allowing a higher number of axons to cross the suture line and reach the target muscle in a timely fashion. Functional outcomes are thus improved.
Collapse
|