1
|
Wang H, Xu X, Yang Z, Zhang T. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Cogn Neurodyn 2025; 19:2. [PMID: 39749102 PMCID: PMC11688264 DOI: 10.1007/s11571-024-10185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Adolescent brain development is characterized by significant anatomical and physiological alterations, but little is known whether and how these alterations impact the neural network. Here we investigated the development of functional networks by measuring synaptic plasticity and neural synchrony of local filed potentials (LFPs), and further explored the underlying mechanisms. LFPs in the hippocampus were recorded in young (21 ~ 25 days), adolescent (1.5 months) and adult (3 months) rats. Long term potentiation (LTP) and neural synchrony were analyzed. The results showed that the LTP was the lowest in adolescent rats. During development, the theta coupling strength was increased progressively but there was no significant change of gamma coupling between young rats and adolescent rats. The density of dendrite spines was decreased progressively during development. The lowest levels of NR2A, NR2B and PSD95 were detected in adolescent rats. Importantly, it was found that the expression levels of autophagy markers were the highest during adolescent compared to that in other developmental stages. Moreover, there were more co-localization of autophagosome and PSD95 in adolescent rats. It suggests that autophagy is possibly involved in synaptic elimination during adolescence, and further impacts synaptic plasticity and neural synchrony.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| | - Xiaxia Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| | - Zhuo Yang
- College of Medicine Science, Nankai University, Tianjin, 300071 PR China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| |
Collapse
|
2
|
Zhou F, Tang Q, Yan X, Ma C, Zhang Y, Zhang J, Li Q, Wang L, Hu J, Cai X, Li J, Zhu Y, Fan C. Near-Freezing-Temperature Golgi Neuronal Staining for X-ray Imaging of Human Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e04468. [PMID: 40434052 DOI: 10.1002/advs.202504468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/18/2025] [Indexed: 05/29/2025]
Abstract
Achieving detailed neuronal structural information in large-volume brain tissue has been a longstanding challenge in human brain imaging. A key obstacle arises from the trade-off between staining efficiency and tissue autolysis. Traditional Golgi staining, typically conducted at room temperature or 37 °C to optimize staining efficiency, leads to rapid autolysis of brain tissue, resulting in the loss of fine structural details. Here, a near-freezing temperature (NFT) staining strategy in post-mortem frozen (PMF) human brain samples are presented, using a mercury chloride-based method under ice-water bath conditions. In contrast to the 37 °C Golgi staining, this NFT-based method significantly reduces tissue autolysis, preserving fine neuronal structures. Notably, neuronal counts in the same field of view increased by 5.5-fold, and dendritic spine density increases by 22-fold. Using this approach, uniform staining of millimeter-thick is achieved, centimeter-scale human brain slices and integrated it with synchrotron-based X-ray microscopy to perform micrometer resolution 3D reconstructions of the cerebellum and frontal lobe. This novel technique offers a powerful tool for the fine-structural imaging of large-volume brain tissue, providing new insights into the intricate organization of neural networks.
Collapse
Affiliation(s)
- Feng Zhou
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaowei Tang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| | - Xin Yan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Ma
- National Human Brain Bank for Development and Function, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yu Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Qian Li
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jun Hu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaoqing Cai
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Ying Zhu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Chunhai Fan
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Hui DJ, Yuan MX, Qin XY, Zhang AQ, Wang CW, Wang Y, Zhou JN, Chen P, Shan QH. A Rapid Heat-Enhanced Golgi-Cox Staining Method for Detailed Neuroanatomical Analysis Coupled With Immunostaining. J Comp Neurol 2025; 533:e70042. [PMID: 40126435 DOI: 10.1002/cne.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
The Golgi-Cox staining technique is renowned for its ability to delineate neuronal architecture with remarkable precision. However, the traditional protocol's lengthy processing timeline and limited compatibility with immunostaining and transgenic labeling have hindered its widespread adoption in modern neuroscience research. In the current study, we found that adjusting the incubation temperature to 55°C significantly reduced the staining duration to a mere 24 h for 100 µm-thick sections of mouse brain tissue. Importantly, our optimized protocol is compatible with immunostaining techniques and transgenic mouse models. In addition, using a lipopolysaccharides-induced mouse model of depression, we found a reduction in dendritic spines labeled by Golgi-Cox staining and an increase in the number of microglial cells labeled by immunofluorescence in the same samples, in addition, cross-talk between Golgi-Cox-stained neurons and microglial fibers were observed. In conclusion, the modified Golgi-Cox staining technique allows for the acquisition of a more comprehensive set of data from the same biological tissue with increased efficiency. This advancement promises to improve methodologies in histopathology and neurobiology, making advanced applications of Golgi-Cox staining more accessible in contemporary neuroscience research.
