1
|
Skuljec J, Sardari M, Su C, Müller-Dahlke J, Singh V, Janjic MM, Kleinschnitz C, Pul R. Glatiramer Acetate Modifies the Immune Profiles of Monocyte-Derived Dendritic Cells In Vitro Without Affecting Their Generation. Int J Mol Sci 2025; 26:3013. [PMID: 40243628 PMCID: PMC11989142 DOI: 10.3390/ijms26073013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Glatiramer acetate (GA) is the first-line therapy for relapsing-remitting multiple sclerosis (MS) and is increasingly demonstrating promising therapeutic benefits in a range of other conditions. Despite its extensive use, the precise pharmacological mechanism of GA remains unclear. In addition to T and B cells, dendritic cells (DCs) and monocytes play significant roles in the neuroinflammation associated with MS, positioning them as potential initial targets for GA. Here, we investigated GA's influence on the differentiation of human monocytes from healthy donors into monocyte-derived dendritic cells (moDCs) and assessed their activation status. Our results indicate that GA treatment does not hinder the differentiation of monocytes into moDCs or macrophages. Notably, we observed a significant increase in the expression of molecules required for antigen recognition, presentation, and co-stimulation in GA-treated moDCs. Conversely, there was a significant downregulation of CD1a, which is crucial for activating auto-aggressive T cells that respond to the lipid components of myelin. Furthermore, GA treatment resulted in an increased expression of CD68 on both CD14+CD16+ and CD14+CD16- monocyte subsets. These in vitro findings suggest that GA treatment does not impede the generation of moDCs under inflammatory conditions; however, it may modify their functional characteristics in potentially beneficial ways. This provides a basis for future clinical studies in MS patients to elucidate its precise mode of action.
Collapse
Affiliation(s)
- Jelena Skuljec
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Maryam Sardari
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Chuanxin Su
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | | | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marija M. Janjic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| |
Collapse
|
2
|
Murphy RA, Pizzato J, Cuthbertson L, Sabnis A, Edwards AM, Nolan LM, Vorup-Jensen T, Larrouy-Maumus G, Davies JC. Antimicrobial peptide glatiramer acetate targets Pseudomonas aeruginosa lipopolysaccharides to breach membranes without altering lipopolysaccharide modification. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:4. [PMID: 39843948 PMCID: PMC11702655 DOI: 10.1038/s44259-024-00022-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial peptides (AMPs) are key components of innate immunity across all domains of life. Natural and synthetic AMPs are receiving renewed attention in efforts to combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-negative pathogen Pseudomonas aeruginosa is one of the most concerning infecting bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections are difficult to eradicate and associated with increased morbidity and mortality. Cationic AMPs exploit the negatively charged lipopolysaccharides (LPS) on P. aeruginosa to bind and disrupt bacterial membrane(s), causing lethal damage. P. aeruginosa modifies its LPS to evade AMP killing. Free-LPS is also a component of CF sputum and feeds pro-inflammatory cycles. Glatiramer acetate (GA) is a random peptide co-polymer-of glycine, lysine, alanine, tyrosine-used as a drug in treatment of multiple sclerosis (MS); we have previously shown GA to be an AMP which synergises with tobramycin against CF P. aeruginosa, functioning via bacterial membrane disruption. Here, we demonstrate GA's direct binding and sequestration/neutralisation of P. aeruginosa LPS, in keeping with GA's ability to disrupt the outer membrane. At CF-relevant LPS concentrations, however, membrane disruption by GA was not strongly inhibited. Furthermore, exposure to GA did not result in increased Lipid A modification of LPS or in increased gene expression of systems involved in AMP sensing and LPS modification. Therefore, despite the electrostatic targeting of LPS by GA as part of its activity, P. aeruginosa does not demonstrate LPS modification in its defence.
Collapse
Affiliation(s)
- Ronan A Murphy
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Jade Pizzato
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Leah Cuthbertson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Akshay Sabnis
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Laura M Nolan
- National Heart and Lung Institute, Imperial College London, London, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | | | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| |
Collapse
|
3
|
Cashion JM, Young KM, Sutherland BA. How does neurovascular unit dysfunction contribute to multiple sclerosis? Neurobiol Dis 2023; 178:106028. [PMID: 36736923 DOI: 10.1016/j.nbd.2023.106028] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) and the most common non-traumatic cause of neurological disability in young adults. Multiple sclerosis clinical care has improved considerably due to the development of disease-modifying therapies that effectively modulate the peripheral immune response and reduce relapse frequency. However, current treatments do not prevent neurodegeneration and disease progression, and efforts to prevent multiple sclerosis will be hampered so long as the cause of this disease remains unknown. Risk factors for multiple sclerosis development or severity include vitamin D deficiency, cigarette smoking and youth obesity, which also impact vascular health. People with multiple sclerosis frequently experience blood-brain barrier breakdown, microbleeds, reduced cerebral blood flow and diminished neurovascular reactivity, and it is possible that these vascular pathologies are tied to multiple sclerosis development. The neurovascular unit is a cellular network that controls neuroinflammation, maintains blood-brain barrier integrity, and tightly regulates cerebral blood flow, matching energy supply to neuronal demand. The neurovascular unit is composed of vessel-associated cells such as endothelial cells, pericytes and astrocytes, however neuronal and other glial cell types also comprise the neurovascular niche. Recent single-cell transcriptomics data, indicate that neurovascular cells, particular cells of the microvasculature, are compromised within multiple sclerosis lesions. Large-scale genetic and small-scale cell biology studies also suggest that neurovascular dysfunction could be a primary pathology contributing to multiple sclerosis development. Herein we revisit multiple sclerosis risk factors and multiple sclerosis pathophysiology and highlight the known and potential roles of neurovascular unit dysfunction in multiple sclerosis development and disease progression. We also evaluate the suitability of the neurovascular unit as a potential target for future disease modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
4
|
Koc Ü, Haupeltshofer S, Klöster K, Demir S, Gold R, Faissner S. Prophylactic Glatiramer Acetate Treatment Positively Attenuates Spontaneous Opticospinal Encephalomyelitis. Cells 2023; 12:cells12040542. [PMID: 36831209 PMCID: PMC9954767 DOI: 10.3390/cells12040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Glatiramer acetate (GA) is a well-established treatment option for patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis (MS) with few side effects. The double transgenic mouse model spontaneous opticospinal encephalomyelitis (OSE), based on recombinant myelin oligodendrocyte glycoprotein35-55 reactive T and B cells, mimicks features of chronic inflammation and degeneration in MS and related disorders. Here, we investigated the effects of prophylactic GA treatment on the clinical course, histological alterations and peripheral immune cells in OSE. Objective: To investigate the effects of prophylactic glatiramer acetate (GA) treatment in a mouse model of spontaneous opticospinal encephalomyelitis (OSE). Methods: OSE mice with a postnatal age of 21 to 28 days without signs of encephalomyelitis were treated once daily either with 150 µg GA or vehicle intraperitoneally (i. p.). The animals were scored daily regarding clinical signs and weight. The animals were sacrificed after 30 days of treatment or after having reached a score of 7.0 due to animal care guidelines. We performed immunohistochemistry of spinal cord sections and flow cytometry analysis of immune cells. Results: Preventive treatment with 150 µg GA i. p. once daily significantly reduced clinical disease progression with a mean score of 3.9 ± 1.0 compared to 6.2 ± 0.7 in control animals (p < 0.01) after 30 d in accordance with positive effects on weight (p < 0.001). The immunohistochemistry showed that general inflammation, demyelination or CD11c+ dendritic cell infiltration did not differ. There was, however, a modest reduction of the Iba1+ area (p < 0.05) and F4/80+ area upon GA treatment (p < 0.05). The immune cell composition of secondary lymphoid organs showed a trend towards an upregulation of regulatory T cells, which lacked significance. Conclusions: Preventive treatment with GA reduces disease progression in OSE in line with modest effects on microglia/macrophages. Due to the lack of established prophylactic treatment options for chronic autoimmune diseases with a high risk of disability, our study could provide valuable indications for translational medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon Faissner
- Correspondence: ; Tel.: +49-234-5092411; Fax: +49-234-5092414
| |
Collapse
|
5
|
Liu C, Zhu J, Mi Y, Jin T. Impact of disease-modifying therapy on dendritic cells and exploring their immunotherapeutic potential in multiple sclerosis. J Neuroinflammation 2022; 19:298. [PMID: 36510261 PMCID: PMC9743681 DOI: 10.1186/s12974-022-02663-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a pivotal role in inducing either inflammatory or tolerogenic response based on their subtypes and environmental signals. Emerging evidence indicates that DCs are critical for initiation and progression of autoimmune diseases, including multiple sclerosis (MS). Current disease-modifying therapies (DMT) for MS can significantly affect DCs' functions. However, the study on the impact of DMT on DCs is rare, unlike T and B lymphocytes that are the most commonly discussed targets of these therapies. Induction of tolerogenic DCs (tolDCs) with powerful therapeutic potential has been well-established to combat autoimmune responses in laboratory models and early clinical trials. In contrast to in vitro tolDC induction, in vivo elicitation by specifically targeting multiple cell-surface receptors has shown greater promise with more advantages. Here, we summarize the role of DCs in governing immune tolerance and in the process of initiating and perpetuating MS as well as the effects of current DMT drugs on DCs. We then highlight the most promising cell-surface receptors expressed on DCs currently being explored as the viable pharmacological targets through antigen delivery to generate tolDCs in vivo.
