1
|
Zevallos VF, Yogev N, Hauptmann J, Nikolaev A, Pickert G, Heib V, Fittler N, Steven S, Luessi F, Neerukonda M, Janoschka C, Tobinski AM, Klotz L, Waisman A, Schuppan D. Dietary wheat amylase trypsin inhibitors exacerbate CNS inflammation in experimental multiple sclerosis. Gut 2023; 73:92-104. [PMID: 37595983 PMCID: PMC10715558 DOI: 10.1136/gutjnl-2023-329562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Wheat has become a main staple globally. We studied the effect of defined pro-inflammatory dietary proteins, wheat amylase trypsin inhibitors (ATI), activating intestinal myeloid cells via toll-like receptor 4, in experimental autoimmune encephalitis (EAE), a model of multiple sclerosis (MS). DESIGN EAE was induced in C57BL/6J mice on standardised dietary regimes with defined content of gluten/ATI. Mice received a gluten and ATI-free diet with defined carbohydrate and protein (casein/zein) content, supplemented with: (a) 25% of gluten and 0.75% ATI; (b) 25% gluten and 0.19% ATI or (c) 1.5% purified ATI. The effect of dietary ATI on clinical EAE severity, on intestinal, mesenteric lymph node, splenic and central nervous system (CNS) subsets of myeloid cells and lymphocytes was analysed. Activation of peripheral blood mononuclear cells from patients with MS and healthy controls was compared. RESULTS Dietary ATI dose-dependently caused significantly higher EAE clinical scores compared with mice on other dietary regimes, including on gluten alone. This was mediated by increased numbers and activation of pro-inflammatory intestinal, lymph node, splenic and CNS myeloid cells and of CNS-infiltrating encephalitogenic T-lymphocytes. Expectedly, ATI activated peripheral blood monocytes from both patients with MS and healthy controls. CONCLUSIONS Dietary wheat ATI activate murine and human myeloid cells. The amount of ATI present in an average human wheat-based diet caused mild intestinal inflammation, which was propagated to extraintestinal sites, leading to exacerbation of CNS inflammation and worsening of clinical symptoms in EAE. These results support the importance of the gut-brain axis in inflammatory CNS disease.
Collapse
Affiliation(s)
- Victor F Zevallos
- Institute of Translational Immunology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Department of Applied and Health Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Nir Yogev
- Institute for Molecular Medicine, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Department of Dermatology, University of Cologne, Koln, Germany
| | - Judith Hauptmann
- Institute for Molecular Medicine, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Alexei Nikolaev
- Institute for Molecular Medicine, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Valeska Heib
- Institute of Translational Immunology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Nicola Fittler
- Institute of Translational Immunology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Felix Luessi
- Department of Neurology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Manjusha Neerukonda
- Institute of Translational Immunology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | | | - Ann-Marie Tobinski
- Institute for Molecular Medicine, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Luisa Klotz
- Neurology Department, University Hospital Munster, Munster, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, Johannes Gutenberg Universitat Mainz, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Illes Z, Jørgensen MM, Bæk R, Bente LM, Lauridsen JT, Hyrlov KH, Aboo C, Baumbach J, Kacprowski T, Cotton F, Guttmann CRG, Stensballe A. New Enhancing MRI Lesions Associate with IL-17, Neutrophil Degranulation and Integrin Microparticles: Multi-Omics Combined with Frequent MRI in Multiple Sclerosis. Biomedicines 2023; 11:3170. [PMID: 38137391 PMCID: PMC10740934 DOI: 10.3390/biomedicines11123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Blood-barrier (BBB) breakdown and active inflammation are hallmarks of relapsing multiple sclerosis (RMS), but the molecular events contributing to the development of new lesions are not well explored. Leaky endothelial junctions are associated with increased production of endothelial-derived extracellular microvesicles (EVs) and result in the entry of circulating immune cells into the brain. MRI with intravenous gadolinium (Gd) can visualize acute blood-barrier disruption as the initial event of the evolution of new lesions. METHODS Here, weekly MRI with Gd was combined with proteomics, multiplex immunoassay, and endothelial stress-optimized EV array to identify early markers related to BBB disruption. Five patients with RMS with no disease-modifying treatment were monitored weekly using high-resolution 3T MRI scanning with intravenous gadolinium (Gd) for 8 weeks. Patients were then divided into three groups (low, medium, or high MRI activity) defined by the number of new, total, and maximally enhancing Gd-enhancing lesions and the number of new FLAIR lesions. Plasma samples taken at each MRI were analyzed for protein biomarkers of inflammation by quantitative proteomics, and cytokines using multiplex immunoassays. EVs were characterized with an optimized endothelial stress EV array based on exosome surface protein markers for the detection of soluble secreted EVs. RESULTS Proteomics analysis of plasma yielded quantitative information on 208 proteins at each patient time point (n = 40). We observed the highest number of unique dysregulated proteins (DEPs) and the highest functional enrichment in the low vs. high MRI activity comparison. Complement activation and complement/coagulation cascade were also strongly overrepresented in the low vs. high MRI activity comparison. Activation of the alternative complement pathway, pathways of blood coagulation, extracellular matrix organization, and the regulation of TLR and IGF transport were unique for the low vs. high MRI activity comparison as well, with these pathways being overrepresented in the patient with high MRI activity. Principal component analysis indicated the individuality of plasma profiles in patients. IL-17 was upregulated at all time points during 8 weeks in patients with high vs. low MRI activity. Hierarchical clustering of soluble markers in the plasma indicated that all four MRI outcomes clustered together with IL-17, IL-12p70, and IL-1β. MRI outcomes also showed clustering with EV markers CD62E/P, MIC A/B, ICAM-1, and CD42A. The combined cluster of these cytokines, EV markers, and MRI outcomes clustered also with IL-12p40 and IL-7. All four MRI outcomes correlated positively with levels of IL-17 (p < 0.001, respectively), and EV-ICAM-1 (p < 0.0003, respectively). IL-1β levels positively correlated with the number of new Gd-enhancing lesions (p < 0.01), new FLAIR lesions (p < 0.001), and total number of Gd-enhancing lesions (p < 0.05). IL-6 levels positively correlated with the number of new FLAIR lesions (p < 0.05). Random Forests and linear mixed models identified IL-17, CCL17/TARC, CCL3/MIP-1α, and TNF-α as composite biomarkers predicting new lesion evolution. CONCLUSIONS Combination of serial frequent MRI with proteome, neuroinflammation markers, and protein array data of EVs enabled assessment of temporal changes in inflammation and endothelial dysfunction in RMS related to the evolution of new and enhancing lesions. Particularly, the Th17 pathway and IL-1β clustered and correlated with new lesions and Gd enhancement, indicating their importance in BBB disruption and initiating acute brain inflammation in MS. In addition to the Th17 pathway, abundant protein changes between MRI activity groups suggested the role of EVs and the coagulation system along with innate immune responses including acute phase proteins, complement components, and neutrophil degranulation.
Collapse
Affiliation(s)
- Zsolt Illes
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, 5230 Odense, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Lisa-Marie Bente
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Jørgen T. Lauridsen
- Department of Business and Economics, University of Southern Denmark, 5230 Odense, Denmark;
| | - Kirsten H. Hyrlov
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark;
- Institute for Computational Systems Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Francois Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, France/CREATIS, Université de Lyon, 69007 Lyon, France;
| | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Clinical Cancer Center, Aalborg University Hospital, 9220 Aalborg, Denmark
| |
Collapse
|
3
|
Kartjito MS, Yosia M, Wasito E, Soloan G, Agussalim AF, Basrowi RW. Defining the Relationship of Gut Microbiota, Immunity, and Cognition in Early Life-A Narrative Review. Nutrients 2023; 15:2642. [PMID: 37375546 DOI: 10.3390/nu15122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, the immune system has been identified as one of the possible main bridges which connect the gut-brain axis. This review aims to examine available evidence on the microbiota-immunity-cognitive relationship and its possible effects on human health early in life. This review was assembled by compiling and analyzing various literature and publications that document the gut microbiota-immune system-cognition interaction and its implications in the pediatric population. This review shows that the gut microbiota is a pivotal component of gut physiology, with its development being influenced by a variety of factors and, in return, supports the development of overall health. Findings from current research focus on the complex relationship between the central nervous system, gut (along with gut microbiota), and immune cells, highlighting the importance of maintaining a balanced interaction among these systems for preserving homeostasis, and demonstrating the influence of gut microbes on neurogenesis, myelin formation, the potential for dysbiosis, and alterations in immune and cognitive functions. While limited, evidence shows how gut microbiota affects innate and adaptive immunity as well as cognition (through HPA axis, metabolites, vagal nerve, neurotransmitter, and myelination).
Collapse
Affiliation(s)
| | - Mikhael Yosia
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Erika Wasito
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12950, Indonesia
| | - Garry Soloan
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | | | - Ray Wagiu Basrowi
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12950, Indonesia
| |
Collapse
|
4
|
Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol 2023; 23:9-23. [PMID: 35534624 DOI: 10.1038/s41577-022-00727-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
Abstract
The prevalence of autoimmune diseases (ADs) worldwide has rapidly increased over the past few decades. Thus, in addition to the classical risk factors for ADs, such as genetic polymorphisms, infections and smoking, environmental triggers have been considered. Recent sequencing-based approaches have revealed that patients with extra-intestinal ADs, such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, have distinct gut microbiota compositions compared to healthy controls. Faecal microbiota transplantation or inoculation with specific microbes in animal models of ADs support the hypothesis that alterations of gut microbiota influence autoimmune responses and disease outcome. Here, we describe the compositional and functional changes in the gut microbiota in patients with extra-intestinal AD and discuss how the gut microbiota affects immunity. Moreover, we examine how the gut microbiota might be modulated in patients with ADs as a potential preventive or therapeutic approach.