Collapse
Affiliation(s)
- Da-Jiang Hui
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Mei-Xue Yuan
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xin-Ya Qin
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, PR China
| | - An-Qi Zhang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Chen-Wei Wang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Yu Wang
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Peng Chen
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Qing-Hong Shan
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
4
|
Narasimhamurthy RK, Venkidesh BS, Nayak S, Reghunathan D, Mallya S, Sharan K, Rao BSS, Mumbrekar KD. Low-dose exposure to malathion and radiation results in the dysregulation of multiple neuronal processes, inducing neurotoxicity and neurodegeneration in mouse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1403-1418. [PMID: 38038914 PMCID: PMC10789675 DOI: 10.1007/s11356-023-31085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Neurodegenerative disorders are a debilitating and persistent threat to the global elderly population, carrying grim outcomes. Their genesis is often multifactorial, with a history of prior exposure to xenobiotics such as pesticides, heavy metals, enviornmental pollutants, ionizing radiation etc,. A holistic molecular insight into their mechanistic induction upon single or combinatorial exposure to different toxicants is still unclear. In the present study, one-month-old C57BL/6 male mice were administered orally with malathion (50 mg/kg body wt. for 14 days) and single whole-body radiation (0.5 Gy) on the 8th day. Post-treatment, behavioural assays for exploratory behaviour, memory, and learning were performed. After sacrifice, brains were collected for histology, biochemical assays, and transcriptomic analysis. Transcriptomic analysis revealed several altered processes like synaptic transmission and plasticity, neuronal survival, proliferation, and death. Signalling pathways like MAPK, PI3K-Akt, Apelin, NF-κB, cAMP, Notch etc., and pathways related to neurodegenerative diseases were altered. Increased astrogliosis was observed in the radiation and coexposure groups, with significant neuronal cell death and a reduction in the expression of NeuN. Sholl analysis, dendritic arborization and spine density studies revealed decreased total apical neuronal path length and dendritic spine density. Reduced levels of the antioxidants GST and GSH and acetylcholinesterase enzyme activity were also detected. However, no changes were seen in exploratory behaviour or learning and memory post-treatment. Thus, explicating the molecular mechanisms behind malathion and radiation can provide novel insights into external factor-driven neurotoxicity and neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sangeetha Nayak
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Reghunathan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishna Sharan
- Department of Radiotherapy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Directorate of Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Wang H, Shang Y, Wang E, Xu X, Zhang Q, Qian C, Yang Z, Wu S, Zhang T. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer's disease. Prog Neurobiol 2022; 214:102280. [PMID: 35525373 DOI: 10.1016/j.pneurobio.2022.102280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the old adult and characterized by progressive cognitive decline and neuronal damage. The mammalian Ste20-like kinase1/2 (MST1/2) is a core component in Hippo signaling, which regulates neural stem cell proliferation, neuronal death and neuroinflammation. However, whether MST1/2 is involved in the occurrence and development of AD remains unknown. In this study we reported that the activity of MST1 was increased with Aβ accumulation in the hippocampus of 5xFAD mice. Overexpression of MST1 induced AD-like phenotype in normal mice and accelerated cognitive decline, synaptic plasticity damage and neuronal apoptosis in 2-month-old 5xFAD mice, but did not significantly affect Aβ levels. Mechanistically, MST1 associated with p53 and promoted neuronal apoptosis by phosphorylation and activation of p53, while p53 knockout largely reversed MST1-induced AD-like cognitive deficits. Importantly, either genetic knockdown or chemical inactivation of MST1 could significantly improve cognitive deficits and neuronal apoptosis in 7-month-old 5xFAD mice. Our results support the idea that MST1-mediated neuronal apoptosis is an essential mechanism of cognitive deficits and neuronal loss for AD, and manipulating the MST1 activity as a potential strategy will shed light on clinical treatment for AD or other diseases caused by neuronal injury.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Yingchun Shang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Enlin Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Xinxin Xu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Qiyue Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Chenxi Qian
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, PR China.