Collapse
Affiliation(s)
- Caiyun Liu
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China ,grid.24381.3c0000 0000 9241 5705Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yan Mi
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Tao Jin
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Inhibition of Human Neutrophil Functions In Vitro by Multiple Sclerosis Disease-Modifying Therapies. J Clin Med 2020; 9:jcm9113542. [PMID: 33147889 PMCID: PMC7692529 DOI: 10.3390/jcm9113542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
There is a growing optimism about the potential of new disease-modifying therapies (DMTs) in the management of relapsing-remitting multiple sclerosis (RRMS) patients. However, this initial enthusiasm has been tempered by evidence indicating that multiple sclerosis (MS) patients undergoing DMT may be at higher risk of developing infections through incompletely understood mechanisms. As neutrophils provide the first line of defense against pathogens, here we have compared the effects of some of the commonly used MS DMTs (i.e., moderate-efficacy injective, first-line: interferonβ-1b (IFNβ-1b), glatiramer acetate (GA); and high-efficacy, second-line: fingolimod (FTY) and natalizumab (NAT)) on the in vitro viability and functions of neutrophils isolated from healthy subjects. All the DMTs tested impaired the ability of neutrophils to kill Klebsiella pneumoniae, whereas none of them affected the rate of neutrophil apoptosis or CD11b and CD62L cell surface expression. Intriguingly, only FTY exposure negatively affected K. pneumoniae-induced production of reactive oxygen species (ROS) in polymorphonuclear leukocytes (PMNs). Furthermore, neutrophils exposed to K. pneumoniae secreted enhanced amounts of CXCL8, IL-1β and TNF-α, which were differentially regulated following DMT pretreatment. Altogether, these findings suggest that DMTs may increase the susceptibility of MS patients to microbial infections, in part, through inhibition of neutrophil functions. In light of these data, we recommend that the design of personalized therapies for RRMS patients should take into account not just the mechanism of action of the chosen DMT but also the potential risk of infection associated with the administration of such therapeutic compounds to this highly vulnerable population.
Collapse
|
7
|
Nally FK, De Santi C, McCoy CE. Nanomodulation of Macrophages in Multiple Sclerosis. Cells 2019; 8:cells8060543. [PMID: 31195710 PMCID: PMC6628349 DOI: 10.3390/cells8060543] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelinating autoimmune disease primarily affecting young adults. Despite an unclear causal factor, symptoms and pathology arise from the infiltration of peripheral immune cells across the blood brain barrier. Accounting for the largest fraction of this infiltrate, macrophages are functionally heterogeneous innate immune cells capable of adopting either a pro or an anti-inflammatory phenotype, a phenomenon dependent upon cytokine milieu in the CNS. This functional plasticity is of key relevance in MS, where the pro-inflammatory state dominates the early stage, instructing demyelination and axonal loss while the later anti-inflammatory state holds a key role in promoting tissue repair and regeneration in later remission. This review highlights a potential therapeutic benefit of modulating macrophage polarisation to harness the anti-inflammatory and reparative state in MS. Here, we outline the role of macrophages in MS and look at the role of current FDA approved therapeutics in macrophage polarisation. Moreover, we explore the potential of particulate carriers as a novel strategy to manipulate polarisation states in macrophages, whilst examining how optimising macrophage uptake via nanoparticle size and functionalisation could offer a novel therapeutic approach for MS.
Collapse
Affiliation(s)
- Frances K Nally
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| | - Chiara De Santi
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| | - Claire E McCoy
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| |
Collapse
|
8
|
Amrouche K, Pers JO, Jamin C. Glatiramer Acetate Stimulates Regulatory B Cell Functions. THE JOURNAL OF IMMUNOLOGY 2019; 202:1970-1980. [DOI: 10.4049/jimmunol.1801235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 01/14/2023]
|
9
|
Prod'homme T, Zamvil SS. The Evolving Mechanisms of Action of Glatiramer Acetate. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a029249. [PMID: 29440323 DOI: 10.1101/cshperspect.a029249] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glatiramer acetate (GA) is a synthetic amino acid copolymer that is approved for treatment of relapsing remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS). GA reduces multiple sclerosis (MS) disease activity and has shown comparable efficacy with high-dose interferon-β. The mechanism of action (MOA) of GA has long been an enigma. Originally, it was recognized that GA treatment promoted expansion of GA-reactive T-helper 2 and regulatory T cells, and induced the release of neurotrophic factors. However, GA treatment influences both innate and adaptive immune compartments, and it is now recognized that antigen-presenting cells (APCs) are the initial cellular targets for GA. The anti-inflammatory (M2) APCs induced following treatment with GA are responsible for the induction of anti-inflammatory T cells that contribute to its therapeutic benefit. Here, we review studies that have shaped our current understanding of the MOA of GA.
Collapse
Affiliation(s)
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
10
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
D Alessandro J, Garofalo K, Zhao G, Honan C, Duffner J, Capila I, Fier I, Kaundinya G, Kantor D, Ganguly T. Demonstration of Biological and Immunological Equivalence of a Generic Glatiramer Acetate. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2018; 16:714-723. [PMID: 28240190 PMCID: PMC5684786 DOI: 10.2174/1871527316666170223162747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND In April 2015, the US Food and Drug Administration approved the first generic glatiramer acetate, Glatopa® (M356), as fully substitutable for Copaxone® 20 mg/mL for relapsing forms of multiple sclerosis (MS). This approval was accomplished through an Abbreviated New Drug Application that demonstrated equivalence to Copaxone. METHOD This article will provide an overview of the methods used to establish the biological and immunological equivalence of the two glatiramer acetate products, including methods evaluating antigenpresenting cell (APC) biology, T-cell biology, and other immunomodulatory effects. RESULTS In vitro and in vivo experiments from multiple redundant orthogonal assays within four biological processes (aggregate biology, APC biology, T-cell biology, and B-cell biology) modulated by glatiramer acetate in MS established the biological and immunological equivalence of Glatopa and Copaxone and are described. The following were observed when comparing Glatopa and Copaxone in these experiments: equivalent delays in symptom onset and reductions in "disease" intensity in experimental autoimmune encephalomyelitis; equivalent dose-dependent increases in Glatopa- and Copaxone- induced monokine-induced interferon-gamma release from THP-1 cells; a shift to a T helper 2 phenotype resulting in the secretion of interleukin (IL)-4 and downregulation of IL-17 release; no differences in immunogenicity and the presence of equivalent "immunofingerprints" between both versions of glatiramer acetate; and no stimulation of histamine release with either glatiramer acetate in basophilic leukemia 2H3 cell lines. CONCLUSION In summary, this comprehensive approach across different biological and immunological pathways modulated by glatiramer acetate consistently supported the biological and immunological equivalence of Glatopa and Copaxone.
