1
|
Arefin TM, Börchers S, Olekanma D, Cramer SR, Sotzen MR, Zhang N, Skibicka KP. Sex-specific signatures of GLP-1 and amylin on resting state brain activity and functional connectivity in awake rats. Neuropharmacology 2025; 269:110348. [PMID: 39914619 PMCID: PMC11926989 DOI: 10.1016/j.neuropharm.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Gut-produced glucagon-like peptide-1 (GLP-1) and pancreas-made amylin robustly reduce food intake by directly or indirectly affecting brain activity. While for both peptides a direct action in the hindbrain and the hypothalamus is likely, few studies examined their impact on whole brain activity in rodents and did so evaluating male rodents under anesthesia. However, both sex and anesthesia may significantly alter the influence of feeding controlling molecules on brain activity. Therefore, we investigated the effect of GLP-1 and amylin on brain activity and functional connectivity (FC) in awake adult male and female rats using resting-state functional magnetic resonance imaging (rsfMRI). We further examined the relationship between the altered brain activity or connectivity and subsequent food intake in response to amylin or GLP-1. We observed sex divergent effects of amylin and GLP-1 on the brain activity and FC patterns. Most importantly correlation analysis between FC and feeding behavior revealed that different brain areas potentially drive reduced food intake in male and female rats. Our findings underscore the distributed and distinctly sex divergent neural network engaged by each of these anorexic peptides and suggest that different brain areas may be the primary drivers of the feeding outcome in male and female rats. Moreover, prominent activity and connectivity alterations observed in brain areas not typically associated with feeding behavior in both sexes may either indicate novel feeding centers or alternatively suggest the involvement of these substances in behaviors beyond feeding and metabolism. The latter question is of potential translational significance as analogues of both amylin and GLP-1 are clinically utilized.
Collapse
Affiliation(s)
- Tanzil M Arefin
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stina Börchers
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Doris Olekanma
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; The Neuroscience Graduate Program, Pennsylvania State University, University Park, USA
| | - Samuel R Cramer
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; The Neuroscience Graduate Program, Pennsylvania State University, University Park, USA
| | - Morgan R Sotzen
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Nanyin Zhang
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, USA
| | - Karolina P Skibicka
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Institute of Neuroscience and Physiology, University of Gothenburg, Sweden.
| |
Collapse
|
2
|
Wang X, Alkaabi F, Cornett A, Choi M, Scheven UM, Di Natale MR, Furness JB, Liu Z. Magnetic Resonance Imaging of Gastric Motility in Conscious Rats. Neurogastroenterol Motil 2024:e14982. [PMID: 39737873 DOI: 10.1111/nmo.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Gastrointestinal (GI) magnetic resonance imaging (MRI) enables simultaneous assessment of gastric peristalsis, emptying, and intestinal filling and transit. However, GI MRI in animals typically requires anesthesia, which complicates physiology and confounds interpretation and translation to humans. This study aimed to establish GI MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions. METHODS Fourteen Sprague-Dawley rats were acclimated to remain awake, still, and minimally stressed during MRI. GI MRI was performed under both awake and anesthetized conditions following voluntary consumption of a contrast-enhanced test meal. RESULTS Awake rats remained physiologically stable during MRI, giving rise to gastric emptying of 23.7% ± 1.4% at 48 min and robust peristaltic contractions propagating through the antrum at 0.72 ± 0.04 mm/s, with a relative amplitude of 40.7% ± 2.3% and a frequency of 5.1 ± 0.1 cycles per minute. Under anesthesia, gastric emptying was approximately halved, mainly due to a significant reduction in peristaltic contraction amplitude, rather than the change in propagation speed, whereas the contraction frequency remained unchanged. Additionally, the small intestine showed faster filling and stronger motility in awake rats. CONCLUSION This study demonstrates the feasibility of GI MRI in awake rats and highlights notable differences in gastric and intestinal motility between awake and anesthetized states. Our protocol provides a novel and valuable framework for preclinical studies of GI physiology and pathophysiology.
Collapse
Affiliation(s)
- Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Fatimah Alkaabi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashley Cornett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Minkyu Choi
- Division of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ulrich M Scheven
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Madeleine R Di Natale
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Division of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Wang X, Alkaabi F, Cornett A, Choi M, Scheven UM, Di Natale MR, Furness JB, Liu Z. Magnetic Resonance Imaging of Gastric Motility in Conscious Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612090. [PMID: 39314428 PMCID: PMC11419018 DOI: 10.1101/2024.09.09.612090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Introduction Gastrointestinal (GI) magnetic resonance imaging (MRI) can simultaneously capture gastric peristalsis, emptying, and intestinal filling and transit. Performing GI MRI with animals requires anesthesia, which complicates physiology and confounds interpretation and translation from animals to humans. This study aims to enable MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions. Methods We acclimated rats to remain awake, still, and minimally stressed during MRI. We scanned 14 Sprague-Dawley rats in both awake and anesthetized conditions after voluntarily consuming a contrast-enhanced test meal. Results Awake rats remained physiologically stable during MRI, showed gastric emptying of 23.7±1.4% after 48 minutes, and exhibited strong peristaltic contractions propagating through the antrum with a velocity of 0.72±0.04 mm/s, a relative amplitude of 40.7±2.3%, and a frequency of 5.1±0.1 cycles per minute. In the anesthetized condition, gastric emptying was about half of that in the awake condition, likely due to the effect of anesthesia in halving the amplitudes of peristaltic contractions rather than their frequency (not significantly changed) or velocity. In awake rats, the intestine filled more quickly and propulsive contractions were more occlusive. Conclusion We demonstrated the effective acquisition and analysis of GI MRI in awake rats. Awake rats show faster gastric emptying, stronger gastric contraction with a faster propagation speed, and more effective intestinal filling and transit, compared to anesthetized rats. Our protocol is expected to benefit future preclinical studies of GI physiology and pathophysiology.
Collapse
|
4
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
5
|
Dai T, Seewoo BJ, Hennessy LA, Bolland SJ, Rosenow T, Rodger J. Identifying reproducible resting state networks and functional connectivity alterations following chronic restraint stress in anaesthetized rats. Front Neurosci 2023; 17:1151525. [PMID: 37284657 PMCID: PMC10239969 DOI: 10.3389/fnins.2023.1151525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Background Resting-state functional MRI (rs-fMRI) in rodent models have the potential to bridge invasive experiments and observational human studies, increasing our understanding of functional alterations in the brains of patients with depression. A major limitation in current rodent rs-fMRI studies is that there has been no consensus on healthy baseline resting-state networks (RSNs) that are reproducible in rodents. Therefore, the present study aimed to construct reproducible RSNs in a large dataset of healthy rats and then evaluate functional connectivity changes within and between these RSNs following a chronic restraint stress (CRS) model within the same animals. Methods A combined MRI dataset of 109 Sprague Dawley rats at baseline and after two weeks of CRS, collected during four separate experiments conducted by our lab in 2019 and 2020, was re-analysed. The mICA and gRAICAR toolbox were first applied to detect optimal and reproducible ICA components and then a hierarchical clustering algorithm (FSLNets) was applied to construct reproducible RSNs. Ridge-regularized partial correlation (FSLNets) was used to evaluate the changes in the direct connection between and within identified networks in the same animals following CRS. Results Four large-scale networks in anesthetised rats were identified: the DMN-like, spatial attention-limbic, corpus striatum, and autonomic network, which are homologous across species. CRS decreased the anticorrelation between DMN-like and autonomic network. CRS decreased the correlation between amygdala and a functional complex (nucleus accumbens and ventral pallidum) in the right hemisphere within the corpus striatum network. However, a high individual variability in the functional connectivity before and after CRS within RSNs was observed. Conclusion The functional connectivity changes detected in rodents following CRS differ from reported functional connectivity alterations in patients with depression. A simple interpretation of this difference is that the rodent response to CRS does not reflect the complexity of depression as it is experienced by humans. Nonetheless, the high inter-subject variability of functional connectivity within networks suggests that rats demonstrate different neural phenotypes, like humans. Therefore, future efforts in classifying neural phenotypes in rodents might improve the sensitivity and translational impact of models used to address aetiology and treatment of psychiatric conditions including depression.
