1
|
Musselman ED, Raha I, Pelot NA, Grill WM. Scaling of vagus nerve stimulation parameters does not achieve equivalent nerve responses across species. Bioelectron Med 2025; 11:11. [PMID: 40375300 DOI: 10.1186/s42234-025-00174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Previous efforts to translate vagus nerve stimulation (VNS) therapies from preclinical studies to human clinical applications (e.g., for stroke, heart failure, and inflammatory diseases) did not account for individual- or species-specific differences in nerve responses when selecting stimulation parameters. Lack of explicit consideration for producing equivalent nerve responses could contribute to clinical outcomes not replicating promising results from preclinical animal studies. METHODS We used models of VNS built with ASCENT (Musselman, PLoS Comput Biol 17:e1009285, 2021) to quantify nerve responses across species and simulate translation of VNS therapies via either recycling or linear scaling of stimulation parameters. For humans (n = 9) and pigs (n = 12), we used previously validated computational models with the standard clinical helical cuff electrode on individual-specific nerve morphologies (Musselman, J Neural Eng 20:acda64, 2023b). We also modeled rat VNS (n = 9) with the Micro-Leads Neuro bipolar cuff. We calculated thresholds for fiber activation (A-, B-, and C-fibers) with biphasic rectangular pulses (0.13, 0.25, 0.5 ms). We defined "K" as the ratio of activation thresholds between a pair of individuals. We used a mixed model ANOVA on the natural logarithm of K to test for differences in inter-species Ks across fiber types and pulse widths. Lastly, using the same nerve morphologies and application-specific device design (cuff and waveform), we developed models to predict nerve responses in chronic human and rat VNS studies for treatment of stroke, inflammation, and heart failure. RESULTS Depending on the individual and species, the activation amplitude required to produce a given nerve response varied widely. Thus, applying the same VNS parameters across individuals within a species produced a large range of nerve responses. Further, applying the same or linearly scaled stimulation amplitudes across species also produced highly variable responses. Ks were greater for B fibers than A fibers (p < 0.0001) and decreased with longer pulse widths (p < 0.0001 between consecutive pairs). CONCLUSIONS The results highlight the need for systematic approaches to select stimulation parameters that account for individual- and species-specific differences in nerve responses to stimulation. Such parameter tuning may lead to higher response rates and greater therapeutic benefits from VNS therapies.
Collapse
Affiliation(s)
- Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ishani Raha
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Bhattacharjee S. Special issue: Biomedical imaging in comparative anatomy. J Anat 2025; 246:651-656. [PMID: 40229947 PMCID: PMC11996716 DOI: 10.1111/joa.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
- UCD One Health Centre, University College Dublin, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
3
|
Airapetian A, Bachmetjev B, Suchomlinov A. Anatomical Variations in the Formation of the Sural Nerve: A Pilot Study in a Sample of Lithuanian Cadavers. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:671. [PMID: 40282962 PMCID: PMC12029134 DOI: 10.3390/medicina61040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: The sural nerve (SN) is a pure sensory nerve that supplies the lateral aspect of the ankle and foot. Its anatomical variability has been extensively documented, with multiple classifications describing its different formation patterns. The SN is commonly used for nerve grafting and is a critical structure in lower-limb surgeries. Due to its superficial course, it is vulnerable to iatrogenic injuries, particularly in procedures involving the Achilles tendon. The presence of anatomical variations in SN formation and trajectory has significant implications for surgical planning, diagnostics, and nerve conduction studies. Understanding these formation variations is essential to minimize surgical complications and optimize clinical outcomes. Materials and Methods: A pilot cross-sectional cadaveric study was conducted on nine formalin-fixed adult cadavers at the Department of Anatomy, Histology, and Anthropology, Vilnius University Faculty of Medicine, Lithuania. Standard dissection techniques were employed to examine the formation and trajectory of the SN. Morphometric parameters, including nerve diameter and length, were measured using an RS PTO Digital Caliper with 0.01 mm precision. Variations in SN formation were classified according to the system proposed by P.K. Ramakrishnan et al. Statistical analyses were performed using SPSS 26.0 and RStudio, with a significance threshold set at p ≤ 0.05. Results: The most prevalent SN formation variation observed in the Lithuanian cadaveric sample was Type 3, which was found in 8 out of 18 limbs (44.4%), while Type 6 was not identified. Additionally, a symmetric formation was observed bilaterally in 5 out of the 9 cadavers (55.6%). The SN was significantly thicker in two-contributor formations (3.17 mm) compared to single-contributor formations (1.93 mm, p = 0.001). The SN was also significantly longer in two-contributor formations (25.80 cm) than in single-contributor formations (18.96 cm, p = 0.016). No significant differences in SN morphology were found between left and right lower limbs. Conclusions: This study highlights the substantial anatomical variability of the SN in the Lithuanian population. The findings suggest a correlation between SN diameter and formation type, which may have clinical implications for nerve grafting and surgical planning. The predominance of Type 3 formation and the observed symmetry rate provide valuable anatomical insights for lower limb surgeries. Further large-scale studies are necessary to establish population-specific SN variations and their relevance in clinical practice.
Collapse
Affiliation(s)
- Artur Airapetian
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, LT-03101 Vilnius, Lithuania;
| | - Benedikt Bachmetjev
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, LT-03101 Vilnius, Lithuania;
| | - Andrej Suchomlinov
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
- Division of Anatomy, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Hoffmann D, Balcaen T, Vangrunderbeeck S, Puigdevall Mata L, Maes A, Pyka G, Dumoutier L, Behets C, De Borggraeve W, Kerckhofs G. 3D Histological Analysis of Soft Tissues by Contrast-Enhanced X-Ray Microfocus Computed Tomography: Screening and Staining Optimization of Contrast-Enhancing Staining Agents. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf013. [PMID: 40173054 DOI: 10.1093/mam/ozaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/04/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
The gold standard for studying biological soft tissues at the microscale (i.e., histology) is tissue sectioning with subsequent colorimetric or fluorescent staining and visual inspection under the microscope. When tissue integrity must be maintained for 3D histological assessment, contrast-enhanced microfocus X-ray computed tomography (CECT) is a promising solution, but there is still a lack of staining protocol optimization of contrast-enhancing staining agents (CESAs). Therefore, in this study, mouse auricles were incubated with Hafnium-substituted Wells-Dawson polyoxometalate, cationic iodinated contrast agent, or Lugol's iodine and were imaged with high-resolution CECT. Alignment with corresponding H&E-stained sections enabled the identification and segmentation of different tissue types. Contrast differences between tissue types were increased by washing the samples after staining or by combining CESAs. Finally, we proved that the latter could be used to quantitatively assess the 3D thickness distribution of the epidermis in the ears of a mouse model of psoriasis-like dermatitis. In conclusion, CECT and bright-field microscopy are complementary and not mutually exclusive techniques for the histological assessment of biological tissues. While bright-field microscopy gives detailed information about the cellular composition of tissues, CECT provides a better insight into the spatial interrelationship of tissues and is a powerful tool for performing 3D structural quantification.
