1
|
Korkeamäki JT, Rashad A, Ojansivu M, Karvinen J, Koivisto JT, Syverud K, Kellomäki M, Miettinen S, Mustafa K. Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering. Biofabrication 2025; 17:025005. [PMID: 39761639 DOI: 10.1088/1758-5090/ada63b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking.The first generation of bioinkswas established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability. Adding CNFs to Alg-Gel solution increased viscosity and printability without compromising cell viability. Inthe second generation of bioinks, the influence of nano-hydroxyapatite (nHA) on the performance of the optimized Alg-Gel-CNF formulation was investigated. The addition of nHA increased the viscosity and improved printability, and an adjustment in alginate concentration improved the stability of the structures in long-term culture. The third generation bioink incorporated RGD-functionalized alginate to support cell attachment and osteogenic differentiation. The optimized bioink composition exhibited improved printability, structural integrity in long-term culture and high hBMSC viability. In addition, the final bioink composition, RGD-Alg-Gel-CNF-nHA, showed osteogenic potential: production of the osteogenic marker proteins (Runx2, OCN), enzyme (ALP), and gene expression (Runx2,OCN). A further aim of the study was to evaluate the osteogenic functionality of cells released from the structures after bioprinting. Cells were printed in two bioinks with different viscosities and incubated at 37 °C in growth medium without additional CaCl2. This caused gelatin to dissolve, releasing the cells to attach to tissue culture plates. The results demonstrated differences in hBMSC osteogenic differentiation. Moreover, the osteogenic differentiation of the released cells was different from that of the embedded cells cultured in 3D. Thus, this systematic investigation into bioink development shows improved results through the generations and sheds light on the biological effects of the bioprinting process.
Collapse
Affiliation(s)
- Jannika T Korkeamäki
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Ahmad Rashad
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Miina Ojansivu
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Jennika Karvinen
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Janne T Koivisto
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Kristin Syverud
- RISE PFI, Trondheim, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Kamal Mustafa
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Montanari M, Korkeamäki JT, Campodoni E, Mohamed-Ahmed S, Mustafa K, Sandri M, Rashad A. Effects of Magnesium-Doped Hydroxyapatite Nanoparticles on Bioink Formulation for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2025; 8:535-547. [PMID: 39778105 PMCID: PMC11752522 DOI: 10.1021/acsabm.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg2+-doped nHA (N-HA) and a more amorphous, rounded Mg2+- and CO32--doped nHA (R-HA). To investigate the effects of the different compositions and morphologies of these nanoparticles on the bioprinting of human bone marrow stromal cells (hBMSCs), gelatin and gelatin methacryloyl (GelMA) were selected as the bioink backbone. The addition of 1% (w/w) of these bioceramic nanoparticles significantly improved the printability of GelMA in terms of extrudability, buildability, and filament spreading. The biological potential of the bioinks was evaluated by examining the hBMSC viability, metabolic activity, and osteogenic differentiation over 21 days. Both nHAs showed high cell viability, with N-HA showing a significant increase in metabolic activity under nonosteogenic conditions and R-HA showing a notable increase with osteogenic stimulation. These results suggest that the two nHAs interact differently with their environment, highlighting the importance of both the chemistry and morphology in bioink performance. In addition, osteogenic differentiation further highlighted how the physicochemical properties of nHAs influence osteogenic markers at both the RNA and protein levels. Clearly, tailoring the physicochemical properties of hydroxyapatite nanoparticles is critical to developing more biomimetic bioinks with great potential for advancing bone bioprinting applications.