Collapse
Affiliation(s)
- Twain Dai
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Bhedita J. Seewoo
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Minderoo Foundation, Perth, WA, Australia
| | - Lauren A. Hennessy
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Samuel J. Bolland
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Tim Rosenow
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Gozzi A, Zerbi V. Modeling Brain Dysconnectivity in Rodents. Biol Psychiatry 2023; 93:419-429. [PMID: 36517282 DOI: 10.1016/j.biopsych.2022.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Altered or atypical functional connectivity as measured with functional magnetic resonance imaging (fMRI) is a hallmark feature of brain connectopathy in psychiatric, developmental, and neurological disorders. However, the biological underpinnings and etiopathological significance of this phenomenon remain unclear. The recent development of MRI-based techniques for mapping brain function in rodents provides a powerful platform to uncover the determinants of functional (dys)connectivity, whether they are genetic mutations, environmental risk factors, or specific cellular and circuit dysfunctions. Here, we summarize the recent contribution of rodent fMRI toward a deeper understanding of network dysconnectivity in developmental and psychiatric disorders. We highlight substantial correspondences in the spatiotemporal organization of rodent and human fMRI networks, supporting the translational relevance of this approach. We then show how this research platform might help us comprehend the importance of connectional heterogeneity in complex brain disorders and causally relate multiscale pathogenic contributors to functional dysconnectivity patterns. Finally, we explore how perturbational techniques can be used to dissect the fundamental aspects of fMRI coupling and reveal the causal contribution of neuromodulatory systems to macroscale network activity, as well as its altered dynamics in brain diseases. These examples outline how rodent functional imaging is poised to advance our understanding of the bases and determinants of human functional dysconnectivity.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| |
Collapse
|
7
|
Beloate LN, Zhang N. Connecting the dots between cell populations, whole-brain activity, and behavior. NEUROPHOTONICS 2022; 9:032208. [PMID: 35350137 PMCID: PMC8957372 DOI: 10.1117/1.nph.9.3.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Simultaneously manipulating and monitoring both microscopic and macroscopic brain activity in vivo and identifying the linkage to behavior are powerful tools in neuroscience research. These capabilities have been realized with the recent technical advances of optogenetics and its combination with fMRI, here termed "opto-fMRI." Opto-fMRI allows for targeted brain region-, cell-type-, or projection-specific manipulation and targetedCa 2 + activity measurement to be linked with global brain signaling and behavior. We cover the history, technical advances, applications, and important considerations of opto-fMRI in anesthetized and awake rodents and the future directions of the combined techniques in neuroscience and neuroimaging.
Collapse
Affiliation(s)
- Lauren N. Beloate
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
| | - Nanyin Zhang
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
- Pennsylvania State University, Huck Institutes of the Life Sciences, Pennsylvania, United States
| |
Collapse
|
8
|
Ferris CF. Applications in Awake Animal Magnetic Resonance Imaging. Front Neurosci 2022; 16:854377. [PMID: 35450017 PMCID: PMC9017993 DOI: 10.3389/fnins.2022.854377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
There are numerous publications on methods and applications for awake functional MRI across different species, e.g., voles, rabbits, cats, dogs, and rhesus macaques. Each of these species, most obviously rhesus monkey, have general or unique attributes that provide a better understanding of the human condition. However, much of the work today is done on rodents. The growing number of small bore (≤30 cm) high field systems 7T- 11.7T favor the use of small animals. To that point, this review is primarily focused on rodents and their many applications in awake function MRI. Applications include, pharmacological MRI, drugs of abuse, sensory evoked stimuli, brain disorders, pain, social behavior, and fear.
Collapse
|
9
|
Zhang Q, Turner KL, Gheres KW, Hossain MS, Drew PJ. Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. NEUROPHOTONICS 2022; 9:021905. [PMID: 35639834 PMCID: PMC8802326 DOI: 10.1117/1.nph.9.2.021905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 06/15/2023]
Abstract
Significance: Functional brain imaging in awake animal models is a popular and powerful technique that allows the investigation of neurovascular coupling (NVC) under physiological conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spontaneous fluctuations in neural and hemodynamic signals. During periods without movement, animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state changes can be several times larger than sensory-evoked responses. Given the outsized influence of facial and body motions and arousal signals in neural and hemodynamic signals, it is imperative to detect and monitor these events in experiments with un-anesthetized animals. Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-anesthetized rodents, and describe how to incorporate detailed behavioral and physiological measurements in imaging experiments. Approach: We review the effects of movements and sleep-related signals (heart rate, respiration rate, electromyography, intracranial pressure, whisking, and other body movements) on brain hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup. We summarize the measurement methods currently used in animal models for detection of those behaviors and arousal changes. We then provide a guide on how to incorporate this measurements with functional brain imaging and electrophysiology measurements. Results: We provide a how-to guide on monitoring and interpreting a variety of physiological signals and their applications to NVC experiments in awake behaving mice. Conclusion: This guide facilitates the application of neuroimaging in awake animal models and provides neuroscientists with a standard approach for monitoring behavior and other associated physiological parameters in head-fixed animals.
Collapse
Affiliation(s)
- Qingguang Zhang
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
| | - Kevin L. Turner
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Kyle W. Gheres
- The Pennsylvania State University, Graduate Program in Molecular Cellular and Integrative Biosciences, University Park, Pennsylvania, United States
| | - Md Shakhawat Hossain
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Patrick J. Drew
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Neurosurgery, University Park, Pennsylvania, United States
| |
Collapse
|
10
|
Ma Z, Zhang Q, Tu W, Zhang N. Gaining insight into the neural basis of resting-state fMRI signal. Neuroimage 2022; 250:118960. [PMID: 35121182 PMCID: PMC8935501 DOI: 10.1016/j.neuroimage.2022.118960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/01/2023] Open
Abstract
The blood oxygenation level-dependent (BOLD)-based resting-state functional magnetic resonance imaging (rsfMRI) has been widely used as a non-invasive tool to map brain-wide connectivity architecture. However, the neural basis underpinning the resting-state BOLD signal remains elusive. In this study, we combined simultaneous calcium-based fiber photometry with rsfMRI in awake animals to examine the relationship of the BOLD signal and spiking activity at the resting state. We observed robust couplings between calcium and BOLD signals in the dorsal hippocampus as well as other distributed areas in the default mode network (DMN), suggesting that the calcium measurement can reliably predict the rsfMRI signal. In addition, using the calcium signal recorded as the ground truth, we assessed the impacts of different rsfMRI data preprocessing pipelines on functional connectivity mapping. Overall, our results provide important evidence suggesting that spiking activity measured by the calcium signal plays a key role in the neural mechanism of resting-state BOLD signal.
Collapse
Affiliation(s)
- Zilu Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA
| | - Qingqing Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA
| | - Wenyu Tu
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA.
| |
Collapse
|
11
|
Im SJ, Suh JY, Shim JH, Baek HM. Deterministic Tractography Analysis of Rat Brain Using SIGMA Atlas in 9.4T MRI. Brain Sci 2021; 11:brainsci11121656. [PMID: 34942958 PMCID: PMC8699268 DOI: 10.3390/brainsci11121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022] Open
Abstract
Preclinical studies using rodents have been the choice for many neuroscience researchers due totheir close reflection of human biology. In particular, research involving rodents has utilized MRI to accurately identify brain regions and characteristics by acquiring high resolution cavity images with different contrasts non-invasively, and this has resulted in high reproducibility and throughput. In addition, tractographic analysis using diffusion tensor imaging to obtain information on the neural structure of white matter has emerged as a major methodology in the field of neuroscience due to its contribution in discovering significant correlations between altered neural connections and various neurological and psychiatric diseases. However, unlike image analysis studies with human subjects where a myriad of human image analysis programs and procedures have been thoroughly developed and validated, methods for analyzing rat image data using MRI in preclinical research settings have seen significantly less developed. Therefore, in this study, we present a deterministic tractographic analysis pipeline using the SIGMA atlas for a detailed structural segmentation and structural connectivity analysis of the rat brain’s structural connectivity. In addition, the structural connectivity analysis pipeline presented in this study was preliminarily tested on normal and stroke rat models for initial observation.
Collapse
Affiliation(s)
- Sang-Jin Im
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
| | - Ji-Yeon Suh
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
| | - Jae-Hyuk Shim
- Department of BioMedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
| | - Hyeon-Man Baek
- Department of Core Facility for Cell to In-Vivo Imaging, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.-J.I.); (J.-Y.S.)
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6678
| |
Collapse
|
12
|
Tu W, Ma Z, Zhang N. Brain network reorganization after targeted attack at a hub region. Neuroimage 2021; 237:118219. [PMID: 34052466 PMCID: PMC8289586 DOI: 10.1016/j.neuroimage.2021.118219] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023] Open
Abstract
The architecture of brain networks has been extensively studied in multiple species. However, exactly how the brain network reconfigures when a local region, particularly a hub region, stops functioning remains elusive. By combining chemogenetics and resting-state functional magnetic resonance imaging (rsfMRI) in an awake rodent model, we investigated the causal impact of acutely inactivating a hub region (i.e. the dorsal anterior cingulate cortex) on brain network properties. We found that suppressing neural activity in a hub could have a ripple effect that went beyond the hub-related connections and propagated to other neural connections across multiple brain systems. In addition, hub dysfunction affected the topological architecture of the whole-brain network in terms of the network resilience and segregation. Selectively inhibiting excitatory neurons in the hub further changed network integration. None of these changes were observed in sham rats or when a non-hub region (i.e. the primary visual cortex) was perturbed. This study has established a system that allows for mechanistically dissecting the relationship between local regions and brain network properties. Our data provide direct evidence supporting the hypothesis that acute dysfunction of a brain hub can cause large-scale network changes. These results also provide a comprehensive framework documenting the differential impact of hub versus non-hub nodes on network dynamics.