Collapse
Affiliation(s)
- Delia Hoffmann
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Avenue E. Mounier 52 - box B1.52.04, 1200 Brussels, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N I Herestraat 49 - box 813, 3000 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N I Herestraat 49 - box 813, 3000 Leuven, Belgium
| | - Tim Balcaen
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Avenue E. Mounier 52 - box B1.52.04, 1200 Brussels, Belgium
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200 F - box 2404, 3001 Leuven, Belgium
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Place du Levant 2 - box L5.04.01, 1348 Louvain-la-Neuve, Belgium
| | - Sarah Vangrunderbeeck
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200 F - box 2404, 3001 Leuven, Belgium
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Place du Levant 2 - box L5.04.01, 1348 Louvain-la-Neuve, Belgium
| | - Léna Puigdevall Mata
- Experimental Medicine Unit, de Duve Institute, UCLouvain, Avenue Hippocrate 74 - box B1.75.02, 1200 Brussels, Belgium
| | - Arne Maes
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Avenue E. Mounier 52 - box B1.52.04, 1200 Brussels, Belgium
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Place du Levant 2 - box L5.04.01, 1348 Louvain-la-Neuve, Belgium
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 - box 2450, 3001 Leuven, Belgium
| | - Grzegorz Pyka
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Avenue E. Mounier 52 - box B1.52.04, 1200 Brussels, Belgium
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Place du Levant 2 - box L5.04.01, 1348 Louvain-la-Neuve, Belgium
| | - Laure Dumoutier
- Experimental Medicine Unit, de Duve Institute, UCLouvain, Avenue Hippocrate 74 - box B1.75.02, 1200 Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Avenue E. Mounier 52 - box B1.52.04, 1200 Brussels, Belgium
| | - Wim De Borggraeve
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200 F - box 2404, 3001 Leuven, Belgium
| | - Greet Kerckhofs
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Avenue E. Mounier 52 - box B1.52.04, 1200 Brussels, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N I Herestraat 49 - box 813, 3000 Leuven, Belgium
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Place du Levant 2 - box L5.04.01, 1348 Louvain-la-Neuve, Belgium
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 - box 2450, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Upadhye AR, Cintron E, Zhang J, Coleman J, Kolluru C, Jenkins MW, Wilson D, Pelot NA, Shoffstall AJ. Phosphotungstic Acid Staining to Visualize the Vagus Nerve Perineurium Using Micro-CT. J Neuroimaging 2025; 35:e70040. [PMID: 40207700 PMCID: PMC11984074 DOI: 10.1111/jon.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Peripheral nerve stimulation is approved by the US Food and Drug Administration for treating various disorders, but it is often limited by side effects, highlighting the need for a clear understanding of fascicular and fiber organization to design selective therapies. Micro-CT imaging of contrast-stained nerves enables the visualization of tissue microstructures, such as the fascicular perineurium and vasculature. In this work, we evaluated phosphotungstic acid (PTA) as a contrast agent and assessed its compatibility with downstream histology. METHODS Human vagus nerve samples were collected from three embalmed cadavers and subjected to three different staining methods, followed by micro-CT imaging: Lugol's iodine, osmium tetroxide, and PTA. Contrast ratios of adjacent tissue microstructures (perineurium, interfascicular epineurium, and fascicle) were quantified for each stain and compared. We further developed a pipeline to optimize micro-CT scan acquisition parameters based on objective metrics for sharpness, noise, and pixel saturation. The PTA-stained samples underwent subsequent histological processing and staining with hematoxylin and eosin, Masson's trichrome, and immunohistochemistry and were assessed for tissue degradation. RESULTS PTA enhanced the visualization of perineurium, providing high contrast ratios compared to iodine and osmium tetroxide. Optimized scanning parameters for PTA-stained nerves (55 kV and 109 µA) effectively balanced noise and sharpness. While we found that PTA is generally nondestructive for downstream histology, higher concentrations and longer exposure could alter the optical density of nuclei and affect stain differentiation in special stains. CONCLUSION PTA serves as a valuable micro-CT contrast agent for nerve imaging, effective in visualizing the perineurium with minimal impact on histological integrity.
Collapse
Affiliation(s)
- Aniruddha R. Upadhye
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
- APT CenterLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
| | - Eleana Cintron
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Jichu Zhang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Jennifer Coleman
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Chaitanya Kolluru
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Michael W. Jenkins
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - David Wilson
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Nicole A. Pelot
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew J. Shoffstall
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
- APT CenterLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
| |
Collapse
|
6
|
Pušnik L, Radochová B, Janáček J, Saudek F, Serša I, Cvetko E, Umek N, Snoj Ž. Fascicle differentiation of upper extremity nerves on high-resolution ultrasound with multimodal microscopic verification. Sci Rep 2025; 15:557. [PMID: 39747626 PMCID: PMC11696863 DOI: 10.1038/s41598-024-84396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
This study aimed to compare the fascicular anatomy of upper limb nerves visualized using in situ high-resolution ultrasound (HRUS) with ex vivo imaging modalities, namely, magnetic resonance microscopy (MRM), histological cross-sections (HCS), and optical projection tomography (OPT). The median, ulnar, and superficial branch of radial nerve (n = 41) were visualized in 14 cadaveric upper limbs using 22-MHz HRUS. Subsequently, the nerves were excised, imaged with different microscopic techniques, and their morphometric properties were compared. HRUS accurately differentiated 51-74% of fascicles, while MRM detected 87-92% of fascicles when compared to the referential HCS. Among the compared modalities, HRUS demonstrated the smallest fascicular ratios and fascicular cross-sectional areas, but the largest nerve cross-sectional areas. The probability of a fascicle depicted on HRUS representing a cluster of multiple fascicles on the referential HCS increased with the fascicular size, with some differences observed between the larger median and ulnar nerves and the smaller radial nerves. Accordingly, HRUS fascicle differentiation necessitates cautious interpretation, as larger fascicles are more likely to represent clusters. Although HCS is considered the reference modality, alterations in nerve cross-sectional areas or roundness during sample processing should be acknowledged.
Collapse
Affiliation(s)
- Luka Pušnik
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| | - Barbora Radochová
- Laboratory of Biomathematics, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Janáček
- Laboratory of Biomathematics, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - František Saudek
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Igor Serša
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Žiga Snoj
- Department of Radiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Grill WM, Pelot NA. Computational modeling of autonomic nerve stimulation: Vagus et al. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 32:100557. [PMID: 39650310 PMCID: PMC11619812 DOI: 10.1016/j.cobme.2024.100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Computational models of electrical stimulation, block and recording of autonomic nerves enable analysis of mechanisms of action underlying neural responses and design of optimized stimulation parameters. We reviewed advances in computational modeling of autonomic nerve stimulation, block, and recording over the past five years, with a focus on vagus nerve stimulation, including both implanted and less invasive approaches. Few models achieved quantitative validation, but integrated computational pipelines increase the reproducibility, reusability, and accessibility of computational modeling. Model-based optimization enabled design of electrode geometries and stimulation parameters for selective activation (across fiber locations or types). Growing efforts link models of neural activity to downstream physiological responses to represent more directly the therapeutic effects and side effects of stimulation. Thus, computational modeling is an increasingly important tool for analysis and design of bioelectronic therapies.
Collapse
|
8
|
Yang S, Yang S, Li P, Gou S, Cheng Y, Jia Q, Du Z. Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications. Front Bioeng Biotechnol 2024; 12:1476447. [PMID: 39574462 PMCID: PMC11579925 DOI: 10.3389/fbioe.2024.1476447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Based on electrophysiological activity, neuroprostheses can effectively monitor and control neural activity. Currently, electrophysiological neuroprostheses are widely utilized in treating neurological disorders, particularly in restoring motor, visual, auditory, and somatosensory functions after nervous system injuries. They also help alleviate inflammation, regulate blood pressure, provide analgesia, and treat conditions such as epilepsy and Alzheimer's disease, offering significant research, economic, and social value. Enhancing the targeting capabilities of neuroprostheses remains a key objective for researchers. Modeling and simulation techniques facilitate the theoretical analysis of interactions between neuroprostheses and the nervous system, allowing for quantitative assessments of targeting efficiency. Throughout the development of neuroprostheses, these modeling and simulation methods can save time, materials, and labor costs, thereby accelerating the rapid development of highly targeted neuroprostheses. This article introduces the fundamental principles of neuroprosthesis simulation technology and reviews how various simulation techniques assist in the design and performance enhancement of neuroprostheses. Finally, it discusses the limitations of modeling and simulation and outlines future directions for utilizing these approaches to guide neuroprosthesis design.