Collapse
Affiliation(s)
- Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for Molecular and Cellular Regulation, Gunma University, Haebashi, Gunma, Japan
| | - Chikako Shimokawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, Japan
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
5
|
Nguyen M, Palm NW. Gut instincts in neuroimmunity from the eighteenth to twenty-first centuries. Semin Immunopathol 2022; 44:569-579. [PMID: 35786740 PMCID: PMC9519704 DOI: 10.1007/s00281-022-00948-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 02/08/2023]
Abstract
In the past two decades, work on the microbiota-gut-brain axis has led to a renewed appreciation for the interconnectedness between body systems in both clinical and scientific circles. In the USA alone, millions of adults are burdened with non-communicable chronic diseases whose putative etiologies were previously thought to be restricted to either the gut or brain, such as inflammatory bowel disease, irritable bowel syndrome, Parkinson's and Alzheimer's disease, and autism spectrum disorder. However, the recent explosion of research into the impacts of the gut microbiome on diverse aspects of human health has revealed the potentially critical importance of reciprocal interactions between the gut microbiota, the immune system, and the brain in diverse diseases and disorders. In this review, we revisit the history of gut-brain interactions in science and medicine, which dates back to at least the eighteenth century, and outline how concepts in this field have shifted and evolved across eras. Next, we highlight the modern resurgence of gut-brain axis research, focusing on neuro-immune-microbiota interactions and recent progress towards a mechanistic understanding of the diverse impacts of the microbiome on human health. Finally, we offer a forward-looking perspective on the future of microbiota-gut-brain research, which may eventually reveal new paths towards the treatment of diverse diseases influenced by the complex connections between the microbiota and the brain.
Collapse
Affiliation(s)
- Mytien Nguyen
- Department of Immunobiology, Yale University School of Medicine, 10 Amistad Street, New Haven, CT, 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, 10 Amistad Street, New Haven, CT, 06520, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
6
|
Pandiyan P, McCormick TS. Regulation of IL-17A-Producing Cells in Skin Inflammatory Disorders. J Invest Dermatol 2021; 142:867-875. [PMID: 34561088 DOI: 10.1016/j.jid.2021.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on the IL-17A family of cytokines produced by T lymphocytes and other immune cells and how they are involved in cutaneous pathogenic responses. It will also discuss cutaneous dysbiosis and FOXP3+ regulatory T cells in the context of inflammatory conditions linked to IL-17 responses in the skin. Specifically, it will review key literature on chronic mucocutaneous candidiasis and psoriasis.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Thomas S McCormick
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Bruellman R, Llorente C. A Perspective Of Intestinal Immune-Microbiome Interactions In Alcohol-Associated Liver Disease. Int J Biol Sci 2021; 17:307-327. [PMID: 33390852 PMCID: PMC7757023 DOI: 10.7150/ijbs.53589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Uncovering the intricacies of the gut microbiome and how it interacts with the host immune system has opened up pathways in the search for the treatment of disease conditions. Alcohol-associated liver disease is a major cause of death worldwide. Research has shed light on the breakdown of the protective gut barriers, translocation of gut microbes to the liver and inflammatory immune response to microbes all contributing to alcohol-associated liver disease. This knowledge has opened up avenues for alternative therapies to alleviate alcohol-associated liver disease based on the interaction of the commensal gut microbiome as a key player in the regulation of the immune response. This review describes the relevance of the intestinal immune system, the gut microbiota, and specialized and non-specialized intestinal cells in the regulation of intestinal homeostasis. It also reflects how these components are altered during alcohol-associated liver disease and discusses new approaches for potential future therapies in alcohol-associated liver disease.
Collapse
Affiliation(s)
- Ryan Bruellman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Leboyer M, Godin O, Terro E, Boukouaci W, Lu CL, Andre M, Aouizerate B, Berna F, Barau C, Capdevielle D, Clauss-Kobayashi J, Chereau I, D Amato T, Dubertret C, Dubreucq J, Fond G, Laouamri H, Leignier S, Lancon C, Llorca PM, Mallet J, Le Corvoisier P, Misdrahi D, Passerieux C, Rey R, Pignon B, Urbach M, Szoke A, Schürhoff F, Tamouza R. Immune Signatures of Treatment-Resistant Schizophrenia: A FondaMental Academic Centers of Expertise for Schizophrenia (FACE-SZ) Study. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab012. [PMID: 34901861 PMCID: PMC8650073 DOI: 10.1093/schizbullopen/sgab012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Treatment-resistant schizophrenia (TRS) affects around 30% of patients with schizophrenia (SZ) resulting in poor functioning, relapses, and reduced quality of life. Convergent findings show that inflammation could contribute to resistance. We thus search for immune signatures of patients with TRS/ultra TRS (UTRS) in a sample of community-dwelling outpatients with SZ. In total, 195 stabilized SZ patients (mean age = 31.2 years, 73% male gender) were consecutively included in the network of the FondaMental Expert Centers for Schizophrenia in France and received a thorough clinical assessment. At inclusion, psychotic symptomatology was evaluated by the Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Circulating serum/plasma levels of a large panel of markers reflecting the main inflammatory pathways were evaluated. TRS was defined by current treatment by clozapine (CLZ) and UTRS by current CLZ treatment + PANSS total score ≥ 70. The frequency of TRS and UTRS patients was, respectively, 20% and 7.7% and was defined using multivariable analysis elevated by high levels of interleukin (IL)-12/IL-23p40, IL-17A, IL-10, and beta 2 microglobulin (B2M) and IL-12/IL-23p40, IL-17A, IL-6, IL-10, IFNγ, and B2M, respectively. These observations suggest that resistance and ultra resistance to CLZ treatment are underpinned by pro-inflammatory molecules mainly belonging to the T helper 17 pathway, a finding making sense given the interplay between inflammation and antipsychotic treatment responses. If confirmed, our findings may allow us to consider IL-23/IL-17 pathway as a therapeutic target for patients with resistance to antipsychotics.
Collapse
Affiliation(s)
- Marion Leboyer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, DMU IMPACT, Fondation FondaMental, F-94010, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT) F-94010, France.,Fondation FondaMental, Créteil, France
| | - Ophélia Godin
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, DMU IMPACT, Fondation FondaMental, F-94010, Créteil, France.,Fondation FondaMental, Créteil, France
| | | | - Wahid Boukouaci
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT) F-94010, France.,Fondation FondaMental, Créteil, France
| | - Ching-Lieng Lu
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT) F-94010, France.,Fondation FondaMental, Créteil, France
| | - Myrtille Andre
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, INSERM 1061, Montpellier, France
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, France.,Centre Hospitalier Charles Perrens, Université de Bordeaux, Bordeaux F-33076, France.,INRAE, NutriNeuro, University of Bordeaux, U1286, Bordeaux F-33076, France
| | - Fabrice Berna
- Fondation FondaMental, Créteil, France.,Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Caroline Barau
- INSERM, Centre Investigation Clinique 1430, AP-HP, Hôpitaux Universitaires Henri Mondor, Université Paris Est Créteil, F94010 Créteil, France
| | - Delphine Capdevielle
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, INSERM 1061, Montpellier, France
| | - Julie Clauss-Kobayashi
- Fondation FondaMental, Créteil, France.,Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Isabelle Chereau
- Fondation FondaMental, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, EA 7280, Clermont-Ferrand, France
| | - Thierry D Amato
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, Bron, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France.,Université de Paris, INSERM UMR1266, AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, Service de Psychiatrie et Addictologie. Hôpital Louis Mourier, Colombes, France
| | - Julien Dubreucq
- Fondation FondaMental, Créteil, France.,Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH Alpes Isère, France
| | - Guillaume Fond
- Fondation FondaMental, Créteil, France.,AP-HM, Aix-Marseille Univ, School of medicine - La Timone Medical Campus, EA 3279: CEReSS - Health Service Research and Quality of Life Center, 13005 Marseille, France
| | | | - Sylvain Leignier
- Fondation FondaMental, Créteil, France.,Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH Alpes Isère, France
| | - Christophe Lancon
- Fondation FondaMental, Créteil, France.,AP-HM, Aix-Marseille Univ, School of medicine - La Timone Medical Campus, EA 3279: CEReSS - Health Service Research and Quality of Life Center, 13005 Marseille, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, EA 7280, Clermont-Ferrand, France
| | - Jasmina Mallet
- Fondation FondaMental, Créteil, France.,Université de Paris, INSERM UMR1266, AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, Service de Psychiatrie et Addictologie. Hôpital Louis Mourier, Colombes, France
| | - Philippe Le Corvoisier
- INSERM, Centre Investigation Clinique 1430, AP-HP, Hôpitaux Universitaires Henri Mondor, Université Paris Est Créteil, F94010 Créteil, France
| | - David Misdrahi
- Fondation FondaMental, Créteil, France.,Department of Adult Psychiatry, Charles Perrens Hospital, University of Bordeaux, CNRS UMR 5287-INCIA "Neuroimagerie et cognition humaine," Bordeaux, France
| | - Christine Passerieux
- Fondation FondaMental, Créteil, France.,Service Universitaire de psychiatrie et d'addictologie du Centre Hospitalier de Versailles, INSERM UMR1018, CESP, Team "DevPsy," Université de Versailles Saint-Quentin-en-Yvelines, Paris - Saclay, France
| | - Romain Rey
- Fondation FondaMental, Créteil, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, Bron, France
| | - Baptiste Pignon
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, DMU IMPACT, Fondation FondaMental, F-94010, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT) F-94010, France.,Fondation FondaMental, Créteil, France
| | - Mathieu Urbach
- Fondation FondaMental, Créteil, France.,Service Universitaire de psychiatrie et d'addictologie du Centre Hospitalier de Versailles, INSERM UMR1018, CESP, Team "DevPsy," Université de Versailles Saint-Quentin-en-Yvelines, Paris - Saclay, France
| | - Andrei Szoke
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, DMU IMPACT, Fondation FondaMental, F-94010, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT) F-94010, France.,Fondation FondaMental, Créteil, France
| | - Franck Schürhoff
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, DMU IMPACT, Fondation FondaMental, F-94010, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT) F-94010, France.,Fondation FondaMental, Créteil, France
| | - Ryad Tamouza
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, DMU IMPACT, Fondation FondaMental, F-94010, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT) F-94010, France.,Fondation FondaMental, Créteil, France
| | | |
Collapse
|
9
|
Type 17 Immune Response Facilitates Progression of Inflammation and Correlates with Cognition in Stable Schizophrenia. Diagnostics (Basel) 2020; 10:diagnostics10110926. [PMID: 33182582 PMCID: PMC7698203 DOI: 10.3390/diagnostics10110926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of the type 17 immune pathway has already been considered in schizophrenia and we previously measured decreased sera values of interleukin (IL)-17 in early stages. We further explored the possible correlation of IL-17 systemic levels with proinflammatory cytokines and cognitive scores and additionally analyzed the percentage of IL-17 producing lymphocytes in peripheral blood of patients with stable schizophrenia. We included 27 patients diagnosed with schizophrenia (F20), after a three-month stable depot antipsychotic therapy (risperidone or paliperidone) and 18 healthy control subjects. Positive and Negative Syndrome Scale of Schizophrenia and the Montreal-Cognitive Assessment (MoCA) were conducted. Sera concentrations of IL-17, IL-6, tumor necrosis factor alpha (TNF-α) and soluble ST2 receptor (sST2) were measured. Flow cytometry and Natural Killer (NK) and T cell analyses were done in 10 patients and 10 healthy controls. Moderate positive correlation was established between IL-17 and TNF-α (r = 0.640; p = 0.001), IL-17 and IL-6 (r = 0.514; p = 0.006), IL-17 and sST2 (r = 0.394; p = 0.042). Furthermore, a positive correlation between the serum levels of IL-17 and MoCA scores was observed, especially with visuospatial and executive functioning, as well as language functioning and delayed recall (p < 0.05). Significantly higher percentage of IL-17 producing CD56+ NK cells was measured in peripheral blood of patients with schizophrenia in remission vs. healthy individuals (p = 0.001). The percentage of CD4+ T cells and CD4+ T cells that produce IL-17 was significantly increased in patients (p = 0.001). This study revealed the involvement of innate type 17 immune response in the progression of inflammation and this could be related to cognitive functioning in stable schizophrenia.
