1
|
Ghosh S, Das Sarma J. The age-dependent neuroglial interaction with peripheral immune cells in coronavirus-induced neuroinflammation with a special emphasis on COVID-19. Biogerontology 2025; 26:111. [PMID: 40380990 DOI: 10.1007/s10522-025-10252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Neurodegenerative diseases are chronic progressive disorders that impair memory, cognition, and motor functions, leading to conditions such as dementia, muscle weakness, and speech difficulties. Aging disrupts the stringent balance between pro- and anti-inflammatory cytokines, increasing neuroinflammation, which contributes to neurodegenerative diseases. The aging brain is particularly vulnerable to infections due to a weakened and compromised immune response and impaired integrity of the blood-brain barrier, allowing pathogens like viruses to trigger neurodegeneration. Coronaviruses have been linked to both acute and long-term neurological complications, including cognitive impairments, psychiatric disorders, and neuroinflammation. The virus can induce a cytokine storm, damaging the central nervous system (CNS) and worsening existing neurological conditions. Though its exact mechanism of neuroinvasion remains elusive, evidence suggests it disrupts the blood-brain barrier and triggers immune dysregulation, leading to persistent neurological sequelae in elderly individuals. This review aims to understand the interaction between the peripheral immune system and CNS glial cells in aged individuals, which is imperative in addressing coronavirus-induced neuroinflammation and concomitant neurodegeneration.
Collapse
Affiliation(s)
- Satavisha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India.
- Department of Ophthalmology, University of Pennsylvania, 19104, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Lu S, Di John Portela I, Martino N, Bossardi Ramos R, Salinero AE, Smith RM, Zuloaga KL, Adam AP. A transient brain endothelial translatome response to endotoxin is associated with mild cognitive changes post-shock in young mice. Neuroscience 2024; 555:194-204. [PMID: 39067684 PMCID: PMC11470799 DOI: 10.1016/j.neuroscience.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. Here, we performed translating ribosome affinity purification and RNA-sequencing (TRAP-seq) from the brain endothelium to determine the transcriptional changes after an acute endotoxemic (LPS) challenge. LPS induced a strong acute transcriptional response in the brain endothelium that partially correlates with the whole brain transcriptional response and suggested an endothelial-specific hypoxia response. Consistent with a crucial role for IL-6, loss of the main regulator of this pathway, SOCS3, leads to a broadening of the population of genes responsive to LPS, suggesting that an overactivation of the IL-6/JAK/STAT3 pathway leads to an increased transcriptional response that could explain our prior findings of severe brain injury in these mice. To identify any potential sequelae of this acute response, we performed brain TRAP-seq following a battery of behavioral tests in mice after apparent recovery. We found that the transcriptional response returns to baseline within days post-challenge, but reductions in gene expression regulating protein translation and respiratory electron transport remained. We observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock.
Collapse
Affiliation(s)
- Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Iria Di John Portela
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Rachel M Smith
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, United States; Department of Ophthalmology, Albany Medical College, United States.
| |
Collapse
|
3
|
Davydova TV, Vetrile LA, Zakharova IA. Antibodies to Glutamate Reduce the IL-6 Content in Cerebral Structures in Mice with Age-Related Memory Impairment. Bull Exp Biol Med 2024; 177:607-609. [PMID: 39342009 DOI: 10.1007/s10517-024-06233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 10/01/2024]
Abstract
Intranasal administration of antibodies to glutamate for 14 days improved passive avoidance conditioning and reduces the content of IL-6 within 7 days after their withdrawal in the prefrontal cortex and hippocampus of aging C57BL/6 mice.
Collapse
Affiliation(s)
- T V Davydova
- Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - L A Vetrile
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I A Zakharova
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
4
|
Schaefer JK, Engert V, Valk SL, Singer T, Puhlmann LM. Mapping pathways to neuronal atrophy in healthy, mid-aged adults: From chronic stress to systemic inflammation to neurodegeneration? Brain Behav Immun Health 2024; 38:100781. [PMID: 38725445 PMCID: PMC11081785 DOI: 10.1016/j.bbih.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Growing evidence implicates systemic inflammation in the loss of structural brain integrity in natural ageing and disorder development. Chronic stress and glucocorticoid exposure can potentiate inflammatory processes and may also be linked to neuronal atrophy, particularly in the hippocampus and the human neocortex. To improve understanding of emerging maladaptive interactions between stress and inflammation, this study examined evidence for glucocorticoid- and inflammation-mediated neurodegeneration in healthy mid-aged adults. N = 169 healthy adults (mean age = 39.4, 64.5% female) were sampled from the general population in the context of the ReSource Project. Stress, inflammation and neuronal atrophy were quantified using physiological indices of chronic stress (hair cortisol (HCC) and cortisone (HEC) concentration), systemic inflammation (interleukin-6 (IL-6), high-sensitive C-reactive protein (hs-CRP)), the systemic inflammation index (SII), hippocampal volume (HCV) and cortical thickness (CT) in regions of interest. Structural equation models were used to examine evidence for pathways from stress and inflammation to neuronal atrophy. Model fit indices indicated good representation of stress, inflammation, and neurological data through the constructed models (CT model: robust RMSEA = 0.041, robust χ2 = 910.90; HCV model: robust RMSEA <0.001, robust χ2 = 40.95). Among inflammatory indices, only the SII was positively associated with hair cortisol as one indicator of chronic stress (β = 0.18, p < 0.05). Direct and indirect pathways from chronic stress and systemic inflammation to cortical thickness or hippocampal volume were non-significant. In exploratory analysis, the SII was inversely related to mean cortical thickness. Our results emphasize the importance of considering the multidimensionality of systemic inflammation and chronic stress, with various indicators that may represent different aspects of the systemic reaction. We conclude that inflammation and glucocorticoid-mediated neurodegeneration indicated by IL-6 and hs-CRP and HCC and HEC may only emerge during advanced ageing and disorder processes, still the SII could be a promising candidate for detecting associations between inflammation and neurodegeneration in younger and healthy samples. Future work should examine these pathways in prospective longitudinal designs, for which the present investigation serves as a baseline.
Collapse
Affiliation(s)
- Julia K. Schaefer
- Cognitive Neuropsychology, Department of Psychology, Ludwig-Maximilians-Universität München, Germany
| | - Veronika Engert
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Clinic, Friedrich-Schiller University, Jena, Germany
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| | - Lara M.C. Puhlmann
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
5
|
Lu S, John Portela ID, Martino N, Ramos RB, Salinero AE, Smith RM, Zuloaga KL, Adam AP. A transient brain endothelial translatome response to endotoxin is associated with mild cognitive changes post-shock in young mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583191. [PMID: 38496442 PMCID: PMC10942387 DOI: 10.1101/2024.03.03.583191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common manifestation in septic patients that is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. Here, we performed translating ribosome affinity purification and RNA-sequencing (TRAP-seq) from the brain endothelium to determine the transcriptional changes after an acute endotoxemic (LPS) challenge. LPS induced a strong acute transcriptional response in the brain endothelium that partially correlates with the whole brain transcriptional response and suggested an endothelial-specific hypoxia response. Consistent with a crucial role for IL-6, loss of the main regulator of this pathway, SOCS3, leads to a broadening of the population of genes responsive to LPS, suggesting that an overactivation of the IL-6/JAK/STAT3 pathway leads to an increased transcriptional response that could explain our prior findings of severe brain injury in these mice. To identify any potential sequelae of this acute response, we performed brain TRAP-seq following a battery of behavioral tests in mice after apparent recovery. We found that the transcriptional response returns to baseline within days post-challenge. Despite the transient nature of the response, we observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained, non-transcriptional effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock. Abstract Figure
Collapse
|
6
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
8
|
Seidel F, Fluiter K, Kleemann R, Worms N, van Nieuwkoop A, Caspers MPM, Grigoriadis N, Kiliaan AJ, Baas F, Michailidou I, Morrison MC. Ldlr-/-.Leiden mice develop neurodegeneration, age-dependent astrogliosis and obesity-induced changes in microglia immunophenotype which are partly reversed by complement component 5 neutralizing antibody. Front Cell Neurosci 2023; 17:1205261. [PMID: 37457817 PMCID: PMC10346859 DOI: 10.3389/fncel.2023.1205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.
Collapse
Affiliation(s)
- Florine Seidel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita van Nieuwkoop
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Martien P. M. Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
9
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
10
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [PMID: 36465185 PMCID: PMC9662284 DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 05/29/2025] Open
Abstract
Aging can lead to changes in the cellular milieu of the brain. These changes may exacerbate, resulting in pathological phenomena (including impaired bioenergetics, aberrant neurotransmission, compromised resilience and neuroplasticity, mitochondrial dysfunction, and the generation of free radicals) and the onset of neurodegenerative diseases. Furthermore, alterations in the energy-sensing pathways can accelerate neuronal aging but the exact mechanism of neural aging is still elusive. In recent decades, the use of plant-derived compounds, including astragaloside IV, to treat neuronal aging and its associated diseases has been extensively investigated. This article presents the current understanding of the roles and mechanisms of astragaloside IV in combating neuronal aging. The ability of the agent to suppress oxidative stress, to attenuate inflammatory responses and to maintain mitochondrial integrity will be discussed. Important challenges to be tacked for further development of astragaloside IV-based pharmacophores will be highlighted for future research.