Collapse
Affiliation(s)
- Shu Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyi Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuchun Gou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Cheng
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinggang Jia
- Institute of Applied Physics and Computational Mathematics, Beijing, China
| | - Zhanhong Du
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Chin J, Settell ML, Brucker-Hahn MK, Lust D, Zhang J, Upadhye AR, Knudsen B, Deshmukh A, Ludwig KA, Lavrov IA, Crofton AR, Lempka SF, Zhang M, Shoffstall AJ. Quantification of porcine lower thoracic spinal cord morphology with intact dura mater using high-resolution μCT. J Neuroimaging 2024; 34:646-663. [PMID: 39390716 PMCID: PMC11767428 DOI: 10.1111/jon.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord stimulation (SCS) is approved by the Food and Drug Administration for treating chronic intractable pain in the back, trunk, or limbs through stimulation of the dorsal column. Numerous studies have used swine as an analog of the human spinal cord to better understand SCS and further improve its efficacy. We performed high-resolution imaging of the porcine spinal cord with intact dura mater using micro-computed tomography (μCT) to construct detailed 3-dimensional (3D) visualizations of the spinal cord and characterize the morphology of the dorsal and ventral rootlets. METHODS We obtained spinal cords from Yorkshire/Landrace crossbred swine (N = 7), stained samples with osmium tetroxide, and performed μCT imaging of the T12-T15 levels at isotropic voxel resolutions ranging from 3.3 to 50 μm. We measured the anatomical morphology using the 3D volumes and compared our results to measurements previously collected from swine and human spinal cords via microdissection techniques in prior literature. RESULTS While the porcine thoracic-lumbar spinal cord is a popular model for SCS, we highlight multiple notable differences compared to previously published T8-T12 human measurements including rootlet counts (porcine dorsal/ventral: 12.2 ± 2.6, 26.6 ± 3.4; human dorsal/ventral: 5.3 ± 1.3, 4.4 ± 2.4), rootlet angles (porcine ventral-rostral: 161 ± 1°, ventral-caudal: 155 ± 6°, dorsal-rostral: 148 ± 9°, dorsal-caudal: 142 ± 6°; human ventral-rostral: 170 ± 3°, ventral-caudal: 22 ± 10°, dorsal-rostral: 171 ± 3°, dorsal-caudal: 15 ± 7°), and the presence and count of dorsal rootlet bundles. CONCLUSIONS Detailed measurements and highlighted differences between human and porcine spinal cords can inform variations in modeling and electrophysiological experiments between the two species. In contrast to other approaches for measuring the spinal cord and rootlet morphology, our method keeps the dura intact, reducing potential artifacts from dissection.
Collapse
Affiliation(s)
- Justin Chin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Megan L Settell
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meagan K Brucker-Hahn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Lust
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Aniruddha R Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Bruce Knudsen
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
| | - Ashlesha Deshmukh
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kip A Ludwig
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Igor A Lavrov
- Department Neurology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew R Crofton
- Department of Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology and Cell Biology, University of South Florida, Tampa, Florida, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Marcinkowska W, Zielinska N, Szewczyk B, Łabętowicz P, Głowacka M, Olewnik Ł. Morphological Variability of the Sural Nerve and Its Clinical Significance. J Clin Med 2024; 13:6055. [PMID: 39458004 PMCID: PMC11508416 DOI: 10.3390/jcm13206055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The sural nerve provides sensory innervation to the skin on the distal posterolateral third of the lower extremity. The morphological variants are characterized by high variability. However, it most commonly arises from a union of the medial sural cutaneous nerve and the peroneal communicating branch of the common fibular nerve. This article overviews the anatomical and clinical significance of the sural nerve. Despite the remarkable development of genetic diagnostics, sural nerve biopsy is still a very important tool to diagnose peripheral neuropathies such as diabetic, vascular and inflammatory neuropathies. Furthermore, the sural nerve is also commonly transplanted due to its characteristics. Such a procedure is applicable in cases of segmental nerve loss, but it is also used to restore potency in patients after radical prostatectomy. The knowledge of anatomical variants of the sural nerve is also crucial as it allows to minimize its damage during surgical procedures. Furthermore, during an ankle surgery, a nerve block can be used to complement anesthesia. The major aim of this work is to review contributions of the sural nerve to physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Weronika Marcinkowska
- Department of Anatomical Dissection and Donation, Medical University of Lodz, 90-419 Łódź, Poland;
| | - Nicol Zielinska
- Department of Clinical Anatomy, Masovian Academy in Płock, 09-402 Płock, Poland; (N.Z.); (B.S.); (P.Ł.)
| | - Bartłomiej Szewczyk
- Department of Clinical Anatomy, Masovian Academy in Płock, 09-402 Płock, Poland; (N.Z.); (B.S.); (P.Ł.)
| | - Piotr Łabętowicz
- Department of Clinical Anatomy, Masovian Academy in Płock, 09-402 Płock, Poland; (N.Z.); (B.S.); (P.Ł.)
| | - Mariola Głowacka
- Nursing Department, Masovian Academy in Płock, 09-402 Płock, Poland;
| | - Łukasz Olewnik
- Department of Clinical Anatomy, Masovian Academy in Płock, 09-402 Płock, Poland; (N.Z.); (B.S.); (P.Ł.)
| |
Collapse
|
11
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
12
|
Riley M, Tala FNU, Johnson KJ, Johnson BC. Multi-Channel Microscale Nerve Cuffs for Spatially Selective Neuromodulation. MICROMACHINES 2024; 15:1036. [PMID: 39203687 PMCID: PMC11356344 DOI: 10.3390/mi15081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024]
Abstract
Peripheral nerve modulation via electrical stimulation shows promise for treating several diseases, but current approaches lack selectivity, leading to side effects. Exploring selective neuromodulation with commercially available nerve cuffs is impractical due to their high cost and limited spatial resolution. While custom cuffs reported in the literature achieve high spatial resolutions, they require specialized microfabrication equipment and significant effort to produce even a single design. This inability to rapidly and cost-effectively prototype novel cuff designs impedes research into selective neuromodulation therapies in acute studies. To address this, we developed a reproducible method to easily create multi-channel epineural nerve cuffs for selective fascicular neuromodulation. Leveraging commercial flexible printed circuit (FPC) technology, we created cuffs with high spatial resolution (50 μm) and customizable parameters like electrode size, channel count, and cuff diameter. We designed cuffs to accommodate adult mouse or rat sciatic nerves (300-1500 μm diameter). We coated the electrodes with PEDOT:PSS to improve the charge injection capacity. We demonstrated selective neuromodulation in both rats and mice, achieving preferential activation of the tibialis anterior (TA) and lateral gastrocnemius (LG) muscles. Selectivity was confirmed through micro-computed tomography (μCT) and quantified through a selectivity index. These results demonstrate the potential of this fabrication method for enabling selective neuromodulation studies while significantly reducing production time and costs compared to traditional approaches.