| | - Shian Wu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Tao Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
6
|
A report on digitised neuronal tracing method to study neurons in their entirety. MethodsX 2022; 9:101715. [PMID: 35592463 PMCID: PMC9111970 DOI: 10.1016/j.mex.2022.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Conventional camera lucida (CL) aided neuronal tracing technique for studying neural plasticity is a demanding procedure. Stereo Investigator-Neurolucida enabled neuronal tracing system is not accessible to all researchers. This necessitates alternate simple and less challenging digitised neuronal tracing methods. This report describes a novel digitised neuronal tracing method using widefield microscopy, and its effectiveness is compared with the traditional camera lucida aided neuronal tracing method. Golgi-Cox stained hippocampal cornu ammonis area-3 (CA3) pyramidal neuron photomicrographs were serially captured at a depth of every 2µm in the z-axis by a wide field microscope from the point of appearance to the disappearance. These images were stacked along the axis perpendicular to the image plane to reconstruct the neuron in its entirety, digitally traced and dendritic quantification was performed using open source software. The same neurons were manually traced using camera lucida, and Sholl analysis was done manually to quantify the dendritic arborisation pattern. The dendritic quantification data were not significantly different in both methods. Hence, the technology-enabled, less demanding, and equally accurate neuronal tracing can be adopted instead of manual tracing and analysis of neurons. A simple digitised neuronal tracing method is described. It is fast, rigorous, and comparable to traditional tracing techniques. Helps the researcher to repeatedly probe data to reduce errors.
Collapse
|
7
|
Mi X, Du H, Guo X, Wu Y, Shen L, Luo Y, Wang D, Su Q, Xiang R, Yue S, Wu S, Gong J, Yang Z, Zhang Y, Tan X. Asparagine endopeptidase-targeted Ultrasound-responsive Nanobubbles Alleviate Tau Cleavage and Amyloid-β Deposition in an Alzheimer's Disease Model. Acta Biomater 2022; 141:388-397. [PMID: 35045359 DOI: 10.1016/j.actbio.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/01/2022]
Abstract
Inhibition of asparagine endopeptidase (AEP) has been implied to be effective for treating tau- and amyloid-beta-mediated neurodegenerative diseases, although a method for targeted intracerebral delivery of AEP inhibitors has not yet been achieved. Here, we fabricated ultrasound-responsive nanobubbles (NBs) to load AEP inhibitor RR-11a, and modified the NB surface with either AEP recognizable peptide AAN or pro-transendothelial transversal motif RGD, i.e. NB(11a)-A and NB(11a)-R, for AEP-targeted treatment of Alzheimer's disease (AD). The developed NBs were uniform, small in size (50.1 ± 1.5 nm), with strong echogenicity and high drug loading efficiency (∼91.97%). When intravenously co-injected in the APP/PS1 mouse model, NB(11a)-R could adhere to endothelial cells and enhance transient opening of the blood-brain barrier (BBB) upon focused ultrasound oscillations, allowing the rest NBs/localized released RR-11a molecules to enter the brain, and then NB(11a)-A could selectively bind with the impaired neurons and deposit RR-11a molecules at the AD lesion. As a result, co-administration of NB(11a)-A and NB(11a)-R significantly promoted accumulation of RR-11a in the mouse brain, and substantially alleviated both tau cleavage and amyloid plaques deposition in the hippocampus. Most strikingly, the cognitive ability of the AD model mice was dramatically improved, achieving a level close to the normal mice. Overall, this unique AEP-targeted nanobubble design provides an efficient intracerebral drug delivery strategy and significantly enhances treatment efficacy of AD. STATEMENT OF SIGNIFICANCE: Asparagine endopeptidase (AEP) is an innovative therapeutic target simultaneously involved in Aβ and tau-mediated Alzheimer's disease (AD) pathology, but targeted delivery of AEP inhibitors has not been achieved yet. Here we developed an efficient strategy to deliver AEP inhibitor RR-11a towards impaired neurons. We fabricated RR-11a-loaded ultrasound-responsive nanobubbles (NBs) and modified the NB surface with RGD peptide to promote BBB crossing upon focused ultrasound oscillations, or with AAN peptide to increase binding of NBs on the neurons. Our results indicated that, co-administration of the NB(11a)-A and NB(11a)-R significantly enhanced accumulation of RR-11a molecules at the AD lesion, alleviated both tau cleavage and amyloid plaques deposition in the hippocampus, and consequently restored cognitive function of the AD model mice.