Collapse
|
10
|
Yoshimura S, Thome R, Konno S, Mari ER, Rasouli J, Hwang D, Boehm A, Li Y, Zhang GX, Ciric B, Rostami A. IL-9 Controls Central Nervous System Autoimmunity by Suppressing GM-CSF Production. THE JOURNAL OF IMMUNOLOGY 2019; 204:531-539. [PMID: 31852750 DOI: 10.4049/jimmunol.1801113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/18/2019] [Indexed: 01/26/2023]
Abstract
Multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) are inflammatory diseases of the CNS in which Th17 cells play a major role in the disease pathogenesis. Th17 cells that secrete GM-CSF are pathogenic and drive inflammation of the CNS. IL-9 is a cytokine with pleiotropic functions, and it has been suggested that it controls the pathogenic inflammation mediated by Th17 cells, and IL-9R-/- mice develop more severe EAE compared with wild-type counterparts. However, the underlying mechanism by which IL-9 suppresses EAE has not been clearly defined. In this study, we investigated how IL-9 modulates EAE development. By using mice knockout for IL-9R, we show that more severe EAE in IL-9R-/- mice correlates with increased numbers of GM-CSF+ CD4+ T cells and inflammatory dendritic cells (DCs) in the CNS. Furthermore, DCs from IL-9R-/- mice induced more GM-CSF production by T cells and exacerbated EAE upon adoptive transfer than did wild-type DCs. Our results suggest that IL-9 reduces autoimmune neuroinflammation by suppressing GM-CSF production by CD4+ T cells through the modulation of DCs.
Collapse
Affiliation(s)
- Satoshi Yoshimura
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rodolfo Thome
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Shingo Konno
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Elisabeth R Mari
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Javad Rasouli
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Daniel Hwang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Alexandra Boehm
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Yanhua Li
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Guang-Xian Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Bogoljub Ciric
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Abdolmohamad Rostami
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
11
|
Lu Y, Zhao C, Lei L, Tao Z, Zheng L, Wen J, Li X. Effects of thalidomide on Th17, Treg cells and TGF-β1/Smad3 pathway in a mouse model of systemic sclerosis. Int J Rheum Dis 2019; 23:406-419. [PMID: 31840939 DOI: 10.1111/1756-185x.13769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the immune regulatory and anti-fibrosis function of thalidomide (Thal) in systemic sclerosis (SSc), we investigated the effects of Thal on: (a) Th17 and Treg cell production; (b) related factors expression; and (c) transforming growth factor (TGF)-β1/Smad3 pathway, using a mouse model of SSc. METHODS Forty female BALB/c mice were randomly divided into a normal control (NC) group, SSc group (bleomycin [BLM]-induced experimental SSc), BLM + Thal (10 mg/kg/day) group, BLM + Thal (20) group, and BLM + Thal (30) group. Thal was administered a day after BLM. At the end of the animal experiments, mouse tissues were collected for detection of pathological changes and hydroxyproline content. Flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry, Western blot and other methods were used to measure Th17, Treg cell population and their related factors, as well as TGF-β1/Smad3 pathway expression. RESULTS Thal treatment: (a) reduced skin, and pulmonary tissue fibrosis, inflammation score, and hydroxyproline content (P < .001) in BLM-induced SSc mice; (b) reduced the percentages of Th17 cells and associated interleukin (IL)-17A expression (both P < .05) but increased the percentages of Treg cells and its transcription factor Foxp3 expression (both P < .05); (c) correlation analysis found positive correlations between Th17/Treg ratio, the inflammatory score of the skin and pulmonary tissues, hydroxyproline content, and type I collagen messenger RNA expression (r = .8546, .8656, .6902, .6807, .8118, and .8424, respectively, P < .01); (d) Thal inhibited TGF-β1 expression and Smad3 phosphorylation (both P < .05); (e) TGF-β1 was positively correlated with the IL-17A and Th17/Treg ratio (r = .5856, P = .005; r = .6684, P = .0107, respectively). CONCLUSION Thal can effectively prevent skin and pulmonary tissue fibrosis in a mouse model of SSc through the TGF-β1/Smad3 signaling pathway and can rectify the distortion of the Th17/Treg balance in SSc by potentially regulating Th17 and Treg cell production, as well as their related factors expression.
Collapse
Affiliation(s)
- Yi Lu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Cheng Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Ling Lei
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Zhiqing Tao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Leting Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jing Wen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xi Li
- Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
12
|
Quandt JA, Becquart P, Kamma E, Hallenbeck J. Mucosal Administration of E-selectin Limits Disability in Models of Multiple Sclerosis. Front Mol Neurosci 2019; 12:190. [PMID: 31507371 PMCID: PMC6718462 DOI: 10.3389/fnmol.2019.00190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
E-selectin plays an important role in mediating the rolling of leukocytes along and thus, the subsequent extravasation across activated endothelial cells comprising the microvasculature of the blood brain barrier (BBB). In multiple sclerosis (MS) and other inflammatory disorders of the central nervous system (CNS), the microvasculature is altered and immune cells infiltrate the brain and spinal cord contributing to damage, demyelination and ultimately disability. While mucosal administration is typically used to affect lymphocyte hyporesponsiveness or tolerance to suspect autoantigens, intranasal administration to E-selectin has previously been shown to protect against CNS inflammatory insults. We characterized the potential for mucosal administration of E-selectin to modulate CNS autoimmunity in the experimental autoimmune encephalomyelitis (EAE) model of MS. Intranasally administered E-selectin reduced swelling by as much as 50% in delayed-type hypersensitivity reactions compared to ovalbumin-tolerized controls. Intranasal E-selectin delivery prior to disease induction with myelin oligodendrocyte glycoprotein (MOG)35-55 reduced disease severity and total disease burden by more than 50% compared to PBS-tolerized animals; this protection was not associated with differences in the magnitude of the autoimmune response. Examination after the onset of disease showed that protection was associated with significant reductions in inflammatory infiltrates throughout the spinal cord. Tolerization to E-selectin did not influence encephalitogenic characteristics of autoreactive T cells such as IFN-gamma or IL-17 production. Clinical disease was also significantly reduced when E-selectin was first delivered after the onset of clinical symptoms. Splenic and lymph node (LN) populations from E-selectin-tolerized animals showed E-selectin-specific T cell responses and production of the immunomodulatory cytokine IL-10. Transfer of enriched CD4+ T cells from E-selectin tolerized mice limited disability in the passive SJL model of relapsing remitting MS. These results suggest a role for influencing E-selectin specific responses to limit neuroinflammation that warrants further exploration and characterization to better understand its potential to mitigate neurodegeneration in disorders such as MS.