Collapse
Affiliation(s)
- Morgan Riley
- Biomedical Engineering Doctoral Program, Boise State University, Boise, ID 83725, USA
| | - FNU Tala
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | | | - Benjamin C. Johnson
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
13
|
Kolluru C, Joseph N, Seckler J, Fereidouni F, Levenson R, Shoffstall A, Jenkins M, Wilson D. NerveTracker: a Python-based software toolkit for visualizing and tracking groups of nerve fibers in serial block-face microscopy with ultraviolet surface excitation images. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:076501. [PMID: 38912214 PMCID: PMC11188586 DOI: 10.1117/1.jbo.29.7.076501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024]
Abstract
Significance Information about the spatial organization of fibers within a nerve is crucial to our understanding of nerve anatomy and its response to neuromodulation therapies. A serial block-face microscopy method [three-dimensional microscopy with ultraviolet surface excitation (3D-MUSE)] has been developed to image nerves over extended depths ex vivo. To routinely visualize and track nerve fibers in these datasets, a dedicated and customizable software tool is required. Aim Our objective was to develop custom software that includes image processing and visualization methods to perform microscopic tractography along the length of a peripheral nerve sample. Approach We modified common computer vision algorithms (optic flow and structure tensor) to track groups of peripheral nerve fibers along the length of the nerve. Interactive streamline visualization and manual editing tools are provided. Optionally, deep learning segmentation of fascicles (fiber bundles) can be applied to constrain the tracts from inadvertently crossing into the epineurium. As an example, we performed tractography on vagus and tibial nerve datasets and assessed accuracy by comparing the resulting nerve tracts with segmentations of fascicles as they split and merge with each other in the nerve sample stack. Results We found that a normalized Dice overlap (Dice norm ) metric had a mean value above 0.75 across several millimeters along the nerve. We also found that the tractograms were robust to changes in certain image properties (e.g., downsampling in-plane and out-of-plane), which resulted in only a 2% to 9% change to the meanDice norm values. In a vagus nerve sample, tractography allowed us to readily identify that subsets of fibers from four distinct fascicles merge into a single fascicle as we move ∼ 5 mm along the nerve's length. Conclusions Overall, we demonstrated the feasibility of performing automated microscopic tractography on 3D-MUSE datasets of peripheral nerves. The software should be applicable to other imaging approaches. The code is available at https://github.com/ckolluru/NerveTracker.
Collapse
Affiliation(s)
- Chaitanya Kolluru
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Naomi Joseph
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - James Seckler
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Farzad Fereidouni
- UC Davis Medical Center, Department of Pathology and Laboratory Medicine, Sacramento, California, United States
| | - Richard Levenson
- UC Davis Medical Center, Department of Pathology and Laboratory Medicine, Sacramento, California, United States
| | - Andrew Shoffstall
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States
| | - Michael Jenkins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| | - David Wilson
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Radiology, Cleveland, Ohio, United States
| |
Collapse
|
14
|
Jawad T, Koh RGL, Zariffa J. Selective peripheral nerve recording using simulated human median nerve activity and convolutional neural networks. Biomed Eng Online 2023; 22:118. [PMID: 38062509 PMCID: PMC10704747 DOI: 10.1186/s12938-023-01181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND It is difficult to create intuitive methods of controlling prosthetic limbs, often resulting in abandonment. Peripheral nerve interfaces can be used to convert motor intent into commands to a prosthesis. The Extraneural Spatiotemporal Compound Action Potentials Extraction Network (ESCAPE-NET) is a convolutional neural network (CNN) that has previously been demonstrated to be effective at discriminating neural sources in rat sciatic nerves. ESCAPE-NET was designed to operate using data from multi-channel nerve cuff arrays, and use the resulting spatiotemporal signatures to classify individual naturally evoked compound action potentials (nCAPs) based on differing source fascicles. The applicability of this approach to larger and more complex nerves is not well understood. To support future translation to humans, the objective of this study was to characterize the performance of this approach in a computational model of the human median nerve. METHODS Using a cross-sectional immunohistochemistry image of a human median nerve, a finite-element model was generated and used to simulate extraneural recordings. ESCAPE-NET was used to classify nCAPs based on source location, for varying numbers of sources and noise levels. The performance of ESCAPE-NET was also compared to ResNet-50 and MobileNet-V2 in the context of classifying human nerve cuff data. RESULTS Classification accuracy was found to be inversely related to the number of nCAP sources in ESCAPE-NET (3-class: 97.8% ± 0.1%; 10-class: 89.3% ± 5.4% in low-noise conditions, 3-class: 70.3% ± 0.1%; 10-class: 52.5% ± 0.3% in high-noise conditions). ESCAPE-NET overall outperformed both MobileNet-V2 (3-class: 96.5% ± 1.1%; 10-class: 84.9% ± 1.7% in low-noise conditions, 3-class: 86.0% ± 0.6%; 10-class: 41.4% ± 0.9% in high-noise conditions) and ResNet-50 (3-class: 71.2% ± 18.6%; 10-class: 40.1% ± 22.5% in low-noise conditions, 3-class: 81.3% ± 4.4%; 10-class: 31.9% ± 4.4% in high-noise conditions). CONCLUSION All three networks were found to learn to differentiate nCAPs from different sources, as evidenced by performance levels well above chance in all cases. ESCAPE-NET was found to have the most robust performance, despite decreasing performance as the number of classes increased, and as noise was varied. These results provide valuable translational guidelines for designing neural interfaces for human use.
Collapse
Affiliation(s)
- Taseen Jawad
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ryan G L Koh
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
| | - José Zariffa
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada.
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Mandeville R, Deshmukh S, Tan ET, Kumar V, Sanchez B, Dowlatshahi AS, Luk J, See RHB, Leochico CFD, Thum JA, Bazarek S, Johnston B, Brown J, Wu J, Sneag D, Rutkove S. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration and regeneration: part 2, non-invasive imaging. J Neural Eng 2023; 20:041002. [PMID: 37369193 DOI: 10.1088/1741-2552/ace217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Peripheral neuroregenerative research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, novel biomarkers can elucidate regenerative mechanisms and open new avenues for research. Without such measures, clinical decision-making is impaired, and research becomes more costly, time-consuming, and sometimes infeasible. Part 1 of this two-part scoping review focused on neurophysiology. In part 2, we identify and critically examine many current and emerging non-invasive imaging techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Swati Deshmukh
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Ek Tsoon Tan
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Benjamin Sanchez
- Department Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Arriyan S Dowlatshahi
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Justin Luk
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Reiner Henson B See
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Carl Froilan D Leochico
- Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City, Taguig, The Philippines
- Department of Rehabilitation Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, The Philippines
| | - Jasmine A Thum
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stanley Bazarek
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Benjamin Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Jim Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Darryl Sneag
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| |
Collapse
|
16
|
Buyukcelik ON, Lapierre-Landry M, Kolluru C, Upadhye AR, Marshall DP, Pelot NA, Ludwig KA, Gustafson KJ, Wilson DL, Jenkins MW, Shoffstall AJ. Deep-learning segmentation of fascicles from microCT of the human vagus nerve. Front Neurosci 2023; 17:1169187. [PMID: 37332862 PMCID: PMC10275336 DOI: 10.3389/fnins.2023.1169187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MicroCT of the three-dimensional fascicular organization of the human vagus nerve provides essential data to inform basic anatomy as well as the development and optimization of neuromodulation therapies. To process the images into usable formats for subsequent analysis and computational modeling, the fascicles must be segmented. Prior segmentations were completed manually due to the complex nature of the images, including variable contrast between tissue types and staining artifacts. Methods Here, we developed a U-Net convolutional neural network (CNN) to automate segmentation of fascicles in microCT of human vagus nerve. Results The U-Net segmentation of ~500 images spanning one cervical vagus nerve was completed in 24 s, versus ~40 h for manual segmentation, i.e., nearly four orders of magnitude faster. The automated segmentations had a Dice coefficient of 0.87, a measure of pixel-wise accuracy, thus suggesting a rapid and accurate segmentation. While Dice coefficients are a commonly used metric to assess segmentation performance, we also adapted a metric to assess fascicle-wise detection accuracy, which showed that our network accurately detects the majority of fascicles, but may under-detect smaller fascicles. Discussion This network and the associated performance metrics set a benchmark, using a standard U-Net CNN, for the application of deep-learning algorithms to segment fascicles from microCT images. The process may be further optimized by refining tissue staining methods, modifying network architecture, and expanding the ground-truth training data. The resulting three-dimensional segmentations of the human vagus nerve will provide unprecedented accuracy to define nerve morphology in computational models for the analysis and design of neuromodulation therapies.