Collapse
Affiliation(s)
- Qumar Zaman
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
| | - Obireddy Sreekanth Reddy
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur 515003, India.
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310000, China.
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China,
| |
Collapse
|
11
|
Patel P, Faldu K, Borisa A, Bhatt H, Shah J. Insights of Valacyclovir in Treatment of Alzheimer's Disease: Computational Docking Studies and Scopolamine Rat Model. Curr Neurovasc Res 2022; 19:344-357. [PMID: 36089794 DOI: 10.2174/1567202619666220908125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD) impairs memory and cognitive functions in the geriatric population and is characterized by intracellular deposition of neurofibrillary tangles, extracellular deposition of amyloid plaques, and neuronal degeneration. Literature suggests that latent viral infections in the brain act as prions and promote neurodegeneration. Memantine possesses both anti-viral and N-methyl-D-aspartate (NMDA) receptor antagonistic activity. OBJECTIVES This research was designed to evaluate the efficacy of antiviral agents, especially valacyclovir, a prodrug of acyclovir in ameliorating the pathology of AD based on the presumption that anti-viral agents targeting the Herpes Simplex Virus (HSV) can have a protective effect on neurodegenerative diseases like Alzheimer's disease. METHODS Thus, we evaluated acyclovir's potential activity by in-silico computational docking studies against acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase 1 (BACE-1). These findings were further evaluated by in-vivo scopolamine-induced cognitive impairment in rats. Two doses of valacyclovir, a prodrug of acyclovir (100 mg/kg and 150 mg/kg orally) were tested. RESULTS Genetic Optimisation for Ligand Docking scores and fitness scores of acyclovir were comparable to donepezil. Valacyclovir improved neurobehavioral markers. It inhibited AChE and BuChE (p<0.001) enzymes. It also possessed disease-modifying efficacy as it decreased the levels of BACE-1 (p<0.001), amyloid beta 1-42 (p<0.001), amyloid beta 1-40 (p<0.001), phosphorylatedtau (p<0.001), neprilysin (p<0.01), and insulin-degrading enzyme. It ameliorated neuroinflammation through decreased levels of tumour necrosis factor α (p<0.001), nuclear factor-kappa B (p<0.001), interleukin 6 (p<0.001), interleukin 1 beta (p<0.001), and interferon-gamma (p<0.001). It also maintained synaptic plasticity and consolidated memory. Histopathology showed that valacyclovir could restore cellular density and also preserve the dentate gyrus. CONCLUSION Valacyclovir showed comparable activity to donepezil and thus can be further researched for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Parmi Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Khushboo Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Ankit Borisa
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Hardik Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol Neurobiol 2022; 59:6684-6700. [DOI: 10.1007/s12035-022-02990-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
13
|
Ogunro OB, Salawu AO, Alotaibi SS, Albogami SM, Batiha GES, Waard MD. Quercetin-3-O-β-D-Glucopyranoside-Rich Fraction from Spondias mombin Leaves Halted Responses from Oxidative Stress, Neuroinflammation, Apoptosis, and Lipid Peroxidation in the Brain of Dichlorvos-Treated Wistar Rats. TOXICS 2022; 10:toxics10080477. [PMID: 36006156 PMCID: PMC9413772 DOI: 10.3390/toxics10080477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 05/05/2023]
Abstract
Dichlorvos (2,3-dichlorovinyl dimethyl phosphate or DDVP), is a popular organophosphate (OP) with several domestic, industrial, and agricultural uses and applications in developing countries [...].
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Ibadan 200213, Nigeria
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 240222, Nigeria
- Correspondence: ; Tel.: +234-8069845995
| | - Akeem Oni Salawu
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 240222, Nigeria
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira 22511, Egypt
| | - Michel De Waard
- L’Institut Du Thorax, CNRS, INSERM, Université de Nantes, F-44000 Nantes, France
- LabEx Ion Channels, Science and Therapeutics, F-06560 Valbonne, France
| |
Collapse
|
14
|
Watroba M, Szukiewicz D. Sirtuins promote brain homeostasis, preventing Alzheimer’s disease through targeting neuroinflammation. Front Physiol 2022; 13:962769. [PMID: 36045741 PMCID: PMC9420839 DOI: 10.3389/fphys.2022.962769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Both basic pathomechanisms underlying Alzheimer’s disease and some premises for stipulating a possible preventive role of some sirtuins, especially SIRT1 and SIRT3, protective against Alzheimer’s disease-related pathology, are discussed in this article. Sirtuins can inhibit some processes that underlie Alzheimer’s disease-related molecular pathology (e.g., neuroinflammation, neuroinflammation-related oxidative stress, Aβ aggregate deposition, and neurofibrillary tangle formation), thus preventing many of those pathologic alterations at relatively early stages of their development. Subsequently, the authors discuss in details which mechanisms of sirtuin action may prevent the development of Alzheimer’s disease, thus promoting brain homeostasis in the course of aging. In addition, a rationale for boosting sirtuin activity, both with allosteric activators and with NAD+ precursors, has been presented.
Collapse
|
15
|
Forcina L, Franceschi C, Musarò A. The hormetic and hermetic role of IL-6. Ageing Res Rev 2022; 80:101697. [PMID: 35850167 DOI: 10.1016/j.arr.2022.101697] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy.
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Scuola Superiore di Studi Avanzati Sapienza (SSAS), Via A. Scarpa, 14, Rome 00161, Italy.
| |
Collapse
|
16
|
Ramya V, Shyam KP, Kowsalya E, Balavigneswaran CK, Kadalmani B. Dual Roles of Coconut Oil and Its Major Component Lauric Acid on Redox Nexus: Focus on Cytoprotection and Cancer Cell Death. Front Neurosci 2022; 16:833630. [PMID: 35360165 PMCID: PMC8963114 DOI: 10.3389/fnins.2022.833630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
It has been reported that coconut oil supplementation can reduce neuroinflammation. However, coconut oils are available as virgin coconut oil (VCO), crude coconut oil (ECO), and refined coconut oil (RCO). The impact of coconut oil extraction process (and its major fatty acid component lauric acid) at cellular antioxidant level, redox homeostasis and inflammation in neural cells is hitherto unexplained. Herein, we have shown the antioxidant levels and cellular effect of coconut oil extracted by various processes in human neuroblastoma cells (SH-SY5Y) cultured in vitro. Results indicate VCO and ECO treated cells displayed better mitochondrial health when compared to RCO. Similar trend was observed for the release of reactive oxygen species (ROS), key oxidative stress response genes (GCLC, HO-1, and Nqo1) and inflammatory genes (IL6, TNFα, and iNOS) in SH-SY5Y cells. Our results signified that both VCO and ECO offer better neural health primarily by maintaining the cellular redox balance. Further, RCO prepared by solvent extraction and chemical refining process lacks appreciable beneficial effect. Then, we extended our study to find out the reasons behind maintaining the cellular redox balance in neuroblastoma cells by VCO and ECO. Our GC-MS results showed that lauric acid (C14:0) (LA) content was the major difference in the fatty acid composition extracted by various processes. Therefore, we evaluated the efficacy of LA in SH-SY5Y cells. The LA showed dose-dependent effect. At IC50 concentration (11.8 μM), LA down regulated the oxidative stress response genes and inflammatory genes. The results clearly indicate that the LA inhibited the neuroinflammation and provided an efficient cellular antioxidant activity, which protects the cells. The efficiency was also evaluated in normal cell line such as fibroblasts (L929) to cross-validate that the results were not false positive. Different concentration of LA on L929 cells showed high compatibility. From our observation, we conclude that VCO and ECO offers better cellular protection owing to their powerful antioxidant system. Therefore, we advocate the inclusion of either VCO and/or ECO in the diet for a healthy lifestyle.