Collapse
Affiliation(s)
- Margherita Montanari
- Institute
of Science, Technology and Sustainability for Ceramics (ISSMC)—National
Research Council (CNR), 48018 Faenza, Ravenna, Italy
| | - Jannika T. Korkeamäki
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
| | - Elisabetta Campodoni
- Institute
of Science, Technology and Sustainability for Ceramics (ISSMC)—National
Research Council (CNR), 48018 Faenza, Ravenna, Italy
| | - Samih Mohamed-Ahmed
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
| | - Kamal Mustafa
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
| | - Monica Sandri
- Institute
of Science, Technology and Sustainability for Ceramics (ISSMC)—National
Research Council (CNR), 48018 Faenza, Ravenna, Italy
| | - Ahmad Rashad
- Center
of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Honkamäki L, Kulta O, Puistola P, Hopia K, Emeh P, Isosaari L, Mörö A, Narkilahti S. Hyaluronic Acid-Based 3D Bioprinted Hydrogel Structure for Directed Axonal Guidance and Modeling Innervation In Vitro. Adv Healthc Mater 2025; 14:e2402504. [PMID: 39502022 DOI: 10.1002/adhm.202402504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Indexed: 01/03/2025]
Abstract
Neurons form predefined connections and innervate target tissues through elongating axons, which are crucial for the development, maturation, and function of these tissues. However, innervation is often overlooked in tissue engineering (TE) applications. Here, multimaterial 3D bioprinting is used to develop a novel 3D axonal guidance structure in vitro. The approach uses the stiffness difference of acellular hyaluronic acid-based bioink printed as two alternating, parallel-aligned filaments. The structure has soft passages incorporated with guidance cues for axonal elongation while the stiff bioink acts as a structural support and contact guidance. The mechanical properties and viscosity differences of the bioinks are confirmed. Additionally, human pluripotent stem cell (hPSC) -derived neurons form a 3D neuronal network in the softer bioink supplemented with guidance cues whereas the stiffer restricts the network formation. Successful 3D multimaterial bioprinting of the axonal structure enables complete innervation by peripheral neurons via soft passages within 14 days of culture. This model provides a novel, stable, and long-term platform for studies of 3D innervation and axonal dynamics in health and disease.
Collapse
Affiliation(s)
- Laura Honkamäki
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Oskari Kulta
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Karoliina Hopia
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Promise Emeh
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Lotta Isosaari
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Susanna Narkilahti
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| |
Collapse
|
4
|
Vuorenpää H, Valtonen J, Penttinen K, Koskimäki S, Hovinen E, Ahola A, Gering C, Parraga J, Kelloniemi M, Hyttinen J, Kellomäki M, Aalto-Setälä K, Miettinen S, Pekkanen-Mattila M. Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes. Cytotechnology 2024; 76:483-502. [PMID: 38933872 PMCID: PMC11196475 DOI: 10.1007/s10616-024-00630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00630-5.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Joona Valtonen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi Penttinen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Koskimäki
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Hovinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christine Gering
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenny Parraga
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Renkler NZ, Scialla S, Russo T, D’Amora U, Cruz-Maya I, De Santis R, Guarino V. Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain. Pharmaceutics 2024; 16:134. [PMID: 38276504 PMCID: PMC10819193 DOI: 10.3390/pharmaceutics16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales-from several hundred microns down to tens of nanometers-for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches-based on EFDTs-for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions.
Collapse
Affiliation(s)
- Nergis Zeynep Renkler
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| |
Collapse
|
6
|
Mörö A, Samanta S, Honkamäki L, Rangasami VK, Puistola P, Kauppila M, Narkilahti S, Miettinen S, Oommen O, Skottman H. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication 2022; 15. [PMID: 36579828 DOI: 10.1088/1758-5090/acab34] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Corneal transplantation remains gold standard for the treatment of severe cornea diseases, however, scarcity of donor cornea is a serious bottleneck. 3D bioprinting holds tremendous potential for cornea tissue engineering (TE). One of the key technological challenges is to design bioink compositions with ideal printability and cytocompatibility. Photo-crosslinking and ionic crosslinking are often used for the stabilization of 3D bioprinted structures, which can possess limitations on biological functionality of the printed cells. Here, we developed a hyaluronic acid-based dopamine containing bioink using hydrazone crosslinking chemistry for the 3D bioprinting of corneal equivalents. First, the shear thinning property, viscosity, and mechanical stability of the bioink were optimized before extrusion-based 3D bioprinting for the shape fidelity and self-healing property characterizations. Subsequently, human adipose stem cells (hASCs) and hASC-derived corneal stromal keratocytes were used for bioprinting corneal stroma structures and their cell viability, proliferation, microstructure and expression of key proteins (lumican, vimentin, connexin 43,α-smooth muscle actin) were evaluated. Moreover, 3D bioprinted stromal structures were implanted intoex vivoporcine cornea to explore tissue integration. Finally, human pluripotent stem cell derived neurons (hPSC-neurons), were 3D bioprinted to the periphery of the corneal structures to analyze innervation. The bioink showed excellent shear thinning property, viscosity, printability, shape fidelity and self-healing properties with high cytocompatibility. Cells in the printed structures displayed good tissue formation and 3D bioprinted cornea structures demonstrated excellentex vivointegration to host tissue as well asin vitroinnervation. The developed bioink and the printed cornea stromal equivalents hold great potential for cornea TE applications.