Collapse
Affiliation(s)
- Ozge N. Buyukcelik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Aniruddha R. Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Daniel P. Marshall
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, United States
- Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering, Madison, WI, United States
| | - Kenneth J. Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
17
|
Thompson N, Ravagli E, Mastitskaya S, Iacoviello F, Stathopoulou TR, Perkins J, Shearing PR, Aristovich K, Holder D. Organotopic organization of the porcine mid-cervical vagus nerve. Front Neurosci 2023; 17:963503. [PMID: 37205051 PMCID: PMC10185768 DOI: 10.3389/fnins.2023.963503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Despite detailed characterization of fascicular organization of somatic nerves, the functional anatomy of fascicles evident in human and large mammal cervical vagus nerve is unknown. The vagus nerve is a prime target for intervention in the field of electroceuticals due to its extensive distribution to the heart, larynx, lungs, and abdominal viscera. However, current practice of the approved vagus nerve stimulation (VNS) technique is to stimulate the entire nerve. This produces indiscriminate stimulation of non-targeted effectors and undesired side effects. Selective neuromodulation is now a possibility with a spatially-selective vagal nerve cuff. However, this requires the knowledge of the fascicular organization at the level of cuff placement to inform selectivity of only the desired target organ or function. Methods and results We imaged function over milliseconds with fast neural electrical impedance tomography and selective stimulation, and found consistent spatially separated regions within the nerve correlating with the three fascicular groups of interest, suggesting organotopy. This was independently verified with structural imaging by tracing anatomical connections from the end organ with microCT and the development of an anatomical map of the vagus nerve. This confirmed organotopic organization. Discussion Here we show, for the first time, localized fascicles in the porcine cervical vagus nerve which map to cardiac, pulmonary and recurrent laryngeal function (N = 4). These findings pave the way for improved outcomes in VNS as unwanted side effects could be reduced by targeted selective stimulation of identified organ-specific fiber-containing fascicles and the extension of this technique clinically beyond the currently approved disorders to treat heart failure, chronic inflammatory disorders, and more.
Collapse
Affiliation(s)
- Nicole Thompson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Enrico Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Francesco Iacoviello
- Electrochemical Innovations Lab, Department of Chemical Engineering, University College London, London, United Kingdom
| | | | - Justin Perkins
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Paul R. Shearing
- Electrochemical Innovations Lab, Department of Chemical Engineering, University College London, London, United Kingdom
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
18
|
Jayaprakash N, Song W, Toth V, Vardhan A, Levy T, Tomaio J, Qanud K, Mughrabi I, Chang YC, Rob M, Daytz A, Abbas A, Nassrallah Z, Volpe BT, Tracey KJ, Al-Abed Y, Datta-Chaudhuri T, Miller L, Barbe MF, Lee SC, Zanos TP, Zanos S. Organ- and function-specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation. Brain Stimul 2023; 16:484-506. [PMID: 36773779 DOI: 10.1016/j.brs.2023.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Vagal fibers travel inside fascicles and form branches to innervate organs and regulate organ functions. Existing vagus nerve stimulation (VNS) therapies activate vagal fibers non-selectively, often resulting in reduced efficacy and side effects from non-targeted organs. The transverse and longitudinal arrangement of fibers inside the vagal trunk with respect to the functions they mediate and organs they innervate is unknown, however it is crucial for selective VNS. Using micro-computed tomography imaging, we tracked fascicular trajectories and found that, in swine, sensory and motor fascicles are spatially separated cephalad, close to the nodose ganglion, and merge caudad, towards the lower cervical and upper thoracic region; larynx-, heart- and lung-specific fascicles are separated caudad and progressively merge cephalad. Using quantified immunohistochemistry at single fiber level, we identified and characterized all vagal fibers and found that fibers of different morphological types are differentially distributed in fascicles: myelinated afferents and efferents occupy separate fascicles, myelinated and unmyelinated efferents also occupy separate fascicles, and small unmyelinated afferents are widely distributed within most fascicles. We developed a multi-contact cuff electrode to accommodate the fascicular structure of the vagal trunk and used it to deliver fascicle-selective cervical VNS in anesthetized and awake swine. Compound action potentials from distinct fiber types, and physiological responses from different organs, including laryngeal muscle, cough, breathing, and heart rate responses are elicited in a radially asymmetric manner, with consistent angular separations that agree with the documented fascicular organization. These results indicate that fibers in the trunk of the vagus nerve are anatomically organized according to functions they mediate and organs they innervate and can be asymmetrically activated by fascicular cervical VNS.
Collapse
Affiliation(s)
| | - Weiguo Song
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Viktor Toth
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Todd Levy
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Khaled Qanud
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Yao-Chuan Chang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Moontahinaz Rob
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anna Daytz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Adam Abbas
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Bruce T Volpe
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yousef Al-Abed
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Larry Miller
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Sunhee C Lee
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|
19
|
Upadhye AR, Kolluru C, Druschel L, Al Lababidi L, Ahmad SS, Menendez DM, Buyukcelik ON, Settell ML, Blanz SL, Jenkins MW, Wilson DL, Zhang J, Tatsuoka C, Grill WM, Pelot NA, Ludwig KA, Gustafson KJ, Shoffstall AJ. Fascicles split or merge every ∼560 microns within the human cervical vagus nerve. J Neural Eng 2022; 19:054001. [PMID: 36174538 PMCID: PMC10353574 DOI: 10.1088/1741-2552/ac9643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is Food and Drug Administration-approved for epilepsy, depression, and obesity, and stroke rehabilitation; however, the morphological anatomy of the vagus nerve targeted by stimulatation is poorly understood. Here, we used microCT to quantify the fascicular structure and neuroanatomy of human cervical vagus nerves (cVNs).Approach.We collected eight mid-cVN specimens from five fixed cadavers (three left nerves, five right nerves). Analysis focused on the 'surgical window': 5 cm of length, centered around the VNS implant location. Tissue was stained with osmium tetroxide, embedded in paraffin, and imaged on a microCT scanner. We visualized and quantified the merging and splitting of fascicles, and report a morphometric analysis of fascicles: count, diameter, and area.Main results.In our sample of human cVNs, a fascicle split or merge event was observed every ∼560µm (17.8 ± 6.1 events cm-1). Mean morphological outcomes included: fascicle count (6.6 ± 2.8 fascicles; range 1-15), fascicle diameter (514 ± 142µm; range 147-1360µm), and total cross-sectional fascicular area (1.32 ± 0.41 mm2; range 0.58-2.27 mm).Significance.The high degree of fascicular splitting and merging, along with wide range in key fascicular morphological parameters across humans may help to explain the clinical heterogeneity in patient responses to VNS. These data will enable modeling and experimental efforts to determine the clinical effect size of such variation. These data will also enable efforts to design improved VNS electrodes.