Collapse
Affiliation(s)
- Wenyu Tu
- Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zilu Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nanyin Zhang
- Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
13
|
Ionescu TM, Amend M, Hafiz R, Biswal BB, Wehrl HF, Herfert K, Pichler BJ. Elucidating the complementarity of resting-state networks derived from dynamic [ 18F]FDG and hemodynamic fluctuations using simultaneous small-animal PET/MRI. Neuroimage 2021; 236:118045. [PMID: 33848625 PMCID: PMC8339191 DOI: 10.1016/j.neuroimage.2021.118045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 12/02/2022] Open
Abstract
Functional connectivity (FC) and resting-state network (RSN) analyses using functional magnetic resonance imaging (fMRI) have evolved into a growing field of research and have provided useful biomarkers for the assessment of brain function in neurological disorders. However, the underlying mechanisms of the blood oxygen level-dependant (BOLD) signal are not fully resolved due to its inherent complexity. In contrast, [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) has been shown to provide a more direct measure of local synaptic activity and may have additional value for the readout and interpretation of brain connectivity. We performed an RSN analysis from simultaneously acquired PET/fMRI data on a single-subject level to directly compare fMRI and [18F]FDG-PET-derived networks during the resting state. Simultaneous [18F]FDG-PET/fMRI scans were performed in 30 rats. Pairwise correlation analysis, as well as independent component analysis (ICA), were used to compare the readouts of both methods. We identified three RSNs with a high degree of similarity between PET and fMRI-derived readouts: the default-mode-like network (DMN), the basal ganglia network and the cerebellar-midbrain network. Overall, [18F]FDG connectivity indicated increased integration between different, often distant, brain areas compared to the results indicated by the more segregated fMRI-derived FC. Additionally, several networks exclusive to either modality were observed using ICA. These networks included mainly bilateral cortical networks of a limited spatial extent for fMRI and more spatially widespread networks for [18F]FDG-PET, often involving several subcortical areas. This is the first study using simultaneous PET/fMRI to report RSNs subject-wise from dynamic [18F]FDG tracer delivery and BOLD fluctuations with both independent component analysis (ICA) and pairwise correlation analysis in small animals. Our findings support previous studies, which show a close link between local synaptic glucose consumption and BOLD-fMRI-derived FC. However, several brain regions were exclusively attributed to either [18F]FDG or BOLD-derived networks underlining the complementarity of this hybrid imaging approach, which may contribute to the understanding of brain functional organization and could be of interest for future clinical applications.
Collapse
Affiliation(s)
- Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mario Amend
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rakibul Hafiz
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, United States
| | - Hans F Wehrl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
14
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Tu W, Ma Z, Ma Y, Dopfel D, Zhang N. Suppressing Anterior Cingulate Cortex Modulates Default Mode Network and Behavior in Awake Rats. Cereb Cortex 2021; 31:312-323. [PMID: 32820327 PMCID: PMC7727348 DOI: 10.1093/cercor/bhaa227] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
The default mode network (DMN) is a principal brain network in the mammalian brain. Although the DMN in humans has been extensively studied with respect to network structure, function, and clinical implications, our knowledge of DMN in animals remains limited. In particular, the functional role of DMN nodes, and how DMN organization relates to DMN-relevant behavior are still elusive. Here we investigated the causal relationship of inactivating a pivotal node of DMN (i.e., dorsal anterior cingulate cortex [dACC]) on DMN function, network organization, and behavior by combining chemogenetics, resting-state functional magnetic resonance imaging (rsfMRI) and behavioral tests in awake rodents. We found that suppressing dACC activity profoundly changed the activity and connectivity of DMN, and these changes were associated with altered DMN-related behavior in animals. The chemo-rsfMRI-behavior approach opens an avenue to mechanistically dissecting the relationships between a specific node, brain network function, and behavior. Our data suggest that, like in humans, DMN in rodents is a functional network with coordinated activity that mediates behavior.
Collapse
Affiliation(s)
- Wenyu Tu
- Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zilu Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuncong Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nanyin Zhang
- Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Li YT, Chang CY, Hsu YC, Fuh JL, Kuo WJ, Yeh JNT, Lin FH. Impact of physiological noise in characterizing the functional MRI default-mode network in Alzheimer's disease. J Cereb Blood Flow Metab 2021; 41:166-181. [PMID: 32070180 PMCID: PMC7747160 DOI: 10.1177/0271678x19897442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The functional connectivity of the default-mode network (DMN) monitored by functional magnetic resonance imaging (fMRI) in Alzheimer's disease (AD) patients has been found weaker than that in healthy participants. Since breathing and heart beating can cause fluctuations in the fMRI signal, these physiological activities may affect the fMRI data differently between AD patients and healthy participants. We collected resting-state fMRI data from AD patients and age-matched healthy participants. With concurrent cardiac and respiratory recordings, we estimated both physiological responses phase-locked and non-phase-locked to heart beating and breathing. We found that the cardiac and respiratory physiological responses in AD patients were 3.00 ± 0.51 s and 3.96 ± 0.52 s later (both p < 0.0001) than those in healthy participants, respectively. After correcting the physiological noise in the resting-state fMRI data by population-specific physiological response functions, the DMN estimated by seed-correlation was more localized to the seed region. The DMN difference between AD patients and healthy controls became insignificant after suppressing physiological noise. Our results indicate the importance of controlling physiological noise in the resting-state fMRI analysis to obtain clinically related characterizations in AD.
Collapse
Affiliation(s)
- Yi-Tien Li
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Medical Imaging, Taipei Medical University - Shuang-Ho Hospital, New Taipei, Taiwan
| | - Chun-Yuan Chang
- Department of Neurology, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Yi-Cheng Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jong-Ling Fuh
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Jhy-Neng Tasso Yeh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
17
|
Sun C, Liu X, Bao C, Wei F, Gong Y, Li Y, Liu J. Advanced non-invasive MRI of neuroplasticity in ischemic stroke: Techniques and applications. Life Sci 2020; 261:118365. [PMID: 32871181 DOI: 10.1016/j.lfs.2020.118365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022]
Abstract
Ischemic stroke represents a serious medical condition which could cause survivors suffer from long-term and even lifetime disabilities. After a stroke attack, the brain would undergo varying degrees of recovery, in which the central nervous system could be reorganized spontaneously or with the help of appropriate rehabilitation. Magnetic resonance imaging (MRI) is a non-invasive technique which can provide comprehensive information on structural, functional and metabolic features of brain tissue. In the last decade, there has been an increased technical advancement in MR techniques such as voxel-based morphological analysis (VBM), diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI), arterial spin-labeled perfusion imaging (ASL), magnetic sensitivity weighted imaging (SWI), quantitative sensitivity magnetization (QSM) and magnetic resonance spectroscopy (MRS) which have been proven to be a valuable tool to study the brain tissue reorganization. Due to MRI indices of neuroplasticity related to neurological outcome could be translated to the clinic. The ultimate goal of this review is to equip readers with a fundamental understanding of advanced MR techniques and their corresponding clinical application for improving the ability to predict neuroplasticity that are most suitable for stroke management.
Collapse
Affiliation(s)
- Chao Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xuehuan Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Cuiping Bao
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Feng Wei
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yi Gong
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yiming Li
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Jun Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China.
| |
Collapse
|
18
|
Increased wiring cost during development is driven by long-range cortical, but not subcortical connections. Neuroimage 2020; 225:117463. [PMID: 33075559 PMCID: PMC7812615 DOI: 10.1016/j.neuroimage.2020.117463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
The brain undergoes a protracted, metabolically expensive maturation process from childhood to adulthood. Therefore, it is crucial to understand how network cost is distributed among different brain systems as the brain matures. To address this issue, here we examined developmental changes in wiring cost and brain network topology using resting-state functional magnetic resonance imaging (rsfMRI) data longitudinally collected in awake rats from the juvenile age to adulthood. We found that the wiring cost increased in the vast majority of cortical connections but decreased in most subcortico-subcortical connections. Importantly, the developmental increase in wiring cost was dominantly driven by long-range cortical, but not subcortical connections, which was consistent with more pronounced increase in network integration in the cortical network. These results collectively indicate that there is a non-uniform distribution of network cost as the brain matures, and network resource is dominantly consumed for the development of the cortex, but not subcortex from the juvenile age to adulthood.
Collapse
|
19
|
Becq GJPC, Habet T, Collomb N, Faucher M, Delon-Martin C, Coizet V, Achard S, Barbier EL. Functional connectivity is preserved but reorganized across several anesthetic regimes. Neuroimage 2020; 219:116945. [DOI: 10.1016/j.neuroimage.2020.116945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
|
20
|
Liu X, Zhou J, Zhang T, Chen K, Xu M, Wu L, Liu J, Huang Y, Nie B, Shen X, Ren P, Huang X. Meranzin hydrate elicits antidepressant effects and restores reward circuitry. Behav Brain Res 2020; 398:112898. [PMID: 32905810 DOI: 10.1016/j.bbr.2020.112898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023]
Abstract
The burden of depression is enormous, and numerous studies have found that major depressive disorder (MDD) induces cardiovascular disorders (CVD) and functional dyspepsia (FD). Excitingly, meranzin hydrate (MH), an absorbed bioactive compound of Aurantii Fructus Immaturus, reverses psychosocial stress-induced mood disorders, gastrointestinal dysfunction and cardiac disease. Pharmacological methods have repeatedly failed in antidepressant development over the past few decades, but repairing aberrant neural circuits might be a reasonable strategy. This article aimed to explore antidepressant-like effects and potential mechanisms of MH in a rat model of unpredictable chronic mild stress (UCMS). Utilizing blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we sought to find reliable neurocircuits or a dominant brain region revealing the multiple effects of MH. The results show that compared with UCMS rats, MH (10 mg/kg/day for 1 week i.g.)-treated rats exhibited decreased depression-like behaviour; increased expression of brain-derived neurotrophic factor (BDNF) in the hippocampal dentate gyrus; and normalized levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), and acylated ghrelin (AG). Additionally, the UCMS-induced rise in BOLD activation in the reward system was attenuated after MH treatment. A literature search shown that nucleus accumbens (NAc) and hypothalamus of the reward system might reveal multiple effects of MH on MDD-FD-CVD comorbidity. Further research will focus on the role of these two brain regions in treating depression associated with comorbidities.