Collapse
Affiliation(s)
| | - Kevin Garofalo
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ganlin Zhao
- Division of Bioequivalence I, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD. United States
| | - Christopher Honan
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Jay Duffner
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ishan Capila
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ian Fier
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ganesh Kaundinya
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Daniel Kantor
- Division of Neurology, Florida Atlantic University, Boca Raton, FL. United States
| | - Tanmoy Ganguly
- Momenta Pharmaceuticals, Inc., 675 West Kendall Street, Cambridge, MA 02142. United States
| |
Collapse
|
12
|
Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 2018; 9:17937-17950. [PMID: 29707159 PMCID: PMC5915167 DOI: 10.18632/oncotarget.24788] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages are critical mediators of the innate immune response against foreign pathogens, including bacteria, physical stress, and injury. Therefore, these cells play a key role in the "inflammatory pathway" which in turn can lead to an array of diseases and disorders such as autoimmune neuropathies and myocarditis, inflammatory bowel disease, atherosclerosis, sepsis, arthritis, diabetes, and angiogenesis. Recently, more studies have focused on the macrophages inflammatory diseases since the discovery of the two subtypes of macrophages, which are differentiated on the basis of their phenotype and distinct gene expression pattern. Of these, M1 macrophages are pro-inflammatory and responsible for inflammatory signaling, while M2 are anti-inflammatory macrophages that participate in the resolution of the inflammatory process, M2 macrophages produce anti-inflammatory cytokines, thereby contributing to tissue healing. Many studies have shown the role of these two subtypes in the inflammatory pathway, and their emergence appears to decide the fate of inflammatory signaling and disease progression. As a next step in directing the pro-inflammatory response toward the anti-inflammatory type after an insult by a foreign pathogen (e. g., bacterial lipopolysaccharide), investigators have identified many natural compounds that have the potential to modulate M1 to M2 macrophages. In this review, we provide a focused discussion of advances in the identification of natural therapeutic molecules with anti-inflammatory properties that modulate the phenotype of macrophages from M1 to M2.
Collapse
Affiliation(s)
- Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology (IIT) Indore, MP, India
| | - Sutripta Sarkar
- PostGraduate Department of Food & Nutrition, BRSN College (affiliated to WBSU), Kolkata, WB, India
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Joong-gu Daegu, South Korea
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, UP, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Rajkumar Savai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen 35392, Germany.,Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the DZL, Bad Nauheim, Germany
| |
Collapse
|
13
|
von Euler Chelpin M, Vorup-Jensen T. Targets and Mechanisms in Prevention of Parkinson's Disease through Immunomodulatory Treatments. Scand J Immunol 2017; 85:321-330. [PMID: 28231624 DOI: 10.1111/sji.12542] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world; however, there is no cure for it. Current treatments only relieve some of the symptoms, without ceasing the disease, and lose efficacy with prolonged treatment. Considerable evidence shows that persistent inflammatory responses, involving T cell infiltration and glial cell activation, are common characteristics of human patients and play a crucial role in the degeneration of dopaminergic neurons. Therefore, it is important to develop therapeutic strategies that can impede or halt the disease through the modulation of the peripheral immune system by aiming at controlling the existing neuroinflammation. Most of the immunomodulatory therapies designed for the treatment of Parkinson's disease are based on vaccines using AS or antibodies against it; yet, it is of significant interest to explore other formulations that could be used as therapeutic agents. Several vaccination procedures have shown that inducing regulatory T cells in the periphery is protective in PD animal models. In this regard, the formulation glatiramer acetate (Copaxone® ), extensively used for the treatment of multiple sclerosis, could be a suitable candidate due to its capability to increase the number and suppressor capacity of regulatory T cells. In this review, we will present some of the recent immunomodulatory therapies for PD including vaccinations with AS or glatiramoids, or both, as treatments of PD pathology.
Collapse
Affiliation(s)
| | - T Vorup-Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Mindur JE, Valenzuela RM, Yadav SK, Boppana S, Dhib-Jalbut S, Ito K. IL-27: a potential biomarker for responders to glatiramer acetate therapy. J Neuroimmunol 2016; 304:21-28. [PMID: 27449853 DOI: 10.1016/j.jneuroim.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
Glatiramer acetate (GA) is an FDA-approved efficacious drug for the treatment of relapsing-remitting multiple sclerosis (RRMS). However, this treatment is not effective for all RRMS patients. Therefore, it is important to identify reliable biomarkers that can predict a beneficial clinical response to GA therapy. Since an increase in IL-27 has been demonstrated to suppress autoimmune and allergic diseases of inflammatory origin, we examined the effect of GA on the production of IL-27. We observed that IL-27 production in PBMCs cultured with GA was heterogeneous amongst MS patients and healthy donors (HD), and thus, defined these MS patients as either efficient, weak, or non-IL-27 producers. Interestingly, GA could induce the expression of the IL-27p28 subunit more efficiently than the IL-27 EBI3 subunit, and the production of IL-27 depended on MHC class II binding by GA. In addition, we found that GA could augment Toll-like receptor (TLR)-mediated IL-27 production. Importantly, serum production of IL-27 and IL-10 was significantly increased at 6months during GA therapy in clinical responders to GA, but not in GA non-responders. Altogether, our data suggest that GA-induced IL-27 may represent a therapeutic mechanism of GA-mediated immunomodulation and that GA-mediated IL-27 production in PBMCs is worth exploring as a biomarker to screen for GA responders prior to the initiation of GA treatment.
Collapse
Affiliation(s)
- John E Mindur
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Reuben M Valenzuela
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Sudhir K Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Sridhar Boppana
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2016; 11:721-732. [PMID: 27423192 DOI: 10.1007/s11481-016-9696-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022]
Abstract
The importance of CD11c+ antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c+ APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c+ APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c+ cells is technically difficult. To ask whether the CD11c+ APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c+ APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.
Collapse
|
16
|
Kempuraj D, Konstantinidou A, Boscolo P, Ferro F, Di Giannantonio M, Conti CM, Merlitti D, Petrarca C, Castellani ML, Doyle R, Theoharides TC. Cytokines and the Brain. Int J Immunopathol Pharmacol 2016; 17:229-32. [PMID: 15461855 DOI: 10.1177/039463200401700301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Sniping the scout: Targeting the key molecules in dendritic cell functions for treatment of autoimmune diseases. Pharmacol Res 2016; 107:27-41. [DOI: 10.1016/j.phrs.2016.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
|
18
|
Ohashi W, Hattori K, Hattori Y. Control of Macrophage Dynamics as a Potential Therapeutic Approach for Clinical Disorders Involving Chronic Inflammation. J Pharmacol Exp Ther 2015; 354:240-50. [PMID: 26136420 DOI: 10.1124/jpet.115.225540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 08/30/2023] Open
Abstract
Macrophages are a well recognized player of both innate and adaptive immunity and have emerged as a key regulator of systemicmetabolism, hematopoiesis, vasculogenesis, apoptosis, malignancy, and reproduction. Such pleiotropic roles of macrophages are mirrored by their protean features. Upon environmental. challenges, macrophages redistribute and differentiate in situ and contribute to the multiple disease states by exerting protective and pathogenic effects. The environmental challenges include cytokines, chemokines, lipid mediators, and extrinsic insults, such as food and pathogenic bacteria. In addition, homeostasis and the activation state of macrophages are influenced by various metabolites from a commensal microbe that colonizes epithelial and mucosal surfaces, such as the lungs, intestines, and skin. In this review, we describe macrophage differentiation, polarization, and various functions in chronic disease states, including chronic inflammatory bowel disease, tumorigenesis, metabolism and obesity, and central nervous system demyelinating disorders. Controlling the macrophage dynamics to affect the pathologic states is considered to be an important therapeutic approach for many clinical disorders involving chronic inflammation.
Collapse
Affiliation(s)
- Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (W.O., Y.H.); and Department of Anesthesiology and Pain Relief Center, University of Tokyo Hospital, Tokyo, Japan (K.H.)
| | - Kohshi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (W.O., Y.H.); and Department of Anesthesiology and Pain Relief Center, University of Tokyo Hospital, Tokyo, Japan (K.H.)