Collapse
Affiliation(s)
- Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Becquart
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Emily Kamma
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Zhu H, Ji W. Dihydroartemisinin Ameliorated Ovalbumin-Induced Asthma in Mice via Regulation of MiR-183C. Med Sci Monit 2019; 25:3804-3814. [PMID: 31115390 PMCID: PMC6542303 DOI: 10.12659/msm.915399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The purpose of the present study was to investigate the function and mechanism of dihydroartemisinin (DHA) in treating ovalbumin-induced asthma in BALB/c mice. MATERIAL AND METHODS Thirty female BALB/c mice were randomly separated into 3 groups: the control group, the asthma model group stimulated by ovalbumin (OVA group), and the DHA treatment group (DHA group). The therapeutic effects and potential pharmacological mechanisms of DHA were specifically clarified by examining its effects on asthma-related phenomena, such as body weight, lung function, cell counts in bronchoalveolar lavage fluid (BALF), and hemotoxin and eosin staining. In addition, the expression of inflammatory factors was checked by enzyme-linked immunosorbent assay kits, and fractions of Th17 cells were detected by FACS analysis. Moreover, the downstream molecular pathway of IL-6/Stat3 (interleukin-6/signal transducer and activator of transcription 3) and expression of miR-183C was investigated by western blot and/or quantitative real-time polymerase chain reaction. Luciferase assay was used to reveal the function of miR-183C on the transcriptional regulation of Foxo1 (forkhead box O). RESULTS DHA administration significantly relieved the severity of the asthma through its effect on body weight, survival rate, and airway pressure. DHA was able to ameliorate lung damage in terms of pathological morphology and it reduced the percentage of helper T 17 (Th17) cells and the secretion of cytokines. As a result, the activity of the IL-6/Stat3 pathway was inhibited by DHA. In addition, the adoption of DHA decreased the expression of miR-183C but increased the expression of the transcription factor Foxo1. CONCLUSIONS Our results suggest that the therapeutic effects of DHA on asthma are partially realized via the regulation of miR-183C and IL-6/Stat3 pathway.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu, China (mainland).,Department of Paediatric, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Wei Ji
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
14
|
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? AUTOIMMUNITY HIGHLIGHTS 2018; 9:9. [PMID: 30415321 PMCID: PMC6230324 DOI: 10.1007/s13317-018-0109-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Collapse
|
15
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
The Immunoregulation of Th17 in Host against Intracellular Bacterial Infection. Mediators Inflamm 2018; 2018:6587296. [PMID: 29743811 PMCID: PMC5884031 DOI: 10.1155/2018/6587296] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
T helper 17 cells (Th17) constitute a distinct subset of helper T cells with a unique transcriptional profile (STAT3, RORγ, and RORα), cytokine production pattern (IL17 family), and requirement of specific cytokines for their differentiation (TGF-β, IL6, IL21, and IL23). Recent studies involving experimental animals and humans have shown that Th17/IL17 plays a crucial role in host defense against a variety of pathogens, including bacteria and viruses. The underlying mechanisms by which Th17 performs include dendritic cell (DC) regulation, neutrophil recruitment, Th1 modulation, and T regulatory cell (Treg) balance. In recent years, researchers have generated an accumulating wealth of evidence on the role of Th17/IL17 in protective immunity to intracellular bacterial pathogens, such as Mycobacterium tuberculosis and Chlamydia trachomatis, which are one of the most important pathogens that inflict significant socioeconomic burden across the globe. In this article, we reviewed the current literature on the functions and mechanisms by which Th17/IL17 responds to intracellular bacterial infections. A better understanding of Th17/IL17 immunity to pathogens would be crucial for developing effective prophylactics and therapeutics.
Collapse
|
17
|
Castor T, Yogev N, Blank T, Barwig C, Prinz M, Waisman A, Bros M, Reske-Kunz AB. Inhibition of experimental autoimmune encephalomyelitis by tolerance-promoting DNA vaccination focused to dendritic cells. PLoS One 2018; 13:e0191927. [PMID: 29408931 PMCID: PMC5800700 DOI: 10.1371/journal.pone.0191927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
In this study we analysed the effects of prophylactic biolistic DNA vaccination with plasmids encoding the encephalitogenic protein myelin oligodendrocyte glycoprotein (MOG) on the severity of a subsequently MOGp35-55-induced EAE and on the underlying immune response. We compared the outcome of vaccination with MOG-encoding plasmids alone or in combination with vectors encoding the regulatory cytokines IL-10 and TGF-ß1, respectively. MOG expression was restricted to skin dendritic cells (DCs) by the use of the DC-specific promoter of the fascin1 gene (pFscn-MOG). For comparison, the strong and ubiquitously active CMV promoter was employed (pCMV-MOG), which allows MOG expression in all transfected cells. Expression of IL-10 and TGF-ß1 was controlled by the CMV promoter to yield maximal synthesis (pCMV-IL10, pCMV-TGFß). Co-application of pFscn-MOG and pCMV-IL10 significantly ameliorated EAE pathology, while vaccination with pCMV-MOG plus pCMV-IL10 did not affect EAE outcome. In contrast, vaccination with either of the two MOG-encoding plasmids in combination with pCMV-TGFß significantly attenuated the clinical EAE symptoms. Mechanistically, we observed diminished infiltration of Th17 and Th1 cells as well as macrophages/DCs into the CNS, which correlated with decreased MOGp35-55-specific production of IL-17 and IFN-ϫ by spleen cells and reduced peptide-specific T cell proliferation. Our findings suggest deletion of or anergy induction in MOG-specific CD4+ T cells by the suppressive vaccination platform employed. MOG expression driven by the DC-specific fascin1 promoter yielded similar inhibitory effects on EAE progression as the ubiquitously active viral CMV promoter, when coapplying pCMV-TGFß. Our finding that pCMV-IL10 promoted tolerogenic effects only, when coapplied with pFscn-MOG, but not pCMV-MOG suggests that IL-10 affected only directly transfected DCs (pFscn-MOG), but not neighbouring DCs that engulfed MOG-containing vesicles derived from transfected keratinocytes (pCMV-MOG). Thus, due to its DC-restricted expression, the fascin1 promoter might be an interesting alternative to ubiquitously expressed promoters for vaccination strategies.
Collapse
Affiliation(s)
- Timo Castor
- Department of Dermatology University Medical Center, Mainz, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Thomas Blank
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Christina Barwig
- Department of Dermatology University Medical Center, Mainz, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology University Medical Center, Mainz, Germany
| | | |
Collapse
|
18
|
Rezapour-Firouzi S, Shahabi S, Mohammadzadeh A, Tehrani AA, Kheradmand F, Mazloomi E. The potential effects of hemp seed/evening primrose oils on the mammalian target of rapamycin complex 1 and interferon-gamma genes expression in experimental autoimmune encephalomyelitis. Res Pharm Sci 2018; 13:523-532. [PMID: 30607150 PMCID: PMC6288989 DOI: 10.4103/1735-5362.245964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) has a fundamental role in the metabolism, growth, and regulation of the immune system. The interferon gamma (IFN-γ)derived from T helper 1 (Th1) cells is a prominent pro-inflammatory cytokine in multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE). Due to the exclusive role of rapamycin (RAPA) in mTOR complex 1 (mTORC1) inhibition, essentially Th1 differentiation and IFN-γ production, we evaluated the potential therapeutic effects of hemp seed/evening primrose oils (HSO/EPO) in comparison with RAPA administration in EAE. To evaluate the therapeutic effects of EPO/HSO supplement in comparison with RAPA, EAE was induced using myelin oligodendrocyte glycoprotein (MOG) peptide and complete Freund's adjuvant in C57BL/6 mice. The weight, clinical score, and histological findings were evaluated. Total mRNA was extracted from local lymph nodes and qRT-PCR was used for the purpose of the genes expression level of regulatory associated protein of TORC1 (RAPTOR) and IFN-γ. Our results indicated that the relative expression of RAPTOR and IFN-γ genes were significantly reduced in HSO/EPO, RAPA, and RAPA + HSO/EPO treated groups in comparison with the untreated group. Interestingly, histological findings have shown that the HSO/EPO treated group remarkably regenerated the myelin sheath, but this did not occur in the case of RAPA or combined RAPA and HSO/EPO treated groups. Our findings suggeste that HSO/HPO can be used as a potent immunomodulator and as a good candidate for re-myelination and downregulation of immune response for treatment of MS.
Collapse
Affiliation(s)
- Soheila Rezapour-Firouzi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Shahram Shahabi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Adel Mohammadzadeh
- Departement of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Ali Asgar Tehrani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, I.R. Iran
| | - Fatemeh Kheradmand
- Department of Biochemistry, School of Medicine, Urmia University of Medical Science, Urmia, I.R. Iran
| | - Ebrahim Mazloomi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
19
|
Cosorich I, Dalla-Costa G, Sorini C, Ferrarese R, Messina MJ, Dolpady J, Radice E, Mariani A, Testoni PA, Canducci F, Comi G, Martinelli V, Falcone M. High frequency of intestinal T H17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. SCIENCE ADVANCES 2017; 3:e1700492. [PMID: 28706993 PMCID: PMC5507635 DOI: 10.1126/sciadv.1700492] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/09/2017] [Indexed: 05/17/2023]
Abstract
T helper 17 (TH17) cells are key players in multiple sclerosis (MS), and studies in animal models demonstrated that effector TH17 cells that trigger brain autoimmunity originate in the intestine. We validate in humans the crucial role of the intestinal environment in promoting TH17 cell expansion in MS patients. We found that increased frequency of TH17 cells correlates with high disease activity and with specific alterations of the gut mucosa-associated microbiota in MS patients. By using 16S ribosomal RNA sequencing, we analyzed the microbiota isolated from small intestinal tissues and found that MS patients with high disease activity and increased intestinal TH17 cell frequency showed a higher Firmicutes/Bacteroidetes ratio, increased relative abundance of Streptococcus, and decreased Prevotella strains compared to healthy controls and MS patients with no disease activity. We demonstrated that the intestinal TH17 cell frequency is inversely related to the relative abundance of Prevotella strains in the human small intestine. Our data demonstrate that brain autoimmunity is associated with specific microbiota modifications and excessive TH17 cell expansion in the human intestine.
