1
|
Lee YJ, Cho ML. Targeting T helper 17 cells: emerging strategies for overcoming transplant rejection. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:309-325. [PMID: 39743231 PMCID: PMC11732763 DOI: 10.4285/ctr.24.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Solid organ transplantation has significantly improved the survival rate of patients with terminal organ failure. However, its success is often compromised by allograft rejection, a process in which T helper 17 (Th17) cells play a crucial role. These cells facilitate rejection by enhancing neutrophil infiltration into the graft and by activating endothelial cells and fibroblasts. Additionally, Th17 cells can trigger the activation of other T cell types, including Th1, Th2, and CD8+ T cells, further contributing to rejection. An imbalance between Th17 and regulatory T cells (Tregs) is known to promote rejection. To counteract this, immunosuppressive drugs have been developed to inhibit T cell activity and foster transplant tolerance. Another approach involves the adoptive transfer of regulatory cells, such as Tregs and myeloid-derived suppressor cells, to dampen T cell functions. This review primarily focuses on the roles of Th17 cells in rejection and their interactions with other T cell subsets. We also explore various strategies aimed at suppressing T cells to induce tolerance.
Collapse
Affiliation(s)
- Young Joon Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine (LaTIM), College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine (LaTIM), College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Martins de Camargo M, Caetano AR, Ferreira de Miranda Santos IK. Evolutionary pressures rendered by animal husbandry practices for avian influenza viruses to adapt to humans. iScience 2022; 25:104005. [PMID: 35313691 PMCID: PMC8933668 DOI: 10.1016/j.isci.2022.104005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Commercial poultry operations produce and crowd billions of birds every year, which is a source of inexpensive animal protein. Commercial poultry is intensely bred for desirable production traits, and currently presents very low variability at the major histocompatibility complex. This situation dampens the advantages conferred by the MHC’s high genetic variability, and crowding generates immunosuppressive stress. We address the proteins of influenza A viruses directly and indirectly involved in host specificities. We discuss how mutants with increased virulence and/or altered host specificity may arise if few class I alleles are the sole selective pressure on avian viruses circulating in immunocompromised poultry. This hypothesis is testable with peptidomics of MHC ligands. Breeding strategies for commercial poultry can easily and inexpensively include high variability of MHC as a trait of interest, to help save billions of dollars as a disease burden caused by influenza and decrease the risk of selecting highly virulent strains.
Collapse
|
3
|
Essfeld F, Reinwald H, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Transcriptomic profiling of clobetasol propionate-induced immunosuppression in challenged zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113346. [PMID: 35228030 DOI: 10.1016/j.ecoenv.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In the ecotoxicological hazard assessment of chemicals, the detection of immunotoxicity is currently neglected. This is mainly due to the complexity of the immune system and the consequent lack of standardized procedures and markers for the comprehensive assessment of immunotoxic modes of action. In this study, we present a new approach applying transcriptome profiling to an immune challenge with a mixture of pathogen-associated molecular patterns (PAMPs) in zebrafish embryos, analyzing differential gene expression during acute infection with and without prior exposure to the immunosuppressive drug clobetasol propionate (CP). While PAMP injection itself triggered biological processes associated with immune activation, some of these genes were more differentially expressed upon prior exposure to CP than by immune induction alone, whereas others showed weaker or no differential regulation in response to the PAMP stimulus. All of these genes responding differently to PAMP after prior CP exposure showed additivity of PAMP- and CP-induced effects, indicating independent regulatory mechanisms. The transcriptomic profiles suggest that CP impaired innate immune induction by attenuating the response of genes involved in antigen processing, TLR signaling, NF-КB signaling, and complement activation. We propose this approach as a powerful method for detecting gene biomarkers for immunosuppressive modes of action, as it was able to identify alternatively regulated processes and pathways in a sublethal, acute infection zebrafish embryo model. This allowed to define biomarker candidates for immune-mediated effects and to comprehensively characterize immunosuppression. Ultimately, this work contributes to the development of molecular biomarker-based environmental hazard assessment of chemicals in the future.
Collapse
Affiliation(s)
- Fabian Essfeld
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
4
|
Straub RH. The memory of the fatty acid system. Prog Lipid Res 2020; 79:101049. [PMID: 32589906 DOI: 10.1016/j.plipres.2020.101049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Mental memory system has sensory memory, short-term memory, working memory, and long-term memory. Working memory "keeps things in mind in parallel" when performing complex tasks. Similar aspects can be found for immunological memory. However, there exists another one, the memory of the fatty acid system. This article shows sensory memory of the fatty acid system, which is the perception apparatus of small intestine enterocytes (CD36, SR-B1, FATP4, FABP1, FABP2) and hepatocytes. In these cells, the fatty acid short-term memory is located, consisting of a cytoplasmic lipid droplet cycle. Similar like a working memory in the brain, the short-term memory of enterocytes and hepatocytes use parallel processing and recourse to long-term fatty acid memory. The fatty acid long-term memory is far away from these primary points of uptake. It is located in the adipocyte and in cellular membranes. The process of building a fatty acid memory is described with constructs like sensing environmental material, encoding, consolidation, long-term storage, retrieval, re-encoding, re-consolidation, and renewed long-term storage. The article illustrates the dynamics of building a fatty acid memory, the information content of fatty acids including the code, the roles of fatty acids in the body, and a new understanding of the expression "you are what you eat". The memory of the fatty acid system, plays a decisive role in integrating environmental signals over time (diet and microbiome).