Collapse
Affiliation(s)
- Venkatesan Ramya
- Reproductive Endocrinology and Cancer Biology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | | | - Eshwaran Kowsalya
- Research and Development Division, V.V.D and Sons Private Limited, Thoothukudi, India
| | - Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Balamuthu Kadalmani
- Reproductive Endocrinology and Cancer Biology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
17
|
Belge JB, Diermen LV, Sabbe B, Morrens M, Coppens V, de Timary P, Constant E, Sienaert P, Schrijvers D. Inflammatory Markers May Inform the Effects of Electroconvulsive Therapy on Cognition in Patients with Depression. Neuropsychobiology 2022; 80:493-501. [PMID: 33910216 DOI: 10.1159/000515931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The neurobiological mechanisms underlying the acute cognitive effects of electroconvulsive therapy (ECT) remain poorly understood. Prior research has shown that proinflammatory cytokines such as IL-6, TNF-α, IL1-β, and IL-10 may interfere with cognitive functioning. Interestingly, immunomodulation is one of the proposed modes of action of ECT. This study investigates whether changes of peripheral levels of IL-6, TNF-α, IL1-β, and IL-10 are related to changes in cognitive functioning following ECT. METHODS In the week before and 1 week after an acute course of ECT, 62 patients suffering from depression underwent a neuropsychological evaluation to assess their processing speed using the Symbol Digit Substitution Test (SDST), verbal episodic memory using the Hopkins Verbal Learning Test-Revised (HVLT-R), and their retrospective autobiographic memory using the Autobiographical Memory Interview (AMI) with the peripheral inflammatory markers being measured at the same 2 time points. RESULTS Patients improved drastically following ECT, while their main performance on both the HVLT-R and AMI declined and their SDST scores remained stable. The levels of IL-6 and IL1-β had both decreased, where the decrease in IL-6 was related to the decrease in HVLT-R scores. Higher baseline IL-10 levels were associated with a more limited decrease of the HVLT-R scores. CONCLUSION Our findings tentatively suggest that the effects of ECT on verbal episodic memory may be related to the treatment's immunomodulatory properties, most notably due to decreased IL-6 levels. Moreover, baseline IL-10 appears to be a potential biomarker to predict the effects of ECT on verbal episodic memory. Whilst compelling, the results of this study should be interpreted with caution as, due to its exploratory nature, no correction for multiple comparisons was made. Further, a replication in larger cohorts is warranted.
Collapse
Affiliation(s)
- Jan-Baptist Belge
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Linda Van Diermen
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Psychiatric Center Bethanië, Zoersel, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuel Morrens
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Violette Coppens
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Philippe de Timary
- Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Eric Constant
- Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Kortenberg, Belgium
| | - Didier Schrijvers
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Pilarzyk K, Farmer R, Porcher L, Kelly MP. The Role of PDE11A4 in Social Isolation-Induced Changes in Intracellular Signaling and Neuroinflammation. Front Pharmacol 2021; 12:749628. [PMID: 34887755 PMCID: PMC8650591 DOI: 10.3389/fphar.2021.749628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase 11A (PDE11A), an enzyme that degrades cyclic nucleotides (cAMP and cGMP), is the only PDE whose mRNA expression in brain is restricted to the hippocampal formation. Previously, we showed that chronic social isolation changes subsequent social behaviors in adult mice by reducing expression of PDE11A4 in the membrane fraction of the ventral hippocampus (VHIPP). Here we seek extend these findings by determining 1) if isolation-induced decreases in PDE11A4 require chronic social isolation or if they occur acutely and are sustained long-term, 2) if isolation-induced decreases occur uniquely in adults (i.e., not adolescents), and 3) how the loss of PDE11 signaling may increase neuroinflammation. Both acute and chronic social isolation decrease PDE11A4 expression in adult but not adolescent mice. This decrease in PDE11A4 is specific to the membrane compartment of the VHIPP, as it occurs neither in the soluble nor nuclear fractions of the VHIPP nor in any compartment of the dorsal HIPP. The effect of social isolation on membrane PDE11A4 is also selective in that PDE2A and PDE10A expression remain unchanged. Isolation-induced decreases in PDE11A4 expression appear to be functional as social isolation elicited changes in PDE11A-relevant signal transduction cascades (i.e., decreased pCamKIIα and pS6-235/236) and behavior (i.e., increased remote long-term memory for social odor recognition). Interestingly, we found that isolation-induced decreases in membrane PDE11A4 correlated with increased expression of interleukin-6 (IL-6) in the soluble fraction, suggesting pro-inflammatory signaling for this cytokine. This effect on IL-6 is consistent with the fact that PDE11A deletion increased microglia activation, although it left astrocytes unchanged. Together, these data suggest that isolation-induced decreases in PDE11A4 may alter subsequent social behavior via increased neuroinflammatory processes in adult mice.
Collapse
Affiliation(s)
- Katy Pilarzyk
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Reagan Farmer
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Latarsha Porcher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Michy P Kelly
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Aging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Harrell ER, Bui C, Newman SD. A Mixed-Effects Model of Associations between Interleukin-6 and Hippocampal Volume. J Gerontol A Biol Sci Med Sci 2021; 77:683-688. [PMID: 34637514 DOI: 10.1093/gerona/glab313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Previous studies report hippocampal volume loss can help predict conversion from normative aging to mild cognitive impairment (MCI) to dementia. Additionally, a growing literature indicates that stress-related allostatic load may increase disease vulnerability. The current study examined the relationship between stress related cytokines (i.e., interleukin-6 - IL-6), cognition as measured by Mini Mental Status scores (MMSE), and hippocampal volume. Mixed-models were employed to examine both within (across time) and between subjects effects of IL-6 and hippocampal volume on MMSE score among 566 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The within subjects analysis found left hippocampal volume significantly (p= .009) predicted MMSE score. Between subjects analysis found the effect of IL-6 on MMSE was moderated by right hippocampal volume (p = .001). These results replicate previous findings and also extend prior work demonstrating stress-related cytokines may play a role in Alzheimer's disease (AD) progression.
Collapse
Affiliation(s)
- Erin R Harrell
- Department of Psychology, University of Alabama, Tuscaloosa, United States of America
| | - Chuong Bui
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, United States of America
| | - Sharlene D Newman
- Department of Psychology, University of Alabama, Tuscaloosa, United States of America.,Alabama Life Research Institute, University of Alabama, Tuscaloosa, United States of America
| | | |
Collapse
|
20
|
Porcher L, Bruckmeier S, Burbano SD, Finnell JE, Gorny N, Klett J, Wood SK, Kelly MP. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J Neuroinflammation 2021; 18:219. [PMID: 34551810 PMCID: PMC8459490 DOI: 10.1186/s12974-021-02252-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite widespread acceptance that neuroinflammation contributes to age-related cognitive decline, studies comparing protein expression of cytokines in the young versus old brains are surprisingly limited in terms of the number of cytokines and brain regions studied. Complicating matters, discrepancies abound-particularly for interleukin 6 (IL-6)-possibly due to differences in sex, species/strain, and/or the brain regions studied. METHODS As such, we clarified how cytokine expression changes with age by using a Bioplex and Western blot to measure multiple cytokines across several brain regions of both sexes, using 2 mouse strains bred in-house as well as rats obtained from NIA. Parametric and nonparametric statistical tests were used as appropriate. RESULTS In the ventral hippocampus of C57BL/6J mice, we found age-related increases in IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, G-CSF, interfeuron δ, KC, MIP-1a, MIP-1b, rantes, and TNFα that are generally more pronounced in females, but no age-related change in IL-5, MCP-1, or GM-CSF. We also find aging is uniquely associated with the emergence of a module (a.k.a. network) of 11 strongly intercorrelated cytokines, as well as an age-related shift from glycosylated to unglycosylated isoforms of IL-10 and IL-1β in the ventral hippocampus. Interestingly, age-related increases in extra-hippocampal cytokine expression are more discreet, with the prefrontal cortex, striatum, and cerebellum of male and female C57BL/6J mice demonstrating robust age-related increase in IL-6 expression but not IL-1β. Importantly, we found this widespread age-related increase in IL-6 also occurs in BALB/cJ mice and Brown Norway rats, demonstrating conservation across species and rearing environments. CONCLUSIONS Thus, age-related increases in cytokines are more pronounced in the hippocampus compared to other brain regions and can be more pronounced in females versus males depending on the brain region, genetic background, and cytokine examined.