Collapse
Affiliation(s)
- Aniruddha R Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Lindsey Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Luna Al Lababidi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Sami S Ahmad
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Ozge N Buyukcelik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Megan L Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Stephan L Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jing Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
- FES Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- FES Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| |
Collapse
|
20
|
Kronsteiner B, Zopf LM, Heimel P, Oberoi G, Kramer AM, Slezak P, Weninger WJ, Podesser BK, Kiss A, Moscato F. Mapping the functional anatomy and topography of the cardiac autonomic innervation for selective cardiac neuromodulation using MicroCT. Front Cell Dev Biol 2022; 10:968870. [PMID: 36172280 PMCID: PMC9511100 DOI: 10.3389/fcell.2022.968870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: Vagus nerve stimulation (VNS) has gained great importance as a promising therapy for a myriad of diseases. Of particular interest is the therapy of cardiovascular diseases, such as heart failure or atrial fibrillation using selective cardiac VNS. However, there is still a lack of organ-specific anatomical knowledge about the fascicular anatomy and topography of the cardiac branch (CB), which diminishes the therapeutic possibilities for selective cardiac neuromodulation. Here, we established a topographical and anatomical map of the superior cardiac VN in two animal species to dissect cervical and cardiac VN morphology. Methods: Autonomic nerves including superior CBs were harvested from domestic pigs and New Zeeland rabbits followed by imaging with microcomputed tomography (µCT) and 3D rendering. The data were analyzed in terms of relevant topographical and anatomical parameters. Results: Our data showed that cardiac vagal fascicles remained separated from other VN fascicles up to 22.19 mm (IQR 14.02-41.30 mm) in pigs and 7.68 mm (IQR 4.06-12.77 mm) in rabbits from the CB point and then started merging with other fascicles. Exchanges of nerve fascicles between sympathetic trunk (ST) and VN were observed in 3 out of 11 nerves, which might cause additional unwanted effects in unselective VNS. Our 3D rendered digital model of the cardiac fascicles was generated showing that CB first remained on the medial side where it branched off the VN, as also shown in the µCT data of 11 pig nerves, and then migrated towards the ventromedial site the further it was traced cranially. Conclusion: Our data provided an anatomical map of the cardiac vagal branches including cervical VN and ST for future approaches of selective cardiac neurostimulation, indicating the best position of selective cardiac VNS just above the CB point.
Collapse
Affiliation(s)
- Bettina Kronsteiner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Lydia M. Zopf
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Patrick Heimel
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Dental Clinic Vienna, Vienna, Austria
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Anne M. Kramer
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Paul Slezak
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang J. Weninger
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
21
|
Kolluru C, Todd A, Upadhye AR, Liu Y, Berezin MY, Fereidouni F, Levenson RM, Wang Y, Shoffstall AJ, Jenkins MW, Wilson DL. Imaging peripheral nerve micro-anatomy with MUSE, 2D and 3D approaches. Sci Rep 2022; 12:10205. [PMID: 35715554 PMCID: PMC9205958 DOI: 10.1038/s41598-022-14166-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/02/2022] [Indexed: 01/25/2023] Open
Abstract
Understanding peripheral nerve micro-anatomy can assist in the development of safe and effective neuromodulation devices. However, current approaches for imaging nerve morphology at the fiber level are either cumbersome, require substantial instrumentation, have a limited volume of view, or are limited in resolution/contrast. We present alternative methods based on MUSE (Microscopy with Ultraviolet Surface Excitation) imaging to investigate peripheral nerve morphology, both in 2D and 3D. For 2D imaging, fixed samples are imaged on a conventional MUSE system either label free (via auto-fluorescence) or after staining with fluorescent dyes. This method provides a simple and rapid technique to visualize myelinated nerve fibers at specific locations along the length of the nerve and perform measurements of fiber morphology (e.g., axon diameter and g-ratio). For 3D imaging, a whole-mount staining and MUSE block-face imaging method is developed that can be used to characterize peripheral nerve micro-anatomy and improve the accuracy of computational models in neuromodulation. Images of rat sciatic and human cadaver tibial nerves are presented, illustrating the applicability of the method in different preclinical models.
Collapse
Affiliation(s)
- Chaitanya Kolluru
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Austin Todd
- grid.267309.90000 0001 0629 5880University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Aniruddha R. Upadhye
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106 USA
| | - Yehe Liu
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Mikhail Y. Berezin
- grid.4367.60000 0001 2355 7002Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Farzad Fereidouni
- grid.416958.70000 0004 0413 7653Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, CA 95817 USA
| | - Richard M. Levenson
- grid.416958.70000 0004 0413 7653Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, CA 95817 USA
| | - Yanming Wang
- grid.67105.350000 0001 2164 3847Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Andrew J. Shoffstall
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484APT Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106 USA
| | - Michael W. Jenkins
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.67105.350000 0001 2164 3847Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106 USA
| | - David L. Wilson
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.67105.350000 0001 2164 3847Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
22
|
Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022; 9:866957. [PMID: 35463766 PMCID: PMC9021417 DOI: 10.3389/fcvm.2022.866957] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.
Collapse
Affiliation(s)
- Matteo Maria Ottaviani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fabio Vallone
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Fabio A. Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
23
|
Vallone F, Ottaviani MM, Dedola F, Cutrone A, Romeni S, Panarese AM, Bernini F, Cracchiolo M, Strauss I, Gabisonia K, Gorgodze N, Mazzoni A, Recchia FA, Micera S. Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals. J Neural Eng 2021; 18. [PMID: 34153949 DOI: 10.1088/1741-2552/ac0d42] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Objective. Bioelectronic medicine is opening new perspectives for the treatment of some major chronic diseases through the physical modulation of autonomic nervous system activity. Being the main peripheral route for electrical signals between central nervous system and visceral organs, the vagus nerve (VN) is one of the most promising targets. Closed-loop VN stimulation (VNS) would be crucial to increase effectiveness of this approach. Therefore, the extrapolation of useful physiological information from VN electrical activity would represent an invaluable source for single-target applications. Here, we present an advanced decoding algorithm novel to VN studies and properly detecting different functional changes from VN signals.Approach. VN signals were recorded using intraneural electrodes in anaesthetized pigs during cardiovascular and respiratory challenges mimicking increases in arterial blood pressure, tidal volume and respiratory rate. We developed a decoding algorithm that combines discrete wavelet transformation, principal component analysis, and ensemble learning made of classification trees.Main results. The new decoding algorithm robustly achieved high accuracy levels in identifying different functional changes and discriminating among them. Interestingly our findings suggest that electrodes positioning plays an important role on decoding performances. We also introduced a new index for the characterization of recording and decoding performance of neural interfaces. Finally, by combining an anatomically validated hybrid neural model and discrimination analysis, we provided new evidence suggesting a functional topographical organization of VN fascicles.Significance. This study represents an important step towards the comprehension of VN signaling, paving the way for the development of effective closed-loop VNS systems.