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany.
| |
Collapse
|
5
|
Paus R, Bulfone-Paus S, Bertolini M. Hair Follicle Immune Privilege Revisited: The Key to Alopecia Areata Management. J Investig Dermatol Symp Proc 2018; 19:S12-S17. [PMID: 29273098 DOI: 10.1016/j.jisp.2017.10.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The collapse of the immune privilege (IP) of the anagen hair bulb is now accepted as a key element in AA pathogenesis, and hair bulb IP restoration lies at the core of AA therapy. Here, we briefly review the essentials of hair bulb IP and recent progress in understanding its complexity. We discuss open questions and why the systematic dissection of hair bulb IP and its pharmacological manipulation (including the clinical testing of FK506 and α-melanocyte-stimulating hormone analogs) promise to extend the range of future therapeutic options in AA and other IP collapse-related autoimmune diseases.
Collapse
Affiliation(s)
- Ralf Paus
- Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre and MAHSC, Manchester, UK.
| | - Silvia Bulfone-Paus
- Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre and MAHSC, Manchester, UK
| | - Marta Bertolini
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Bailey MT. Psychological Stress, Immunity, and the Effects on Indigenous Microflora. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:225-46. [PMID: 26589222 DOI: 10.1007/978-3-319-20215-0_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psychological stress is an intrinsic part of life that affects all organs of the body through direct nervous system innervation and the release of neuroendocrine hormones. The field of PsychoNeuroImmunology (PNI) has clearly demonstrated that the physiological response to psychological stressors can dramatically impact the functioning of the immune system, thus identifying one way in which susceptibility to or severity of diseases are exacerbated during stressful periods. This chapter describes research at the interface between the fields of PNI and Microbial Endocrinology to demonstrate that natural barrier defenses, such as those provided by the commensal microflora, can be disrupted by exposure to psychological stressors. These stress effects are evident in the development of the intestinal microflora in animals born from stressful pregnancy conditions, and in older animals with fully developed microbial populations. Moreover, data are presented demonstrating that exposure to different types of stressors results in the translocation of microflora from cutaneous and mucosal surfaces into regional lymph nodes. When considered together, a scenario emerges in which psychological stressors induce a neuroendocrine response that has the potential to directly or indirectly affect commensal microflora populations, the integrity of barrier defenses, and the internalization of microbes. Finally, a hypothesis is put forth in which stressor-induced alterations of the microflora contribute to the observed stressor-induced increases in inflammatory markers in the absence of overt infection.
Collapse
Affiliation(s)
- Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| |
Collapse
|
7
|
Tesfatsion DA. Dendritic cell vaccine against leukemia: advances and perspectives. Immunotherapy 2014; 6:485-96. [PMID: 24815786 DOI: 10.2217/imt.14.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As with many other types of malignancies, sustainable eradication of leukemia has been a challenge. This is related to the inevitable failure of conventional chemotherapeutic agents and radiation therapy to target the relatively quiescent leukemia stem cells, which are believed to have multidrug resistance, antiapoptotic capacity and enhanced DNA repair mechanisms allowing them to evade the immune system. Considering other therapeutic options that are minimally toxic to normal cells and effectively target not only the majority and more differentiated cancer cells, but also the rare residual leukemia cells, is of paramount importance. A number of immunotherapeutic options have been proposed to counter this challenge. One of the remarkable achievements in the field of immunotherapy has been the successful use of antigen presenting cells as vehicles of tumor/pathogenic antigens to the T-cell compartments. This review will focus on advances and perspectives of this arm of immunotherapy against leukemia.
Collapse
|
8
|
Quattromani MJ, Cordeau P, Ruscher K, Kriz J, Wieloch T. Enriched housing down-regulates the Toll-like receptor 2 response in the mouse brain after experimental stroke. Neurobiol Dis 2014; 66:66-73. [PMID: 24613658 DOI: 10.1016/j.nbd.2014.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 12/26/2022] Open
Abstract
Post-ischemic inflammation plays an important role in the evolution of brain injury, recovery and repair after stroke. Housing rodents in an enriched environment provides multisensory stimulation to the brain and enhances functional recovery after experimental stroke, also depressing the release of cytokines and chemokines in the peri-infarct. In order to identify targets for late stroke treatment, we studied the dynamics of inflammation and the contribution of resident Toll-like receptor 2 (TLR2) expressing microglia cells. We took advantage of the biophotonic/bioluminescent imaging technique using the reporter mouse-expressing luciferase and GFP reporter genes under transcriptional control of the murine TLR2 promoter (TLR2-luc/GFP mice) for non-invasive in vivo analysis of TLR2 activation/response in photothrombotic stroke after differential housing. Real-time imaging at 1day after stroke, revealed up-regulation of TLR2 in response to photothrombotic stroke that subsequently declined over time of recovery (14days). The inflammatory response was persistently down-regulated within days of enriched housing, enhancing recovery of lost sensori-motor function in TLR2-luc mice without affecting infarct size. The number of YM1-expressing microglia in the peri-infarct and areas remote from the infarct was also markedly attenuated. Using a live imaging approach, we demonstrate that multisensory stimulation rapidly, persistently and generally attenuates brain inflammation after experimental stroke, reducing the TLR2 response and leading to improved neurological outcome. TLR2-expressing microglia cells may provide targets for new stroke therapeutics.
Collapse
Affiliation(s)
- Miriana Jlenia Quattromani
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Division of Neurosurgery, Lund University, BMC A13, 22184 Lund, Sweden.
| | - Pierre Cordeau
- Department of Psychiatry and Neuroscience, Laval University, Le Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, 2601, de la Canardière, Québec G1J 2G3, Canada.