Collapse
Affiliation(s)
- Latarsha Porcher
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Sophie Bruckmeier
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Steven D Burbano
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Julie E Finnell
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Jennifer Klett
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Susan K Wood
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Michy P Kelly
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA. .,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA. .,Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA.
| |
Collapse
|
21
|
Sanchez-Molina P, Almolda B, Benseny-Cases N, González B, Perálvarez-Marín A, Castellano B. Specific microglial phagocytic phenotype and decrease of lipid oxidation in white matter areas during aging: Implications of different microenvironments. Neurobiol Aging 2021; 105:280-295. [PMID: 34139605 DOI: 10.1016/j.neurobiolaging.2021.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022]
Abstract
Physiological aging is characterized by an imbalance of pro-inflammatory and anti-inflammatory mediators leading to neuroinflammation. Microglial cells, which are highly regulated by the local microenvironment, undergo specific changes depending upon the brain area during aging. The aim of this study was to evaluate the influence of age over microglial cells along different brain areas and microenvironments. For this purpose, transgenic mice with overproduction of either the anti-inflammatory IL-10 cytokine or the pro-inflammatory IL-6 cytokine were used. Our results show that, during aging, microglial cells located in white matter (WM) areas maintain their phagocytic capacity but present a specific phagocytic phenotype with receptors involved in myelin recognition, arguing for aging-derived myelin damage. Whereas IL-10 overproduction anticipates the age-related microglial phagocytic phenotype, maintaining it over time, IL-6 overproduction exacerbates this phenotype in aging. These modifications were linked with a higher efficiency of myelin engulfment by microglia in aged transgenic animals. Moreover, we show, in a novel way, lower lipid oxidation during aging in WM areas, regardless of the genotype. The novelty of the insights presented in this study open a window to deeply investigate myelin lipid oxidation and the role of microglial cells in its regulation during physiological aging.
Collapse
Affiliation(s)
- Paula Sanchez-Molina
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Beatriz Almolda
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Núria Benseny-Cases
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Catalonia, Spain
| | - Berta González
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alex Perálvarez-Marín
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Biochemistry and Molecular Biology. Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Bernardo Castellano
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
22
|
Gonzalez-Fernandez E, Liu Y, Auchus AP, Fan F, Roman RJ. Vascular contributions to cognitive impairment and dementia: the emerging role of 20-HETE. Clin Sci (Lond) 2021; 135:1929-1944. [PMID: 34374423 PMCID: PMC8783562 DOI: 10.1042/cs20201033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The accumulation of extracellular amyloid-β (Aβ) and intracellular hyperphosphorylated τ proteins in the brain are the hallmarks of Alzheimer's disease (AD). Much of the research into the pathogenesis of AD has focused on the amyloid or τ hypothesis. These hypotheses propose that Aβ or τ aggregation is the inciting event in AD that leads to downstream neurodegeneration, inflammation, brain atrophy and cognitive impairment. Multiple drugs have been developed and are effective in preventing the accumulation and/or clearing of Aβ or τ proteins. However, clinical trials examining these therapeutic agents have failed to show efficacy in preventing or slowing the progression of the disease. Thus, there is a need for fresh perspectives and the evaluation of alternative therapeutic targets in this field. Epidemiology studies have revealed significant overlap between cardiovascular and cerebrovascular risk factors such as hypertension, diabetes, atherosclerosis and stroke to the development of cognitive impairment. This strong correlation has given birth to a renewed focus on vascular contributions to AD and related dementias. However, few genes and mechanisms have been identified. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that plays a complex role in hypertension, autoregulation of cerebral blood flow and blood-brain barrier (BBB) integrity. Multiple human genome-wide association studies have linked mutations in the cytochrome P450 (CYP) 4A (CYP4A) genes that produce 20-HETE to hypertension and stroke. Most recently, genetic variants in the enzymes that produce 20-HETE have also been linked to AD in human population studies. This review examines the emerging role of 20-HETE in AD and related dementias.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Alexander P. Auchus
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| |
Collapse
|
23
|
Ullah R, Rauf N, Nabi G, Yi S, Yu-Dong Z, Fu J. Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus. Biomed Pharmacother 2021; 142:112012. [PMID: 34388531 DOI: 10.1016/j.biopha.2021.112012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
A high-fat diet (HFD) is linked with cytokines production by non-neuronal cells within the hypothalamus, which mediates metabolic inflammation. These cytokines then activate different inflammatory mediators in the arcuate nucleus of the hypothalamus (ARC), a primary hypothalamic area accommodating proopiomelanocortin (POMC) and agouti-related peptide (AGRP) neurons, first-order neurons that sense and integrate peripheral metabolic signals and then respond accordingly. These mediators, such as inhibitor of κB kinase-β (IKKβ), suppression of cytokine signaling 3 (SOCS3), c-Jun N-terminal kinases (JNKs), protein kinase C (PKC), etc., cause insulin and leptin resistance in POMC and AGRP neurons and support obesity and related metabolic complications. On the other hand, inhibition of these mediators has been shown to counteract the impaired metabolism. Therefore, it is important to discuss the contribution of neuronal and non-neuronal cells in HFD-induced hypothalamic inflammation. Furthermore, understanding few other questions, such as the diets causing hypothalamic inflammation, the gender disparity in response to HFD feeding, and how hypothalamic inflammation affects ARC neurons to cause impaired metabolism, will be helpful for the development of therapeutic approaches to prevent or treat HFD-induced obesity.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ghulam Nabi
- Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China; Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Shen Yi
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Yu-Dong
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China; National Children's Regional Medical Center, Hangzhou 310052, China.
| |
Collapse
|
24
|
Asgarov R, Sen MK, Mikhael M, Karl T, Gyengesi E, Mahns DA, Malladi CS, Münch GW. Characterisation of the Mouse Cerebellar Proteome in the GFAP-IL6 Model of Chronic Neuroinflammation. THE CEREBELLUM 2021; 21:404-424. [PMID: 34324160 DOI: 10.1007/s12311-021-01303-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
GFAP-IL6 transgenic mice are characterised by astroglial and microglial activation predominantly in the cerebellum, hallmarks of many neuroinflammatory conditions. However, information available regarding the proteome profile associated with IL-6 overexpression in the mouse brain is limited. This study investigated the cerebellum proteome using a top-down proteomics approach using 2-dimensional gel electrophoresis followed by liquid chromatography-coupled tandem mass spectrometry and correlated these data with motor deficits using the elevated beam walking and accelerod tests. In a detailed proteomic analysis, a total of 67 differentially expressed proteoforms including 47 cytosolic and 20 membrane-bound proteoforms were identified. Bioinformatics and literature mining analyses revealed that these proteins were associated with three distinct classes: metabolic and neurodegenerative processes as well as protein aggregation. The GFAP-IL6 mice exhibited impaired motor skills in the elevated beam walking test measured by their average scores of 'number of footslips' and 'time to traverse' values. Correlation of the proteoforms' expression levels with the motor test scores showed a significant positive correlation to peroxiredoxin-6 and negative correlation to alpha-internexin and mitochondrial cristae subunit Mic19. These findings suggest that the observed changes in the proteoform levels caused by IL-6 overexpression might contribute to the motor function deficits.
Collapse
Affiliation(s)
- Rustam Asgarov
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Monokesh K Sen
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Meena Mikhael
- Mass Spectrometry Facility, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Tim Karl
- Behavioural Neuroscience Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Neuroscience Research Australia (NeuRA), Randwick, NSW, 2031, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - David A Mahns
- Integrative Physiology Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Gerald W Münch
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
25
|
Gasmi A, Chirumbolo S, Peana M, Mujawdiya PK, Dadar M, Menzel A, Bjørklund G. Biomarkers of Senescence during Aging as Possible Warnings to Use Preventive Measures. Curr Med Chem 2021; 28:1471-1488. [PMID: 32942969 DOI: 10.2174/0929867327999200917150652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Human life expectancy is increasing significantly over time thanks to the improved possibility for people to take care of themselves and the higher availability of food, drugs, hygiene, services, and assistance. The increase in the average age of the population worldwide is, however, becoming a real concern, since aging is associated with the rapid increase in chronic inflammatory pathologies and degenerative diseases, very frequently dependent on senescent phenomena that occur alongside with senescence. Therefore, the search for reliable biomarkers that can diagnose the possible onset or predict the risk of developing a disease associated with aging is a crucial target of current medicine. In this review, we construct a synopsis of the main addressable biomarkers to study the development of aging and the associated ailments.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Alain Menzel
- Laboratoires Réunis, Junglinster, Luxembourg, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
26
|
Omari Z, Kazunori S, Sabti M, Bejaoui M, Hafidi A, Gadhi C, Isoda H. Dietary administration of cumin-derived cuminaldehyde induce neuroprotective and learning and memory enhancement effects to aging mice. Aging (Albany NY) 2021; 13:1671-1685. [PMID: 33471781 PMCID: PMC7880363 DOI: 10.18632/aging.202516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/25/2020] [Indexed: 12/01/2022]
Abstract
Cuminaldehyde (CA) is one of the major compounds of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity. Cuminaldehyde (CA) is one of the major compound of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity.