Collapse
Affiliation(s)
- Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Laura Honkamäki
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vignesh K Rangasami
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Maija Kauppila
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Narkilahti
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere 33520, Finland
| | - Oommen Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Heli Skottman
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
7
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
8
|
Räsänen N, Harju V, Joki T, Narkilahti S. Practical guide for preparation, computational reconstruction and analysis of 3D human neuronal networks in control and ischaemic conditions. Development 2022; 149:276215. [PMID: 35929583 PMCID: PMC9440753 DOI: 10.1242/dev.200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
To obtain commensurate numerical data of neuronal network morphology in vitro, network analysis needs to follow consistent guidelines. Important factors in successful analysis are sample uniformity, suitability of the analysis method for extracting relevant data and the use of established metrics. However, for the analysis of 3D neuronal cultures, there is little coherence in the analysis methods and metrics used in different studies. Here, we present a framework for the analysis of neuronal networks in 3D. First, we selected a hydrogel that supported the growth of human pluripotent stem cell-derived cortical neurons. Second, we tested and compared two software programs for tracing multi-neuron images in three dimensions and optimized a workflow for neuronal analysis using software that was considered highly suitable for this purpose. Third, as a proof of concept, we exposed 3D neuronal networks to oxygen-glucose deprivation- and ionomycin-induced damage and showed morphological differences between the damaged networks and control samples utilizing the proposed analysis workflow. With the optimized workflow, we present a protocol for preparing, challenging, imaging and analysing 3D human neuronal cultures. Summary: An optimized protocol is presented that allows morphological, quantifiable differences between the damaged and control human neuronal networks to be detected in three-dimensional cultures.
Collapse
Affiliation(s)
- Noora Räsänen
- Tampere University, 33100, Tampere Faculty of Medicine and Health Technology , , Finland
| | - Venla Harju
- Tampere University, 33100, Tampere Faculty of Medicine and Health Technology , , Finland
| | - Tiina Joki
- Tampere University, 33100, Tampere Faculty of Medicine and Health Technology , , Finland
| | - Susanna Narkilahti
- Tampere University, 33100, Tampere Faculty of Medicine and Health Technology , , Finland
| |
Collapse
|
9
|
Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, Singh P, Kumar V. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med 2022; 19:927-960. [PMID: 35661124 DOI: 10.1007/s13770-022-00459-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is a research domain that deals with the growth of various kinds of tissues with the help of synthetic composites. With the culmination of nanotechnology and bioengineering, tissue engineering has emerged as an exciting domain. Recent literature describes its various applications in biomedical and biological sciences, such as facilitating the growth of tissue and organs, gene delivery, biosensor-based detection, etc. It deals with the development of biomimetics to repair, restore, maintain and amplify or strengthen several biological functions at the level of tissue and organs. Herein, the synthesis of nanocomposites based on polymers, along with their classification as conductive hydrogels and bioscaffolds, is comprehensively discussed. Furthermore, their implementation in numerous tissue engineering and regenerative medicine applications is also described. The limitations of tissue engineering are also discussed here. The present review highlights and summarizes the latest progress in the tissue engineering domain directed at functionalized nanomaterials.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Bhawna
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India.
| | - Neelu Dheer
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India. .,Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
10
|
Samanta S, Ylä-Outinen L, Rangasami VK, Narkilahti S, Oommen OP. Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold. Acta Biomater 2022; 140:314-323. [PMID: 34902615 DOI: 10.1016/j.actbio.2021.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022]
Abstract
Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin sulfate (HA-CS) composite gels showed that the CS component prevails as the predominant factor for the growth of neuronal cells, albeit to modest efficacy. Covalent grafting of dopamine (DA) moieties to the HA-CS gel (HADA-CS) enhanced the scaffold stability and stimulated the gel's remodeling properties by entrapping cell-secreted laminin, and binding brain-derived neurotrophic factor (BDNF). Neurons cultured in the scaffold expressed Col1, Col11, and ITGB4; important for cell adhesion and cell-ECM signaling. Thus, the HA-CS scaffold with integrated chemical cues (DA) supported neuronal growth and network formation. This scaffold offers a valuable tool for tissue engineering and disease modeling and helps in bridging the gap between animal models and human diseases by providing biomimetic neurophysiology. STATEMENT OF SIGNIFICANCE: Developing a brain mimetic 3D scaffold that supports neuronal growth could potentially be useful to study neurobiology, disease pathology, and disease modeling. However, culturing human induced pluripotent stem cells (hiPSC) and human embryonic stem cells (ESCs) derived neurons in a 3D matrix is extremely challenging as neurons are very sensitive cells and require tailored composition, viscoelasticity, and chemical cues. This article identified the key chemical cues necessary for designing neuronal matrix that trap the cell-produced ECM and neurotrophic factors and remodel the matrix and supports neurite outgrowth. The tailored injectable scaffold possesses self-healing/shear-thinning property which is useful to design injectable gels for regenerative medicine and disease modeling that provides biomimetic neurophysiology.