Collapse
Affiliation(s)
- XiangFei Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - JiaLing Zhou
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tian Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ken Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Min Xu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Lei Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jin Liu
- Department of Traditional Chinese Medicine, Xiamen University, China.
| | - YunKe Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China; Master Degree Candidate at Department of Gynaecology and Obstetrics, Fudan University Medical School, China.
| | - BinBin Nie
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Xu Shen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, China.
| | - Ping Ren
- Department of Geriatrics, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xi Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
21
|
Ferrier J, Tiran E, Deffieux T, Tanter M, Lenkei Z. Functional imaging evidence for task-induced deactivation and disconnection of a major default mode network hub in the mouse brain. Proc Natl Acad Sci U S A 2020; 117:15270-15280. [PMID: 32541017 PMCID: PMC7334502 DOI: 10.1073/pnas.1920475117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The default mode network (DMN) has been defined in functional brain imaging studies as a set of highly connected brain areas, which are active during wakeful rest and inactivated during task-based stimulation. DMN function is characteristically impaired in major neuropsychiatric diseases, emphasizing its interest for translational research. However, in the mouse, a major preclinical rodent model, there is still no functional imaging evidence supporting DMN deactivation and deconnection during high-demanding cognitive/sensory tasks. Here we have developed functional ultrasound (fUS) imaging to properly visualize both activation levels and functional connectivity patterns, in head-restrained awake and behaving mice, and investigated their modulation during a sensory-task, whisker stimulation. We identified reproducible and highly symmetric resting-state networks, with overall connectivity strength directly proportional to the wakefulness level of the animal. We show that unilateral whisker stimulation leads to the expected activation of the contralateral barrel cortex in lightly sedated mice, while interhemispheric inhibition reduces activity in the ipsilateral barrel cortex. Whisker stimulation also leads to elevated bilateral connectivity in the hippocampus. Importantly, in addition to functional changes in these major hubs of tactile information processing, whisker stimulation during genuine awake resting-state periods leads to highly specific reductions both in activation and interhemispheric correlation within the restrosplenial cortex, a major hub of the DMN. These results validate an imaging technique for the study of activation and connectivity in the lightly sedated awake mouse brain and provide evidence supporting an evolutionary preserved function of the DMN, putatively improving translational relevance of preclinical models of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jeremy Ferrier
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université de Paris, 75014 Paris, France
- Brain Plasticity Unit, ESPCI Paris, CNRS, PSL Research University, 75005 Paris, France
| | - Elodie Tiran
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75012 Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75012 Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75012 Paris, France
| | - Zsolt Lenkei
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université de Paris, 75014 Paris, France;
- Brain Plasticity Unit, ESPCI Paris, CNRS, PSL Research University, 75005 Paris, France
| |
Collapse
|
22
|
Liu Y, Perez PD, Ma Z, Ma Z, Dopfel D, Cramer S, Tu W, Zhang N. An open database of resting-state fMRI in awake rats. Neuroimage 2020; 220:117094. [PMID: 32610063 PMCID: PMC7605641 DOI: 10.1016/j.neuroimage.2020.117094] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Rodent models are essential to translational research in health and disease. Investigation in rodent brain function and organization at the systems level using resting-state functional magnetic resonance imaging (rsfMRI) has become increasingly popular. Due to this rapid progress, publicly shared rodent rsfMRI databases can be of particular interest and importance to the scientific community, as inspired by human neuroscience and psychiatric research that are substantially facilitated by open human neuroimaging datasets. However, such databases in rats are still rare. In this paper, we share an open rsfMRI database acquired in 90 rats with a well-established awake imaging paradigm that avoids anesthesia interference. Both raw and preprocessed data are made publicly available. Procedures in data preprocessing to remove artefacts induced by the scanner, head motion and non-neural physiological noise are described in details. We also showcase inter-regional functional connectivity and functional networks obtained from the database.
Collapse
Affiliation(s)
- Yikang Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pablo D Perez
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zilu Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhiwei Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Samuel Cramer
- Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wenyu Tu
- Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
23
|
Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 2020; 10:132. [PMID: 32376819 PMCID: PMC7203017 DOI: 10.1038/s41398-020-0806-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Although the etiology and expression of psychiatric disorders are complex, mammals show biologically preserved behavioral and neurobiological responses to valent stimuli which underlie the use of rodent models of post-traumatic stress disorder (PTSD). PTSD is a complex phenotype that is difficult to model in rodents because it is diagnosed by patient interview and influenced by both environmental and genetic factors. However, given that PTSD results from traumatic experiences, rodent models can simulate stress induction and disorder development. By manipulating stress type, intensity, duration, and frequency, preclinical models reflect core PTSD phenotypes, measured through various behavioral assays. Paradigms precipitate the disorder by applying physical, social, and psychological stressors individually or in combination. This review discusses the methods used to trigger and evaluate PTSD-like phenotypes. It highlights studies employing each stress model and evaluates their translational efficacies against DSM-5, validity criteria, and criteria proposed by Yehuda and Antelman's commentary in 1993. This is intended to aid in paradigm selection by informing readers about rodent models, their benefits to the clinical community, challenges associated with the translational models, and opportunities for future work. To inform PTSD model validity and relevance to human psychopathology, we propose that models incorporate behavioral test batteries, individual differences, sex differences, strain and stock differences, early life stress effects, biomarkers, stringent success criteria for drug development, Research Domain Criteria, technological advances, and cross-species comparisons. We conclude that, despite the challenges, animal studies will be pivotal to advances in understanding PTSD and the neurobiology of stress.
Collapse
Affiliation(s)
- Alexander Verbitsky
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
24
|
Sakurai K, Shintani T, Jomura N, Matsuda T, Sumiyoshi A, Hisatsune T. Hyper BOLD Activation in Dorsal Raphe Nucleus of APP/PS1 Alzheimer's Disease Mouse during Reward-Oriented Drinking Test under Thirsty Conditions. Sci Rep 2020; 10:3915. [PMID: 32127559 PMCID: PMC7054396 DOI: 10.1038/s41598-020-60894-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, causes behavioural abnormalities such as disinhibition, impulsivity, and hyperphagia. Preclinical studies using AD model mice have investigated these phenotypes by measuring brain activity in awake, behaving mice. In this study, we monitored the behavioural alterations of impulsivity and hyperphagia in middle-aged AD model mice. As a behavioural readout, we trained the mice to accept a water-reward under thirsty conditions. To analyse brain activity, we developed a measure for licking behaviour combined with visualisation of whole brain activity using awake fMRI. In a water-reward learning task, the AD model mice showed significant hyperactivity of the dorsal raphe nucleus in thirsty conditions. In summary, we successfully visualised altered brain activity in AD model mice during reward-oriented behaviour for the first time using awake fMRI. This may help in understanding the causes of behavioural alterations in AD patients.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Teppei Shintani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Naohiro Jomura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Takeshi Matsuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Akira Sumiyoshi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
25
|
Abstract
Although often used as a nuisance in resting-state functional magnetic resonance imaging (rsfMRI), the global brain signal in humans and anesthetized animals has important neural basis. However, our knowledge of the global signal in awake rodents is sparse. To bridge this gap, we systematically analyzed rsfMRI data acquired with a conventional single-echo (SE) echo planar imaging (EPI) sequence in awake rats. The spatial pattern of rsfMRI frames during peaks of the global signal exhibited prominent co-activations in the thalamo-cortical and hippocampo-cortical networks, as well as in the basal forebrain, hinting that these neural networks might contribute to the global brain signal in awake rodents. To validate this concept, we acquired rsfMRI data using a multi-echo (ME) EPI sequence and removed non-neural components in the rsfMRI signal. Consistent co-activation patterns were obtained in extensively de-noised ME-rsfMRI data, corroborating the finding from SE-rsfMRI data. Furthermore, during rsfMRI experiments, we simultaneously recorded neural spiking activities in the hippocampus using GCaMP-based fiber photometry. The hippocampal calcium activity exhibited significant correspondence with the global rsfMRI signal. These data collectively suggest that the global rsfMRI signal contains significant neural components that involve coordinated activities in the thalamo-cortical and hippocampo-cortical networks. These results provide important insight into the neural substrate of the global brain signal in awake rodents.