Collapse
Affiliation(s)
- Ilaria Cosorich
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS (Istituto di Ricerca e Cura a carattere Scientifico) San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gloria Dalla-Costa
- Clinical Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Sorini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS (Istituto di Ricerca e Cura a carattere Scientifico) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Ferrarese
- Microbiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Josè Messina
- Clinical Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jayashree Dolpady
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS (Istituto di Ricerca e Cura a carattere Scientifico) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa Radice
- Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alberto Mariani
- Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pier Alberto Testoni
- Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Filippo Canducci
- Microbiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giancarlo Comi
- Clinical Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vittorio Martinelli
- Clinical Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marika Falcone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS (Istituto di Ricerca e Cura a carattere Scientifico) San Raffaele Scientific Institute, 20132 Milan, Italy
- Corresponding author.
| |
Collapse
|
20
|
Yong H, Chartier G, Quandt J. Modulating inflammation and neuroprotection in multiple sclerosis. J Neurosci Res 2017; 96:927-950. [PMID: 28580582 DOI: 10.1002/jnr.24090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder of the central nervous system with a presentation and disease course that is largely unpredictable. MS can cause loss of balance, impaired vision or speech, weakness and paralysis, fatigue, depression, and cognitive impairment. Immunomodulation is a major target given the appearance of focal demyelinating lesions in myelin-rich white matter, yet progression and an increasing appreciation for gray matter involvement, even during the earliest phases of the disease, highlights the need to afford neuroprotection and limit neurodegenerative processes that correlate with disability. This review summarizes key aspects of MS pathophysiology and histopathology with a focus on neuroimmune interactions in MS, which may facilitate neurodegeneration through both direct and indirect mechanisms. There is a focus on processes thought to influence disease progression and the role of oxidative stress and mitochondrial dysfunction in MS. The goals and efficacy of current disease-modifying therapies and those in the pipeline are discussed, highlighting recent advances in our understanding of pathways mediating disease progression to identify and translate both immunomodulatory and neuroprotective therapeutics from the bench to the clinic.
Collapse
Affiliation(s)
- Heather Yong
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Chartier
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Quandt
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Xue H, Ren H, Zhang L, Sun X, Wang W, Zhang S, Zhao J, Ming L. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:561-6. [PMID: 27403263 PMCID: PMC4923477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E) is an important component of human diet with antioxidant activity, which protects the body's biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and treated EAE with α-tocopherol (AT) which is the main content of Vit E. MATERIALS AND METHODS Twenty C57BL/6 adult female mice were used and divided into two groups randomly. EAE was induced with myelin oligodendrocyte glycoprotein (MOG), and one group was treated with AT, at a dose of 100 mg/kg on the 3(th) day post-immunization with MOG, the other group was treated with 1% alcohol. Mice were euthanized on day 14, post-immunization, spleens were removed for assessing splenocytes proliferation and cytokine profile, and spinal cords were dissected to assess the infiltration of inflammatory cells in spinal cord. RESULTS AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine), though the other cytokines were only affected slightly. CONCLUSION According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS.
Collapse
Affiliation(s)
- Haikuo Xue
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China,Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China,Department of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan 450002, China,Key Laboratory of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450002, China
| | - Huijun Ren
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China,Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China
| | - Lei Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China,Department of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Xiaoxu Sun
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Wanhai Wang
- Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China
| | - Shijie Zhang
- Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China,Key Laboratory of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan450002, China
| | - Junwei Zhao
- Department of Laboratory Medicine, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Liang Ming
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China,Key Clinical Laboratory Medicine of Henan Province, Zhengzhou 450002, China,Corresponding author: Liang Ming. Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China. Key Clinical Laboratory Medicine of Henan province, Zhengzhou 450002, China. Tel: +86-0371-66913118;
| |
Collapse
|
22
|
Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response. J Mol Med (Berl) 2016; 94:1063-79. [DOI: 10.1007/s00109-016-1414-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 12/23/2022]
|
23
|
Duan D, Yang J, Yang JH, Tang YM, Wang YY. Human umbilical cord mesenchymal stem cells for treatment of cirrhosis. Shijie Huaren Xiaohua Zazhi 2016; 24:362-367. [DOI: 10.11569/wcjd.v24.i3.362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The incidence of liver cirrhosis in China is increasing year by year. About one million people die from liver cirrhosis each year, which is a serious threat to human health. Unfortunately, the treatment effect for end stage liver cirrhosis is poor. Orthotopic liver transplantation (OLT) is considered the most effective treatment, but it has limited use because of the shortage of donor liver, high cost, high risk of surgery, and immune rejection after transplantation. With the deep research of stem cell transplantation technology, human umbilical cord mesenchymal stem cells (HUC-MSCs), which have many unique advantages such as rich source, easy collection and preservation, high proliferation and differentiation capacity, low immunity, and no ethical disputes, show a broad prospect for clinical application. In this paper, we review the biological characteristics of HUC-MSCs, the theoretical basis for the treatment of liver cirrhosis using HUC-MSCs, as well as their clinical application, problems and prospects.
Collapse
|
24
|
Liu Y, Zeng M, Liu Z. Th17 response and its regulation in inflammatory upper airway diseases. Clin Exp Allergy 2015; 45:602-12. [PMID: 25048954 DOI: 10.1111/cea.12378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two widely prevalent inflammatory diseases in the upper airways. T cell immunity has been suggested to play an important pathogenic role in many chronic inflammatory diseases including inflammatory upper airway diseases. Inappropriate CD4(+) T cell responses, especially the dysregulation of the Th1/Th2 balance leading to excessive Th1 or Th2 cell activation, have been associated with allergic rhinitis and chronic rhinosinusitis. Nevertheless, recent studies suggest that IL-17A and IL-17A-producing Th17 cell subset, a distinct pro-inflammatory CD4(+) T cell lineage, may also play an important role in the pathophysiology of inflammatory upper airway diseases. Th17 cells may promote both eosinophilic and neutrophilic inflammation in AR and CRS. In addition, a few, but accumulating evidence shows that the Th17 responses can be tightly regulated by endogenous and exogenous substances in the context of AR and CRS. This review discusses recent advances in our understanding of the expression and function of the Th17 response and its regulation in inflammatory upper airway diseases, and the perspective for future investigation and clinical utility.
Collapse
Affiliation(s)
- Y Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
25
|
Almolda B, González B, Castellano B. Are Microglial Cells the Regulators of Lymphocyte Responses in the CNS? Front Cell Neurosci 2015; 9:440. [PMID: 26635525 PMCID: PMC4644801 DOI: 10.3389/fncel.2015.00440] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/23/2015] [Indexed: 12/24/2022] Open
Abstract
The infiltration of immune cells in the central nervous system is a common hallmark in different neuroinflammatory conditions. Accumulating evidence indicates that resident glial cells can establish a cross-talk with infiltrated immune cells, including T-cells, regulating their recruitment, activation and function within the CNS. Although the healthy CNS has been thought to be devoid of professional dendritic cells (DCs), numerous studies have reported the presence of a population of DCs in specific locations such as the meninges, choroid plexuses and the perivascular space. Moreover, the infiltration of DC precursors during neuroinflammatory situations has been proposed, suggesting a putative role of these cells in the regulation of lymphocyte activity within the CNS. On the other hand, under specific circumstances, microglial cells are able to acquire a phenotype of DC expressing a wide range of molecules that equip these cells with all the necessary machinery for communication with T-cells. In this review, we summarize the current knowledge on the expression of molecules involved in the cross-talk with T-cells in both microglial cells and DCs and discuss the potential contribution of each of these cell populations on the control of lymphocyte function within the CNS.
Collapse
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| |
Collapse
|
26
|
Pandiyan P, Zhu J. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells. Cytokine 2015; 76:13-24. [PMID: 26165923 DOI: 10.1016/j.cyto.2015.07.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3(+) regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage. BIOMED RESEARCH INTERNATIONAL 2015; 2015:416480. [PMID: 26064907 PMCID: PMC4433660 DOI: 10.1155/2015/416480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general complication in many diseases. It is the main complication during peritoneal dialysis (PD) treatment, a therapy for renal failure disease. Local inflammation and mesothelial to mesenchymal transition (MMT) are well known key phenomena in peritoneal damage during PD. New data suggest that, in the peritoneal cavity, inflammatory changes may be regulated at least in part by a delicate balance between T helper 17 and regulatory T cells. This paper briefly reviews the implication of the Th17/Treg-axis in fibrotic diseases. Moreover, it compares current evidences described in PD animal experimental models, indicating a loss of Th17/Treg balance (Th17 predominance) leading to peritoneal damage during PD. In addition, considering the new clinical and animal experimental data, new therapeutic strategies to reduce the Th17 response and increase the regulatory T response are proposed. Thus, future goals should be to develop new clinical biomarkers to reverse this immune misbalance and reduce peritoneal fibrosis in PD.
Collapse
|
28
|
Severa M, Rizzo F, Giacomini E, Annibali V, Gafa V, Romano S, Buscarinu MC, Fornasiero A, Salvetti M, Coccia EM. IFN-β Therapy Regulates TLR7-Mediated Response in Plasmacytoid Dendritic Cells of Multiple Sclerosis Patients Influencing an Anti-Inflammatory Status. J Interferon Cytokine Res 2015; 35:668-81. [PMID: 25923141 DOI: 10.1089/jir.2014.0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) display altered immune-phenotype in multiple sclerosis (MS) patients and are found actively recruited in postmortem MS brain lesions, implying that their immune regulation may represent an important aspect of MS pathogenesis. Because of the reported Toll-like receptor 7 (TLR7) implication in autoimmunity, in this study we characterized how IFN-β therapy impacts on pDC activation to TLR7 triggering in MS patients, aspect only poorly investigated so far. In vivo IFN-β administration regulates pDC functions in TLR7-treated peripheral blood mononuclear cell (PBMC) cultures differently from what is observed in isolated cells, suggesting that IFN-β may activate inhibitory mechanisms in MS peripheral blood involved in turning off pDC response to dampen the ongoing inflammation. Indeed, IL-10, a key regulatory cytokine found increased upon TLR7 stimulation in in vivo IFN-β-exposed PBMCs, directly reduced pDC-mediated IFN-α production. IFN-β therapy also shaped T-cell responses by decreasing TLR7-induced pDC maturation and inducing T-cell inhibitory molecules. Accordingly, raised pDC-induced IL-27 and decreased IL-23 expression, together with high IL-10 level, contribute to inhibit Th17 cell differentiation. Our study uncovered a role for IFN-β in the regulation of TLR7-mediated pDC responses in MS toward an anti-inflammatory phenotype opening new opportunities to better understand mechanisms of action of this drug in controlling MS immunopathogenesis.