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (W.O., Y.H.); and Department of Anesthesiology and Pain Relief Center, University of Tokyo Hospital, Tokyo, Japan (K.H.)
| |
Collapse
|
19
|
|
20
|
Fasudil regulates T cell responses through polarization of BV-2 cells in mice experimental autoimmune encephalomyelitis. Acta Pharmacol Sin 2014; 35:1428-38. [PMID: 25263338 DOI: 10.1038/aps.2014.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/22/2014] [Indexed: 01/22/2023]
Abstract
AIM Fasudil, a selective Rho kinase (ROCK) inhibitor, has been shown to alleviate the severity of experimental autoimmune encephalomyelitis (EAE) via attenuating demyelination and neuroinflammation. The aim of this study was to investigate the effects of fasudil on interactions between macrophages/microglia and T cells in a mice EAE model. METHODS Mouse BV-2 microglia were treated with IFN-γ and fasudil. Cell viability was detected with MTT assay. BV-2 microglia polarization was analyzed using flow cytometry. Cytokines and other proteins were detected with ELISA and Western blotting, respectively. Mice were immunized with MOG35-55 to induce EAE, and then treated with fasudil (40 mg/kg, ip) every other day from d 3 to d 27 pi. Encephalomyelitic T cells were prepared from the spleen of mice immunized with MOG35-55 on d 9 pi. RESULTS Treatment of mouse BV-2 microglia with fasudil (15 μg/mL) induced significant phenotype polarization and functional plasticity, shifting M1 to M2 polarization. When co-cultured with the encephalomyelitic T cells, fasudil-treated BV-2 microglia significantly inhibited the proliferation of antigen-reactive T cells, and down-regulated IL-17-expressing CD4(+) T cells and IL-17 production. Furthermore, fasudil-treated BV-2 microglia significantly up-regulated CD4(+)CD25(high) and CD4(+)IL-10(+) regulatory T cells (Tregs) and IL-10 production, suggesting that the encephalomyelitic T cells had converted to Tregs. In EAE mice, fasudil administration significantly decreased both CD11b(+)iNOS(+) and CD11b(+)TNF-α(+) M1 microglia, and increased CD11b(+)IL-10(+) M2 microglia. CONCLUSION Fasudil polarizes BV-2 microglia into M2 cells, which convert the encephalomyelitic T cells into Tregs in the mice EAE model.
Collapse
|
21
|
Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis. Immunol Lett 2014; 160:17-22. [PMID: 24698730 DOI: 10.1016/j.imlet.2014.03.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a debilitating neurological disorder of the central nervous system (CNS), characterized by activation and infiltration of leukocytes and dendritic cells into the CNS. In the initial phase of MS and its animal model, experimental autoimmune encephalomyelitis (EAE), peripheral macrophages infiltrate into the CNS, where, together with residential microglia, they participate in the induction and development of disease. During the early phase, microglia/macrophages are immediately activated to become classically activated macrophages (M1 cells), release pro-inflammatory cytokines and damage CNS tissue. During the later phase, microglia/macrophages in the inflamed CNS are less activated, present as alternatively activated macrophage phenotype (M2 cells), releasing anti-inflammatory cytokines, accompanied by inflammation resolution and tissue repair. The balance between activation and polarization of M1 cells and M2 cells in the CNS is important for disease progression. Pro-inflammatory IFN-γ and IL-12 drive M1 cell polarization, while IL-4 and IL-13 drive M2 cell polarization. Given that polarized macrophages are reversible in a well-defined cytokine environment, macrophage phenotypes in the CNS can be modulated by molecular intervention. This review summarizes the detrimental and beneficial roles of microglia and macrophages in the CNS, with an emphasis on the role of M2 cells in EAE and MS patients.
Collapse
|
22
|
Lu H, Zeng C, Zhao H, Lian L, Dai Y. Glatiramer acetate inhibits degradation of collagen II by suppressing the activity of interferon regulatory factor-1. Biochem Biophys Res Commun 2014; 448:323-8. [PMID: 24657155 DOI: 10.1016/j.bbrc.2014.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 01/17/2023]
Abstract
Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of osteoarthritis (OA).Interferon regulatory factor 1 (IRF-1) is an important transcriptional factor accounting for inflammation response induced by TNF-α. The physiological function of IRF-1 in OA is still unknown. In this study, we reported that the expression levels of IRF-1 in OA chondrocytes were significantly higher compared to those in normal chondrocytes, which was reversed by treatment with Glatiramer acetate (GA), a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). We also found that GA is able to attenuate the upregulation of IRF-1 induced by TNF-α. Matrix metalloproteinase13 (MMP-13) is one of the downstream target genes of IRF-1, which can induce the degradation of collagen II. Importantly, our results indicated that GA suppressed the expression of MMP-13 as well as the degradation of collagen II. In addition, GA also suppressed TNF-α-induced production of NO and expression of iNOS. Finally, we found that the inhibition of STAT1 activation played a critical role in the inhibitory effects of GA on the induction of IRF-1 and MMP-13. These data suggest that GA might have a potential effect in therapeutic OA.
Collapse
Affiliation(s)
- Huading Lu
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Chun Zeng
- Department of Joint Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Huiqing Zhao
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Liyi Lian
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuhu Dai
- Department of Orthopedics, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
23
|
Messina S, Patti F. The pharmacokinetics of glatiramer acetate for multiple sclerosis treatment. Expert Opin Drug Metab Toxicol 2013; 9:1349-59. [PMID: 23795716 DOI: 10.1517/17425255.2013.811489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a T-cell-mediated disease affecting the central nervous system (CNS), characterized by demyelination and axonal degeneration. INF-β1b was the first drug approved for MS patients in 1993. In 1996, glatiramer acetate (GA), a synthetic copolymer, was approved in the USA for the treatment of relapsing-remitting MS (RRMS) and clinically isolated syndrome (CIS). Although the immunological action of GA has been fully investigated, the exact mechanisms of action of GA are still not completely elucidated. Several in vitro studies on mice and human antigen-presenting cells (APCs) have shown that GA is able to bind to the major histocompatibility complex (MHC), on the surface of APCs, recognizing myelin basic protein (MBP). AREAS COVERED This review explores the pharmacological characteristics of GA, its mechanism of action and its pharmacokinetics properties. The article also provides information on the efficacy, tolerability and an overview of the most important clinical data on GA. EXPERT OPINION Despite the development of novel compounds, it is not surprising that GA is, to date, one of the most prescribed drugs for RRMS patients and CIS patients. The proven efficacy and the mild adverse events, makes GA a good therapeutic option in the early stage of the disease. This is particularly useful for patients who suffer flu-like symptoms from other RRMS therapies as an alternative.
Collapse
Affiliation(s)
- Silvia Messina
- Department G.F. Ingrassia, Section of Neurosciences, Università degli studi di Catania , Via S. Sofia, 78, Catania , Italy +0953782642 ; +0953782626 ;
| | | |
Collapse
|
24
|
Tyler AF, Mendoza JP, Firan M, Karandikar NJ. CD8(+) T Cells Are Required For Glatiramer Acetate Therapy in Autoimmune Demyelinating Disease. PLoS One 2013; 8:e66772. [PMID: 23805274 PMCID: PMC3689655 DOI: 10.1371/journal.pone.0066772] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/10/2013] [Indexed: 12/19/2022] Open
Abstract
The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8+ T cell responses that can potentially suppress pathogenic CD4+ T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8+ T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8+ T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4+ regulatory T cells in an antigen-independent manner, required CD8+ T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8+ T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cytotoxicity, Immunologic/drug effects
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Forkhead Transcription Factors/metabolism
- Glatiramer Acetate/pharmacology
- Histocompatibility Antigens Class I/metabolism
- Immunotherapy
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Andrew F. Tyler
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jason P. Mendoza
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mihail Firan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nitin J. Karandikar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013; 2013:948976. [PMID: 23840244 PMCID: PMC3694375 DOI: 10.1155/2013/948976] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022]
Abstract
The central nervous system (CNS) is immune privileged with access to leukocytes being limited. In several neurological diseases, however, infiltration of immune cells from the periphery into the CNS is largely observed and accounts for the increased representation of macrophages within the CNS. In addition to extensive leukocyte infiltration, the activation of microglia is frequently observed. The functions of activated macrophages/microglia within the CNS are complex. In three animal models of multiple sclerosis (MS), namely, experimental autoimmune encephalomyelitis (EAE) and cuprizone- and lysolecithin-induced demyelination, there have been many reported detrimental roles associated with the involvement of macrophages and microglia. Such detriments include toxicity to neurons and oligodendrocyte precursor cells, release of proteases, release of inflammatory cytokines and free radicals, and recruitment and reactivation of T lymphocytes in the CNS. Many studies, however, have also reported beneficial roles of macrophages/microglia, including axon regenerative roles, assistance in promoting remyelination, clearance of inhibitory myelin debris, and the release of neurotrophic factors. This review will discuss the evidence supporting the detrimental and beneficial aspects of macrophages/microglia in models of MS, provide a discussion of the mechanisms underlying the dichotomous roles, and describe a few therapies in clinical use in MS that impinge on the activity of macrophages/microglia.