Collapse
|
26
|
Paasonen J, Laakso H, Pirttimäki T, Stenroos P, Salo RA, Zhurakovskaya E, Lehto LJ, Tanila H, Garwood M, Michaeli S, Idiyatullin D, Mangia S, Gröhn O. Multi-band SWIFT enables quiet and artefact-free EEG-fMRI and awake fMRI studies in rat. Neuroimage 2019; 206:116338. [PMID: 31730923 PMCID: PMC7008094 DOI: 10.1016/j.neuroimage.2019.116338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies in animal models provide invaluable information regarding normal and abnormal brain function, especially when combined with complementary stimulation and recording techniques. The echo planar imaging (EPI) pulse sequence is the most common choice for fMRI investigations, but it has several shortcomings. EPI is one of the loudest sequences and very prone to movement and susceptibility-induced artefacts, making it suboptimal for awake imaging. Additionally, the fast gradient-switching of EPI induces disrupting currents in simultaneous electrophysiological recordings. Therefore, we investigated whether the unique features of Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) overcome these issues at a high 9.4 T magnetic field, making it a potential alternative to EPI. MB-SWIFT had 32-dB and 20-dB lower peak and average sound pressure levels, respectively, than EPI with typical fMRI parameters. Body movements had little to no effect on MB-SWIFT images or functional connectivity analyses, whereas they severely affected EPI data. The minimal gradient steps of MB-SWIFT induced significantly lower currents in simultaneous electrophysiological recordings than EPI, and there were no electrode-induced distortions in MB-SWIFT images. An independent component analysis of the awake rat functional connectivity data obtained with MB-SWIFT resulted in near whole-brain level functional parcellation, and simultaneous electrophysiological and fMRI measurements in isoflurane-anesthetized rats indicated that MB-SWIFT signal is tightly linked to neuronal resting-state activity. Therefore, we conclude that the MB-SWIFT sequence is a robust preclinical brain mapping tool that can overcome many of the drawbacks of conventional EPI fMRI at high magnetic fields.
Collapse
Affiliation(s)
- Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanne Laakso
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Tiina Pirttimäki
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Psychology, University of Jyväskyla, Jyväskyla, Finland
| | - Petteri Stenroos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Zhurakovskaya
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Lauri J Lehto
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
27
|
Liu Y, Zhang N. Propagations of spontaneous brain activity in awake rats. Neuroimage 2019; 202:116176. [PMID: 31513942 DOI: 10.1016/j.neuroimage.2019.116176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023] Open
Abstract
Slow propagations of spontaneous brain activity have been reported in multiple species. However, systematical investigation of the organization of such brain activity is still lacking. In this study, we analyzed propagations of spontaneous brain activity using a reference library of characteristic resting-state functional connectivity (RSFC) patterns in awake rodents. We found that transitions through multiple distinct RSFC patterns were reproducible not only in transition sequences but also in transition time delays. In addition, the organization of these transitions and their spatiotemporal dynamic patterns were revealed using a graphical model. We further identified prominent brain regions involved in these transitions. These results provide a comprehensive framework of brainwide propagations of spontaneous activity in awake rats. This study also offers a new tool to study the spatiotemporal dynamics of activity in the resting brain.
Collapse
Affiliation(s)
- Yikang Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
28
|
Smith JB, Watson GDR, Liang Z, Liu Y, Zhang N, Alloway KD. A Role for the Claustrum in Salience Processing? Front Neuroanat 2019; 13:64. [PMID: 31275119 PMCID: PMC6594418 DOI: 10.3389/fnana.2019.00064] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
The claustrum (CLA) is a subcortical structure, present only in mammals, whose function remains uncertain. Previously, using resting-state functional magnetic resonance imaging (rs-fMRI) in awake head-fixed rats, we found evidence that the CLA is part of the rodent homolog of the default mode network (DMN; Smith et al., 2017). This network emerged as strong functional connections between the medial prefrontal cortex (mPFC), mediodorsal (MD) thalamus, and CLA in the awake state, which was not present following administration of isoflurane anesthesia. In the present report, we review evidence indicating that the rodent CLA also has connections with structures identified in the rodent homolog of the salience network (SN), a circuit that directs attention towards the most relevant stimuli among a multitude of sensory inputs (Seeley et al., 2007; Menon and Uddin, 2010). In humans, this circuit consists of functional connections between the anterior cingulate cortex (ACC) and a region that encompasses both the CLA and insular cortex. We further go on to review the similarities and differences between the functional and anatomical connections of the CLA and insula in rodents using both rs-fMRI and neuroanatomical tracing, respectively. We analyze in detail the connectivity of the CLA with the cingulate cortex, which is a major node in the SN and has been shown to modulate attention. When considered with other recent behavior and physiology studies, the data reveal a role for the CLA in salience-guided orienting. More specifically, we hypothesize that limbic information from mPFC, MD thalamus, and the basolateral amygdala (BLA) are integrated by the CLA to guide modality-related regions of motor and sensory cortex in directing attention towards relevant (i.e., salient) sensory events.
Collapse
Affiliation(s)
- Jared B Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Zhifeng Liang
- Laboratory for Comparative Neuroimaging, Institute for Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yikang Liu
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Department of Biomedical Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States
| | - Nanyin Zhang
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Department of Biomedical Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Huck Institute of Life Sciences, Penn State University, Millennium Science Complex, University Park, PA, United States
| | - Kevin D Alloway
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Huck Institute of Life Sciences, Penn State University, Millennium Science Complex, University Park, PA, United States.,Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
29
|
Sanvanson P, Li Z, Mei L, Kounev V, Kern M, Ward BD, Medda B, Shaker R. Interplay of spinal and vagal pathways on esophageal acid-related anterior cingulate cortex functional networks in rats. Am J Physiol Gastrointest Liver Physiol 2019; 316:G615-G622. [PMID: 30817181 PMCID: PMC6580238 DOI: 10.1152/ajpgi.00228.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Esophageal acid sensory signals are transmitted by both vagal and spinal pathways to the cerebral cortex. The influence and interplay of these pathways on esophageal acid-related functional connectivity has been elusive. Our aim was to evaluate the esophageal acid exposure-related effect on the anterior cingulate cortex (ACC) functional connectivity networks using functional MRI-guided functional connectivity MRI (fcMRI) analysis. We studied six Sprague-Dawley rats for fcMRI experiments under dexmedetomidine hydrochloride anesthesia. Each rat was scanned for 6 min before and after esophageal hydrochloric acid infusion (0.1 N, 0.2 ml/min). The protocol was repeated before and after bilateral cervical vagotomy on the same rat. Seed-based fcMRI analysis was used to examine ACC networks and acid-induced network alterations. Three-factor repeated-measures ANOVA analysis among all four subgroups revealed that the interaction of acid infusion and bilateral vagotomy was mainly detected in the hypothalamus, insula, left secondary somatosensory cortex, left parietal cortex, and right thalamus in the left ACC network. In the right ACC network, this interaction effect was detected in the caudate putamen, insula, motor, primary somatosensory cortex, secondary somatosensory cortex, and thalamic regions. These regions in the ACC networks showed decreased intranetwork connectivity due to acid infusion. However, after bilateral vagotomy, intranetwork connectivity strength inversed and became stronger following postvagotomy acid infusion. Signals transmitted through both the vagal nerve and spinal nerves play a role in esophageal acid-related functional connectivity of the ACC. The vagal signals appear to dampen the acid sensation-related functional connectivity of the ACC networks. NEW & NOTEWORTHY These studies show that esophageal acid-induced brain functional connectivity changes are vagally mediated and suggest that signals transmitted through both the vagal nerve and spinal nerves play a role in esophageal acid-related functional connectivity of the anterior cingulate cortex. This paper focuses on the development of a novel rat functional MRI model fostering improved understanding of acid-related esophageal disorders.
Collapse
Affiliation(s)
- Patrick Sanvanson
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zhixin Li
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ling Mei
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Venelin Kounev
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Kern
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B. Douglas Ward
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bidyut Medda
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Reza Shaker
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
30
|
Han Z, Chen W, Chen X, Zhang K, Tong C, Zhang X, Li CT, Liang Z. Awake and behaving mouse fMRI during Go/No-Go task. Neuroimage 2019; 188:733-742. [PMID: 30611875 DOI: 10.1016/j.neuroimage.2019.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic imaging (fMRI) has been widely used to examine the functional neural networks in both the evoked and resting states. However, most fMRI studies in rodents are performed under anesthesia, which greatly limits the scope of their application, and behavioral relevance. Efforts have been made to image rodents in the awake condition, either in the resting state or in response to sensory or optogenetic stimulation. However, fMRI in awake behaving rodents has not yet been achieved. In the current study, a novel fMRI paradigm for awake and behaving mice was developed, allowing functional imaging of the mouse brain in an olfaction-based go/no-go task. High resolution functional imaging with limited motion and image distortion were achieved at 9.4T with a cryogenic coil in awake and behaving mice. Distributed whole-brain spatiotemporal patterns were revealed, with drastically different activity profiles for go versus no-go trials. Therefore, we have demonstrated the feasibility of functional imaging of an olfactory behavior in awake mice. This fMRI paradigm in awake behaving mice could lead to novel insights into neural mechanisms underlying behaviors at a whole-brain level.
Collapse
Affiliation(s)
- Zhe Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xifan Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Kaiwei Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chuanjun Tong
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xiaoxing Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
31
|
Dopfel D, Zhang N. Mapping stress networks using functional magnetic resonance imaging in awake animals. Neurobiol Stress 2018; 9:251-263. [PMID: 30450389 PMCID: PMC6234259 DOI: 10.1016/j.ynstr.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/27/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
The neurobiology of stress is studied through behavioral neuroscience, endocrinology, neuronal morphology and neurophysiology. There is a shift in focus toward progressive changes throughout stress paradigms and individual susceptibility to stress that requires methods that allow for longitudinal study design and study of individual differences in stress response. Functional magnetic resonance imaging (fMRI), with the advantages of noninvasiveness and a large field of view, can be used for functionally mapping brain-wide regions and circuits critical to the stress response, making it suitable for longitudinal studies and understanding individual variability of short-term and long-term consequences of stress exposure. In addition, fMRI can be applied to both animals and humans, which is highly valuable in translating findings across species and examining whether the physiology and neural circuits involved in the stress response are conserved in mammals. However, compared to human fMRI studies, there are a number of factors that are essential for the success of fMRI studies in animals. This review discussed the use of fMRI in animal studies of stress. It reviewed advantages, challenges and technical considerations of the animal fMRI methodology as well as recent literature of stress studies using fMRI in animals. It also highlighted the development of combining fMRI with other methods and the future potential of fMRI in animal studies of stress. We conclude that animal fMRI studies, with their flexibility, low cost and short time frame compared to human studies, are crucial to advancing our understanding of the neurobiology of stress.