Collapse
Affiliation(s)
- Martina Severa
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Fabiana Rizzo
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Elena Giacomini
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Viviana Annibali
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Valerie Gafa
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Silvia Romano
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Maria Chiara Buscarinu
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Arianna Fornasiero
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Marco Salvetti
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Eliana Marina Coccia
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| |
Collapse
|
29
|
Bhattacharya P, Budnick I, Singh M, Thiruppathi M, Alharshawi K, Elshabrawy H, Holterman MJ, Prabhakar BS. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. J Interferon Cytokine Res 2015; 35:585-99. [PMID: 25803788 DOI: 10.1089/jir.2014.0149] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them "tolerogenic," which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility.
Collapse
Affiliation(s)
- Palash Bhattacharya
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Isadore Budnick
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Medha Singh
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Muthusamy Thiruppathi
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Khaled Alharshawi
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Hatem Elshabrawy
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Mark J Holterman
- 2 Department of Surgery, College of Medicine, University of Illinois , Chicago, Illinois
| | - Bellur S Prabhakar
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| |
Collapse
|
30
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
31
|
Brain Protection Conferred by Long-Term Administration of 2-(2-Benzofuranyl)-2-Imidazoline Against Experimental Autoimmune Encephalomyelitis. Neurochem Res 2014; 40:572-8. [DOI: 10.1007/s11064-014-1502-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 11/26/2022]
|
32
|
Jones TB. Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 2014; 258:78-90. [PMID: 25017889 DOI: 10.1016/j.expneurol.2014.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
Abstract
Over the past 15 years an immense amount of data has accumulated regarding the infiltration and activation of lymphocytes in the traumatized spinal cord. Although the impact of the intraspinal accumulation of lymphocytes is still unclear, modulation of the adaptive immune response via active and passive vaccination is being evaluated for its preclinical efficacy in improving the outcome for spinal-injured individuals. The complexity of the interaction between the nervous and the immune systems is highlighted in the contradictions that appear in response to these modulations. Current evidence regarding augmentation and inhibition of the adaptive immune response to spinal cord injury is reviewed with an aim toward reconciling conflicting data and providing consensus issues that may be exploited in future therapies. Opportunities such an approach may provide are highlighted as well as the obstacles that must be overcome before such approaches can be translated into clinical trials.
Collapse
Affiliation(s)
- T Bucky Jones
- Department of Anatomy, Arizona College of Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
33
|
Berghella AM, Contasta I, Marulli G, D'Innocenzo C, Garofalo F, Gizzi F, Bartolomucci M, Laglia G, Valeri M, Gizzi M, Friscioni M, Barone M, Del Beato T, Secinaro E, Pellegrini P. Ageing gender-specific "Biomarkers of Homeostasis", to protect ourselves against the diseases of the old age. IMMUNITY & AGEING 2014; 11:3. [PMID: 24498974 PMCID: PMC3923003 DOI: 10.1186/1742-4933-11-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
Low-grade inflammatory state causes the development of the principal chronic-degenerative pathologies related with ageing. Consequently, it is required a better comprehension of the physiologic origins and the consequences of the low-grade inflammatory state for the identification of 1) the basic mechanisms that lead to the chronic inflammatory state and, after that, to the progression toward the pathologies and 2) the parallel identification of the prognostic biomarkers typical of these passages. These biomarkers could bring to several improvements in the health quality, allowing an early diagnosis and more effective treatments for: a) the prevention strategies on the healthy population, to assure a healthy longevity and b) the identification of personalized treatment in patients, to assure the benefit of the therapy. For the identification of these biomarkers it is necessary to consider that the ageing processes produce alterations of the physiologic systems and that these modifications compromise the communications between these networks: this state constitutes an obstacle for an appropriate physiologic homeostasis, that plays a fundamental role for the safeguard of the health. It is also to be considered that immune senescence affects both men and women, but it does it in different ways: a sexual dimorphism of immune pathways in the setting of immune response homeostasis is normally present, as we previously underlined. Therefore we hypothesize that, in order to prevent the development of the chronic-degenerative pathologies related with ageing, it is important to identify "Biomarkers of Homeostasis " specific for each gender: these are biologic molecules that should be measurable in a practical and no-invasive way and whose variations can quantify the male and female risk of losing the physiologic system homeostatic capacity. This competence is not only critical in the control of inflammation, but it is also prognostic for the passages from low-grade inflammatory state to the chronic inflammation and to the progression toward the degenerative pathologies. Beginning from the actual results, our intent is 1) to discuss and underline the importance of these new research perspectives in the definition of ageing gender-specific clinical "Biomarkers of Homeostasis" and 2) to propose homeostasis biomarkers, already present in the research results.
Collapse
Affiliation(s)
- Anna Maria Berghella
- Istituto di Farmacologia Traslazionale (IFT), Consiglio Nazionale delle Ricerche (CNR), Unità Operativa di Supporto (UOS), via G, Carducci, 32 - Rotilio Center, 67100 L'Aquila, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhou Q, Hu Y, Howard OZ, Oppenheim JJ, Chen X. In vitro generated Th17 cells support the expansion and phenotypic stability of CD4(+)Foxp3(+) regulatory T cells in vivo. Cytokine 2014; 65:56-64. [PMID: 24080164 PMCID: PMC3842389 DOI: 10.1016/j.cyto.2013.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/30/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells stimulate immune responses through distinct patterns of cytokine produced by Th1, Th2 or Th17 cells, or inhibit immune responses through Foxp3-expressing regulatory T cells (Tregs). Paradoxically, effector T cells were recently shown to activate Tregs, however, it remains unclear which Th subset is responsible for this effect. In this study, we found that Th17 cells expressed the highest levels of TNF among in vitro generated Th subsets, and most potently promoted expansion and stabilized Foxp3 expression by Tregs when co-transferred into Rag1(-/-) mice. Both TNF and IL-2 produced by Th17 cells contributed to this effect. The stimulatory effect of Th17 cells on Tregs was largely abolished when co-transferred with TNFR2-deficient Tregs. Furthermore, Tregs deficient in TNFR2 also supported a much lower production of IL-17A and TNF expression by co-transferred Th17 cells. Thus, our data indicate that the TNF-TNFR2 pathway plays a crucial role in the reciprocal stimulatory effect of Th17 cells and Tregs. This bidirectional interaction should be taken into account when designing therapy targeting Th17 cells, Tregs, TNF and TNFR2.
Collapse
Affiliation(s)
- Qiong Zhou
- Laboratory of Molecular Immunoregulation; Cancer Inflammation Program, Center for Cancer Research, NCI
| | - Ya Hu
- Laboratory of Molecular Immunoregulation; Cancer Inflammation Program, Center for Cancer Research, NCI
| | - O.M. Zack Howard
- Laboratory of Molecular Immunoregulation; Cancer Inflammation Program, Center for Cancer Research, NCI
| | - Joost J. Oppenheim
- Laboratory of Molecular Immunoregulation; Cancer Inflammation Program, Center for Cancer Research, NCI
| | - Xin Chen
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
35
|
Haastert B, Mellanby RJ, Anderton SM, O'Connor RA. T cells at the site of autoimmune inflammation show increased potential for trogocytosis. PLoS One 2013; 8:e81404. [PMID: 24324692 PMCID: PMC3852262 DOI: 10.1371/journal.pone.0081404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
CD4+ T cells acquire membrane fragments from antigen-presenting-cells via a process termed trogocytosis. Identifying which CD4+ T cells undergo trogocytosis in co-culture with Ag-loaded APC can enrich for antigen-reactive T cells without knowledge of their fine specificity or cytokine-production profiles. We sought to assess the suitability of this method to identify disease relevant effector and regulatory T cells during autoimmune inflammation. Trogocytosis efficiently identified MBP-reactive T cells in vitro and ex-vivo following immunization. However, Foxp3+ regulatory T cells constitutively displayed a higher rate of trogocytosis than their Foxp3- counterparts which limits the potential of trogocytosis to identify antigen-reactive Treg cells. During inflammation a locally elevated rate of trogocytosis (seen in both effector and regulatory T cells isolated from the inflamed CNS) precludes the use of trogocytosis as a measure of antigenic reactivity among cells taken from inflammatory sites. Our results indicate trogocytosis detection can enrich for Ag-reactive conventional T cells in the periphery but is limited in its ability to identify Ag-reactive Treg or T effector cells at sites of inflammation. Increased trogocytosis potential at inflammatory sites also draws into the question the biological significance of this phenomenon during inflammation, in Treg mediated suppression and for the maintenance of tolerance in health and disease.
Collapse
Affiliation(s)
- Bettina Haastert
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Richard J. Mellanby
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Stephen M. Anderton
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Richard A. O'Connor
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Martinez-Pasamar S, Abad E, Moreno B, Velez de Mendizabal N, Martinez-Forero I, Garcia-Ojalvo J, Villoslada P. Dynamic cross-regulation of antigen-specific effector and regulatory T cell subpopulations and microglia in brain autoimmunity. BMC SYSTEMS BIOLOGY 2013; 7:34. [PMID: 23618467 PMCID: PMC3651362 DOI: 10.1186/1752-0509-7-34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/23/2013] [Indexed: 12/28/2022]
Abstract
Background Multiple Sclerosis (MS) is considered a T-cell-mediated autoimmune disease with a prototypical oscillatory behavior, as evidenced by the presence of clinical relapses. Understanding the dynamics of immune cells governing the course of MS, therefore, has many implications for immunotherapy. Here, we used flow cytometry to analyze the time-dependent behavior of antigen-specific effector (Teff) and regulatory (Treg) T cells and microglia in mice model of MS, Experimental Autoimmune Encephalomyelitis (EAE), and compared the observations with a mathematical cross-regulation model of T-cell dynamics in autoimmune disease. Results We found that Teff and Treg cells specific to myelin olygodendrocyte glycoprotein (MOG) developed coupled oscillatory dynamics with a 4- to 5-day period and decreasing amplitude that was always higher for the Teff populations, in agreement with the mathematical model. Microglia activation followed the oscillations of MOG-specific Teff cells in the secondary lymphoid organs, but they were activated before MOG-specific T-cell peaks in the CNS. Finally, we assessed the role of B-cell depletion induced by anti-CD20 therapy in the dynamics of T cells in an EAE model with more severe disease after therapy. We observed that B-cell depletion decreases Teff expansion, although its oscillatory behavior persists. However, the effect of B cell depletion was more significant in the Treg population within the CNS, which matched with activation of microglia and worsening of the disease. Mathematical modeling of T-cell cross-regulation after anti-CD20 therapy suggests that B-cell depletion may influence the dynamics of T cells by fine-tuning their activation. Conclusions The oscillatory dynamics of T-cells have an intrinsic origin in the physiological regulation of the adaptive immune response, which influences both disease phenotype and response to immunotherapy.