Collapse
|
26
|
Ayers CL, Mendoza JP, Sinha S, Cunnusamy K, Greenberg BM, Frohman EM, Karandikar NJ. Modulation of immune function occurs within hours of therapy initiation for multiple sclerosis. Clin Immunol 2013; 147:105-19. [PMID: 23578552 DOI: 10.1016/j.clim.2013.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/27/2022]
Abstract
Daily administration of FDA-approved glatiramer acetate (GA) has beneficial effects on clinical course of relapsing remitting multiple sclerosis (RRMS). Although mechanisms of GA-action have been widely investigated and partially understood, immediate immune dynamics following GA-therapy are unknown. In the present study, we characterized the immediate effects of GA on phenotype, quantity and function of immune cells in MS patients. Prominent changes in immune cells were detected within 4-12h post-first GA-injection. T-cell modulation included significantly decreased CD4/CD8 ratio, perturbed homeostasis of predominantly CD8+ T-cells, significant enhancement in CD8+ T-cell mediated suppression and inhibitory potential of induced CD4-suppressors. Changes in APC were restricted to monocytes and included reduced stimulatory capacity in MLR and significantly increased IL-10 and TNF-α production. Our study provides the first evidence that GA treatment induces rapid immunologic changes within hours of first dose. Interestingly, these responses are not only restricted to innate immune cells but also include complex modulation of T-cell functionality.
Collapse
Affiliation(s)
- Chris L Ayers
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Pul R, Morbiducci F, Škuljec J, Skripuletz T, Singh V, Diederichs U, Garde N, Voss EV, Trebst C, Stangel M. Glatiramer acetate increases phagocytic activity of human monocytes in vitro and in multiple sclerosis patients. PLoS One 2012; 7:e51867. [PMID: 23284793 PMCID: PMC3527448 DOI: 10.1371/journal.pone.0051867] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/12/2012] [Indexed: 11/24/2022] Open
Abstract
Beside its effects on T cells, a direct influence on cells of the myelo-monocytic lineage by GA becomes evident. Recently, we demonstrated that GA drives microglia to adopt properties of type II antigen presenting cells (APC) and increases their phagocytic activity. In the present work, we focused on human blood monocytes in order to examine whether GA may increase phagocytic activity in vivo and to evaluate the molecular mechanisms explaining this new discovered mode of action. Peripheral blood mononuclear cells (PBMC) were obtained using a Biocoll-Isopaque gradient and monocytes were subsequently isolated by using CD14 MicroBeads. Phagocytic activity was determined by flow cytometric measurement of the ingestion of fluorescent beads. Flow cytometry was also used to assess monocytic differentiation and expression of phagocytic receptors. Monocytes of GA treated MS patients exhibited a significantly higher phagocytic activity than those of healthy controls or non-treated MS patients. In vitro, a significant phagocytic response was already detectable after 1 h of GA treatment at the concentrations of 62.5 and 125 µg/ml. A significant increase at all concentrations of GA was observed after 3 h and 24 h, respectively. Only monocytes co-expressing CD16, particularly CD14++CD16+ cells, were observed to phagocytose. Treatment of monocytes with IL-10 and supernatants from GA-treated monocytes did not alter phagocytosis. We observed a decrease in CD11c expression by GA while no changes were found in the expression of CD11b, CD36, CD51/61, CD91, TIM-3, and CD206. In our blocking assays, treatment with anti-CD14, anti-CD16, anti-TIM3, anti-CD210, and particularly anti-CD36 antibodies led to a decrease in phagocytosis. Our results demonstrate a new mechanism of action of GA treatment that augments phagocytic activity of human monocytes in vivo and in vitro. This activity seems to arise from the CD14++CD16+ monocyte subset.
Collapse
Affiliation(s)
- Refik Pul
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Jelena Škuljec
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Vikramjeet Singh
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Ute Diederichs
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Niklas Garde
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Elke Verena Voss
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| |
Collapse
|
28
|
Liu X, Fang L, Guo TB, Mei H, Zhang JZ. Drug targets in the cytokine universe for autoimmune disease. Trends Immunol 2012; 34:120-8. [PMID: 23116550 DOI: 10.1016/j.it.2012.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 01/13/2023]
Abstract
In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders.
Collapse
Affiliation(s)
- Xuebin Liu
- Department of Neuroimmunology, GlaxoSmithKline Research and Development Center, Shanghai, China
| | | | | | | | | |
Collapse
|
29
|
Amedei A, Prisco D, D’Elios MM. Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. Int J Mol Sci 2012; 13:13438-13460. [PMID: 23202961 PMCID: PMC3497335 DOI: 10.3390/ijms131013438] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis, the clinical features and pathological correlate for which were first described by Charcot, is a chronic neuroinflammatory disease with unknown etiology and variable clinical evolution. Although neuroinflammation is a descriptive denominator in multiple sclerosis based on histopathological observations, namely the penetration of leukocytes into the central nervous system, the clinical symptoms of relapses, remissions and progressive paralysis are the result of losses of myelin and neurons. In the absence of etiological factors as targets for prevention and therapy, the definition of molecular mechanisms that form the basis of inflammation, demyelination and toxicity for neurons have led to a number of treatments that slow down disease progression in specific patient cohorts, but that do not cure the disease. Current therapies are directed to block the immune processes, both innate and adaptive, that are associated with multiple sclerosis. In this review, we analyze the role of cytokines in the multiple sclerosis pathogenesis and current/future use of them in treatments of multiple sclerosis.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy; E-Mail:
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Domenico Prisco
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Department of Medical and Surgical Critical Care, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Mario Milco D’Elios
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy; E-Mail:
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| |
Collapse
|
30
|
Stoy N. Innate origins of multiple sclerosis pathogenesis: Implications for computer-assisted design of disease-modifying therapies. Drug Dev Res 2011. [DOI: 10.1002/ddr.20477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Chen SJ, Wang YL, Fan HC, Lo WT, Wang CC, Sytwu HK. Current status of the immunomodulation and immunomediated therapeutic strategies for multiple sclerosis. Clin Dev Immunol 2011; 2012:970789. [PMID: 22203863 PMCID: PMC3235500 DOI: 10.1155/2012/970789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/12/2011] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and CD4(+) T cells form the core immunopathogenic cascade leading to chronic inflammation. Traditionally, Th1 cells (interferon-γ-producing CD4(+) T cells) driven by interleukin 12 (IL12) were considered to be the encephalitogenic T cells in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Currently, Th17 cells (Il17-producing CD4(+) T cells) are considered to play a fundamental role in the immunopathogenesis of EAE. This paper highlights the growing evidence that Th17 cells play the core role in the complex adaptive immunity of EAE/MS and discusses the roles of the associated immune cells and cytokines. These constitute the modern immunological basis for the development of novel clinical and preclinical immunomodulatory therapies for MS discussed in this paper.
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Yen-Ling Wang
- Center for Composite Tissue Allotransplantation, Chang Gung Memorial Hospital, Linkou, New Taipei City 333, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Tsung Lo
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Chien Wang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
32
|
Bomprezzi R, Schaefer R, Reese V, Misra A, Vollmer TL, Kala M. Glatiramer acetate-specific antibody titres in patients with relapsing / remitting multiple sclerosis and in experimental autoimmune encephalomyelitis. Scand J Immunol 2011; 74:219-226. [PMID: 21615449 DOI: 10.1111/j.1365-3083.2011.02581.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glatiramer acetate (GA) is an immunomodulatory drug approved for the treatment of clinically isolated syndrome (CIS) and relapsing/remitting multiple sclerosis (RRMS). As an antigen-based therapy, GA induces GA-specific antibodies in treated patients and animals. GA-specific antibodies do not neutralize therapeutic effects on relapses and disability. Rather, it has been suggested that GA-specific antibodies may be associated with improved clinical outcomes. We evaluated antibody responses in eight patients with RRMS treated with GA for 15 months and antibody responses in GA-treated C57BL/6 mice before and after induction of experimental autoimmune encephalomyelitis (EAE). There were no significant differences from pretreatment levels of total IgE or GA-specific IgE in patients with RRMS. Total IgG1, IgG3 and GA-specific IgG4 were significantly increased at 15 months of GA treatment. Antibody type and titre were not associated with clinical outcomes, i.e. expanded disability status scale (EDSS) score, disease burden on magnetic resonance images (MRI) or clinical relapses. In contrast, mice with EAE showed a marked increase in GA-specific IgE and GA-specific IgG1 antibody responses. GA-treated mice demonstrated improved clinical symptoms and lower mortality than untreated controls. Our results suggest that antibody responses to GA are heterogeneous among patients with RRMS, with no apparent association between antibody response and clinical outcomes. Clinical improvements in EAE-induced GA-treated mice suggest that GA-specific IgE and IgG1 may contribute to GA treatment effects in EAE.