Collapse
Affiliation(s)
- David Dopfel
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
32
|
Stenroos P, Paasonen J, Salo RA, Jokivarsi K, Shatillo A, Tanila H, Gröhn O. Awake Rat Brain Functional Magnetic Resonance Imaging Using Standard Radio Frequency Coils and a 3D Printed Restraint Kit. Front Neurosci 2018; 12:548. [PMID: 30177870 PMCID: PMC6109636 DOI: 10.3389/fnins.2018.00548] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful noninvasive tool for studying spontaneous resting state functional connectivity (RSFC) in laboratory animals. Brain function can be significantly affected by generally used anesthetics, however, rendering the need for awake imaging. Only a few different awake animal habituation protocols have been presented, and there is a critical need for practical and improved low-stress techniques. Here we demonstrate a novel restraint approach for awake rat RSFC studies. Our custom-made 3D printed restraint kit is compatible with a standard Bruker Biospin MRI rat bed, rat brain receiver coil, and volume transmitter coil. We also implemented a progressive habituation protocol aiming to minimize the stress experienced by the rats, and compared RSFC between awake, lightly sedated, and isoflurane-anesthetized rats. Our results demonstrated that the 3D printed restraint kit was suitable for RSFC studies of awake rats. During the short 4-day habituation period, the plasma corticosterone concentration, movement, and heart rate, which were measured as stress indicators, decreased significantly, indicating adaptation to the restraint protocol. Additionally, 10 days after the awake MRI session, rats exhibited no signs of depression or anxiety based on open-field and sucrose preference behavioral tests. The RSFC data revealed significant changes in the thalamo-cortical and cortico-cortical networks between the awake, lightly sedated, and anesthetized groups, emphasizing the need for awake imaging. The present work demonstrates the feasibility of our custom-made 3D printed restraint kit. Using this kit, we found that isoflurane markedly affected brain connectivity compared with that in awake rats, and that the effect was less pronounced, but still significant, when light isoflurane sedation was used instead.
Collapse
Affiliation(s)
- Petteri Stenroos
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Paasonen
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Jokivarsi
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Artem Shatillo
- Charles River Discovery Research Services Finland Oy, Kuopio, Finland
| | - Heikki Tanila
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- Kuopio Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
33
|
Arefin TM, Mechling AE, Meirsman AC, Bienert T, Hübner NS, Lee HL, Ben Hamida S, Ehrlich A, Roquet D, Hennig J, von Elverfeldt D, Kieffer BL, Harsan LA. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice. Brain Connect 2018; 7:526-540. [PMID: 28882062 DOI: 10.1089/brain.2017.0486] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88-/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.
Collapse
Affiliation(s)
- Tanzil Mahmud Arefin
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany .,2 Faculty of Biology, University of Freiburg , Freiburg, Germany .,3 Bernstein Center Freiburg, University of Freiburg , Freiburg, Germany .,4 Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine , New York, New York
| | - Anna E Mechling
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany .,2 Faculty of Biology, University of Freiburg , Freiburg, Germany
| | - Aura Carole Meirsman
- 5 Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg , Illkirch-Graffenstaden, France .,6 Neuroscience Paris Seine, Institut de Biologie Paris Seine , CNRS UMR 8246/INSERM U1130/Université Pierre et Marie Currie, Paris, France
| | - Thomas Bienert
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Neele Saskia Hübner
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany .,2 Faculty of Biology, University of Freiburg , Freiburg, Germany
| | - Hsu-Lei Lee
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Sami Ben Hamida
- 5 Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg , Illkirch-Graffenstaden, France .,7 Douglas Mental Health Institute, Department of Psychiatry, McGill University , Montreal, Quebec, Canada
| | - Aliza Ehrlich
- 5 Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg , Illkirch-Graffenstaden, France .,7 Douglas Mental Health Institute, Department of Psychiatry, McGill University , Montreal, Quebec, Canada
| | - Dan Roquet
- 8 Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, University of Strasbourg-CNRS , Strasbourg, France
| | - Jürgen Hennig
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Dominik von Elverfeldt
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Brigitte Lina Kieffer
- 5 Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg , Illkirch-Graffenstaden, France .,7 Douglas Mental Health Institute, Department of Psychiatry, McGill University , Montreal, Quebec, Canada
| | - Laura-Adela Harsan
- 1 Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg, Germany .,8 Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, University of Strasbourg-CNRS , Strasbourg, France .,9 Department of Biophysics and Nuclear Medicine, Faculty of Medicine, University Hospital Strasbourg , Strasbourg, France
| |
Collapse
|
34
|
Ma Z, Ma Y, Zhang N. Development of brain-wide connectivity architecture in awake rats. Neuroimage 2018; 176:380-389. [PMID: 29738909 DOI: 10.1016/j.neuroimage.2018.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy.
Collapse
Affiliation(s)
- Zilu Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuncong Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
35
|
Nephew BC, Febo M, Huang W, Colon-Perez LM, Payne L, Poirier GL, Greene O, King JA. Early life social stress and resting state functional connectivity in postpartum rat anterior cingulate circuits. J Affect Disord 2018; 229:213-223. [PMID: 29324369 PMCID: PMC5807174 DOI: 10.1016/j.jad.2017.12.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/22/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Continued development and refinement of resting state functional connectivity (RSFC) fMRI techniques in both animal and clinical studies has enhanced our comprehension of the adverse effects of stress on psychiatric health. The objective of the current study was to assess both maternal behavior and resting state functional connectivity (RSFC) changes in these animals when they were dams caring for their own young. It was hypothesized that ECSS exposed dams would express depressed maternal care and exhibit similar (same networks), yet different specific changes in RSFC (different individual nuclei) than reported when they were adult females. METHODS We have developed an ethologically relevant transgenerational model of the role of chronic social stress (CSS) in the etiology of postpartum depression and anxiety. Initial fMRI investigation of the CSS model indicates that early life exposure to CSS (ECSS) induces long term changes in functional connectivity in adult nulliparous female F1 offspring. RESULTS ECSS in F1 dams resulted in depressed maternal care specifically during early lactation, consistent with previous CSS studies, and induced changes in functional connectivity in regions associated with sensory processing, maternal and emotional responsiveness, memory, and the reward pathway, with robust changes in anterior cingulate circuits. LIMITATIONS The sample sizes for the fMRI groups were low, limiting statistical power. CONCLUSION This behavioral and functional neuroanatomical foundation can now be used to enhance our understanding of the neural etiology of early life stress associated disorders and test preventative measures and treatments for stress related disorders.
Collapse
Affiliation(s)
- Benjamin C Nephew
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, 200 Westborough Road, North Grafton, MA 01536, USA.
| | - Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Wei Huang
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Luis M Colon-Perez
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Laurellee Payne
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Guillaume L Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Owen Greene
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, 200 Westborough Road, North Grafton, MA 01536, USA
| | - Jean A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
36
|
Abstract
Spontaneous brain activity, typically investigated using resting-state fMRI (rsfMRI), provides a measure of inter-areal resting-state functional connectivity (RSFC). Although it has been established that RSFC is non-stationary, previous dynamic rsfMRI studies mainly focused on revealing the spatial characteristics of dynamic RSFC patterns, but the temporal relationship between these RSFC patterns remains elusive. Here we investigated the temporal organization of characteristic RSFC patterns in awake rats and humans. We found that transitions between RSFC patterns were not random but followed specific sequential orders. The organization of RSFC pattern transitions was further analyzed using graph theory, and pivotal RSFC patterns in transitions were identified. This study has demonstrated that spontaneous brain activity is not only nonrandom spatially, but also nonrandom temporally, and this feature is well conserved between rodents and humans. These results offer new insights into understanding the spatiotemporal dynamics of spontaneous activity in the mammalian brain.
Collapse
Affiliation(s)
- Zhiwei Ma
- Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, State College, United States
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, State College, United States
| |
Collapse
|
37
|
Lu KH, Cao J, Oleson ST, Powley TL, Liu Z. Contrast-Enhanced Magnetic Resonance Imaging of Gastric Emptying and Motility in Rats. IEEE Trans Biomed Eng 2018; 64:2546-2554. [PMID: 28796602 DOI: 10.1109/tbme.2017.2737559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.