Collapse
Affiliation(s)
- Zineb Omari
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Sasaki Kazunori
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mouad Sabti
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Abdellatif Hafidi
- Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Chemseddoha Gadhi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8587, Japan
| |
Collapse
|
27
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Effects of age and social isolation on murine hippocampal biochemistry and behavior. Mech Ageing Dev 2020; 191:111337. [PMID: 32866520 DOI: 10.1016/j.mad.2020.111337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Social isolation (SI) is a major health risk in older people leading to cognitive decline. This study examined how SI and age influence performance in the novel object recognition (NOR) and elevated plus maze (EPM) tasks in C57BL/6 mice aged 3 or 24 months. Mice were group-housed (groups of 2-3) or isolated for 2 weeks prior to experimentation. Following NOR and EPM testing hippocampal norepinephrine (NE), 5, hydroxytryptamine (5-HT), 5, hydroxyindole acetic acid (5-HIAA), corticosterone (CORT) and interleukin-6 (IL-6) were determined and serum collected for basal CORT analysis. A separate set of mice were exposed to the forced swim test (FST), sacrificed immediately and serum CORT determined. SI impaired performance in the NOR and the FST, reduced hippocampal 5-HT, increased hippocampal IL-6 and increased serum CORT post-FST in young mice. Aged mice either failed to respond significantly to SI (NOR, FST, hippocampal 5-HT, serum CORT post FST) or SI had synergistic effects with age (hippocampal NE, 5-HIAA:5-HT). In conclusion, the lack of response to SI in the aged mice may affect health by preventing them adapting to new stressors, while the synergistic effects of SI with age would increase allostatic load and enhance the deleterious effects of the ageing process.
Collapse
|
29
|
Ruíz-Salinas AK, Vázquez-Roque RA, Díaz A, Pulido G, Treviño S, Floran B, Flores G. The treatment of Goji berry (Lycium barbarum) improves the neuroplasticity of the prefrontal cortex and hippocampus in aged rats. J Nutr Biochem 2020; 83:108416. [PMID: 32554223 DOI: 10.1016/j.jnutbio.2020.108416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/06/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
Abstract
The main characteristic of brain aging is an exacerbated inflammatory and oxidative response that affects dendritic morphology and the function of the neurons of the prefrontal cortex (PFC) and the hippocampus. This consequently causes memory loss. Recently, the use of the Goji berry (Lycium barbarum) as an antioxidant extract has provided neuroprotection and neuroplasticity, however, its therapeutic potential has not been demonstrated in aging conditions. The objective of this study was to evaluate the effect of Goji administration on memory recognition, as well as the changes in the dendritic morphology of the PFC and Hippocampus pyramidal neurons in old rats. Goji (3 g/kg) was administrated for 60 days in 18-month-old rats. After the treatment, recognition memory was evaluated using the new object recognition task (NORt). The changes in the neuron morphology of the PFC and hippocampus pyramidal neurons in old rats were evaluated by Golgi-cox stain and immunoreactivity for synaptophysin, glial fibrillary acidic protein (GFAP), caspase-3, 3-nitrotyrosine (3-NT) and nuclear factor erythroid 2-related factor 2 (Nrf2). The rats treated with Goji showed a significant increase in dendritic morphology in the PFC and hippocampus neurons, a greater immunoreactivity to synaptophysin and a decrease in reactive astrogliosis and also in caspase-3, in 3-NT and in Nrf2 in these brain regions was also observed. Goji administration promotes the plasticity processes in the PFC and in the hippocampus of old rats, critical structures in the brain aging process.
Collapse
Affiliation(s)
- Ana Karen Ruíz-Salinas
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico
| | - Rubén A Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Guadalupe Pulido
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigaciones y Estudios Avanzados IPN, DF, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, CP: 72570, Puebla, Mexico.
| |
Collapse
|
30
|
Brunt VE, LaRocca TJ, Bazzoni AE, Sapinsley ZJ, Miyamoto-Ditmon J, Gioscia-Ryan RA, Neilson AP, Link CD, Seals DR. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience 2020; 43:377-394. [PMID: 32862276 DOI: 10.1007/s11357-020-00257-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with declines in cognitive performance, which are mediated in part by neuroinflammation, characterized by astrocyte activation and higher levels of pro-inflammatory cytokines; however, the upstream drivers are unknown. We investigated the potential role of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) in modulating neuroinflammation and cognitive function with aging. Study 1: In middle-aged and older humans (65 ± 7 years), plasma TMAO levels were inversely related to performance on NIH Toolbox Cognition Battery tests of memory and fluid cognition (both r2 = 0.07, p < 0.05). Study 2: In mice, TMAO concentrations in plasma and the brain increased in parallel with aging (r2 = 0.60), suggesting TMAO crosses the blood-brain barrier. The greater TMAO concentrations in old mice (27 months) were associated with higher brain pro-inflammatory cytokines and markers of astrocyte activation vs. young adult mice (6 months). Study 3: To determine if TMAO independently induces an "aging-like" decline in cognitive function, young mice (6 months) were supplemented with TMAO in chow for 6 months. Compared with controls, TMAO-supplemented mice performed worse on the novel object recognition test, indicating impaired memory and learning, and had increased neuroinflammation and markers of astrocyte activation. Study 4: Human astrocytes cultured with TMAO vs. control media exhibited changes in cellular morphology and protein markers consistent with astrocyte activation, indicating TMAO directly acts on these cells. Our results provide translational insight into a novel pathway that modulates neuroinflammation and cognitive function with aging, and suggest that TMAO might be a promising target for prevention of neuroinflammation and cognitive decline with aging.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
- Department of Health and Exercise Science and the Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Amy E Bazzoni
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Zachary J Sapinsley
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Jill Miyamoto-Ditmon
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA.
| |
Collapse
|
31
|
Bang M, Kim DG, Gonzales EL, Kwon KJ, Shin CY. Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes. Biomol Ther (Seoul) 2019; 27:530-539. [PMID: 31646843 PMCID: PMC6824621 DOI: 10.4062/biomolther.2019.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022] Open
Abstract
Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated β-galactosidase (SA-β-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-β-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including Phospho- Histone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.
Collapse
Affiliation(s)
- Minji Bang
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Gyeong Kim
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
32
|
IL-6 deficiency attenuates p53 protein accumulation in aged male mouse hippocampus. Biogerontology 2019; 21:29-43. [PMID: 31598806 PMCID: PMC6942598 DOI: 10.1007/s10522-019-09841-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Our earlier studies demonstrated slower age-related memory decline in IL-6-deficient than in control mice. Therefore, in the present study we evaluated the effect of IL-6 deficiency and aging on expression of p53, connected with accumulation of age-related cellular damages, in hippocampus of 4- and 24-month-old IL-6-deficient C57BL/6J (IL-6KO) and wild type control (WT) mice. The accumulation of p53 protein in hippocampus of aged IL-6KO mice was significantly lower than in aged WT ones, while p53 mRNA level was significantly higher in IL-6-deficient mice, what indicates that the effect was independent on p53 transcription. Presence of few apoptotic cells in hippocampal dentate gyrus and lack of changes in levels of pro-apoptotic Bax, antiapoptotic Bcl-2, as well as in p21 protein in aged animals of both genotypes, points to low transcriptional activity of p53, especially in aged WT mice. Because the amount of p53 protein did not correlate with the level of Mdm2 protein, its main negative regulator, other than Mdm2-dependent mechanism was involved in p53 build-up. Significantly higher mRNA levels of autophagy-associated genes: Pten, Tsc2, and Dram1 in IL-6KO mice, in conjunction with significantly lower amount of Bcl-2 protein in 4-month-old IL-6KO mice, suggests that lack of IL-6/STAT3/Bcl-2 signaling could account for better autophagy performance in these mice, preventing excessive accumulation of proteins. Taken together, attenuated p53 protein build-up, absence of enhanced apoptosis, and transcriptional up-regulation of autophagy-associated genes imply that IL-6 deficiency may protect hippocampus from age-related accumulation of cellular damages.
Collapse
|
33
|
Dos Santos Guilherme M, Stoye NM, Rose-John S, Garbers C, Fellgiebel A, Endres K. The Synthetic Retinoid Acitretin Increases IL-6 in the Central Nervous System of Alzheimer Disease Model Mice and Human Patients. Front Aging Neurosci 2019; 11:182. [PMID: 31396076 PMCID: PMC6664027 DOI: 10.3389/fnagi.2019.00182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
These days, the important role of retinoids in adult brain functionality and homeostasis is well accepted and has been proven by genomic as well as non-genomic mechanisms. In the healthy brain, numerous biological processes, e.g., cell proliferation, neurogenesis, dendritic spine formation as well as modulation of the immune system, have been attributed to retinoid signaling. This, together with the finding that retinoid metabolism is impaired in Alzheimer's disease (AD), led to preclinical and early clinical testing of natural and synthetic retinoids as innovative pharmaceuticals with multifactorial properties. Acitretin, an aromatic retinoid, was found to exert an anti-amyloidogenic effect in mouse models for AD as well as in human patients by stimulating the alpha-secretase ADAM10. The lipophilic drug was already demonstrated to easily pass the blood brain barrier after i.p. administration and evoked increased nest building capability in the 5xFAD mouse model. Additionally, we analyzed the immune-modulatory capacity of acitretin via a multiplex array in the 5xFAD mouse model and evaluated some of our findings in human CSF derived from a pilot study using acitretin. Although several serum analytes did not display changes, Interleukin-6 (IL-6) was found to be significantly increased in both-mouse and human neural material. This demonstrates that acitretin exerts an immune stimulatory effect-besides the alpha-secretase induction-which could impact the alleviation of learning and memory disabilities observed in the mouse model.