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Division of Neurosurgery, Lund University, BMC A13, 22184 Lund, Sweden.
| | - Jasna Kriz
- Department of Psychiatry and Neuroscience, Laval University, Le Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, 2601, de la Canardière, Québec G1J 2G3, Canada.
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Division of Neurosurgery, Lund University, BMC A13, 22184 Lund, Sweden.
| |
Collapse
|
9
|
Cell-intrinsic regulation of murine dendritic cell function and survival by prereceptor amplification of glucocorticoid. Blood 2013; 122:3288-97. [PMID: 24081658 DOI: 10.1182/blood-2013-03-489138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the inhibitory effects of therapeutic glucocorticoids (GCs) on dendritic cells (DCs) are well established, the roles of endogenous GCs in DC homeostasis are less clear. A critical element regulating endogenous GC concentrations involves local conversion of inactive substrates to active 11-hydroxyglucocorticoids, a reduction reaction catalyzed within the endoplasmic reticulum by an enzyme complex containing 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and hexose-6-phosphate dehydrogenase (H6PDH). In this study, we found that this GC amplification pathway operates both constitutively and maximally in steady state murine DC populations and is unaffected by additional inflammatory stimuli. Under physiologic conditions, 11βHSD1-H6PDH increases the sensitivity of plasmacytoid DCs (pDCs) to GC-induced apoptosis and restricts the survival of this population through a cell-intrinsic mechanism. Upon CpG activation, the effects of enzyme activity are overridden, with pDCs becoming resistant to GCs and fully competent to release type I interferon. CD8α(+) DCs are also highly proficient in amplifying GC levels, leading to impaired maturation following toll-like receptor-mediated signaling. Indeed, pharmacologic inhibition of 11βHSD1 synergized with CpG to enhance specific T-cell responses following vaccination targeted to CD8α(+) DCs. In conclusion, amplification of endogenous GCs is a critical cell-autonomous mechanism for regulating the survival and functions of DCs in vivo.
Collapse
|
10
|
Hontelez S, Karthaus N, Looman MW, Ansems M, Adema GJ. DC-SCRIPT regulates glucocorticoid receptor function and expression of its target GILZ in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3172-9. [PMID: 23440419 DOI: 10.4049/jimmunol.1201776] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) play a central role in the immune system; they can induce immunity or tolerance depending on diverse factors in the DC environment. Pathogens, but also tissue damage, hormones, and vitamins, affect DC activation and maturation. In particular, glucocorticoids (GCs) are known for their immunosuppressive effect on DCs, creating tolerogenic DCs. GCs activate the type I nuclear receptor (NR) glucocorticoid receptor (GR), followed by induced expression of the transcription factor glucocorticoid-inducible leucine zipper (GILZ). GILZ has been shown to be necessary and sufficient for GC-induced tolerogenic DC generation. Recently, we have identified the DC-specific transcript (DC-SCRIPT) as an NR coregulator, suppressing type I steroid NRs estrogen receptor and progesterone receptor. In this study, we analyzed the effect of DC-SCRIPT on GR activity. We demonstrate that DC-SCRIPT coexists with GR in protein complexes and functions as a corepressor of GR-mediated transcription. Coexpression of DC-SCRIPT and GR is shown in human monocyte-derived DCs, and DC-SCRIPT knockdown enhances GR-dependent upregulation of GILZ mRNA expression in DCs. This demonstrates that DC-SCRIPT serves an important role in regulating GR function in DCs, corepressing GR-dependent upregulation of the tolerance-inducing transcription factor GILZ. These data imply that by controlling GR function and GILZ expression DC-SCRIPT is potentially involved in the balance between tolerance and immunity.
Collapse
Affiliation(s)
- Saartje Hontelez
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Yorty JL. Short-term corticosterone treatment decreases the early CD8+ T cell response to simian virus 40 tumor antigen but has no impact on the late CD8+ T cell response. Brain Behav Immun 2013; 28:139-48. [PMID: 23164951 DOI: 10.1016/j.bbi.2012.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022] Open
Abstract
CD8+ T cells (T(CD8)) help control tumor growth in vivo through recognition of distinct tumor antigens and cytolysis of tumor cells. The T(CD8) immune response in C57BL/6 mice to the Simian Virus 40 oncoprotein, large tumor antigen (Tag), targets multiple epitopes and is well-characterized. Epitope IV, an H-2K(b)-restricted epitope, is immunodominant while epitope I, an H-2D(b)-restricted epitope is subdominant. GCs alter many aspects of T cell function. Indeed, the current studies demonstrate that exposure of mice to the immunosuppressive GC, corticosterone (CORT), over the entire course of the primary immune response limits activation of endogenous Tag-specific T(CD8). Even short-term CORT treatment from day -1 to day +2 post-immunization significantly reduced splenic size and the absolute number of Tag-specific T(CD8) on day 6 post-immunization. In vivo killing activity was also reduced. However, by day 10 post-immunization, the peak of the immune response, the absolute number of Tag-specific T(CD8) and their in vivo killing of epitope I or epitope IV-expressing target cells had recovered in CORT treated mice. Adoptive transfer of transgenic T cells post-CORT removal demonstrated that CORT decreased the ability of the endogenous antigen-presenting cells to induce proliferation of the exogenous transgenic T cells. Combined, these studies have implications about the timing of clinical steroid treatment relative to immunization or adoptive transfer for cancer immunotherapy.