Collapse
|
8
|
Zhu D, He B, Zhang M, Wan Y, Liu R, Wang L, Zhang Y, Li Y, Gao F. A Multimodal MR Imaging Study of the Effect of Hippocampal Damage on Affective and Cognitive Functions in a Rat Model of Chronic Exposure to a Plateau Environment. Neurochem Res 2022; 47:979-1000. [PMID: 34981302 PMCID: PMC8891211 DOI: 10.1007/s11064-021-03498-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
Prolonged exposure to high altitudes above 2500 m above sea level (a.s.l.) can cause cognitive and behavioral dysfunctions. Herein, we sought to investigate the effects of chronic exposure to plateau hypoxia on the hippocampus in a rat model by using voxel-based morphometry, creatine chemical exchange saturation transfer (CrCEST) and dynamic contrast-enhanced MR imaging techniques. 58 healthy 4-week-old male rats were randomized into plateau hypoxia rats (H group) as the experimental group and plain rats (P group) as the control group. H group rats were transported from Chengdu (500 m a.s.l.), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (4250 m a.s.l.), Yushu, China, and then fed for 8 months there, while P group rats were fed in Chengdu (500 m a.s.l.), China. After 8 months of exposure to plateau hypoxia, open-field and elevated plus maze tests revealed that the anxiety-like behavior of the H group rats was more serious than that of the P group rats, and the Morris water maze test revealed impaired spatial memory function in the H group rats. Multimodal MR imaging analysis revealed a decreased volume of the regional gray matter, lower CrCEST contrast and higher transport coefficient Ktrans in the hippocampus compared with the P group rats. Further correlation analysis found associations of quantitative MRI parameters of the hippocampus with the behavioral performance of H group rats. In this study, we validated the viability of using noninvasive multimodal MR imaging techniques to evaluate the effects of chronic exposure to a plateau hypoxic environment on the hippocampus.
Collapse
Affiliation(s)
- Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Mengdi Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Ruibin Liu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310030, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310030, China
| | - Yunqing Li
- Department of Anatomy and KK Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China. .,Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Wang H, Xu X, Pan YC, Yan Y, Hu XY, Chen R, Ravoo BJ, Guo DS, Zhang T. Recognition and Removal of Amyloid-β by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006483. [PMID: 33325586 DOI: 10.1002/adma.202006483] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1-42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1-42 , inhibit Aβ1-42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1-42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - XinXin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - YuXing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - RunWen Chen
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, Münster, 48149, Germany
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
10
|
Shang Y, Chen R, Li F, Zhang H, Wang H, Zhang T. Prenatal stress impairs memory function in the early development of male-offspring associated with the gaba function. Physiol Behav 2021; 228:113184. [DOI: 10.1016/j.physbeh.2020.113184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022]
|
11
|
Zhang JW, Tabassum S, Jiang JX, Long C. Optimized Golgi-Cox Staining Validated in the Hippocampus of Spared Nerve Injury Mouse Model. Front Neuroanat 2020; 14:585513. [PMID: 33240049 PMCID: PMC7680754 DOI: 10.3389/fnana.2020.585513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Golgi-Cox staining has been used extensively in neuroscience. Despite its unique ability to identify neuronal interconnections and neural processes, its lack of consistency and time-consuming nature reduces its appeal to researchers. Here, using a spared nerve injury (SNI) mouse model and control mice, we present a modified Golgi-Cox staining protocol that can stain mouse hippocampal neurons within 8 days. In this improved procedure, the mouse brain was fixed with 4% paraformaldehyde and then stored in a modified Golgi-Cox solution at 37 ± 2°C. The impregnation period was reduced from 5–14 days to 36–48 h. Brain slices prepared in this way could be preserved long-term at –80°C for up to 8 weeks. In addition to minimizing frequently encountered problems and reducing the time required to conduct the method, our modified protocol maintained, and even improved, the quality of traditional Golgi-Cox staining as applied to hippocampal neuronal morphology in SNI mice.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- Panyu Central Hospital, South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin-Xiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- Panyu Central Hospital, South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou, China.,School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Ai M, Huang K, Ji Z, Wang Y, Liu Y, Xiao L, Xiao P, Zheng Q, Wang H. Unveiling Hg-binding protein within black deposit formed on Golgi-Cox-stained brain neuron. Neurosci Lett 2020; 742:135537. [PMID: 33248164 DOI: 10.1016/j.neulet.2020.135537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Golgi-Cox staining has been conventionally used for investigating neuronal development. After the brain tissue is subject to Golgi-Cox staining, black deposits are formed on the surface of the stained neurons because of mercuric sulfide, which does not show a fluorescence response under two-photon excitation. However, we unexpectedly observed fluorescence emitted by these black deposits during two-photon fluorescence measurements. Further, the in-depth of physical and chemical methods analysis revealed that the black deposits on the stained neurons are composed of Hg-binding proteins. METHODS We studied black deposits present in the Golgi-Cox-stained mouse brain neurons using techniques such as multiple-photon microscopy, scan electron microscopy, micro-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. RESULTS The emitted fluorescence was because of the fluorescence groups of Hg-binding protein present within the Golgi-Cox deposits on the neuronal surface. CONCLUSIONS The presence of Hg-binding proteins within black deposits on the surface of Golgi-Cox-stained neurons was proven for the first time. The novel interaction between the neurons and Hg2+ ions during Golgi-Cox staining help to understand the mechanism of Golgi-Cox staining.