Collapse
Affiliation(s)
- Kun-Han Lu
- School of Electrical and Computer Engineering and Purdue Institute for Integrative NeurosciencePurdue University
| | - Jiayue Cao
- Weldon School of Biomedical Engineering and Purdue Institute for Integrative NeurosciencePurdue University
| | - Steven Thomas Oleson
- Weldon School of Biomedical Engineering and Purdue Institute for Integrative NeurosciencePurdue University
| | - Terry L Powley
- Department of Psychological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Zhongming Liu
- Weldon School of Biomedical Engineering, School of Electrical and Computer Engineering, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
38
|
Casimo K, Levinson LH, Zanos S, Gkogkidis CA, Ball T, Fetz E, Weaver KE, Ojemann JG. An interspecies comparative study of invasive electrophysiological functional connectivity. Brain Behav 2017; 7:e00863. [PMID: 29299382 PMCID: PMC5745242 DOI: 10.1002/brb3.863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Resting-state connectivity patterns have been observed in humans and other mammal species, and can be recorded using a variety of different technologies. Functional connectivity has been previously compared between species using resting-state fMRI, but not in electrophysiological studies. METHODS We compared connectivity with implanted electrodes in humans (electrocorticography) to macaques and sheep (microelectrocorticography), which are capable of recording neural data at high frequencies with spatial precision. We specifically examined synchrony, implicated in functional integration between regions. RESULTS We found that connectivity strength was overwhelmingly similar in humans and monkeys for pairs of two different brain regions (prefrontal, motor, premotor, parietal), but differed more often within single brain regions. The two connectivity measures, correlation and phase locking value, were similar in most comparisons. Connectivity strength agreed more often between the species at higher frequencies. Where the species differed, monkey synchrony was stronger than human in all but one case. In contrast, human and sheep connectivity within somatosensory cortex diverged in almost all frequencies, with human connectivity stronger than sheep. DISCUSSION Our findings imply greater heterogeneity within regions in humans than in monkeys, but comparable functional interactions between regions in the two species. This suggests that monkeys may be effectively used to probe resting-state connectivity in humans, and that such findings can then be validated in humans. Although the discrepancy between humans and sheep is larger, we suggest that findings from sheep in highly invasive studies may be used to provide guidance for studies in other species.
Collapse
Affiliation(s)
- Kaitlyn Casimo
- Graduate Program in Neuroscience University of Washington Seattle WA USA.,Center for Sensorimotor Neural Engineering University of Washington Seattle WA USA
| | | | - Stavros Zanos
- Center for Sensorimotor Neural Engineering University of Washington Seattle WA USA.,Department of Physiology and Biophysics University of Washington Seattle WA USA.,Washington National Primate Research Center University of Washington Seattle WA USA.,Feinstein Institute for Medical Research New York City NY USA
| | - C Alexis Gkogkidis
- Translational Neurotechnology Laboratory Department of Neurosurgery Faculty of Medicine Medical Center - University of Freiburg Freiburg Germany.,Laboratory for Biomedical Microtechnology Department of Microsystems Engineering Faculty of Engineering University of Freiburg Freiburg Germany
| | - Tonio Ball
- Translational Neurotechnology Laboratory Department of Neurosurgery Faculty of Medicine Medical Center - University of Freiburg Freiburg Germany.,Laboratory for Biomedical Microtechnology Department of Microsystems Engineering Faculty of Engineering University of Freiburg Freiburg Germany
| | - Eberhard Fetz
- Graduate Program in Neuroscience University of Washington Seattle WA USA.,Center for Sensorimotor Neural Engineering University of Washington Seattle WA USA.,Department of Physiology and Biophysics University of Washington Seattle WA USA.,Washington National Primate Research Center University of Washington Seattle WA USA
| | - Kurt E Weaver
- Graduate Program in Neuroscience University of Washington Seattle WA USA.,Department of Radiology University of Washington Seattle WA USA.,Integrated Brain Imaging Center University of Washington Seattle WA USA
| | - Jeffrey G Ojemann
- Graduate Program in Neuroscience University of Washington Seattle WA USA.,Center for Sensorimotor Neural Engineering University of Washington Seattle WA USA.,Department of Neurological Surgery University of Washington Seattle WA USA.,Department of Neurological Surgery Seattle Children's Hospital Seattle WA USA
| |
Collapse
|
39
|
Pérez PD, Ma Z, Hamilton C, Sánchez C, Mørk A, Pehrson AL, Bundgaard C, Zhang N. Acute effects of vortioxetine and duloxetine on resting-state functional connectivity in the awake rat. Neuropharmacology 2017; 128:379-387. [PMID: 29104073 DOI: 10.1016/j.neuropharm.2017.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022]
Abstract
The antidepressant vortioxetine exerts its effects via modulation of several serotonin (5-HT) receptors and inhibition of the 5-HT transporter (SERT). Additionally, vortioxetine has beneficial effects on aspects of cognitive dysfunction in depressed patients. However, a global examination of the drug effect on brain network connectivity is still missing. Here we compared the effects of vortioxetine and a serotonin norepinephrine reuptake inhibitor, duloxetine, on resting-state functional connectivity (RSFC) across the whole brain in awake rats using a combination of pharmacological and awake animal resting-state functional magnetic resonance imaging (rsfMRI) techniques. Our data showed that vortioxetine and duloxetine affected different inter-areal connections with limited overlap, indicating that in addition to different primary target profiles, these two antidepressants have distinct mechanisms of action at the systems level. Further, our data suggest that vortioxetine can affect specific brain areas with distinct 5-HT receptor expression profiles. Taken together, this study demonstrates that the awake animal fMRI approach provides a powerful tool to elucidate the effects of drugs on the brain with high spatial specificity and a global field of view. This capability is valuable to understand how different drugs affect the systems-level brain function, and provides important guidance to dissect specific brain regions and connections for further detailed mechanistic studies. This study also highlights the translational opportunity of the awake animal fMRI approach between preclinical results and human studies.
Collapse
Affiliation(s)
- Pablo D Pérez
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Zhiwei Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Christina Hamilton
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Arne Mørk
- H. Lundbeck A/S, Copenhagen, Denmark
| | | | | | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
40
|
Casimo K, Weaver KE, Wander J, Ojemann JG. BCI Use and Its Relation to Adaptation in Cortical Networks. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1697-1704. [PMID: 28320670 PMCID: PMC5685806 DOI: 10.1109/tnsre.2017.2681963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Brain-computer interfaces (BCIs) carry great potential in the treatment of motor impairments. As a new motor output, BCIs interface with the native motor system, but acquisition of BCI proficiency requires a degree of learning to integrate this new function. In this review, we discuss how BCI designs often take advantage of the brain's motor system infrastructure as sources of command signals. We highlight a growing body of literature examining how this approach leads to changes in activity across cortex, including beyond motor regions, as a result of learning the new skill of BCI control. We discuss the previous research identifying patterns of neural activity associated with BCI skill acquisition and use that closely resembles those associated with learning traditional native motor tasks. We then discuss recent work in animals probing changes in connectivity of the BCI control site, which were linked to BCI skill acquisition, and use this as a foundation for our original work in humans. We present our novel work showing changes in resting state connectivity across cortex following the BCI learning process. We find substantial, heterogeneous changes in connectivity across regions and frequencies, including interactions that do not involve the BCI control site. We conclude from our review and original work that BCI skill acquisition may potentially lead to significant changes in evoked and resting state connectivity across multiple cortical regions. We recommend that future studies of BCIs look beyond motor regions to fully describe the cortical networks involved and long-term adaptations resulting from BCI skill acquisition.
Collapse
|
41
|
Poirier GL, Huang W, Tam K, DiFranza JR, King JA. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder. Nicotine Tob Res 2017; 19:1016-1023. [PMID: 28444321 DOI: 10.1093/ntr/ntx088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/18/2017] [Indexed: 11/14/2022]
Abstract
Introduction Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Methods Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Results Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. Conclusions In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Implications Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD.
Collapse
Affiliation(s)
- Guillaume L Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Wei Huang
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Kelly Tam
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Joseph R DiFranza
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Family Medicine and Community Health, University of Massachusetts Medical School, Worcester, MA
| | - Jean A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Radiology, University of Massachusetts Medical School, Worcester, MA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
42
|
Global reduction of information exchange during anesthetic-induced unconsciousness. Brain Struct Funct 2017; 222:3205-3216. [PMID: 28289883 DOI: 10.1007/s00429-017-1396-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
During anesthetic-induced unconsciousness (AIU), the brain undergoes a dramatic change in its capacity to exchange information between regions. However, the spatial distribution of information exchange loss/gain across the entire brain remains elusive. In the present study, we acquired and analyzed resting-state functional magnetic resonance imaging (rsfMRI) data in rats during wakefulness and graded levels of consciousness induced by incrementally increasing the concentration of isoflurane. We found that, regardless of spatial scale, the functional connectivity (FC) change (i.e., ∆FC) was proportionally dependent on the FC strength at the awake state across all connections. This dependency became stronger at higher doses of isoflurane. In addition, the relative FC change at each anesthetized condition (i.e., ∆FC normalized to the corresponding FC strength at the awake state) was exclusively negative across the whole brain, indicating a global loss of meaningful information exchange between brain regions during AIU. To further support this notion, we showed that during unconsciousness, the entropy of rsfMRI signal increased to a value comparable to random noise while the mutual information decreased appreciably. Importantly, consistent results were obtained when unconsciousness was induced by dexmedetomidine, an anesthetic agent with a distinct molecular action than isoflurane. This result indicates that the observed global reduction in information exchange may be agent invariant. Taken together, these findings provide compelling neuroimaging evidence suggesting that the brain undergoes a widespread disruption in the exchange of meaningful information during AIU and that this phenomenon may represent a common system-level neural mechanism of AIU.