Collapse
Affiliation(s)
- Jodi L Yorty
- Department of Biology, Elizabethtown College, One Alpha Drive, Elizabethtown, PA 17022, United States.
| |
Collapse
|
12
|
Immune system in the brain: a modulatory role on dendritic spine morphophysiology? Neural Plast 2012; 2012:348642. [PMID: 22548192 PMCID: PMC3324176 DOI: 10.1155/2012/348642] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/26/2012] [Indexed: 12/14/2022] Open
Abstract
The central nervous system is closely linked to the immune system at several levels. The brain parenchyma is separated from the periphery by the blood brain barrier, which under normal conditions prevents the entry of mediators such as activated leukocytes, antibodies, complement factors, and cytokines. The myeloid cell lineage plays a crucial role in the development of immune responses at the central level, and it comprises two main subtypes: (1) resident microglia, distributed throughout the brain parenchyma; (2) perivascular macrophages located in the brain capillaries of the basal lamina and the choroid plexus. In addition, astrocytes, oligodendrocytes, endothelial cells, and, to a lesser extent, neurons are implicated in the immune response in the central nervous system. By modulating synaptogenesis, microglia are most specifically involved in restoring neuronal connectivity following injury. These cells release immune mediators, such as cytokines, that modulate synaptic transmission and that alter the morphology of dendritic spines during the inflammatory process following injury. Thus, the expression and release of immune mediators in the brain parenchyma are closely linked to plastic morphophysiological changes in neuronal dendritic spines. Based on these observations, it has been proposed that these immune mediators are also implicated in learning and memory processes.
Collapse
|
13
|
Borba EF, Saad CGS, Pasoto SG, Calich ALG, Aikawa NE, Ribeiro ACM, Moraes JCB, Leon EP, Costa LP, Guedes LKN, Silva CAA, Goncalves CR, Fuller R, Oliveira SA, Ishida MA, Precioso AR, Bonfa E. Influenza A/H1N1 vaccination of patients with SLE: can antimalarial drugs restore diminished response under immunosuppressive therapy? Rheumatology (Oxford) 2012; 51:1061-9. [PMID: 22298793 DOI: 10.1093/rheumatology/ker427] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To assess the efficacy and safety of pandemic 2009 influenza A (H1N1) in SLE under different therapeutic regimens. METHODS A total of 555 SLE patients and 170 healthy controls were vaccinated with a single dose of a non-adjuvanted preparation. According to current therapy, patients were initially classified as SLE No Therapy (n = 75) and SLE with Therapy (n = 480). Subsequent evaluations included groups under monotherapy: chloroquine (CQ) (n = 105), prednisone (PRED) ≥20 mg (n = 76), immunosuppressor (IS) (n = 95) and those with a combination of these drugs. Anti-H1N1 titres and seroconversion (SC) rate were evaluated at entry and 21 days post-vaccination. RESULTS The SLE with Therapy group had lower SC compared with healthy controls (59.0 vs 80.0%; P < 0.0001), whereas the SLE No Therapy group had equivalent SC (72 vs 80.0%; P = 0.18) compared with healthy controls. Further comparison revealed that the SC of SLE No Therapy (72%) was similar to the CQ group (69.5%; P = 0.75), but it was significantly reduced in PRED ≥20 mg (53.9%; P = 0.028), IS (55.7%; P = 0.035) and PRED ≥20 mg + IS (45.4%; P = 0.038). The concomitant use of CQ in each of these later regimens was associated with SC responses comparable with SLE No Therapy group (72%): PRED ≥20 mg + CQ (71.4%; P = 1.00), IS + CQ (65.2%; P = 0.54) and PRED ≥20 mg + IS + CQ (57.4%; P = 0.09). CONCLUSION Pandemic influenza A H1N1/2009 vaccine response is diminished in SLE under immunosuppressive therapy and antimalarials seems to restore this immunogenicity. Trial registration. www.clinicaltrials.gov, NCT01151644.
Collapse
Affiliation(s)
- Eduardo F Borba
- Faculdade de Medicina da Universidade de São Paulo, Reumatologia Av. Dr Arnaldo, n 455, 3 andar, sala 3190, São Paulo 05403-010, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mays JW, Powell ND, Hunzeker JT, Hanke ML, Bailey MT, Sheridan JF. Stress and the anti-influenza immune response: repeated social defeat augments clonal expansion of CD8(+)T cells during primary influenza A viral infection. J Neuroimmunol 2012; 243:34-42. [PMID: 22244573 DOI: 10.1016/j.jneuroim.2011.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/28/2011] [Accepted: 12/15/2011] [Indexed: 01/03/2023]
Abstract
Social disruption stress (SDR) prior to primary influenza A virus (IAV) infection augments memory to IAV re-challenge in a T cell-specific manner. However, the effect of SDR on the primary anti-viral immune response has not been elucidated. In this study, SDR-infected (INF) mice terminated viral gene expression earlier and mounted an enhanced pulmonary IAV-specific CD8(+)T cell response versus controls. Additionally, SDR-INF mice had a more pro-inflammatory lung profile prior to and during infection and an attenuated corticosterone response. These data demonstrate neuroendocrine modification of the lung microenvironment and increased antigen-specific T cell activation, clonal expansion and viral control in stress-exposed mice.