Collapse
Affiliation(s)
- Fabio Vallone
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Maria Ottaviani
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Francesca Dedola
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Annarita Cutrone
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Simone Romeni
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Adele Macrí Panarese
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Bernini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marina Cracchiolo
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ivo Strauss
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Khatia Gabisonia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Nikoloz Gorgodze
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Ravagli E, Mastitskaya S, Thompson N, Welle EJ, Chestek CA, Aristovich K, Holder D. Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays. J Neurosci Methods 2021; 358:109140. [PMID: 33774053 PMCID: PMC8249910 DOI: 10.1016/j.jneumeth.2021.109140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND The lack of understanding of fascicular organisation in peripheral nerves limits the potential of vagus nerve stimulation therapy. Two promising methods may be employed to identify the functional anatomy of fascicles within the nerve: fast neural electrical impedance tomography (EIT), and penetrating multi-electrode arrays (MEA). These could provide a means to image the compound action potential within fascicles in the nerve. NEW METHOD We compared the ability to localise fascicle activity between silicon shanks (SS) and carbon fibre (CF) multi-electrode arrays and fast neural EIT, with micro-computed tomography (MicroCT) as an independent reference. Fast neural EIT in peripheral nerves was only recently developed and MEA technology has been used only sparingly in nerves and not for source localisation. Assessment was performed in rat sciatic nerves while evoking neural activity in the tibial and peroneal fascicles. RESULTS Recorded compound action potentials were larger with CF compared to SS (∼700 μV vs ∼300 μV); however, background noise was greater (6.3 μV vs 1.7 μV) leading to lower SNR. Maximum spatial discrimination between Centres-of-Mass of fascicular activity was achieved by fast neural EIT (402 ± 30 μm) and CF MEA (414 ± 123 μm), with no statistical difference between MicroCT (625 ± 17 μm) and CF (p > 0.05) and between CF and EIT (p > 0.05). Compared to CF MEAs, SS MEAs had a lower discrimination power (103 ± 51 μm, p < 0.05). COMPARISON WITH EXISTING METHODS EIT and CF MEAs showed localisation power closest to MicroCT. Silicon MEAs adopted in this study failed to discriminate fascicle location. Re-design of probe geometry may improve results. CONCLUSIONS Nerve EIT is an accurate tool for assessment of fascicular position within nerves. Accuracy of EIT and CF MEA is similar to the reference method. We give technical recommendations for performing multi-electrode recordings in nerves.
Collapse
Affiliation(s)
- Enrico Ravagli
- Medical Physics and Biomedical Engineering, University College London, UK.
| | | | - Nicole Thompson
- Medical Physics and Biomedical Engineering, University College London, UK
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kirill Aristovich
- Medical Physics and Biomedical Engineering, University College London, UK
| | - David Holder
- Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
25
|
Fitchett A, Mastitskaya S, Aristovich K. Selective Neuromodulation of the Vagus Nerve. Front Neurosci 2021; 15:685872. [PMID: 34108861 PMCID: PMC8180849 DOI: 10.3389/fnins.2021.685872] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Vagus nerve stimulation (VNS) is an effective technique for the treatment of refractory epilepsy and shows potential for the treatment of a range of other serious conditions. However, until now stimulation has generally been supramaximal and non-selective, resulting in a range of side effects. Selective VNS (sVNS) aims to mitigate this by targeting specific fiber types within the nerve to produce functionally specific effects. In recent years, several key paradigms of sVNS have been developed-spatially selective, fiber-selective, anodal block, neural titration, and kilohertz electrical stimulation block-as well as various stimulation pulse parameters and electrode array geometries. sVNS can significantly reduce the severity of side effects, and in some cases increase efficacy of the treatment. While most studies have focused on fiber-selective sVNS, spatially selective sVNS has demonstrated comparable mitigation of side-effects. It has the potential to achieve greater specificity and provide crucial information about vagal nerve physiology. Anodal block achieves strong side-effect mitigation too, but is much less specific than fiber- and spatially selective paradigms. The major hurdle to achieving better selectivity of VNS is a limited knowledge of functional anatomical organization of vagus nerve. It is also crucial to optimize electrode array geometry and pulse shape, as well as expand the applications of sVNS beyond the current focus on cardiovascular disease.
Collapse
Affiliation(s)
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
26
|
Mastitskaya S, Thompson N, Holder D. Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Front Neurosci 2021; 15:667036. [PMID: 33927594 PMCID: PMC8076564 DOI: 10.3389/fnins.2021.667036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury. It is induced by sepsis, aspiration, and pneumonia, including that caused by SARS coronavirus and human influenza viruses. The main pathophysiological mechanism of ARDS is a systemic inflammatory response. Vagus nerve stimulation (VNS) can limit cytokine production in the spleen and thereby dampen any systemic inflammation and inflammation-induced tissue damage in the lungs and other organs. However, the effects of increased parasympathetic outflow to the lungs when non-selective VNS is applied may result in bronchoconstriction, increased mucus secretion and enhance local pulmonary inflammatory activity; this may outweigh the beneficial systemic anti-inflammatory action of VNS. Organ/function-specific therapy can be achieved by imaging of localized fascicle activity within the vagus nerve and selective stimulation of identified organ-specific fascicles. This may be able to provide selective neuromodulation of different pathways within the vagus nerve and offer a novel means to improve outcome in ARDS. This has motivated this review in which we discuss the mechanisms of anti-inflammatory effects of VNS, progress in selective VNS techniques, and a possible application for ARDS.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | |
Collapse
|
27
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
28
|
Cellular and molecular profiles of anterior nervous system regeneration in Diopatra claparedii Grube, 1878 (Annelida, Polychaeta). Heliyon 2021; 7:e06307. [PMID: 33681499 PMCID: PMC7930291 DOI: 10.1016/j.heliyon.2021.e06307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
The polychaete Diopatra claparedii Grube, 1878 is among those organisms successfully carrying out full body regeneration, including the whole nervous system. Thus, D. claparedii potentially can be regarded for the nervous system regeneration (NSR) study. However, data on the property of its nervous system and the NSR profile are still lacking. In this study, we investigated the morphology of D. claparedii anterior nervous system (ANS) and examined the cellular and molecular profiles on its early anterior NSR. The nervous system of D. claparedii consists of a symmetry brain with nerves branching off, circumpharyngeal connectives that connect the brain and nerve cord as well as obvious segmental ganglia. Moreover, we identified changes in the cellular condition of the ganglionic cells in the regenerating tissue, such as the accumulation of lysosomes and lipofuscins, elongated mitochondria and multiple nucleoli. Furthermore, mRNA of tissues at two regenerating stages, as well as intact tissue (non-regenerating), were sequenced with Illumina sequencer. We identified from these tissues 37,248 sequences, 18 differential expressed proteins of which upregulated were involved in NSR with noelin-like isoform X2 turned up to be the highest being expressed. Our results highlight the cellular and molecular changes during early phase of NSR, thus providing essential insights on regeneration within Annelida and understanding the neurodegenerative diseases.
Collapse
|
29
|
Kolluru C, Subramaniam A, Liu Y, Upadhye A, Khela M, Druschel L, Fereidouni F, Levenson R, Shoffstall A, Jenkins M, Wilson DL. 3D imaging of the vagus nerve fascicular anatomy with cryo-imaging and UV excitation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 11649:1164910. [PMID: 35313654 PMCID: PMC8934573 DOI: 10.1117/12.2577037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vagus nerve stimulation (VNS) is a method to treat drug-resistant epilepsy and depression, but therapeutic outcomes are often not ideal. Newer electrode designs such as intra-fascicular electrodes offer potential improvements in reducing off-target effects but require a detailed understanding of the fascicular anatomy of the vagus nerve. We have adapted a section-and-image technique, cryo-imaging, with UV excitation to visualize fascicles along the length of the vagus nerve. In addition to offering optical sectioning at the surface via reduced penetration depth, UV illumination also produces sufficient contrast between fascicular structures and connective tissue. Here we demonstrate the utility of this approach in pilot experiments. We imaged fixed, cadaver vagus nerve samples, segmented fascicles, and demonstrated 3D tracking of fascicles. Such data can serve as input for computer models of vagus nerve stimulation.