Collapse
Affiliation(s)
- Sumanta Samanta
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Laura Ylä-Outinen
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Vignesh Kumar Rangasami
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland.
| |
Collapse
|
11
|
Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022; 23:2662. [PMID: 35269803 PMCID: PMC8910155 DOI: 10.3390/ijms23052662] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
The superiority of in vitro 3D cultures over conventional 2D cell cultures is well recognized by the scientific community for its relevance in mimicking the native tissue architecture and functionality. The recent paradigm shift in the field of tissue engineering toward the development of 3D in vitro models can be realized with its myriad of applications, including drug screening, developing alternative diagnostics, and regenerative medicine. Hydrogels are considered the most suitable biomaterial for developing an in vitro model owing to their similarity in features to the extracellular microenvironment of native tissue. In this review article, recent progress in the use of hydrogel-based biomaterial for the development of 3D in vitro biomimetic tissue models is highlighted. Discussions of hydrogel sources and the latest hybrid system with different combinations of biopolymers are also presented. The hydrogel crosslinking mechanism and design consideration are summarized, followed by different types of available hydrogel module systems along with recent microfabrication technologies. We also present the latest developments in engineering hydrogel-based 3D in vitro models targeting specific tissues. Finally, we discuss the challenges surrounding current in vitro platforms and 3D models in the light of future perspectives for an improved biomimetic in vitro organ system.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
12
|
Mykuliak A, Yrjänäinen A, Mäki AJ, Gebraad A, Lampela E, Kääriäinen M, Pakarinen TK, Kallio P, Miettinen S, Vuorenpää H. Vasculogenic Potency of Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Results in Differing Vascular Network Phenotypes in a Microfluidic Chip. Front Bioeng Biotechnol 2022; 10:764237. [PMID: 35211462 PMCID: PMC8861308 DOI: 10.3389/fbioe.2022.764237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The vasculature is an essential, physiological element in virtually all human tissues. Formation of perfusable vasculature is therefore crucial for reliable tissue modeling. Three-dimensional vascular networks can be formed through the co-culture of endothelial cells (ECs) with stromal cells embedded in hydrogel. Mesenchymal stem/stromal cells (MSCs) derived from bone marrow (BMSCs) and adipose tissue (ASCs) are an attractive choice as stromal cells due to their natural perivascular localization and ability to support formation of mature and stable microvessels in vitro. So far, BMSCs and ASCs have been compared as vasculature-supporting cells in static cultures. In this study, BMSCs and ASCs were co-cultured with endothelial cells in a fibrin hydrogel in a perfusable microfluidic chip. We demonstrated that using MSCs of different origin resulted in vascular networks with distinct phenotypes. Both types of MSCs supported formation of mature and interconnected microvascular networks-on-a-chip. However, BMSCs induced formation of fully perfusable microvasculature with larger vessel area and length whereas ASCs resulted in partially perfusable microvascular networks. Immunostainings revealed that BMSCs outperformed ASCs in pericytic characteristics. Moreover, co-culture with BMSCs resulted in significantly higher expression levels of endothelial and pericyte-specific genes, as well as genes involved in vasculature maturation. Overall, our study provides valuable knowledge on the properties of MSCs as vasculature-supporting cells and highlights the importance of choosing the application-specific stromal cell source for vascularized organotypic models.
Collapse
Affiliation(s)
- Anastasiia Mykuliak
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Alma Yrjänäinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arjen Gebraad
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Ella Lampela
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | | | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
13
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|