Collapse
Affiliation(s)
- Jacqueline W Mays
- The Ohio State University, College of Dentistry, Section of Oral Biology, Columbus, OH 43218-2357, USA
| | | | | | | | | | | |
Collapse
|
15
|
Jennings JL, Sait LC, Perrett CA, Foster C, Williams LK, Humphrey TJ, Cogan TA. Campylobacter jejuni is associated with, but not sufficient to cause vibrionic hepatitis in chickens. Vet Microbiol 2011; 149:193-9. [DOI: 10.1016/j.vetmic.2010.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/01/2010] [Indexed: 11/29/2022]
|
16
|
Powell ND, Allen RG, Hufnagle AR, Sheridan JF, Bailey MT. Stressor-induced alterations of adaptive immunity to vaccination and viral pathogens. Immunol Allergy Clin North Am 2011; 31:69-79. [PMID: 21094924 PMCID: PMC3339561 DOI: 10.1016/j.iac.2010.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The stress response influences the immune system, and studies in laboratory animals indicate that the response to stress significantly reduces resistance to infectious challenge. Only a few studies, however, have determined the impact of the stress response on human susceptibility to infectious challenge due, in part, to the difficulties of using live, replicating pathogens in human research. As a result, many studies have assessed the immune response to vaccination as a surrogate for the immune response to an infectious challenge. Thus, much is known about how the stress response influences adaptive immunity, and memory responses, to vaccination. These studies have yielded data concerning the interactions of the nervous and immune systems and have provided important information for clinicians administering vaccines to susceptible populations. This review provides a brief overview of the immune response to commonly used vaccines and the impact that stress can have on vaccine-specific immunity.
Collapse
Affiliation(s)
- Nicole D Powell
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
17
|
Hunzeker JT, Elftman MD, Mellinger JC, Princiotta MF, Bonneau RH, Truckenmiller ME, Norbury CC. A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:183-94. [PMID: 21098225 DOI: 10.4049/jimmunol.1001737] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8(+) T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8(+) T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA(257-264)-specific T cells. Using a murine model of psychological stress and OVA-loaded β(2)-microglobulin knockout "donor" cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b(-)CD24(+)CD8α(+) DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b(-)CD24(+)CD8α(-) DC precursors were increased, suggesting a block in development of CD8α(+) DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice.
Collapse
Affiliation(s)
- John T Hunzeker
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ueda H, Ippoushi K, Takeuchi A. Repeated oral administration of a squeezed ginger (Zingiber officinale) extract augmented the serum corticosterone level and had anti-inflammatory properties. Biosci Biotechnol Biochem 2010; 74:2248-52. [PMID: 21071834 DOI: 10.1271/bbb.100456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the ability of a ginger extract to induce an immune response in RAW 264 cells and after a repeated oral administration to mice. The squeezed ginger extract augmented the production of tumor necrosis factor-α, interleukin-6, and monocyte chemotactic protein-1 when added to RAW 264 cells. This extract was collected as its ethanol-insoluble fraction. The oral administration of the squeezed ginger extract or its ethanol-insoluble fraction once or twice to mice also augmented the tumor necrosis factor-α production in peritoneal cells; however, its long-term administration had the opposite effect. The serum corticosterone level had increased after orally administering the squeezed ginger extract and was maintained during the administration period. Oral administration of the squeezed ginger extract also inhibited arachidonic acid-induced ear edema, but its repeated administration was needed to achieve an anti-inflammatory effect. These results suggest that the repeated administration of the aqueous constituents of ginger augmented the serum corticosterone level and that this may have gradually induced anti-inflammatory activity.
Collapse
Affiliation(s)
- Hiroshi Ueda
- National Institute of Vegetable and Tea Science, National Agriculture and Food Research Organization, Tsu, Mie, Japan.
| | | | | |
Collapse
|
19
|
Menchén L. [Cellular and molecular bases of intestinal barrier dysfunction induced by experimental stress]. GASTROENTEROLOGIA Y HEPATOLOGIA 2010; 32 Suppl 2:55-61. [PMID: 19900630 DOI: 10.1016/s0210-5705(09)72607-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is a widespread impression that stressful life situations influence the clinical course of a wide variety of gastrointestinal disorders, including inflammatory bowel disease. However, demonstrating a causal relationship is complex and the results obtained in clinical studies are contradictory. In the last few years, the use of experimental stress models in laboratory animals have provided solid evidence of the physiopathological effects of stress on the digestive tract as well as of the cellular and molecular mechanisms underlying the association between physical and/or psychological stress and gastrointestinal disorders. In inflammatory bowel disease, the marked intestinal barrier dysfunction, which is mainly related to the stress-induced increase in paracellular epithelial permeability, could be partially responsible for the reactivation and increase in the severity of inflammatory bowel disease observed in various experimental stress models.
Collapse
Affiliation(s)
- Luis Menchén
- Sección de Gastroenterología, Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, España.
| |
Collapse
|
20
|
Elftman MD, Hunzeker JT, Mellinger JC, Bonneau RH, Norbury CC, Truckenmiller ME. Stress-induced glucocorticoids at the earliest stages of herpes simplex virus-1 infection suppress subsequent antiviral immunity, implicating impaired dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2010; 184:1867-75. [PMID: 20089700 DOI: 10.4049/jimmunol.0902469] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The systemic elevation of psychological stress-induced glucocorticoids strongly suppresses CD8(+) T cell immune responses resulting in diminished antiviral immunity. However, the specific cellular targets of stress/glucocorticoids, the timing of exposure, the chronology of immunological events, and the underlying mechanisms of this impairment are incompletely understood. In this study, we address each of these questions in the context of a murine cutaneous HSV infection. We show that exposure to stress or corticosterone in only the earliest stages of an HSV-1 infection is sufficient to suppress, in a glucocorticoid receptor-dependent manner, the subsequent antiviral immune response after stress/corticosterone has been terminated. This suppression resulted in early onset and delayed resolution of herpetic lesions, reduced viral clearance at the site of infection and draining popliteal lymph nodes (PLNs), and impaired functions of HSV-specific CD8(+) T cells in PLNs, including granzyme B and IFN-gamma production and the ability to degranulate. In knockout mice lacking glucocorticoid receptors only in T cells, we show that these impaired CD8(+) T cell functions are not due to direct effects of stress/corticosterone on the T cells, but the ability of PLN-derived dendritic cells to prime HSV-1-specific CD8(+) T cells is functionally impaired. These findings highlight the susceptibility of critical early events in the generation of an antiviral immune response to neuroendocrine modulation and implicate dendritic cells as targets of stress/glucocorticoids in vivo. These findings also provide insight into the mechanisms by which the clinical use of glucocorticoids contributes to altered immune responses in patients with viral infections or tumors.