Collapse
Affiliation(s)
- Min Ai
- School of Physics and Mechanical and Electronical Engineering, Hubei University of Education, Wuhan 430205, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kai Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Convergence Technology Co. Ltd., Wuhan 430073, China
| | - Zijuan Ji
- School of Physics and Mechanical and Electronical Engineering, Hubei University of Education, Wuhan 430205, China
| | - Yun Wang
- School of Physics and Mechanical and Electronical Engineering, Hubei University of Education, Wuhan 430205, China
| | - Yong Liu
- School of Physics and Mechanical and Electronical Engineering, Hubei University of Education, Wuhan 430205, China
| | - Longsheng Xiao
- School of Physics and Mechanical and Electronical Engineering, Hubei University of Education, Wuhan 430205, China
| | - Pengcheng Xiao
- School of Physics and Mechanical and Electronical Engineering, Hubei University of Education, Wuhan 430205, China
| | - Qiusha Zheng
- School of Physics and Mechanical and Electronical Engineering, Hubei University of Education, Wuhan 430205, China
| | - Huaixing Wang
- School of Physics and Mechanical and Electronical Engineering, Hubei University of Education, Wuhan 430205, China
| |
Collapse
|
13
|
Narayanan SN, Bairy LK, Srinivasamurthy SK. Determining factors for optimal neuronal and glial Golgi-Cox staining. Histochem Cell Biol 2020; 154:431-448. [PMID: 32533234 DOI: 10.1007/s00418-020-01891-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 11/29/2022]
Abstract
Golgi staining allows for the analysis of neuronal arborisations and connections and is considered a powerful tool in basic and clinical neuroscience. The fundamental rules for improving neuronal staining using the Golgi-Cox method are not fully understood; both intrinsic and extrinsic factors may control the staining process. Therefore, various conditions were tested to improve the Golgi-Cox protocol for vibratome-cut rat brain sections. Optimal staining of cortical neurons was achieved after 72 h of impregnation. Well-stained neurons in both cortical and subcortical structures were observed after 96 h of impregnation. The dendritic arborisation pattern of cortical neurons derived from the 72-h impregnation group was comparable to those of the 96 and 168-h impregnation groups. The entire brain was stained well when the pH of the Golgi-Cox solution was 6.5 and that of the sodium carbonate solution was 11.2. Lack of brain perfusion or perfusion with 0.9% NaCl did not influence optimal neuronal staining. Perfusion with 37% formaldehyde, followed by impregnation, only resulted in glial staining, but perfusion with 4% formaldehyde facilitated both glial and neuronal staining. Whole brains required longer impregnation times for better staining. Although every factor had a role in determining optimal neuronal staining, impregnation time and the pH of staining solutions were key factors among them. This modified Golgi-Cox protocol provides a simple and economical procedure to stain both neurons and glia separately.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, PO Box 11172, Ras Al Khaimah, United Arab Emirates.
| | - Laxminarayana Kurady Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, PO Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, PO Box 11172, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
14
|
Margabandhu G, Vanisree AJ. Dopamine, a key factor of mitochondrial damage and neuronal toxicity on rotenone exposure and also parkinsonic motor dysfunction-Impact of asiaticoside with a probable vesicular involvement. J Chem Neuroanat 2020; 106:101788. [PMID: 32278634 DOI: 10.1016/j.jchemneu.2020.101788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/16/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
Persuasive evidence propose that the toxicity of dopamine in parkinsonism and the loss of dopaminergic neurons are the earliest events during the pathogenesis of Parkinson's disease (PD). In our earlier study, Asiaticoside (AS), a triterpenoid saponin isolated from Centella asiatica was shown to exert a neuroprotective effect against hemiparkinsonism, purportedly due to phosphoinositides (PI)-assisted cytodynamics and synaptic function. Here, we evaluate AS in the modulation of dopamine (DA), mitochondrial integrity and neurite variations in vitro and motor dysfunctions in vivo. PC12 cells challenged with rotenone-(ROT) (0.1 μM/mL) were exposed to AS and l-DOPA (10 mM and 20 μM/mL respectively). The protein expressions of Bax and Bcl-2 that regulate cell death were assessed following neurite length assays. Rats were distributed into 6 groups (6 rats/group): Sham, Vehicle controls, ROT-infused (6 μg/μl/kg), AS- treated (50 mg/kg/day), Drug control, and ROT + L-DOPA-treated (6 mg/kg/day) groups. At the end of the experimental period, the rats were sacrificed after performing motor behavioral analysis, and the striatum was dissected out. The contents of synaptic vesicular and cytosolic DA were analyzed. Further, the levels of striatal PI were also measured. ROT had caused significant reduction in the neurite outgrowth in the exposed PC12 cells while the tested concentrations of AS and l-DOPA can exert their protective effect on the stunted neurite growth. The levels of Bax, Bcl-2, and cytochrome c which were significantly disturbed by ROT, could also be affected by AS thereby suggesting its effect on neurons. AS treatment caused an improved motor performance, vesicular and cytosolic DA, and striatal PI. These pre-clinical findings force us to speculate that AS could be a potential drug candidate in combating ROT-induced variations that are possibly precipitated by varied vesicular trafficking of DA.