Collapse
Affiliation(s)
- R Bomprezzi
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USAUniversity of Arizona College of Medicine, Tucson, AZ, USADepartment of Neurology, University of Colorado Health Sciences, Aurora, CO, USAUniversity of Arizona College of Medicine, Phoenix, AZ, USA
| | - R Schaefer
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USAUniversity of Arizona College of Medicine, Tucson, AZ, USADepartment of Neurology, University of Colorado Health Sciences, Aurora, CO, USAUniversity of Arizona College of Medicine, Phoenix, AZ, USA
| | - V Reese
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USAUniversity of Arizona College of Medicine, Tucson, AZ, USADepartment of Neurology, University of Colorado Health Sciences, Aurora, CO, USAUniversity of Arizona College of Medicine, Phoenix, AZ, USA
| | - A Misra
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USAUniversity of Arizona College of Medicine, Tucson, AZ, USADepartment of Neurology, University of Colorado Health Sciences, Aurora, CO, USAUniversity of Arizona College of Medicine, Phoenix, AZ, USA
| | - T L Vollmer
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USAUniversity of Arizona College of Medicine, Tucson, AZ, USADepartment of Neurology, University of Colorado Health Sciences, Aurora, CO, USAUniversity of Arizona College of Medicine, Phoenix, AZ, USA
| | - M Kala
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USAUniversity of Arizona College of Medicine, Tucson, AZ, USADepartment of Neurology, University of Colorado Health Sciences, Aurora, CO, USAUniversity of Arizona College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
33
|
Toker A, Slaney CY, Bäckström BT, Harper JL. Glatiramer Acetate Treatment Directly Targets CD11b+
Ly6G−
Monocytes and Enhances the Suppression of Autoreactive T cells in Experimental Autoimmune Encephalomyelitis. Scand J Immunol 2011; 74:235-243. [DOI: 10.1111/j.1365-3083.2011.02575.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R, Zamvil SS, Weber MS. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 2011; 25:401-14. [PMID: 21476611 PMCID: PMC3963480 DOI: 10.2165/11588120-000000000-00000] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glatiramer acetate is a synthetic, random copolymer widely used as a first-line agent for the treatment of relapsing-remitting multiple sclerosis (MS). While earlier studies primarily attributed its clinical effect to a shift in the cytokine secretion of CD4+ T helper (T(h)) cells, growing evidence in MS and its animal model, experimental autoimmune encephalomyelitis (EAE), suggests that glatiramer acetate treatment is associated with a broader immunomodulatory effect on cells of both the innate and adaptive immune system. To date, glatiramer acetate-mediated modulation of antigen-presenting cells (APC) such as monocytes and dendritic cells, CD4+ T(h) cells, CD8+ T cells, Foxp3+ regulatory T cells and antibody production by plasma cells have been reported; in addition, most recent investigations indicate that glatiramer acetate treatment may also promote regulatory B-cell properties. Experimental evidence suggests that, among these diverse effects, a fostering interplay between anti-inflammatory T-cell populations and regulatory type II APC may be the central axis in glatiramer acetate-mediated immune modulation of CNS autoimmune disease. Besides altering inflammatory processes, glatiramer acetate could exert direct neuroprotective and/or neuroregenerative properties, which could be of relevance for the treatment of MS, but even more so for primarily neurodegenerative disorders, such as Alzheimer's or Parkinson's disease. In this review, we provide a comprehensive and critical overview of established and recent findings aiming to elucidate the complex mechanism of action of glatiramer acetate.
Collapse
Affiliation(s)
- Patrice H. Lalive
- Department of Neurosciences, Division of Neurology, Geneva University Hospital and University of Geneva, Geneva, Switzerland,Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, Geneva University Hospital and University of Geneva, Geneva, Switzerland,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Oliver Neuhaus
- Department of Neurology, Kliniken Landkreis Sigmaringen, Sigmaringen, Germany
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Danielle Burger
- Faculty of Medicine, Division of Immunology and Allergy, HansWilsdorf Laboratory, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Reinhard Hohlfeld
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Scott S. Zamvil
- Department of Neurology, University of California, San Francisco, California, USA
| | - Martin S. Weber
- Department of Neurology, Technische Universität München, Munich, Germany
| |
Collapse
|
35
|
Leger T, Grist J, D'Acquisto F, Clark AK, Malcangio M. Glatiramer acetate attenuates neuropathic allodynia through modulation of adaptive immune cells. J Neuroimmunol 2011; 234:19-26. [DOI: 10.1016/j.jneuroim.2011.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/30/2022]
|
36
|
Kala M, Miravalle A, Vollmer T. Recent insights into the mechanism of action of glatiramer acetate. J Neuroimmunol 2011; 235:9-17. [PMID: 21402415 DOI: 10.1016/j.jneuroim.2011.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 01/04/2023]
Abstract
Glatiramer acetate (GA, Copaxone®, co-polymer 1) is an immunomodulatory therapy approved in 1996 by the United States Food and Drug Administration for treatment of relapsing-remitting multiple sclerosis. GA has a good safety profile, moderate efficacy, and a unique mode of action. Recent evidence in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), suggests that GA effects on NK cells and B cells may contribute to therapeutic efficacy. We review the mechanism of action of GA, with particular focus on recent data suggesting a role for regulatory B cells.
Collapse
Affiliation(s)
- Mrinalini Kala
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | | | | |
Collapse
|
37
|
Pul R, Moharregh-Khiabani D, Škuljec J, Skripuletz T, Garde N, Voß EV, Stangel M. Glatiramer Acetate Modulates TNF-α and IL-10 Secretion in Microglia and Promotes Their Phagocytic Activity. J Neuroimmune Pharmacol 2010; 6:381-8. [DOI: 10.1007/s11481-010-9248-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
38
|
Glatiramer acetate triggers PI3Kδ/Akt and MEK/ERK pathways to induce IL-1 receptor antagonist in human monocytes. Proc Natl Acad Sci U S A 2010; 107:17692-7. [PMID: 20876102 DOI: 10.1073/pnas.1009443107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glatiramer acetate (GA), an immunomodulator used in multiple sclerosis (MS) therapy, induces the production of secreted IL-1 receptor antagonist (sIL-1Ra), a natural inhibitor of IL-1β, in human monocytes, and in turn enhances sIL-1Ra circulating levels in MS patients. GA is a mixture of peptides with random Glu, Lys, Ala, and Tyr sequences of high polarity and hydrophilic nature that is unlikely to cross the blood-brain barrier. In contrast, sIL-1Ra crosses the blood-brain barrier and, in turn, may mediate GA anti-inflammatory activities within the CNS by counteracting IL-1β activities. Here we identify intracellular signaling pathways induced by GA that control sIL-1Ra expression in human monocytes. By using kinase knockdown and specific inhibitors, we demonstrate that GA induces sIL-1Ra production via the activation of PI3Kδ, Akt, MEK1/2, and ERK1/2, demonstrating that both PI3Kδ/Akt and MEK/ERK pathways rule sIL-1Ra expression in human monocytes. The pathways act in parallel upstream glycogen synthase kinase-3α/β (GSK3α/β), the knockdown of which enhances sIL-1Ra production. Together, our findings demonstrate the existence of signal transduction triggered by GA, further highlighting the mechanisms of action of this drug in MS.
Collapse
|
39
|
|
40
|
Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1beta in human monocytes and multiple sclerosis. Proc Natl Acad Sci U S A 2009; 106:4355-9. [PMID: 19255448 DOI: 10.1073/pnas.0812183106] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mechanisms of action as well as cellular targets of glatiramer acetate (GA) in multiple sclerosis (MS) are still not entirely understood. IL-1beta is present in CNS-infiltrating macrophages and microglial cells and is an important mediator of inflammation in experimental autoimmune encephalitis (EAE), the MS animal model. A natural inhibitor of IL-1beta, the secreted form of IL-1 receptor antagonist (sIL-1Ra) improves EAE disease course. In this study we examined the effects of GA on the IL-1 system. In vivo, GA treatment enhanced sIL-1Ra blood levels in both EAE mice and patients with MS, whereas IL-1beta levels remained undetectable. In vitro, GA per se induced the transcription and production of sIL-1Ra in isolated human monocytes. Furthermore, in T cell contact-activated monocytes, a mechanism relevant to chronic inflammation, GA strongly diminished the expression of IL-1beta and enhanced that of sIL-1Ra. This contrasts with the effect of GA in monocytes activated upon acute inflammatory conditions. Indeed, in LPS-activated monocytes, IL-1beta and sIL-1Ra production were increased in the presence of GA. These results demonstrate that, in chronic inflammatory conditions, GA enhances circulating sIL-1Ra levels and directly affects monocytes by triggering a bias toward a less inflammatory profile, increasing sIL-1Ra while diminishing IL-1beta production. This study sheds light on a mechanism that is likely to participate in the therapeutic effects of GA in MS.