Collapse
Affiliation(s)
- Michael D Elftman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mays JW, Bailey MT, Hunzeker JT, Powell ND, Papenfuss T, Karlsson EA, Padgett DA, Sheridan JF. Influenza virus-specific immunological memory is enhanced by repeated social defeat. THE JOURNAL OF IMMUNOLOGY 2010; 184:2014-25. [PMID: 20083672 DOI: 10.4049/jimmunol.0900183] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immunological memory (MEM) development is affected by stress-induced neuroendocrine mediators. Current knowledge about how a behavioral interaction, such as social defeat, alters the development of adaptive immunity, and MEM is incomplete. In this study, the experience of social disruption stress (SDR) prior to a primary influenza viral infection enhanced the frequency and function of the T cell memory pool. Socially stressed mice had a significantly enlarged population of CD8(+) T cells specific for the immunodominant NP366-74 epitope of A/PR/8/34 virus in lung and spleen tissues at 6-12 wk after primary infection (resting memory). Moreover, during resting memory, SDR-MEM mice responded with an enhanced footpad delayed-type hypersensitivity response, and more IFN-gamma-producing CD4(+) T cells were detected after ex vivo stimulation. When mice were rechallenged with A/PR/8/34 virus, SDR-MEM mice terminated viral gene expression significantly earlier than MEM mice and generated a greater D(b)NP(366-74)CD8(+) T cell response in the lung parenchyma and airways. This enhancement was specific to the T cell response. SDR-MEM mice had significantly attenuated anti-influenza IgG titers during resting memory. Similar experiments in which mice were primed with X-31 influenza and challenged with A/PR/8/34 virus elicited similar enhancements in the splenic and lung airway D(b)NP(366-74)CD8(+) T cell populations in SDR-MEM mice. This study demonstrates that the experience of repeated social defeat prior to a primary viral infection significantly enhances virus-specific memory via augmentation of memory T cell populations and suggests that social stressors should be carefully considered in the design and analysis of future studies on antiviral immunity.
Collapse
Affiliation(s)
- Jacqueline W Mays
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Steelman AJ, Dean DD, Young CR, Smith R, Prentice TW, Meagher MW, Welsh CJR. Restraint stress modulates virus specific adaptive immunity during acute Theiler's virus infection. Brain Behav Immun 2009; 23:830-43. [PMID: 19348911 PMCID: PMC2710426 DOI: 10.1016/j.bbi.2009.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 03/21/2009] [Accepted: 03/22/2009] [Indexed: 10/20/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating CNS disease of unknown origin. Multiple factors including genetic background, infection, and psychological stress affect the onset or progression of MS. Theiler's murine encephalomyelitis virus (TMEV) infection is an animal model of MS in which aberrant immunity leads to viral persistence and subsequently results in demyelination that resembles MS. Here, we examined how stress during acute TMEV infection altered virus-specific cell mediated responses. Using immunodominant viral peptides specific for either CD4(+) or CD8(+) T cells, we found that stress reduced IFN-gamma producing virus-specific CD4(+) and CD8(+) T cells in the spleen and CD8(+) T cells CNS. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus or viral peptides, indicated that stress decreased both type 1 and type 2 responses. Glucocorticoids were implicated in the decreased T cell function as the effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone. As T cells mediate viral clearance in this model, our data support the hypothesis that stress-induced immunosuppression may provide a mechanism for enhanced viral persistence within the CNS.
Collapse
Affiliation(s)
- Andrew J. Steelman
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Dana D. Dean
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Colin R. Young
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Roger Smith
- Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Thomas W. Prentice
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Mary W. Meagher
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - C. Jane R. Welsh
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A, Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| |
Collapse
|
23
|
Powell ND, Bailey MT, Mays JW, Stiner-Jones LM, Hanke ML, Padgett DA, Sheridan JF. Repeated social defeat activates dendritic cells and enhances Toll-like receptor dependent cytokine secretion. Brain Behav Immun 2009; 23:225-31. [PMID: 18848983 PMCID: PMC2711866 DOI: 10.1016/j.bbi.2008.09.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/08/2008] [Accepted: 09/18/2008] [Indexed: 02/02/2023] Open
Abstract
Stress hormones significantly impact dendritic cell (DC) activation and function, typically in a suppressive fashion. However, a social stressor termed social disruption (SDR) has been shown to induce an increase in inflammatory responses and a state of glucocorticoid resistance in splenic CD11b+ monocytes. These experiments were designed to determine the effects of SDR on DC activation, Toll-like receptor-induced cytokine secretion, and glucocorticoid sensitivity. Compared to cells obtained from control animals, splenic DCs from SDR mice displayed increased levels of MHC I, CD80, and CD44, indicative of an activated phenotype. In addition, DCs from SDR mice produced comparatively higher TNF-alpha, IL-6, and IL-10 in response to in vitro stimulation with LPS and CpG DNA. Increased amounts of TNF-alpha and IL-6 were also evident in SDR DC cultures stimulated with poly(I:C). Furthermore, as shown previously in CD11b+ monocytes, the CD11c+ DCs obtained from SDR mice were glucocorticoid resistant. Taken together, the data suggest that social stress, in the absence of any immune challenge, activates DCs, increases DC cytokine secretion in response to Toll-specific stimuli and renders DCs glucocorticoid resistant.