Collapse
Affiliation(s)
- Gopi Margabandhu
- Unit of Molecular Neurobiology, Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, Tamilnadu, India.
| | - Arambakkam Janardhanam Vanisree
- Unit of Molecular Neurobiology, Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, Tamilnadu, India.
| |
Collapse
|
15
|
Zhai B, Fu J, Xiang S, Shang Y, Yan Y, Yin T, Zhang T. Repetitive transcranial magnetic stimulation ameliorates recognition memory impairment induced by hindlimb unloading in mice associated with BDNF/TrkB signaling. Neurosci Res 2020; 153:40-47. [DOI: 10.1016/j.neures.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/18/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
|
16
|
Wang Y, Feng L, Liu S, Zhou X, Yin T, Liu Z, Yang Z. Transcranial Magneto-Acoustic Stimulation Improves Neuroplasticity in Hippocampus of Parkinson's Disease Model Mice. Neurotherapeutics 2019; 16:1210-1224. [PMID: 30993592 PMCID: PMC6985386 DOI: 10.1007/s13311-019-00732-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In this study, we have, for the first time, demonstrated the beneficial effects of transcranial magneto-acoustic stimulation (TMAS), a technique based on focused ultrasound stimulation within static magnetic field, on the learning and memory abilities and neuroplasticity of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). Our results showed that chronic TMAS treatment (2 weeks) improved the outcome of Morris water maze, long-term potentiation (LTP), and dendritic spine densities in the dentate gyrus (DG) region of the hippocampus of PD model mice. To further investigate into the underlying mechanisms of these beneficial effects by TMAS, we quantified the proteins in the hippocampus that regulated neuroplasticity. Results showed that the level of postsynaptic density protein 95 was elevated in the brain of TMAS-treated PD model mice while the level of synaptophysin (SYP) did not show any change. We further quantified proteins that mediated neuroplasticity mechanisms, such as brain-derived neurotrophic factor (BDNF) and other important proteins that mediated neuroplasticity. Results showed that TMAS treatment elevated the levels of BDNF, cAMP response element-binding protein (CREB), and protein kinase B (p-Akt) in the PD model mouse hippocampus, but not in the non-PD mouse hippocampus. These results suggest that the beneficial effects on the neuroplasticity of PD model mice treated with TMAS could possibly be conducted through postsynaptic regulations and mediated by BDNF.
Collapse
Affiliation(s)
- Yuexiang Wang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, 300071, China
| | - Lina Feng
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, 300071, China
| | - Shikun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoqing Zhou
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
17
|
Distinct Impacts of Fullerene on Cognitive Functions of Dementia vs. Non-dementia Mice. Neurotox Res 2019; 36:736-745. [PMID: 31222673 DOI: 10.1007/s12640-019-00075-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/01/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Fullerene is a family of carbon materials widely applied in modern medicine and ecosystem de-contamination. Its wide application makes human bodies more and more constantly exposed to fullerene particles. Since fullerene particles are able to cross the blood-brain barrier (BBB) (Yamago et al. 1995), if and how fullerene would affect brain functions need to be investigated for human health consideration. For this purpose, we administered fullerene on subcortical ischemic vascular dementia (SIVD) model mice and sham mice, two types of mice with distinct penetration properties of BBB and hence possibly distinct vulnerabilities to fullerene. We studied the spatial learning and memory abilities of mice with Morris water maze (MWM) and the neuroplasticity properties of the hippocampus. Results showed that fullerene administration suppressed outcomes of MWM in sham mice, along with suppressed long-term potentiation (LTP) and dendritic spine densities. Oppositely, recoveries of MWM outcomes and neuroplasticity properties were observed in fullerene-treated SIVD mice. To further clarify the mechanism of the impact of fullerene on neuroplasticity, we measured the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) by western blot assay. Results suggest that the distinct impacts of fullerene on behavior test and neuroplasticity may be conducted through postsynaptic regulations that were mediated by BDNF.