Collapse
|
41
|
Sloane E, Ledeboer A, Seibert W, Coats B, van Strien M, Maier SF, Johnson KW, Chavez R, Watkins LR, Leinwand L, Milligan ED, Van Dam AM. Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental Multiple Sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav Immun 2009; 23:92-100. [PMID: 18835435 PMCID: PMC2631931 DOI: 10.1016/j.bbi.2008.09.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/20/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune inflammatory disease that presents clinically with a range of symptoms including motor, sensory, and cognitive dysfunction as well as demyelination and lesion formation in brain and spinal cord. A variety of animal models of MS have been developed that share many of the pathological hallmarks of MS including motor deficits (ascending paralysis), demyelination and axonal damage of central nervous system (CNS) tissue. In recent years, neuropathic pain has been recognized as a prevalent symptom of MS in a majority of patients. To date, there have been very few investigations into sensory disturbances in animal models of MS. The current work contains the first assessment of hind paw mechanical allodynia (von Frey test) over the course of a relapsing-remitting myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE) rat model of MS and establishes the utility of this model in examining autoimmune induced sensory dysfunction. We demonstrate periods of both decreased responsiveness to touch that precedes the onset of hind limb paralysis, and increased responsiveness (allodynia) that occurs during the period of motor deficit amelioration traditionally referred to as symptom remission. Furthermore, we tested the ability of our recently characterized anti-inflammatory IL-10 gene therapy to treat the autoimmune inflammation induced behavioral symptoms and tissue histopathological changes. This therapy is shown here to reverse inflammation induced paralysis, to reduce disease associated reduction in sensitivity to touch, to prevent the onset of allodynia, to reverse disease associated loss of body weight, and to suppress CNS glial activation associated with disease progression in this model.
Collapse
Affiliation(s)
- Evan Sloane
- Department of Psychology & Center for Neuroscience, University of Colorado, CU-Boulder 345, CO 80305, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Graber JJ, Dhib-Jalbut S. Protective autoimmunity in the nervous system. Pharmacol Ther 2008; 121:147-59. [PMID: 19000712 DOI: 10.1016/j.pharmthera.2008.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 12/31/2022]
Abstract
The immune system can play both detrimental and beneficial roles in the nervous system. Multiple arms of the immune system, including T cells, B cells, NK cells, mast cells, macrophages, dendritic cells, microglia, antibodies, complement and cytokines participate in limiting damage to the nervous system during toxic, ischemic, hemorrhagic, infective, degenerative, metabolic and immune-mediated insults and also assist in the process of repair after injury has occurred. Immune cells have been shown to produce neurotrophic growth factors and interact with neurons and glial cells to preserve them from injury and stimulate growth and repair. The immune system also appears to participate in proliferation of neural progenitor stem cells and their migration to sites of injury. Neural stem cells can also modify the immune response in the central and peripheral nervous system to enhance neuroprotective effects. Evidence for protective and reparative functions of the immune system has been found in diverse neurologic diseases including traumatic injury, ischemic and hemorrhagic stroke, multiple sclerosis, infection, and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis). Existing therapies including glatiramer acetate, interferon-beta and immunoglobulin have been shown to augment the protective and regenerative aspects of the immune system in humans, and other experimental interventions such as vaccination, minocycline, antibodies and neural stem cells, have shown promise in animal models of disease. The beneficent aspects of the immune response in the nervous system are beginning to be appreciated and their potential as pharmacologic targets in neurologic disease is being explored.
Collapse
Affiliation(s)
- Jerome J Graber
- New York University School of Medicine, Department of Neurology, New York, NY, USA
| | | |
Collapse
|
43
|
Sur BW, Nguyen P, Sun CH, Tromberg BJ, Nelson EL. Immunophototherapy using PDT combined with rapid intratumoral dendritic cell injection. Photochem Photobiol 2008; 84:1257-64. [PMID: 18435703 DOI: 10.1111/j.1751-1097.2008.00356.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The capacity of photodynamic therapy (PDT) to induce localized cell death and tissue damage suggests that when applied to tumors it could create a local depot of tumor-associated antigens, which would be available for uptake and presentation to the immune system, potentially leading to improved tumor control. Dendritic cells (DCs) are the most potent cells for antigen uptake, presentation, and stimulation of the immune system. However, it is unclear whether DCs would retain their viability and functional capacity for the requisite trafficking to draining lymph nodes when adoptively transferred in close temporal and anatomic proximity to the site of PDT-induced cytotoxicity. We conducted studies of combined PDT and adoptive DC therapy, "immunophototherapy," in a female, Fisher 344 rat orthotopic mammary tumor model. Using 5-aminolevulinic acid as a pro-drug, we demonstrated kinetically favorable biologic conversion to the photosensitive protoporphyrin IX, appropriate trafficking of syngeneic bone marrow-derived DCs injected into PDT-treated tumors within 15 min of completion of therapy, and improved survival over either modality alone. These data indicate that DCs rapidly administered into the site of PDT retain their viability and functional status, supporting the further evaluation of immunophototherapy strategies.
Collapse
Affiliation(s)
- Brandon W Sur
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Gorantla S, Liu J, Wang T, Holguin A, Sneller HM, Dou H, Kipnis J, Poluektova L, Gendelman HE. Modulation of innate immunity by copolymer-1 leads to neuroprotection in murine HIV-1 encephalitis. Glia 2008; 56:223-32. [PMID: 18046731 PMCID: PMC2734453 DOI: 10.1002/glia.20607] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Virus-infected and immune-competent mononuclear phagocytes (MP; perivascular macrophages and microglia) drive the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1) infection. Modulation of the MP phenotype from neurodestructive to neuroprotective underlies adjunctive therapeutic strategies for human disease. We reasoned that, as Copolymer-1 (Cop-1) can induce neuroprotective activities in a number of neuroinflammatory and neurodegenerative disorders, it could directly modulate HIV-1-infected MP neurotoxic activities. We now demonstrate that, in laboratory assays, Cop-1-stimulated virus-infected human monocyte-derived macrophages (MDM) protect against neuronal injury. Severe combined immune-deficient (SCID) mice were stereotactically injected with HIV-1-infected human MDM, into the basal ganglia, to induce HIV-1 encephalitis (HIVE). Cop-1 was administered subcutaneously for 7 days. In HIVE mice, Cop-1 treatment led to anti-inflammatory and neuroprotective responses. Reduced micro- and astrogliosis, and conserved NeuN/MAP-2 levels were observed in virus-affected brain regions in Cop-1-treated mice. These were linked to interleukin-10 and brain-derived neurotrophic factor expression and downregulation of inducible nitric oxide synthase. The data, taken together, demonstrate that Cop-1 can modulate innate immunity and, as such, improve disease outcomes in an animal model of HIVE.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Encephalitis, Viral/etiology
- Encephalitis, Viral/pathology
- Encephalitis, Viral/prevention & control
- Gene Expression Regulation, Viral/drug effects
- Glatiramer Acetate
- Glial Fibrillary Acidic Protein/metabolism
- HIV Infections/complications
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/physiology
- Immunosuppressive Agents/pharmacology
- In Situ Nick-End Labeling
- Male
- Mice
- Mice, SCID
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuroglia/virology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/virology
- Peptides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jianuo Liu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Tong Wang
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Adelina Holguin
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Hannah M Sneller
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Huanyu Dou
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jonathan Kipnis
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Larisa Poluektova
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Howard E Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
- Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
45
|
Liu J, Johnson TV, Lin J, Ramirez SH, Bronich TK, Caplan S, Persidsky Y, Gendelman HE, Kipnis J. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007; 37:3143-54. [PMID: 17948266 DOI: 10.1002/eji.200737398] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite active investigation of copolymer-1 (Cop-1) for nearly 40 years the mechanisms underlying its neuroprotective properties remain contentious. Nonetheless, current dogma for Cop-1 neuroprotective activities in autoimmune and neurodegenerative diseases include bystander suppression of autoimmune T cells and attenuation of microglial responses. In this report, we demonstrate that Cop-1 interacts directly with primary human neurons and decreases neuronal cell death induced by staurosporine or oxidative stress. This neuroprotection is mediated through protein kinase Calpha and brain-derived neurotrophic factor. Dendritic cells (DC) uptake Cop-1, deliver it to the injury site, and release it in an active form. Interactions between Cop-1 and DC enhance DC blood brain barrier migration. In a rat model with optic nerve crush injury, Cop-1-primed DC induce T cell independent neuroprotection. These findings may facilitate the development of neuroprotective approaches using DC-mediated Cop-1 delivery to diseased nervous tissue.