Collapse
Affiliation(s)
- Sara Martinez-Pasamar
- Center of Neuroimmunology, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Berghella AM, Contasta I, Del Beato T, Pellegrini P. The discovery of how gender influences age immunological mechanisms in health and disease, and the identification of ageing gender-specific biomarkers, could lead to specifically tailored treatment and ultimately improve therapeutic success rates. IMMUNITY & AGEING 2012; 9:24. [PMID: 23148571 PMCID: PMC3546894 DOI: 10.1186/1742-4933-9-24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/28/2012] [Indexed: 12/31/2022]
Abstract
The control of human health and diseases in the elderly population is becoming a challenge, since mean age and life expectation are progressively increasing as well as chronic degenerative diseases. These disorders are of complex diagnosis and they are difficult to be treated, but it is hoped that the predictive medicine will lead to more specific and effective treatment by using specific markers to identify persons with high risk of developing disease, before the clinical manifestation. Peripheral blood targets and biomarkers are currently the most practical, non-invasive means of disease diagnosing, predicting prognosis and therapeutic response. Human longevity is directly correlated with the optimal functioning of the immune system. Recent findings indicate that the sexual dimorphism of T helper (Th) cytokine pathways and the regulation of Th cell network homeostasis are normally present in the immune response and undergoes to adverse changes with ageing. Furthermore, immune senescence affects both men and women, but it does not affect them equally. Therefore, we hypothesize that the comprehension of the interferences between these gender specific pathways, the ageing immunological mechanism in pathological or healthy state and the current therapies, could lead to specifically tailored treatment and eventually improve the therapeutic success rates. Reaching this aim requires the identification of ageing gender-specific biomarkers that could easily reveal the above mentioned correlations.
Collapse
Affiliation(s)
- Anna Maria Berghella
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale (IFT) via G Carducci, 32 - Rotilio Center, 67100, L'Aquila, Italy.
| | | | | | | |
Collapse
|
38
|
Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. J Psychiatr Res 2012; 46:1421-6. [PMID: 22974591 DOI: 10.1016/j.jpsychires.2012.08.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/17/2012] [Accepted: 08/14/2012] [Indexed: 12/11/2022]
Abstract
Schizophrenia is chronic and debilitating mental disorder. In broad spectrum of possible causes or contributing factors, immune system and cytokines were investigated in the onset and development of schizophrenia. The aim of our study was to analyze the serum concentrations of type-1 cytokines: TNF-α, IFN-γ, type-2 cytokines: IL-4, IL-10, type-17 cytokine: IL-17 and regulatory cytokines: TGF-β, IL-27, IL-6, in drug-naive patients with First Episode Psychosis - FEP (n = 88) and Schizophrenia in relapse - SC in relapse patients (n = 45), comparing to healthy controls (n = 36). Also, we attempted to determine potential correlation between cytokine levels and/or cytokine ratios with clinical parameters, such as severity of illness, positive, negative and general psychopathology. Our results showed decreased levels of IL-17 (p = 0.018), demonstrating that type-17 response is blunted in psychotic episode. Increased levels of IL-4 (p = 0.033) showed that type-2 response is overweight in psychotic episode. Also, levels of IL-4 in serum of SC in relapse patients were higher than controls (p < 0.0005) and patient with FEP (p = 0.003). This alteration was accompanied with increase in production of TGF-β in psychotic patients (p = 0.009) and also in FEP (p < 0.0005) and SC in relapse (p < 0.0005). Analysis showed that TGF-β can be a valuable marker for psychosis. The presence of enhanced anti-inflammatory/immunosuppressive activity in schizophrenia may be an attempt to counteract or limit ongoing pro-inflammatory processes and downregulating chronic inflammation. Finally we have documented decreased levels of IL-17 and IL-17/TGF-β ratio in these types of psychotic patients, suggesting the new aspects of schizophrenia pathophysiology.
Collapse
|
39
|
Zhu J, Zhang J, Li Q, Du Y, Qiao B, Hu X. Transplanting of Mesenchymal Stem Cells May Affect Proliferation and Function of CD4+T Cells in Experimental Autoimmune Encephalomyelitis. EXP CLIN TRANSPLANT 2012; 10:492-500. [DOI: 10.6002/ect.2011.0197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Evaluation of the relationship between leptin, resistin, adiponectin and natural regulatory T cells in relapsing-remitting multiple sclerosis. Neurol Neurochir Pol 2012; 46:22-8. [PMID: 22426759 DOI: 10.5114/ninp.2012.27211] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Data suggest that adipocytokines and natural regulatory T (nTreg) cells play a pivotal role in the immunopathogenesis of multiple sclerosis and the associated inflammation. The purpose of this study was to evaluate selected adipocytokines and nTreg cells and to assess their relationship with relapsing-remitting multiple sclerosis (RRMS). MATERIAL AND METHODS The study was conducted among 25 patients with RRMS and 25 healthy individuals. Blood samples were collected within two weeks after the beginning of acute relapse of RRMS. The body mass index (BMI) of each patient was calculated. Serum adipocytokine concentrations were determined by ELISA and nTreg cells were evaluated using multicolour flow cytometry. RESULTS Patients and controls had similar BMI, regardless of gender. Significantly higher leptin and resistin levels and significantly lower adiponectin levels were found in patients with RRMS in comparison to the control group (p < 0.0001). The percentage of nTreg cells (p < 0.01) and the mean fluorescence channel (MFC) of FoxP3 were significantly reduced in patients with RRMS (p < 0.001). There was an inverse correlation be-tween leptin concentration and MFC of the transcription factor Foxp3 nTreg in patients with RRMS (r = -0.7, p < 0.05). CONCLUSIONS Proinflammatory adipocytokine profile and decreased percentage of nTreg cells suggest their implication in the inflammatory response in RRMS regardless of corticosteroid therapy. The correlation between leptin and the MFC of the transcription factor Foxp3 in nTreg cells in patients with RRMS suggests its inhibitory effect on FoxP3 expression.
Collapse
|
41
|
Upregulation of IL-17, but not of IL-9, in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network. J Neuroimmunol 2012; 243:73-80. [DOI: 10.1016/j.jneuroim.2011.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 12/18/2022]
|
42
|
Carson MJ. Molecular Mechanisms and Consequences of Immune and Nervous System Interactions. BASIC NEUROCHEMISTRY 2012. [PMCID: PMC7149717 DOI: 10.1016/b978-0-12-374947-5.00033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This chapter provides an overview on the multiple mechanisms by which the nervous system regulates and directs immune function towards what is needed and tolerated by the nervous system. The immune system plays two essential roles necessary for the survival of complex organisms, including tissue homeostasis and tissue defense against pathogens. These immune functions are essential to maintain the functions of all organs in the body and are studied as a part of the general field of immunology. The immune system is divided into two arms: a rapid “innate” immune response system and a slow “adaptive” immune response system. The receptors for the types of “alarm” signals detected by the innate immune system are preformed and stably encoded in the genome. By contrast, the receptors for the types of signals that trigger the adaptive immune system are in part stochastically generated and in part shaped by the types and frequency of the pathogens encountered.
Collapse
|
43
|
Gender-specific cytokine pathways, targets, and biomarkers for the switch from health to adenoma and colorectal cancer. Clin Dev Immunol 2011; 2011:819724. [PMID: 22235223 PMCID: PMC3253453 DOI: 10.1155/2011/819724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/02/2011] [Accepted: 09/04/2011] [Indexed: 12/19/2022]
Abstract
Studies focusing on gender have shown that differences exist in how the immune system responds to disease and therapy. Understanding how gender influences immunological mechanisms in health and disease and identifying gender-specific biomarkers could lead to specifically tailored treatment and ultimately improve therapeutic success rates. T helper1 (Th1) and Th2 cytokines (Th1/Th2) have pivotal roles in the homeostasis of Th1 and Th2 cell network functions in the immune response but sex steroids affect Th1/Th2 production in different ways and a natural sexual dimorphism in the immune response has been shown. In order to investigate these differences further, we developed Th-cytokine data-driven models of the immune response and evaluated healthy subject peripheral blood samples. Independent cohorts of colorectal cancer and adenoma patients were also studied for comparison purposes. Our results show that the interferon (IFN)γ production pathway for immune response homeostasis is specific to men whilst the interleukin- (IL-) 6 production pathway for immune response homeostasis is specific to women. The IL-10 pathway for restoring immune system resting homeostasis was common to both but was controlled by the respective gender-specific pathways. These gender pathways could well be used as targets and biomarkers in translational research into developing new clinical strategies.