Collapse
|
18
|
rTMS pre-treatment effectively protects against cognitive and synaptic plasticity impairments induced by simulated microgravity in mice. Behav Brain Res 2019; 359:639-647. [DOI: 10.1016/j.bbr.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022]
|
19
|
Mundugaru R, Sivanesan S, Popa-Wagner A, Udaykumar P, Kirubagaran R, KP G, Vidyadhara D. Pluchea lanceolata protects hippocampal neurons from endothelin-1 induced ischemic injury to ameliorate cognitive deficits. J Chem Neuroanat 2018; 94:75-85. [DOI: 10.1016/j.jchemneu.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022]
|
20
|
Fonseca MDC, Araujo BHS, Dias CSB, Archilha NL, Neto DPA, Cavalheiro E, Westfahl H, da Silva AJR, Franchini KG. High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal architecture of the brain. Sci Rep 2018; 8:12074. [PMID: 30104676 PMCID: PMC6089932 DOI: 10.1038/s41598-018-30501-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/01/2018] [Indexed: 11/09/2022] Open
Abstract
The assessment of neuronal number, spatial organization and connectivity is fundamental for a complete understanding of brain function. However, the evaluation of the three-dimensional (3D) brain cytoarchitecture at cellular resolution persists as a great challenge in the field of neuroscience. In this context, X-ray microtomography has shown to be a valuable non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens, arisen as a new method for deciphering the cytoarchitecture and connectivity of the brain. In this work we present a method for imaging whole neurons in the brain, combining synchrotron-based X-ray microtomography with the Golgi-Cox mercury-based impregnation protocol. In contrast to optical 3D techniques, the approach shown here does neither require tissue slicing or clearing, and allows the investigation of several cells within a 3D region of the brain.
Collapse
Affiliation(s)
- Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil.
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Carlos Sato Baraldi Dias
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Nathaly Lopes Archilha
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Esper Cavalheiro
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP/EPM), Zip Code 04021-001, São Paulo, São Paulo, Brazil
| | - Harry Westfahl
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Antônio José Roque da Silva
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| |
Collapse
|
21
|
|
22
|
Louth EL, Sutton CD, Mendell AL, MacLusky NJ, Bailey CDC. Imaging Neurons within Thick Brain Sections Using the Golgi-Cox Method. J Vis Exp 2017. [PMID: 28447990 DOI: 10.3791/55358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Golgi-Cox method of neuron staining has been employed for more than two hundred years to advance our understanding of neuron morphology within histological brain samples. While it is preferable from a practical perspective to prepare brain sections at the greatest thickness possible, in order to increase the probability of identifying stained neurons that are fully contained within single sections, this approach is limited from a technical perspective by the working distance of high-magnification microscope objectives. We report here a protocol to stain neurons using the Golgi-Cox method in mouse brain sections that are cut at 500 μm thickness, and to visualize neurons throughout the depth of these sections using an upright microscope fitted with a high-resolution 30X 1.05 N.A. silicone oil-immersion objective that has an 800 μm working distance. We also report two useful variants of this protocol that may be employed to counterstain the surface of mounted brain sections with the cresyl violet Nissl stain, or to freeze whole brains for long-term storage prior to sectioning and final processing. The main protocol and its two variants produce stained thick brain sections, throughout which full neuron dendritic trees and dendrite spines may be reliably visualized and quantified.