Collapse
|
43
|
Gessler DJ, Li D, Xu H, Su Q, Sanmiguel J, Tuncer S, Moore C, King J, Matalon R, Gao G. Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight 2017; 2:e90807. [PMID: 28194442 PMCID: PMC5291725 DOI: 10.1172/jci.insight.90807] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023] Open
Abstract
Canavan disease (CD) is a debilitating and lethal leukodystrophy caused by mutations in the aspartoacylase (ASPA) gene and the resulting defect in N-acetylaspartate (NAA) metabolism in the CNS and peripheral tissues. Recombinant adeno-associated virus (rAAV) has the ability to cross the blood-brain barrier and widely transduce the CNS. We developed a rAAV-based and optimized gene replacement therapy, which achieves early, complete, and sustained rescue of the lethal disease phenotype in CD mice. Our treatment results in a super-mouse phenotype, increasing motor performance of treated CD mice beyond that of WT control mice. We demonstrate that this rescue is oligodendrocyte independent, and that gene correction in astrocytes is sufficient, suggesting that the establishment of an astrocyte-based alternative metabolic sink for NAA is a key mechanism for efficacious disease rescue and the super-mouse phenotype. Importantly, the use of clinically translatable high-field imaging tools enables the noninvasive monitoring and prediction of therapeutic outcomes for CD and might enable further investigation of NAA-related cognitive function.
Collapse
Affiliation(s)
- Dominic J. Gessler
- Department of Microbiology and Physiological Systems
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- University Hospital Heidelberg, Centre for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine
- Ruprecht-Karls University, Medical School, Heidelberg, Germany
| | - Danning Li
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Hongxia Xu
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- University of Science and Technology of Kunming, China
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Julio Sanmiguel
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | | | - Constance Moore
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jean King
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Guangping Gao
- Department of Microbiology and Physiological Systems
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Keilholz SD, Pan WJ, Billings J, Nezafati M, Shakil S. Noise and non-neuronal contributions to the BOLD signal: applications to and insights from animal studies. Neuroimage 2016; 154:267-281. [PMID: 28017922 DOI: 10.1016/j.neuroimage.2016.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/21/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023] Open
Abstract
The BOLD signal reflects hemodynamic events within the brain, which in turn are driven by metabolic changes and neural activity. However, the link between BOLD changes and neural activity is indirect and can be influenced by a number of non-neuronal processes. Motion and physiological cycles have long been known to affect the BOLD signal and are present in both humans and animal models. Differences in physiological baseline can also contribute to intra- and inter-subject variability. The use of anesthesia, common in animal studies, alters neural activity, vascular tone, and neurovascular coupling. Most intriguing, perhaps, are the contributions from other processes that do not appear to be neural in origin but which may provide information about other aspects of neurophysiology. This review discusses different types of noise and non-neuronal contributors to the BOLD signal, sources of variability for animal studies, and insights to be gained from animal models.
Collapse
Affiliation(s)
- Shella D Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States; Neuroscience Program, Emory University, Atlanta, GA, United States.
| | - Wen-Ju Pan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States
| | - Jacob Billings
- Neuroscience Program, Emory University, Atlanta, GA, United States
| | - Maysam Nezafati
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States
| | - Sadia Shakil
- Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
45
|
Ma Y, Hamilton C, Zhang N. Dynamic Connectivity Patterns in Conscious and Unconscious Brain. Brain Connect 2016; 7:1-12. [PMID: 27846731 DOI: 10.1089/brain.2016.0464] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain functional connectivity undergoes dynamic changes from the awake to unconscious states. However, how the dynamics of functional connectivity patterns are linked to consciousness at the behavioral level remains elusive. In this study, we acquired resting-state functional magnetic resonance imaging data during wakefulness and graded levels of consciousness in rats. Data were analyzed using a dynamic approach combining the sliding window method and k-means clustering. Our results demonstrate that whole-brain networks contained several quasi-stable patterns that dynamically recurred from the awake state into anesthetized states. Remarkably, two brain connectivity states with distinct spatial similarity to the structure of anatomical connectivity were strongly biased toward high and low consciousness levels, respectively. These results provide compelling neuroimaging evidence linking the dynamics of whole-brain functional connectivity patterns and states of consciousness at the behavioral level.
Collapse
Affiliation(s)
- Yuncong Ma
- 1 Department of Biomedical Engineering, Pennsylvania State University, University Park , Pennsylvania
| | - Christina Hamilton
- 2 The Huck Institutes of Life Sciences, Pennsylvania State University, University Park , Pennsylvania
| | - Nanyin Zhang
- 1 Department of Biomedical Engineering, Pennsylvania State University, University Park , Pennsylvania.,2 The Huck Institutes of Life Sciences, Pennsylvania State University, University Park , Pennsylvania
| |
Collapse
|
46
|
Gao YR, Ma Y, Zhang Q, Winder AT, Liang Z, Antinori L, Drew PJ, Zhang N. Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. Neuroimage 2016; 153:382-398. [PMID: 27908788 PMCID: PMC5526447 DOI: 10.1016/j.neuroimage.2016.11.069] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 01/08/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has allowed the noninvasive study of task-based and resting-state brain dynamics in humans by inferring neural activity from blood-oxygenation-level dependent (BOLD) signal changes. An accurate interpretation of the hemodynamic changes that underlie fMRI signals depends on the understanding of the quantitative relationship between changes in neural activity and changes in cerebral blood flow, oxygenation and volume. While there has been extensive study of neurovascular coupling in anesthetized animal models, anesthesia causes large disruptions of brain metabolism, neural responsiveness and cardiovascular function. Here, we review work showing that neurovascular coupling and brain circuit function in the awake animal are profoundly different from those in the anesthetized state. We argue that the time is right to study neurovascular coupling and brain circuit function in the awake animal to bridge the physiological mechanisms that underlie animal and human neuroimaging signals, and to interpret them in light of underlying neural mechanisms. Lastly, we discuss recent experimental innovations that have enabled the study of neurovascular coupling and brain-wide circuit function in un-anesthetized and behaving animal models.
Collapse
Affiliation(s)
- Yu-Rong Gao
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Yuncong Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Aaron T Winder
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Zhifeng Liang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Lilith Antinori
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Patrick J Drew
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States.
| | - Nanyin Zhang
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States.
| |
Collapse
|
47
|
Bajic D, Craig MM, Borsook D, Becerra L. Probing Intrinsic Resting-State Networks in the Infant Rat Brain. Front Behav Neurosci 2016; 10:192. [PMID: 27803653 PMCID: PMC5067436 DOI: 10.3389/fnbeh.2016.00192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease.
Collapse
Affiliation(s)
- Dusica Bajic
- Center for Pain and the Brain, Boston Children's HospitalBoston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA
| | - Michael M Craig
- Center for Pain and the Brain, Boston Children's HospitalBoston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's HospitalBoston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA
| | - Lino Becerra
- Center for Pain and the Brain, Boston Children's HospitalBoston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's HospitalBoston, MA, USA; Department of Anaesthesia, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
48
|
Awake whole-brain functional connectivity alterations in the adolescent spontaneously hypertensive rat feature visual streams and striatal networks. Brain Struct Funct 2016; 222:1673-1683. [DOI: 10.1007/s00429-016-1301-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 09/01/2016] [Indexed: 01/08/2023]
|
49
|
Nephew BC, Huang W, Poirier GL, Payne L, King JA. Altered neural connectivity in adult female rats exposed to early life social stress. Behav Brain Res 2016; 316:225-233. [PMID: 27594665 DOI: 10.1016/j.bbr.2016.08.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 01/21/2023]
Abstract
The use of a variety of neuroanatomical techniques has led to a greater understanding of the adverse effects of stress on psychiatric health. One recent advance that has been particularly valuable is the development of resting state functional connectivity (RSFC) in clinical studies. The current study investigates changes in RSFC in F1 adult female rats exposed to the early life chronic social stress (ECSS) of the daily introduction of a novel male intruder to the cage of their F0 mothers while the F1 pups are in the cage. This ECSS for the F1 animals consists of depressed maternal care from their F0 mothers and exposure to conflict between their F0 mothers and intruder males. Analyses of the functional connectivity data in ECSS exposed adult females versus control females reveal broad changes in the limbic and reward systems, the salience and introspective socioaffective networks, and several additional stress and social behavior associated nuclei. Substantial changes in connectivity were found in the prefrontal cortex, nucleus accumbens, hippocampus, and somatosensory cortex. The current rodent RSFC data support the hypothesis that the exposure to early life social stress has long term effects on neural connectivity in numerous social behavior, stress, and depression relevant brain nuclei. Future conscious rodent RSFC studies can build on the wealth of data generated from previous neuroanatomical studies of early life stress and enhance translational connectivity between animal and human fMRI studies in the development of novel preventative measures and treatments.
Collapse
Affiliation(s)
- Benjamin C Nephew
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, Peabody Pavilion, North Grafton, MA, 01536, United States.
| | - Wei Huang
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, United States
| | - Guillaume L Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, United States
| | - Laurellee Payne
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, United States
| | - Jean A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, United States
| |
Collapse
|
50
|
Low LA, Bauer LC, Pitcher MH, Bushnell MC. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses. Pain 2016; 157:1761-1772. [PMID: 27058679 PMCID: PMC4949008 DOI: 10.1097/j.pain.0000000000000579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 01/13/2023]
Abstract
With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the "nociceptive" central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli.
Collapse
Affiliation(s)
- Lucie A. Low
- Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lucy C. Bauer
- Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Mark H. Pitcher
- Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - M. Catherine Bushnell
- Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|