Collapse
Affiliation(s)
- ND Powell
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - MT Bailey
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - JW Mays
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - LM Stiner-Jones
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - ML Hanke
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - DA Padgett
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine. The Ohio State University, Columbus, OH, USA
| | - JF Sheridan
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine. The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Bailey MT. The Effects of Psychological Stressors on the Intestinal Microbiota. Biosci Microflora 2009. [DOI: 10.12938/bifidus.28.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Michael T. Bailey
- Division of Oral Biology, College of Dentistry, The Ohio State University
- The Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University
| |
Collapse
|
25
|
Elftman MD, Norbury CC, Bonneau RH, Truckenmiller ME. Corticosterone impairs dendritic cell maturation and function. Immunology 2007; 122:279-90. [PMID: 17848165 PMCID: PMC2265998 DOI: 10.1111/j.1365-2567.2007.02637.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Dendritic cells (DC) play a critical role in initiating and directing adaptive immune responses against pathogens and tumours. Immature DC are thought to act as sentinels in peripheral tissues where their main function is to capture antigen at sites of infection, whereas mature DC are highly efficient at priming T-cell-mediated immune responses against infectious pathogens. The DC maturation process is thought to be an important step in the efficient generation of cytotoxic T lymphocytes (CTL). It is well established that many aspects of immune function, including CTL-mediated antiviral immunity, are modulated by neuroendocrine-derived products. Corticosterone (CORT), an adrenal hormone produced at increased concentrations during a stress response, has been shown to play a role in impaired CTL responses in stressed animals, leading to high mortality in mice normally resistant to viral infection. While direct effects of neuroendocrine mediators on CTL have been studied, little is known about their effects on DC that are critical for CTL priming. Here, we found that physiologically relevant concentrations of CORT, acting via the glucocorticoid receptor, functionally compromise DC maturation. DC exposed to CORT remained phenotypically and functionally immature after stimulation with lipopolysaccharide and were impaired for the production of interleukin (IL)-6, IL-12, and tumour necrosis factor-alpha. These effects were biologically significant, as CORT treatment resulted in a marked reduction in the ability of DC to prime naive CD8(+) T cells in vivo. These findings offer a potential mechanism underlying stress-associated immunosuppression.
Collapse
Affiliation(s)
- Michael D Elftman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033-0850, USA
| | | | | | | |
Collapse
|
26
|
Nair A, Hunzeker J, Bonneau RH. Modulation of microglia and CD8(+) T cell activation during the development of stress-induced herpes simplex virus type-1 encephalitis. Brain Behav Immun 2007; 21:791-806. [PMID: 17349776 DOI: 10.1016/j.bbi.2007.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/20/2006] [Accepted: 01/08/2007] [Indexed: 01/07/2023] Open
Abstract
The central nervous system (CNS) has been shown to be vulnerable to a variety of insults in animals exposed to glucocorticoids. For example, psychological stress, a known inducer of glucocorticoid production, enhances the susceptibility of mice to herpes simplex virus type-1 (HSV-1) infection and results in the development of HSV-1 encephalitis (HSE). To determine the immune mechanisms by which stress promotes the development of HSE, we examined the role of the glucocorticoid receptor (GR) and the N-methyl-d-aspartate (NMDA) receptor in the development of HSE. Our findings demonstrate that blockade of either the GR or the NMDA receptor enhances survival following HSV-1 infection in stressed mice to levels similar to non-stressed mice. Subsequent studies determined the effect of GR and NMDA receptor blockade on immune function by specifically examining both microglia and CD8(+) T cell activation. Stress inhibited the expression of MHC class I by microglia and other brain-derived antigen presenting cells (CD45(hi)) independent of either the glucocorticoid receptor or the NMDA receptor, suggesting that stress-induced suppression of MHC class I expression in the brain does not affect survival during HSE. Blockade of the NMDA receptor, however, diminished HSV-1-induced increases in class I expression by CD45(hi) cells, suggesting that blockade of the NMDA receptor may limit CNS inflammation. Also, while CD8(+) T cell activation and function in the brain were not affected by stress, the number of CD8(+) T cells in the superficial cervical lymph nodes (SCLN) was decreased in stressed mice via GR-mediated mechanisms. These findings indicate that stress-induced hypocellularity is mediated by the GR while NMDA receptor activation is responsible for enhancing CNS inflammation. The combined effects of GR-mediated hypocellularity of the SCLN and NMDA receptor-mediated CNS inflammation during stress promote the development of HSE.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalitis, Herpes Simplex/immunology
- Encephalitis, Herpes Simplex/psychology
- Encephalitis, Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Major Histocompatibility Complex/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Microglia/immunology
- Microglia/metabolism
- Microglia/virology
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Stress, Psychological/complications
- Stress, Psychological/immunology
- Stress, Psychological/virology
Collapse
Affiliation(s)
- Aji Nair