Collapse
Affiliation(s)
- Emma L Louth
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph
| | - Charles D Sutton
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph
| | - Ari L Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph
| | - Craig D C Bailey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph;
| |
Collapse
|
23
|
Wu H, Wang X, Gao Y, Lin F, Song T, Zou Y, Xu L, Lei H. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging. Neuroscience 2016; 322:221-33. [DOI: 10.1016/j.neuroscience.2016.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
|
24
|
Bayram-Weston Z, Olsen E, Harrison DJ, Dunnett SB, Brooks SP. Optimising Golgi-Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease. J Neurosci Methods 2015; 265:81-8. [PMID: 26459195 PMCID: PMC4863524 DOI: 10.1016/j.jneumeth.2015.09.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Golgi-Cox stain is an established method for characterising neuron cell morphology. The method highlights neurite processes of stained cells allowing the complexity of dendritic branching to be measured. NEW METHODS Conventional rapid Golgi and Golgi-Cox methods all require fresh impregnation in unfixed brain blocks. Here, we describe a modified method that gives high quality staining on brain tissue blocks perfusion-fixed with 4% paraformaldehyde (PFA) and post-fixed by immersion for 24h. RESULTS Tissue perfused with 4% PFA and post fixed for 24h remained viable for the modified Golgi-Cox silver impregnation staining of mouse striatum from perfused wild type and zQ175. It was not found necessary to impregnate tissue blocks with Golgi solutions prior to sectioning, as post-sectioned tissues yielded equally good impregnation. Impregnation for 14 days resulted in optimal visualisation of striatal neuron and dendritic morphology. Although no modifications applied to the rapid Golgi method were reliable, the modified Golgi-Cox method yielded consistently reliable high-quality staining. COMPARISON WITH EXISTING METHODS The current method used fixed tissues to reduce damage and preserve cell morphology. The revised method was found to be fast, reliable and cost effective without the need for expensive staining kits and could be performed in any neuroscience lab with limited specialist equipment. CONCLUSIONS The present study introduces a robust reproducible and inexpensive staining method for identifying neuronal morphological changes in the post fixed mouse brain, and is suitable for assessing changes in cell morphology in models of neurodegeneration and in response to experimental treatment.
Collapse
Affiliation(s)
- Zubeyde Bayram-Weston
- School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| | - Elliott Olsen
- School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - David J Harrison
- School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Stephen B Dunnett
- School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Simon P Brooks
- School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
25
|
Narayanan SN, Kumar RS, Karun KM, Nayak SB, Bhat PG. Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation. Metab Brain Dis 2015; 30:1193-206. [PMID: 26033310 DOI: 10.1007/s11011-015-9689-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 12/11/2022]
Abstract
The effects of chronic and repeated radiofrequency electromagnetic radiation (RFEMR) exposure on spatial cognition and hippocampal architecture were investigated in prepubescent rats. Four weeks old male Wistar rats were exposed to RF-EMR (900 MHz; SAR-1.15 W/kg with peak power density of 146.60 μW/cm(2)) for 1 h/day, for 28 days. Followed by this, spatial cognition was evaluated by Morris water maze test. To evaluate the hippocampal morphology; H&E staining, cresyl violet staining, and Golgi-Cox staining were performed on hippocampal sections. CA3 pyramidal neuron morphology and surviving neuron count (in CA3 region) were studied using H&E and cresyl violet stained sections. Dendritic arborization pattern of CA3 pyramidal neuron was investigated by concentric circle method. Progressive learning abilities were found to be decreased in RF-EMR exposed rats. Memory retention test performed 24 h after the last training revealed minor spatial memory deficit in RF-EMR exposed group. However, RF-EMR exposed rats exhibited poor spatial memory retention when tested 48 h after the final trial. Hirano bodies and Granulovacuolar bodies were absent in the CA3 pyramidal neurons of different groups studied. Nevertheless, RF-EMR exposure affected the viable cell count in dorsal hippocampal CA3 region. RF-EMR exposure influenced dendritic arborization pattern of both apical and basal dendritic trees in RF-EMR exposed rats. Structural changes found in the hippocampus of RF-EMR exposed rats could be one of the possible reasons for altered cognition.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, 576104, India,
| | | | | | | | | |
Collapse
|
26
|
Ai M, Xiong H, Yang T, Shang Z, Chen M, Liu X, Zeng S. Fluorescence imaging of dendritic spines of Golgi-Cox-stained neurons using brightening background. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:010501. [PMID: 25585023 DOI: 10.1117/1.jbo.20.1.010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
We report a novel fluorescence imaging approach to imaging nonfluorescence-labeled biological tissue samples. The method was demonstrated by imaging neurons in Golgi-Cox-stained and epoxy-resin-embedded samples through the excitation of the background fluorescence of the specimens. The dark neurons stood out clearly against background fluorescence in the images, enabling the tracing of a single dendritic spine using both confocal and wide-field fluorescence microscopy. The results suggest that the reported fluorescence imaging method would provide an effective alternative solution to image nonfluorescence-labeled samples, and it allows tracing the dendritic spine structure of neurons.
Collapse
Affiliation(s)
- Min Ai
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Hanqing Xiong
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Tao Yang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Zhenhua Shang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Muqing Chen
- Hubei University of Education, School of Physics and Electronic Information, Wuhan 430205, China
| | - Xiuli Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| | - Shaoqun Zeng
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, ChinabHuazhong University of Science and Technology, Department of Biomedical Engineering, Key Labo
| |
Collapse
|