Collapse
Affiliation(s)
- Jianuo Liu
- Laboratory of Neuro-Immune Regulation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Weber MS, Hohlfeld R, Zamvil SS. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 2007; 4:647-53. [PMID: 17920545 PMCID: PMC7479674 DOI: 10.1016/j.nurt.2007.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Glatiramer acetate (GA) (Copolymer-1, Copaxone, Teva, Israel, YEAK) is a polypeptide-based therapy approved for the treatment of relapsing-remitting multiple sclerosis. Most investigations have attributed the immunomodulatory effect of GAs to its capability to alter T-cell differentiation. Specifically, GA treatment is believed to promote development of Th2-polarized GA-reactive CD4(+) T-cells, which may dampen neighboring inflammation within the central nervous system. Recent reports indicate that the deficiency in CD4(+)CD25(+)FoxP3(+) regulatory T-cells in multiple sclerosis is restored by GA treatment. GA also exerts immunomodulatory activity on antigen presenting cells, which participate in innate immune responses. These new findings represent a plausible explanation for GA-mediated T-cell immune modulation and may provide useful insight for the development of new and more effective treatment options for multiple sclerosis.
Collapse
Affiliation(s)
- Martin S. Weber
- Department of Neurology, Program in Immunology, University of California, San Francisco, 513 Parnassus Avenue, S-268, 94143 San Francisco, CA
| | - Reinhard Hohlfeld
- Institute for Clinical Neuroimmunology, Klinikum Grosshadern, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Scott S. Zamvil
- Department of Neurology, Program in Immunology, University of California, San Francisco, 513 Parnassus Avenue, S-268, 94143 San Francisco, CA
| |
Collapse
|
47
|
Schrempf W, Ziemssen T. Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun Rev 2007; 6:469-75. [PMID: 17643935 DOI: 10.1016/j.autrev.2007.02.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/06/2007] [Indexed: 11/24/2022]
Abstract
Glatiramer acetate (GA) is a mixture of synthetic polypeptides composed of four amino acids resembling myelin basic protein (MBP). GA has been shown to be effective in preventing and suppressing experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis. It was tested in several clinical studies and approved for the immunomodulatory treatment of relapsing-type MS in 1996. Glatiramer acetate demonstrates a strong promiscuous binding to major histocompatibility complex molecules and inhibits the T cell response to several myelin antigens. In addition, it was shown to act as a T cell receptor antagonist for the 82-100 MBP epitope. Glatiramer acetate treatment causes in vivo changes of the frequency, cytokine secretion pattern and effector function of GA-specific T cells. It was shown to induce GA-specific regulatory CD4(+) and CD8(+) T cells and a TH1-TH2 shift with consecutively increased secretion of antiinflammatory cytokines. GA-specific TH2 cells are able to migrate across the blood-brain barrier and cause in situ bystander suppression of autoaggressive TH1 T cells. In addition glatiramer acetate was demonstrated to influence antigen presenting cells (APC) such as monocytes and dendritic cells. Furthermore secretion of neurotrophic factors with potential neuroprotective effects was shown.
Collapse
Affiliation(s)
- Wiebke Schrempf
- Multiple Sclerosis Center, Department of Neurology, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | |
Collapse
|
48
|
Ziemssen T, Schrempf W. Glatiramer Acetate: Mechanisms of Action in Multiple Sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:537-70. [PMID: 17531858 DOI: 10.1016/s0074-7742(07)79024-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glatiramer acetate (GA), formerly known as copolymer 1, is a mixture of synthetic polypeptides composed of four amino acids resembling the myelin basic protein (MSP). GA has been shown to be highly effective in preventing and suppressing experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Therefore, it was tested in several clinical studies and so approved for the immunomodulatory treatment of relapsing-type MS. In contrast to other immunomodulatory MS therapies, GA has a distinct mechanism of action: GA demonstrates an initial strong promiscuous binding to major histocompatibility complex molecules and consequent competition with various (myelin) antigens for their presentation to T cells. In addition, antigen-based therapy generating a GA-specific immune response seems to be the prerequisite for GA therapy. GA treatment induces an in vivo change of the frequency, cytokine secretion pattern and the effector function of GA-specific CD4+ and CD8+ T cells, probably by affecting the properties of antigen-presenting cells such as monocytes and dendritic cells. As demonstrated extensively in animal experiments, GA-specific, mostly, T helper 2 cells migrate to the brain and lead to in situ bystander suppression of the inflammatory process in the brain. Furthermore, GA-specific cells in the brain express neurotrophic factors like the brain-derived neurotrophic factor (BDNF) in addition to anti-inflammatory T helper 2-like cytokines. This might help tip the balance in favor of more beneficial influences because there is a complex interplay between detrimental and beneficial factors and mediators in the inflammatory milieu of MS lesions.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Multiple Sclerosis Center Dresden, Neurological University Clinic Dresden University of Technology, Dresden 01307, Germany
| | | |
Collapse
|
49
|
Dressel A, Vogelgesang A, Brinkmeier H, Mäder M, Weber F. Glatiramer acetate-specific human CD8(+) T cells: increased IL-4 production in multiple sclerosis is reduced by glatiramer acetate treatment. J Neuroimmunol 2006; 181:133-40. [PMID: 17084909 DOI: 10.1016/j.jneuroim.2006.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 07/10/2006] [Accepted: 07/19/2006] [Indexed: 11/25/2022]
Abstract
Glatiramer acetate (GA) is an approved drug for therapy of relapsing remitting MS that acts as a T cell antigen. Here, we report the cloning of HLA restricted, GA-specific human CD8(+) T cells. In addition, we analyzed the cytokine profile of GA-reactive CD8(+) T cell lines. Unexpectedly, IL-4 was increased in untreated MS patients as compared to healthy individuals (p<0.001). In GA-treated patients, however, IL-4 (p<0.001), IL-10 (p<0.001) and TNF-alpha (p<0.001) were decreased. Thus, while GA is known to induce a TH2 bias in CD4(+) T cells, we detected a distinct pattern in GA-reactive CD8(+) T cells.
Collapse
Affiliation(s)
- Alexander Dressel
- Department of Neurology, Ernst Moritz Arndt University Greifswald, Sauerbruchstr., 17489 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
50
|
Biegler BW, Yan SX, Ortega SB, Tennakoon DK, Racke MK, Karandikar NJ. Glatiramer acetate (GA) therapy induces a focused, oligoclonal CD8+ T-cell repertoire in multiple sclerosis. J Neuroimmunol 2006; 180:159-71. [PMID: 16935352 DOI: 10.1016/j.jneuroim.2006.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 07/14/2006] [Accepted: 07/19/2006] [Indexed: 11/22/2022]
Abstract
We have demonstrated that GA therapy induces a differential upregulation of GA-specific, cytotoxic/suppressor CD8+ T-cell responses in MS patients. We utilized a novel combination of flow sorting and anchored PCR to analyze the evolving clonal composition of GA-specific CD4+ and CD8+ T-cells. TCRbeta chain analysis revealed the development of an oligoclonal GA-specific CD8+ repertoire with persistence of dominant clones over long periods. Interestingly, some sequences resembled published oligoclonal CD8+ TCR sequences from MS lesions. In contrast, GA-specific CD4+ responses were polyclonal and showed continual evolution of their repertoire. This clonotypic and functional analysis provides mechanistic insights into GA therapy.
Collapse
Affiliation(s)
- Brian W Biegler
- Department of Pathology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9072, USA
| | | | | | | | | | | |
Collapse
|