Collapse
Affiliation(s)
- Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicolai M Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel (CAU Kiel), Kiel, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Lanza K, Perkins AE, Deak T, Bishop C. Late aging-associated increases in L-DOPA-induced dyskinesia are accompanied by heightened neuroinflammation in the hemi-parkinsonian rat. Neurobiol Aging 2019; 81:190-199. [PMID: 31306813 DOI: 10.1016/j.neurobiolaging.2019.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/21/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022]
Abstract
Aging is a primary risk factor for the development of Parkinson's disease (PD), and aging differentially predicts the incidence of L-DOPA-induced dyskinesia (LID). The goal of this work was to establish whether late aging-associated exacerbation of LID would be related to neuroinflammation in the hemi-parkinsonian rat. Two studies were conducted in which adult (3 months) and aged (18 months) male Fischer 344 rats bearing unilateral 6-hydroxydopamine lesions of the medial forebrain bundle were injected acutely with vehicle or L-DOPA (6 mg/kg). LID was quantified, and neuroinflammation was assessed postmortem via gene expression markers in the striatum (experiment 1) or through concurrent large-molecule microdialysis (experiment 2). In addition to exacerbating LID despite similar levels of striatal dopamine loss, late aging was associated with persistently elevated IL-1β gene expression ipsilateral to lesion, as well as a trend toward greater extracellular concentrations of IL-1β in response to acute L-DOPA treatment. In contrast, aged sham-operated rats displayed greater extracellular IL-6. Taken together, these data demonstrate an age-related vulnerability to LID and highlight potential neuroinflammatory mediators associated with these effects.
Collapse
Affiliation(s)
- Kathryn Lanza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Amy E Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
35
|
Estrogenic Regulation of Neuroprotective and Neuroinflammatory Mechanisms: Implications for Depression and Cognition. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11355-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Bialuk I, Jakubów P, Winnicka MM. Significance of IL-6 Deficiency in Recognition Memory in Young Adult and Aged Mice. Behav Genet 2019; 49:415-423. [PMID: 31129771 PMCID: PMC6554246 DOI: 10.1007/s10519-019-09959-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Chronic peripheral elevation of interleukin 6 (IL-6) in humans is associated with cognitive deficits. 4- and 24-month-old IL-6-deficient C57BL/6J (IL-6KO) and reference wild-type (WT) mice were tested in an object recognition test. Discrimination ratios and recognition indexes were significantly lower in 4-month-old IL-6KO and in 24-month-old WT mice vs 4-month-old WT animals. Their discrimination ratios had negative values and recognition indexes were below 50% indicating inability to differentiate the novel from the familiar object after 1-hour delay. In 24-month-old IL-6KO mice recognition index reached 53.17% indicating that their recognition memory was not worsened with age in comparison with younger IL-6-deficient animals. Results of holeboard and elevated plus maze indicated that this effect was memory specific. Inborn IL-6 deficiency attenuated recognition memory in 4-month-old mice and did not altered recognition memory in aged animals. IL-6 signalling may constitute a target for development of the protection against memory disturbances connected with IL-6 overexpression.
Collapse
Affiliation(s)
- Izabela Bialuk
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland.
| | - Piotr Jakubów
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Maria Małgorzata Winnicka
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| |
Collapse
|
37
|
Deveci E, Kocacenk T, Şahan E, Yılmaz O, Öztürk A, Kırpınar İ. Oxidative stress and inflammatory response in patients with psoriasis; is there any relationship with psychiatric comorbidity and cognitive functions? PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1589176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Erdem Deveci
- Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey
| | - Tuba Kocacenk
- Abant İzzet Baysal Üniversitesi İzzet Baysal Ruh Sağlığı Ve Hastalıkları Eğitim Ve Araştırma, Hastanesi, Bolu, Turkey
| | - Ebru Şahan
- Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey
| | - Onur Yılmaz
- Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet Öztürk
- Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey
| | - İsmet Kırpınar
- Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
38
|
Garner KM, Amin R, Johnson RW, Scarlett EJ, Burton MD. Microglia priming by interleukin-6 signaling is enhanced in aged mice. J Neuroimmunol 2018; 324:90-99. [PMID: 30261355 PMCID: PMC6699492 DOI: 10.1016/j.jneuroim.2018.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
During peripheral infection, excessive production of pro-inflammatory cytokines in the aged brain from primed microglia induces exaggerated behavioral pathologies. While the pro-inflammatory cytokine IL-6 increases in the brain with age, its role in microglia priming is not known. This study examined the functional role of IL-6 signaling on microglia priming. Our hypothesis is that IL-6 signaling mediates primed states of microglia in the aged. An initial study assessed age-related alteration in IL-6 signaling molecules; sIL-6R and sgp130 were measured in cerebrospinal fluid of young and aged wild-type animals. Subsequent studies of isolated microglia from C57BL6/J (IL-6+/+) and IL-6 knock-out (IL-6-/-) mice showed significantly less MHC-II expression in aged IL-6-/- compared to IL-6+/+ counterparts. Additionally, adult and aged IL-6+/+ and IL-6-/- animals were administered lipopolysaccharide (LPS) to simulate a peripheral infection; sickness behaviors and hippocampal cytokine gene expression were measured over a 24 h period. Aged IL-6-/- animals were resilient to LPS-induced sickness behaviors and recovered more quickly than IL-6+/+ animals. The age-associated baseline increase of IL-1β gene expression was ablated in aged IL-6-/- mice, suggesting IL-6 is a key driver of cytokine activity from primed microglia in the aged brain. We employed in vitro studies to understand molecular mechanisms in priming factors. MHC-II and pro-inflammatory gene expression (IL-1β, IL-10, IL-6) were measured after treating BV.2 microglia with sIL-6R and IL-6 or IL-6 alone. sIL-6R enhanced expression of both pro-inflammatory genes and MHC-II. Taken together, these data suggest IL-6 expression throughout life is involved in microglia priming and increased amounts of IL-6 following peripheral LPS challenge are involved in exaggerated sickness behaviors in the aged.
Collapse
Affiliation(s)
- Katherine M Garner
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Ravi Amin
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, 7 Animal Sciences Lab 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | - Rodney W Johnson
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States; Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, 7 Animal Sciences Lab 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | - Emily J Scarlett
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Michael D Burton
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
39
|
Bialuk I, Taranta A, Winnicka MM. IL-6 deficiency alters spatial memory in 4- and 24-month-old mice. Neurobiol Learn Mem 2018; 155:21-29. [DOI: 10.1016/j.nlm.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/10/2018] [Accepted: 06/13/2018] [Indexed: 11/26/2022]
|
40
|
Cobourne-Duval MK, Taka E, Mendonca P, Soliman KFA. Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells. J Neuroimmunol 2018; 320:87-97. [PMID: 29759145 PMCID: PMC5967628 DOI: 10.1016/j.jneuroim.2018.04.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Neuroinflammation and microglial activation are pathological markers of a number of central nervous system (CNS) diseases. Chronic activation of microglia induces the release of excessive amounts of reactive oxygen species (ROS) and pro-inflammatory cytokines. Additionally, chronic microglial activation has been implicated in several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Thymoquinone (TQ) has been identified as one of the major active components of the natural product Nigella sativa seed oil. TQ has been shown to exhibit anti-inflammatory, anti-oxidative, and neuroprotective effects. In this study, lipopolysaccharide (LPS) and interferon gamma (IFNγ) activated BV-2 microglial cells were treated with TQ (12.5 μM for 24 h). We performed quantitative proteomic analysis using Orbitrap/Q-Exactive Proteomic LC-MS/MS (Liquid chromatography-mass spectrometry) to globally assess changes in protein expression between the treatment groups. Furthermore, we evaluated the ability of TQ to suppress the inflammatory response using ELISArray™ for Inflammatory Cytokines. We also assessed TQ's effect on the gene expression of NFκB signaling targets by profiling 84 key genes via real-time reverse transcription (RT2) PCR array. Our results indicated that TQ treatment of LPS/IFNγ-activated microglial cells significantly increased the expression of 4 antioxidant, neuroprotective proteins: glutaredoxin-3 (21 fold; p < 0.001), biliverdin reductase A (15 fold; p < 0.0001), 3-mercaptopyruvate sulfurtransferase (11 fold; p < 0.01), and mitochondrial lon protease (>8 fold; p < 0.001) compared to the untreated, activated cells. Furthermore, TQ treatment significantly (P < 0.0001) reduced the expression of inflammatory cytokines, IL-2 = 38%, IL-4 = 19%, IL-6 = 83%, IL-10 = 237%, and IL-17a = 29%, in the activated microglia compared to the untreated, activated which expression levels were significantly elevated compared to the control microglia: IL-2 = 127%, IL-4 = 151%, IL-6 = 670%, IL-10 = 133%, IL-17a = 127%. Upon assessing the gene expression of NFκB signaling targets, this study also demonstrated that TQ treatment of activated microglia resulted in >7 fold down-regulation of several NFκB signaling targets genes, including interleukin 6 (IL6), complement factor B (CFB), chemokine (CC motif) ligand 3 (CXCL3), chemokine (CC) motif ligand 5 (CCL5) compared to the untreated, activated microglia. This modulation in gene expression counteracts the >10-fold upregulation of these same genes observed in the activated microglia compared to the controls. Our results show that TQ treatment of LPS/IFNγ-activated BV-2 microglial cells induce a significant increase in expression of neuroprotective proteins, a significant decrease in expression inflammatory cytokines, and a decrease in the expression of signaling target genes of the NFκB pathway. Our findings are the first to show that TQ treatment increased the expression of these neuroprotective proteins (biliverdin reductase-A, 3-mercaptopyruvate sulfurtransferase, glutaredoxin-3, and mitochondrial lon protease) in the activated BV-2 microglial cells. Additionally, our results indicate that TQ treatment decreased the activation of the NFκB signaling pathway, which plays a key role in neuroinflammation. In conclusion, our results demonstrate that TQ treatment reduces the inflammatory response and modulates the expression of specific proteins and genes and hence potentially reduce neuroinflammation and neurodegeneration driven by microglial activation.