- Graduate Program in Neuroscience, The Pennsylvania State University College of Medicine, Milton S Hershey Medical Center, Hershey, PA 17033, USA
| | | | | |
Collapse
|
27
|
Li M, Wang Y, Guo R, Bai Y, Yu Z. Glucocorticoids impair microglia ability to induce T cell proliferation and Th1 polarization. Immunol Lett 2007; 109:129-37. [PMID: 17360046 DOI: 10.1016/j.imlet.2007.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 01/22/2007] [Accepted: 02/04/2007] [Indexed: 10/23/2022]
Abstract
Glucocorticoids (GC) are essential neuroendocrine regulators of the immune system during stress, and prolonged psychological stress has been shown to be immunosuppressive. However, little is known about how GC influence the role of microglia, the most potent antigen presenting cell (APC) residing in the central nervous system (CNS), in the T cell immune response during stress. Therefore, we investigated whether GC could modulate the function of microglia and thus affect T cell response in vitro. In interferon (IFN)-gamma-stimulated microglia, GC reduced secretion of the pro-inflammatory cytokines interleukin (IL)-12, IL-6 and tumor necrosis factor (TNF)-alpha, inhibited expression of major histocompatibility complex (MHC) class II, and costimulators CD40 and CD80 on microglia, but up-regulated the expression of co-inhibitors B7-H1 and B7-DC. In addition, GC induced the apoptosis of microglia directly. As a result, treatment of microglia with GC reduced their ability to stimulate CD4(+) Th cell proliferation primed by anti-CD3 monoclonal antibody (mAb), and induced a shift to the Th2 response with the imbalance between Th1 and Th2 cytokines. Our data suggest that the inhibitory effects of GC on the APC function of microglia may contribute to the stress-induced suppression of T cell response in the CNS.
Collapse
Affiliation(s)
- Maoquan Li
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan, PR China
| | | | | | | | | |
Collapse
|
28
|
Truckenmiller ME, Bonneau RH, Norbury CC. Stress presents a problem for dendritic cells: corticosterone and the fate of MHC class I antigen processing and presentation. Brain Behav Immun 2006; 20:210-8. [PMID: 16504465 DOI: 10.1016/j.bbi.2006.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 12/28/2005] [Accepted: 01/07/2006] [Indexed: 11/25/2022] Open
Abstract
Corticosterone (cortisol in humans), a glucocorticoid hormone released into circulation in response to psychological stress via the hypothalamic-pituitary-adrenal axis, can undermine primary and memory CD8(+) cytotoxic T lymphocyte (CTL) responses. These CTL responses are vital for fighting intracellular pathogens, such as viruses, and some tumors. Dendritic cells (DCs) play a pivotal role in the generation of both primary and memory CTL responses. DCs are specialized for antigen acquisition (by direct infection or uptake from neighboring cells), transport, processing, and MHC class I-restricted presentation of antigen to CTL. These are critical events that are an absolute requirement for the generation of CTL responses regardless of any other immune responses that may be occurring. This minireview provides an overview of the components of MHC class I antigen processing and presentation pathway and describes our recent published work on the effects of corticosterone on this process in virally infected DCs. Corticosterone impairs the efficiency with which antigen is presented on DCs. The mechanism of this impairment is shown to be via a reduction in the generation of antigenic peptide from virally expressed protein. This impairment of antigen processing and presentation by corticosterone was also observed in non-immune cells, suggesting that stress may affect essential cellular protein management functions in all cells, and having possible implications for neurological or other diseases that may result from aberrant protein processing.
Collapse
Affiliation(s)
- M E Truckenmiller
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
29
|
Gartrell BD, Hare KM. Mycotic dermatitis with digital gangrene and osteomyelitis, and protozoal intestinal parasitism in Marlborough green geckos (Naultinus manukanus). N Z Vet J 2005; 53:363-7. [PMID: 16220134 DOI: 10.1080/00480169.2005.36577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CASE HISTORY Thirty adult Marlborough green geckos (Naultinus manukanus) were collected from Stephens Island and held over winter, prior to their translocation. Five adult geckos developed skin lesions after husbandry changes affected the humidity of their enclosures. Two geckos underwent ecdysis and recovered. One animal died and two others progressively worsened and were presented for treatment. CLINICAL AND PATHOLOGICAL FINDINGS The geckos were in poor body condition and had multiple black powdery lesions and solitary raised white nodules on their skin. Both geckos died despite topical and supportive treatment. Histopathology showed the skin nodules contained branching non-septate hyphae infiltrating necrotic epidermal tissue, and associated dermal inflammation. There was necrosis of several digits and mycotic osteomyelitis. Mucor ramosissimus was cultured from skin biopsies from each animal. Large numbers of motile protozoa, resembling Trichomonas, and another unidentifiable, were recovered from fresh faecal smears, and Nyctotherus sp protozoa were present in the lumen of the intestine of one animal post mortem. DIAGNOSIS Mycotic dermatitis with digital gangrene and osteomyelitis due to Mucor ramosissimus, and enteric protozoal parasitism with Trichomonas sp and Nyctotherus sp. CLINICAL RELEVANCE The clinical course and pathological findings of mycotic dermatitis in two Marlborough green geckos involved in a wildlife translocation in New Zealand are reported, and also the first record of the Marlborough green gecko as a host for the enteric protozoa Trichomonas sp and Nyctotherus sp.
Collapse
Affiliation(s)
- B D Gartrell
- New Zealand Wildlife Health Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | |
Collapse
|