Collapse
|
44
|
Pandiyan P, Zheng L, Lenardo MJ. The molecular mechanisms of regulatory T cell immunosuppression. Front Immunol 2011; 2:60. [PMID: 22566849 PMCID: PMC3342245 DOI: 10.3389/fimmu.2011.00060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022] Open
Abstract
CD4⁺CD25⁺Foxp3⁺ T lymphocytes, known as regulatory T cells or T(regs), have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective "helper" and "cytotoxic" lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of T(regs). There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4⁺ effector T cells are directly inhibited by T(regs), it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion; and 4. Contrary to the current view, we discuss new evidence that T(regs), similar to other T-cells lineages, can promote protective immune responses in certain infectious contexts (Chen et al., 2011; Pandiyan et al., 2011). Although these points are at variance to varying degrees with the standard model of T(reg) behavior, we will recount developing findings that support these new concepts.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA.
| | | | | |
Collapse
|
45
|
Almolda B, Costa M, Montoya M, González B, Castellano B. Increase in Th17 and T-reg lymphocytes and decrease of IL22 correlate with the recovery phase of acute EAE in rat. PLoS One 2011; 6:e27473. [PMID: 22110656 PMCID: PMC3217052 DOI: 10.1371/journal.pone.0027473] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis, is characterised by microglial activation and lymphocyte infiltration. Induction of EAE in Lewis rats produces an acute monophasic disease characterised by a single peak of disability followed by a spontaneous and complete recovery and a subsequent tolerance to further immunizations. In the current study we have performed a detailed analysis of the dynamics of different lymphocyte populations and cytokine profile along the induction, peak, recovery and post-recovery phases in this paradigm. MBP-injected rats were sacrificed attending exclusively to their clinical score, and the different populations of T-lymphocytes as well as the dynamics of different pro- and anti-inflammatory cytokines were analysed in the spinal cord by flow cytometry, immunohistochemistry and ELISA. Our results revealed that, during the induction and peak phases, in parallel to an increase in symptomatology, the number of CD3+ and CD4+ cells increased progressively, showing a Th1 phenotype, but unexpectedly during recovery, although clinical signs progressively decreased, the number and proportion of CD3+ and CD4+ populations remained unaltered. Interestingly, during this recovery phase, we observed a marked decrease of Th1 and an important increase in Th17 and T-reg cells. Moreover, our results indicate a specific cytokine expression profile along the EAE course characterized by no changes of IL10 and IL17 levels, decrease of IL21 on the peak, and high IL22 levels during the induction and peak phases that markedly decrease during recovery. In summary, these results revealed the existence of a specific pattern of lymphocyte infiltration and cytokine secretion along the different phases of the acute EAE model in Lewis rat that differs from those already described in chronic or relapsing-remitting mouse models, where Th17-cells were found mostly during the peak, suggesting a specific role of these lymphocytes and cytokines in the evolution of this acute EAE model.
Collapse
Affiliation(s)
- Beatriz Almolda
- Unit of Histology, Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | | | |
Collapse
|
46
|
Lardone PJ, Guerrero JM, Fernández-Santos JM, Rubio A, Martín-Lacave I, Carrillo-Vico A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J Pineal Res 2011; 51:454-62. [PMID: 21736617 DOI: 10.1111/j.1600-079x.2011.00909.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melatonin modulates a wide array of physiological events with pleiotropic effects on the immune system. While the relevance of specific melatonin membrane receptors has been well established for several biological functions, retinoic acid-related orphan receptor alpha (RORα) has been suggested as a mediator of nuclear melatonin signalling by results obtained from pharmacological approaches. However, a melatonin-mediated downstream effect cannot be ruled out, and further evidence is needed to support a direct interaction between melatonin and RORα. Here, we show that RORα is mainly located in human Jurkat T-cell nucleus, and it is co-immunoprecipitated with melatonin. Moreover, immunocytochemistry studies confirmed the co-localization of melatonin and RORα. Melatonin promoted a time-dependent decrease in nuclear RORα levels, suggesting a role in the RORα transcriptional activity. Interestingly, RORα acts as a molecular switch implicated in the mutually exclusive generation of Th17 and Treg cells, both involved in the harm/protection balance of immune conditions such as autoimmunity or acute transplant rejection. Therefore, the identification of melatonin as a natural modulator of RORα gives it a tremendous therapeutic potential for a variety of clinical disorders.
Collapse
Affiliation(s)
- Patricia J Lardone
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Department of Medical Biochemistry and Molecular Biology, University of Seville School of Medicine, Seville, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Bassil R, Zhu B, Lahoud Y, Riella LV, Yagita H, Elyaman W, Khoury SJ. Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. THE JOURNAL OF IMMUNOLOGY 2011; 187:2322-8. [PMID: 21813770 DOI: 10.4049/jimmunol.1100725] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Notch signaling pathway plays an important role in T cell differentiation. Delta-like ligand (Dll)4, one of five known Notch ligands, has been implicated in regulating Th2 cell differentiation in animal models of human diseases. However, the role of Dll4 in Th1/Th17-mediated autoimmune diseases remains largely unknown. Using an anti-Dll4 blocking mAb, we show that neutralizing Dll4 during the induction phase of experimental autoimmune encephalomyelitis in C57BL/6 mice significantly increased the pool of CD4(+)Foxp3(+) regulatory T cells (Treg) in the periphery and in the CNS, and decreased the severity of clinical disease and CNS inflammation. Dll4 blockade promoted induction of myelin-specific Th2/Treg immune responses and impaired Th1/Th17 responses compared with IgG-treated mice. In vitro, we show that signaling with recombinant Dll4 inhibits the TGF-β-induced Treg development, and inhibits Janus kinase 3-induced STAT5 phosphorylation, a transcription factor known to play a key role in Foxp3 expression and maintenance. Depletion of natural Treg using anti-CD25 Ab reversed the protective effects of anti-Dll4 Ab. These findings outline a novel role for Dll4-Notch signaling in regulating Treg development in EAE, making it an encouraging target for Treg-mediated immunotherapy in autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Ribal Bassil
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Keogh B, Parker AE. Toll-like receptors as targets for immune disorders. Trends Pharmacol Sci 2011; 32:435-42. [PMID: 21529972 DOI: 10.1016/j.tips.2011.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
Since the identification of the first Toll-like receptor (TLR) in humans in 1997, understanding of the molecular basis for innate immunity has increased significantly. The TLR family and downstream signalling pathways have been extensively characterised, There is now significant evidence suggesting a role for TLRs in human inflammatory and immune diseases such as rheumatoid arthritis, diabetes, allergy/asthma and atherosclerosis. Various approaches have been taken to identify novel therapeutic agents targeting TLRs including biologics, small molecules and nucleic acid-based drugs. Several are now being evaluated in the clinic and showing promise against various diseases. This review paper outlines the recent advances in the understanding of TLR biology and highlights novel TLR agonists and antagonists in development for the treatment of immune diseases.
Collapse
Affiliation(s)
- Brian Keogh
- Opsona Therapeutics Ltd., Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland.
| | | |
Collapse
|
49
|
Zhang X, Wang Z, Huang Y, Wang J. Effects of chronic administration of alogliptin on the development of diabetes and β-cell function in high fat diet/streptozotocin diabetic mice. Diabetes Obes Metab 2011; 13:337-47. [PMID: 21205126 DOI: 10.1111/j.1463-1326.2010.01354.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM Alogliptin is a potent and highly selective dipeptidyl peptidase-4 (DPP-4) inhibitor. The aim of this study was to determine its effects on glucose control and pancreas islet function and to identify the underlying molecular mechanisms after chronic administration, in a non-genetic mouse model of type 2 diabetes. METHODS Alogliptin (5, 15 and 45 mg/kg) was orally administered to high fat diet/streptozotocin (HFD/STZ) diabetic mice daily for 10 weeks. Postprandial and 6-h fasting blood glucose levels, blood A1C level, oral glucose tolerance and pancreas insulin content were measured during or after the treatment period. Alogliptin plasma concentration was determined by an LC/MS/MS method. Islet morphology and architectural changes were evaluated with immunohistochemical analysis. Islet endocrine secretion ability was assessed by measuring insulin release from isolated islets which were challenged with 16 mM glucose and 30 mM potassium chloride, respectively. Gene expression profiles of the pancreas were analysed using the mouse diabetes RT(2) Profiler PCR array which contains 84 genes related to the onset, development and progression of diabetes. RESULTS Alogliptin showed dose-dependent reduction of postprandial and fasting blood glucose levels and blood A1C levels. Glucose clearance ability and pancreas insulin content were both increased. Alogliptin significantly restored the β-cell mass and islet morphology, thus preserving islet function of insulin secretion. Expression of 10 genes including Ins1 was significantly changed in the pancreas of diabetic mice. Chronic alogliptin treatment completely or partially reversed the abnormalities in gene expression. CONCLUSIONS Chronic treatment of alogliptin improved glucose control and facilitated restoration of islet architecture and function in HFD/STZ diabetic mice. The gene expression profiles suggest that the underlying molecular mechanisms of β-cell protection by alogliptin may involve alleviating endoplasmic reticulum burden and mitochondria oxidative stress, increasing β-cell differentiation and proliferation, enhancing islet architecture remodelling and preserving islet function.
Collapse
Affiliation(s)
- X Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | | | | | | |
Collapse
|
50
|
Sharabi A, Mozes E. Harnessing regulatory T cells for the therapy of lupus and other autoimmune diseases. Immunotherapy 2011; 1:385-401. [PMID: 20635958 DOI: 10.2217/imt.09.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulatory T cells (Tregs) maintain immunological homeostasis and prevent autoimmunity. The depletion or functional alteration of Tregs may lead to the development of autoimmune diseases. Tregs consist of different subpopulations of cells, of which CD4(+)CD25(+)Foxp3(+) cells are the most well characterized. However, CD8 Tregs also constitute a major cell population that has been shown to play an important role in autoimmune diseases. This review will discuss the role of Tregs in autoimmune diseases in general and specifically in systemic lupus erythematosus (SLE). SLE is a multisystem autoimmune disease characterized by the production of autoantibodies against nuclear components and by the deposition of immune complexes in the kidneys as well as in other organs. Abnormalities in Tregs were reported in SLE patients and in animal models of the disease. Current treatment of SLE is based on immunosuppressive drugs that are nonspecific and may cause adverse effects. Therefore, the development of novel, specific, side effect-free therapeutic means that will induce functional Tregs is a most desirable goal. Our group and others have designed and utilized tolerogenic peptides that ameliorate SLE manifestations in murine models. Here, we demonstrate the role of CD4 and CD8 Tregs, as well as the interaction between the two subsets of cells and the mechanism of action of the tolerogenic peptides. We also discuss their therapeutic potential for the treatment of SLE.
Collapse
Affiliation(s)
- Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|