Collapse
Affiliation(s)
- Makini K Cobourne-Duval
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.
| |
Collapse
|
41
|
Permpoonputtana K, Tangweerasing P, Mukda S, Boontem P, Nopparat C, Govitrapong P. Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI JOURNAL 2018; 17:634-646. [PMID: 30108467 PMCID: PMC6088215 DOI: 10.17179/excli2017-654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/11/2018] [Indexed: 01/08/2023]
Abstract
Aging is often accompanied by a decline in cognitive function in conjunction with a variety of neurobiological changes, including neuroinflammation. Melatonin is a key endogenous indoleamine secreted by the pineal gland that plays a crucial role in the regulation of circadian rhythms, is a potent free radical scavenger, has anti-inflammatory activity and serves numerous other functions. However, the role of melatonin in sterile inflammation in the brain has not been fully investigated. In the present study, we investigated the neuroinflammation status in aged mouse brains. The results showed that the protein levels of integrin αM (CD11b), glial fibrillary acidic protein (GFAP), the major pro-inflammatory cytokines (interleukin-1 beta [IL-1β], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) and phosphor-nuclear factor kappa B (pNFκB) were significantly increased, while N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and brain-derived neurotrophic factor (BDNF) were down-regulated in the hippocampus and prefrontal cortex (PFC) of 22-months-old (aged) mice compared with 2-months-old (young adult) mice. Melatonin was administered in the drinking water to a cohort of the aged mice at a dose of 10 mg/kg/day, beginning at an age of 16 months for 6 months. Our results revealed that melatonin significantly attenuated the alterations in these protein levels. The present study suggests an advantageous role for melatonin in anti-inflammation, and this may lead to the prevention of memory impairment in aging.
Collapse
Affiliation(s)
| | - Patlada Tangweerasing
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | | | - Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand.,Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Thailand.,Department of Pharmacology, Faculty of Science, Mahidol University, Thailand
| |
Collapse
|
42
|
Martin-de-Pablos A, Córdoba-Fernández A, Fernández-Espejo E. Analysis of neurotrophic and antioxidant factors related to midbrain dopamine neuronal loss and brain inflammation in the cerebrospinal fluid of the elderly. Exp Gerontol 2018; 110:54-60. [PMID: 29775745 DOI: 10.1016/j.exger.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/10/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023]
Abstract
Midbrain dopamine neuronal loss and neuroinflammation are two phenomena that are associated with brain senescence. Neurotrophic factor changes and oxidative stress could subserve these phenomena. Aging-related brain changes can be well monitored through the cerebrospinal fluid (CSF). The objective was to analyze neurotrophic and oxidative parameters that could be related to midbrain dopamine neuronal loss or brain inflammation in the CSF of elderly subjects: 1) levels of the dopaminotrophic factors BDNF, GDNF, persephin, and neurturin, 2) levels of the proinflammatory factors TGFβ1 and TGFβ2; 3) activity of main antioxidant enzymes (catalases, glutathione-peroxidase, glutathione-reductase, glutathione-S-transferases, peroxirredoxins, and superoxide-dismutases), 4) ferritin content, antioxidant protein which reduces reactive free iron, and 5) antioxidant potential of the cerebrospinal fluid. ELISA and PAO tests were used. Subjects were also evaluated clinically, and the group of old subjects with mild cognitive impairment was studied separately. The findings indicate that normal elderly CSF is devoid of changes in either dopaminotrophic or proinflammatory factors. The antioxidant efficacy is slightly reduced with normal aging, through a reduction of glutathione-S-transferase activity in people older than 74 years (p < 0.05). However old people with mild cognitive impairment show reduced BDNF levels, and stronger signs of oxidative stress such as low antioxidant potential and glutathione-S-transferase activity (p < 0.05). To sum up, the present study demonstrates that, in CSF of normal senescence, dopaminotrophic factors and proinflammatory TGF-family ligands are not affected, and antioxidant efficacy is slightly reduced. CSF of elderly subjects with mild cognitive impairment shows more oxidative and trophic changes that are characterized by reduction of BDNF content, glutathione-S-transferase activity, and antioxidant potential.
Collapse
Affiliation(s)
- Angel Martin-de-Pablos
- Laboratorio de Neurofisiologia y Neurología Molecular, Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain; Departamento de Cirugía, Universidad de Sevilla, E-41009 Sevilla, Spain
| | | | - Emilio Fernández-Espejo
- Laboratorio de Neurofisiologia y Neurología Molecular, Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain.
| |
Collapse
|
43
|
Piechota M, Sunderland P, Wysocka A, Nalberczak M, Sliwinska MA, Radwanska K, Sikora E. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget 2018; 7:81099-81109. [PMID: 27768595 PMCID: PMC5348379 DOI: 10.18632/oncotarget.12752] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022] Open
Abstract
One of the features of cellular senescence is the activity of senescence-associated- β-galactosidase (SA-β-gal). The main purpose of this study was to evaluate this marker of senescence in aging neurons. We found that cortical neurons exhibited noticeable SA-β-gal activity quite early in culture. Many SA-β-gal-positive neurons were negative for another canonical marker of senescence, namely, double-strand DNA breaks (DSBs). Moreover, DDR signalling triggered by low doses of doxorubicin did not accelerate the appearance of neuronal SA-β-gal. In vivo, we observed pronounced induction of SA-β-gal activity in the hippocampus of 24-month-old mice, which is consistent with previous findings and supports the view that at this advanced age neurons developed a senescence-like phenotype. Surprisingly however, relatively high SA-β-gal activity, probably unrelated to the senescence process, was also observed in much younger, 3-month-old mice. In conclusion, we propose that SA-β-gal activity in neurons cannot be attributed uniquely to cell senescence either in vitro or in vivo. Additionally, we showed induction of REST protein in aging neurons in long-term culture and we propose that REST could be a marker of neuronal senescence in vitro.
Collapse
Affiliation(s)
- Malgorzata Piechota
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Piotr Sunderland
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Adrianna Wysocka
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland.,Laboratory of Preclinical Studies in Neurodegenerative Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Maria Nalberczak
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Malgorzata A Sliwinska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
44
|
Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2017; 84:116-133. [PMID: 29180259 DOI: 10.1016/j.neubiorev.2017.11.011] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia.