Collapse
Affiliation(s)
- Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ananya Subramaniam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Aniruddha Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Monty Khela
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsey Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Andrew Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
30
|
Ravagli E, Mastitskaya S, Thompson N, Iacoviello F, Shearing PR, Perkins J, Gourine AV, Aristovich K, Holder D. Imaging fascicular organization of rat sciatic nerves with fast neural electrical impedance tomography. Nat Commun 2020; 11:6241. [PMID: 33288760 PMCID: PMC7721735 DOI: 10.1038/s41467-020-20127-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Imaging compound action potentials (CAPs) in peripheral nerves could help avoid side effects in neuromodulation by selective stimulation of identified fascicles. Existing methods have low resolution, limited imaging depth, or are invasive. Fast neural electrical impedance tomography (EIT) allows fascicular CAP imaging with a resolution of <200 µm, <1 ms using a non-penetrating flexible nerve cuff electrode array. Here, we validate EIT imaging in rat sciatic nerve by comparison to micro-computed tomography (microCT) and histology with fluorescent dextran tracers. With EIT, there are reproducible localized changes in tissue impedance in response to stimulation of individual fascicles (tibial, peroneal and sural). The reconstructed EIT images correspond to microCT scans and histology, with significant separation between the fascicles (p < 0.01). The mean fascicle position is identified with an accuracy of 6% of nerve diameter. This suggests fast neural EIT can reliably image the functional fascicular anatomy of the nerves and so aid selective neuromodulation.
Collapse
Affiliation(s)
- Enrico Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Nicole Thompson
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Francesco Iacoviello
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London, UK
| | - Paul R Shearing
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London, UK
| | - Justin Perkins
- Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
31
|
Xia CW, Gan RL, Pan JR, Hu SQ, Zhou QZ, Chen S, Zhang L, Hu QG, Wang YX. Lugol's Iodine-Enhanced Micro-CT: A Potential 3-D Imaging Method for Detecting Tongue Squamous Cell Carcinoma Specimens in Surgery. Front Oncol 2020; 10:550171. [PMID: 33194607 PMCID: PMC7609877 DOI: 10.3389/fonc.2020.550171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
Background A positive surgical margin (PSM) following oral cancer resection results in local recurrence and poor prognosis. Mono-block tumor specimens, especially from the tumor base, are difficult to evaluate. This inaccurate sampling ultimately leads to a false pathological diagnosis. Lugol’s iodine (I2-IK)-enhanced micro-CT is an emerging method to image tumor specimens. This study explores the feasibility of I2-IK-enhanced micro-CT to evaluate the surgical margin for tongue squamous cell carcinoma (TSCC) specimens and to further seek optimal staining parameters. Methods Rabbit tongue tissues and human TSCC samples were imaged via I2-IK-enhanced micro-CT. The optimal I2-IK concentration and staining time were determined before clinical application using tissue shrinkage, micro-CT image quality, and effect on pathological diagnosis as assessment criteria. Next, 6 TSCC specimens were used to verify the process feasibility of surgical margin imaging with the optimal parameters. Finally, the possible reason by which I2-IK could enhance micro-CT imaging was validated in vitro. Results I2-IK staining influenced specimen shrinkage, micro-CT image quality, and pathological image quality in a concentration- and time-dependent manner. After comprehensively considering these indicators, 3% I2-IK staining for 48 and 12 h were found to be optimal for rabbit tongue tissues and TSCC samples, respectively. This method could provide a detailed 3-D structure of TSCC samples compared with H&E sections. Moreover, tumor and normal tissues could be differentiated by their glycogen content, which has high affinity with I2-IK. Conclusions I2-IK-enhanced micro-CT could, thus, indicate the tumor margin and assist pathological sampling in patients with TSCC postoperation.
Collapse
Affiliation(s)
- Cheng-Wan Xia
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong-Lin Gan
- Department of Stomatology, The Suzhou Hospital That Is Affiliated to the Nanjing Medical University, Suzhou, China
| | - Jiong-Ru Pan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shi-Qi Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qun-Zhi Zhou
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shen Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Zhang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin-Gang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Xin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Dahlin LB, Rix KR, Dahl VA, Dahl AB, Jensen JN, Cloetens P, Pacureanu A, Mohseni S, Thomsen NOB, Bech M. Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography. Sci Rep 2020; 10:7592. [PMID: 32371896 PMCID: PMC7200696 DOI: 10.1038/s41598-020-64430-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/14/2020] [Indexed: 01/06/2023] Open
Abstract
A deeper knowledge of the architecture of the peripheral nerve with three-dimensional (3D) imaging of the nerve tissue at the sub-cellular scale may contribute to unravel the pathophysiology of neuropathy. Here we demonstrate the feasibility of X-ray phase contrast holographic nanotomography to enable 3D imaging of nerves at high resolution, while covering a relatively large tissue volume. We show various subcomponents of human peripheral nerves in biopsies from patients with type 1 and 2 diabetes and in a healthy subject. Together with well-organized, parallel myelinated nerve fibres we show regenerative clusters with twisted nerve fibres, a sprouted axon from a node of Ranvier and other specific details. A novel 3D construction (with movie created) of a node of Ranvier with end segment of a degenerated axon and sprout of a regenerated one is captured. Many of these architectural elements are not described in the literature. Thus, X-ray phase contrast holographic nanotomography enables identifying specific morphological structures in 3D in peripheral nerve biopsies from a healthy subject and from patients with type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
| | - Kristian R Rix
- Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Vedrana A Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Anders B Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Janus N Jensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, 2800, Kgs Lyngby, Denmark
| | - Peter Cloetens
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Alexandra Pacureanu
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Simin Mohseni
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Niels O B Thomsen
- Department of Hand Surgery, Skåne University Hospital, Jan Waldenströms gata 5, SE-205 02, Malmö, Sweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden.
| |
Collapse
|
33
|
Ravagli E, Mastitskaya S, Thompson N, Aristovich K, Holder D. Optimization of the electrode drive pattern for imaging fascicular compound action potentials in peripheral nerve with fast neural electrical impedance tomography. Physiol Meas 2019; 40:115007. [PMID: 31694004 PMCID: PMC7214787 DOI: 10.1088/1361-6579/ab54eb] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The main objective of this study was to investigate which injection pattern led to the best imaging of fascicular compound activity in fast neural EIT of peripheral nerve using an external cylindrical 2 × 14-electrodes cuff. Specifically, the study addressed the identification of the optimal injection pattern and of the optimal region of the reconstructed volume to image fascicles. APPROACH The effect of three different measurement protocol features (transversal/longitudinal injection, drive electrode spacing, referencing configuration) over imaging was investigated in simulation with the use of realistic impedance changes and noise levels. Image-based metrics were employed to evaluate the quality of the reconstructions over the reconstruction domain. The optimal electrode addressing protocol suggested by the simulations was validated in vivo on the tibial and peroneal fascicles of rat sciatic peripheral nerves (N = 3) against MicroCT reference images. MAIN RESULTS Injecting current transversally, with spacing of ⩾4 electrodes apart (⩾100°) and single-ring referencing of measurements, led to the best overall localization when reconstructing on the edge of the electrode array closest to the reference. Longitudinal injection protocols led to a higher SNR of the reconstructed image but poorer localization. All in vivo EIT recordings had statistically significant impedance variations (p < 0.05). Overall, fascicle center-of-mass (CoM) localization error was estimated at 141 ± 56 µm (-26 ± 94 µm and 5 ± 29° in radial coordinates). Significant difference was found (p < 0.05) between mean angular location of the tibial and peroneal CoMs. SIGNIFICANCE This study gives the reader recommendations for performing fast neural EIT of fascicular compound activity using the most effective protocol features.
Collapse
Affiliation(s)
- Enrico Ravagli
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|