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seetal Dodd
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eileen M Moore
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | | | - Richard S Page
- Deakin University, School of Medicine, Geelong, Australia; Department of Orthopaedics, Barwon Health, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
45
|
Bouwens JA, van Duijn E, Cobbaert CM, Roos RAC, van der Mast RC, Giltay EJ. Plasma Cytokine Levels in Relation to Neuropsychiatric Symptoms and Cognitive Dysfunction in Huntington's disease. J Huntingtons Dis 2017; 5:369-377. [PMID: 27983562 DOI: 10.3233/jhd-160213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND In Huntington's disease (HD) the innate immune system is activated, as reflected by increased plasma levels of different cytokines. OBJECTIVE To explore whether increased cytokine levels are associated with neuropsychiatric symptoms and cognitive dysfunction in HD mutation carriers. METHOD Plasma cytokine levels of TNF-alpha, interleukin (IL)-1ra, IL-1β, IL-5, IL-6, IL-8 and Il-10 were assessed in 124 HD mutation carriers at two time points 2 years apart (totalling 214 observations). Using multilevel regression analysis, cytokines were analysed in relation to neuropsychiatric symptoms and cognitive dysfunction. Depressed mood was assessed with the depression subscale of the Problem Behaviours Assessment (PBA), apathy with the Apathy Scale, and irritability with the Irritability Scale. Cognitive functioning was assessed using the Mini-Mental State Examination (MMSE) and a battery of executive cognitive functioning tests, aggregated into an executive cognitive functioning (ExCog) score. RESULTS Inverse associations were found in adjusted models between IL-6 and ExCog score (β= -0.114; p = 0.01) and between IL-1ra and ExCog score (β= -0.110; p = 0.02). No associations between cytokine levels and any of the other neuropsychiatric symptom scores remained statistically significant in adjusted models. CONCLUSION Higher plasma levels of IL-6 and IL-1ra are weakly associated with cognitive dysfunction in HD, but not with other neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Jos A Bouwens
- Department of Psychiatry, Leiden University Medical Center, The Netherlands.,Rodersana Center for Addiction, Oirschot, The Netherlands
| | - Erik van Duijn
- Department of Psychiatry, Leiden University Medical Center, The Netherlands.,Center for Mental Health Care Delfland, Delft, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry, Leiden University Medical Center, The Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, The Netherlands
| | - Roos C van der Mast
- Department of Psychiatry, Leiden University Medical Center, The Netherlands.,Department of Psychiatry, CAPRI-University of Antwerp, Belgium
| | - Erik J Giltay
- Department of Psychiatry, Leiden University Medical Center, The Netherlands
| |
Collapse
|
46
|
Perez SD, Du K, Rendeiro C, Wang L, Wu Q, Rubakhin SS, Vazhappilly R, Baxter JH, Sweedler JV, Rhodes JS. A unique combination of micronutrients rejuvenates cognitive performance in aged mice. Behav Brain Res 2017; 320:97-112. [DOI: 10.1016/j.bbr.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
|
47
|
Tyler CR, Zychowski KE, Sanchez BN, Rivero V, Lucas S, Herbert G, Liu J, Irshad H, McDonald JD, Bleske BE, Campen MJ. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes. Part Fibre Toxicol 2016; 13:64. [PMID: 27906023 PMCID: PMC5131556 DOI: 10.1186/s12989-016-0177-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022] Open
Abstract
Background Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE−/−) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. Results The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE−/− animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE−/− mice including Il-1β, IL-6, Tgf-β and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1β, and Tnf-α. Interestingly, Il-6 and Tgf-β expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-β in the ApoE−/− hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. Conclusions Inflammatory responses the lung and brain were most substantial in ApoE−/− animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and particles is an important determinant of toxic responses. As such, freshly generated UFP, in the presence of combustion-derived gas phase pollutants, may be a greater health hazard than would be predicted from PM concentration, alone, lending support for epidemiological findings of adverse neurological outcomes associated with roadway proximity. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0177-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Katherine E Zychowski
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bethany N Sanchez
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Valeria Rivero
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - June Liu
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | - Barry E Bleske
- Department of Pharmacy Practice & Administrative Sciences, The University of New Mexico, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|
48
|
Corbi G, Conti V, Davinelli S, Scapagnini G, Filippelli A, Ferrara N. Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans? Front Pharmacol 2016; 7:364. [PMID: 27790141 PMCID: PMC5062465 DOI: 10.3389/fphar.2016.00364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
Although several efforts have been made in the search for genetic and epigenetic patterns linked to diseases, a comprehensive explanation of the mechanisms underlying pathological phenotypic plasticity is still far from being clarified. Oxidative stress and inflammation are two of the major triggers of the epigenetic alterations occurring in chronic pathologies, such as neurodegenerative diseases. In fact, over the last decade, remarkable progress has been made to realize that chronic, low-grade inflammation is one of the major risk factor underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant immunomodulatory and/or anti-inflammatory activities in the context of brain aging. Starting by the evidence that a common denominator of aging and chronic degenerative diseases is represented by inflammation, and that several dietary phytochemicals are able to potentially interfere with and regulate the normal function of cells, in particular neuronal components, aim of this review is to summarize recent studies on neuroinflammaging processes and proofs indicating that specific phytochemicals may act as positive modulators of neuroinflammatory events. In addition, critical pathways involved in mediating phytochemicals effects on neuroinflammaging were discussed, exploring the real impact of these compounds in preserving brain health before the onset of symptoms leading to inflammatory neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, University of Salerno Salerno, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, University of Salerno Salerno, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of TeleseTelese Terme, Italy
| |
Collapse
|
49
|
Macht VA. Neuro-immune interactions across development: A look at glutamate in the prefrontal cortex. Neurosci Biobehav Rev 2016; 71:267-280. [PMID: 27593444 DOI: 10.1016/j.neubiorev.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Although the primary role for the immune system is to respond to pathogens, more recently, the immune system has been demonstrated to have a critical role in signaling developmental events. Of particular interest for this review is how immunocompetent microglia and astrocytes interact with glutamatergic systems to influence the development of neural circuits in the prefrontal cortex (PFC). Microglia are the resident macrophages of the brain, and astrocytes mediate both glutamatergic uptake and coordinate with microglia to respond to the general excitatory state of the brain. Cross-talk between microglia, astrocytes, and glutamatergic neurons forms a quad-partite synapse, and this review argues that interactions within this synapse have critical implications for the maturation of PFC-dependent cognitive function. Similarly, understanding developmental shifts in immune signaling may help elucidate variations in sensitivities to developmental disruptions.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina, 1512 Pendleton St., Department of Psychology, Columbia, SC 29208, United States.
| |
Collapse
|
50
|
Hamadi N, Sheikh A, Madjid N, Lubbad L, Amir N, Shehab SADS, Khelifi-Touhami F, Adem A. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neurosci 2016; 17:61. [PMID: 27586269 PMCID: PMC5009504 DOI: 10.1186/s12868-016-0296-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
Background Bilateral adrenalectomy has been shown to damage the hippocampal neurons. Although the effects of long-term adrenalectomy have been studied extensively there are few publications on the effects of short-term adrenalectomy. In the present study we aimed to investigate the effects of short-term bilateral adrenalectomy on the levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; the response of microglia and astrocytes to neuronal cell death as well as oxidative stress markers GSH, SOD and MDA over the course of time (4 h, 24 h, 3 days, 1 week and 2 weeks) in the hippocampus of Wistar rats. Results Our results showed a transient significant elevation of pro-inflammatory cytokines IL-1β and IL-6 from 4 h to 3 days in the adrenalectomized compared to sham operated rats. After 1 week, the elevation of both cytokines returns to the sham levels. Surprisingly, TNF-α levels were significantly elevated at 4 h only in adrenalectomized compared to sham operated rats. The occurrence of neuronal cell death in the hippocampus following adrenalectomy was confirmed by Fluoro-Jade B staining. Our results showed a time dependent increase in degenerated neurons in the dorsal blade of the dentate gyrus from 3 days to 2 weeks after adrenalectomy. Our results revealed an early activation of microglia on day three whereas activation of astroglia in the hippocampus was observed at 1 week postoperatively. A progression of microglia and astroglia activation all over the dentate gyrus and their appearance for the first time in CA3 of adrenalectomized rats hippocampi compared to sham operated was seen after 2 weeks of surgery. Quantitative analysis revealed a significant increase in the number of microglia (3, 7 and 14 days) and astrocytes (7 and 14 days) of ADX compared to sham operated rats. Our study revealed no major signs of oxidative stress until 2 weeks after adrenalectomy when a significant decrease of GSH levels and SOD activity as well as an increase in MDA levels were found in adrenalectomized compared to sham rats. Conclusion Our study showed an early increase in the pro-inflammatory cytokines followed by neurodegeneration and activation of glial cells as well as oxidative stress. Taking these findings together it could be speculated that the early inflammatory components might contribute to the initiation of the biological cascade responsible for subsequent neuronal death in the current neurodegenerative animal model. These findings suggest that inflammatory mechanisms precede neurodegeneration and glial activation.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates.,Ethnobotany-Palynology and Ethnopharmacology-Toxicology Laboratory, Department of Animal Biology, Constantine-1 University, 25000, Constantine, Algeria
| | - Azimullah Sheikh
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Nather Madjid
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Loai Lubbad
- Department of Surgery, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Naheed Amir
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Safa Al-Deen Saudi Shehab
- Department of Anatomy, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Fatima Khelifi-Touhami
- Ethnobotany-Palynology and Ethnopharmacology-Toxicology Laboratory, Department of Animal Biology, Constantine-1 University, 25000, Constantine, Algeria
| | - Abdu Adem
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates.
| |
Collapse
|