1
|
Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, Wang J. Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal 2021; 19:120. [PMID: 34922574 PMCID: PMC8684172 DOI: 10.1186/s12964-021-00799-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Regulated cell death (RCD) is a ubiquitous process in living organisms that is essential for tissue homeostasis or to restore biological balance under stress. Over the decades, various forms of RCD have been reported and are increasingly being found to involve in human pathologies and clinical outcomes. We focus on five high-profile forms of RCD, including apoptosis, pyroptosis, autophagy-dependent cell death, necroptosis and ferroptosis. Cumulative evidence supports that not only they have different features and various pathways, but also there are extensive cross-talks between modes of cell death. As the understanding of RCD pathway in evolution, development, physiology and disease continues to improve. Here we review an updated classification of RCD on the discovery and features of processes. The prominent focus will be placed on key mechanisms of RCD and its critical role in neurodegenerative disease. Video abstract.
Collapse
Affiliation(s)
- Juntao Cui
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Suhan Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- School of Clinical Medicine, Qingdao University, Qingdao, 266071 China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Bingjing Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
2
|
Yang L, Xing F, Han X, Li Q, Wu H, Shi H, Wang Z, Huang F, Wu X. Astragaloside IV regulates differentiation and induces apoptosis of activated CD4 + T cells in the pathogenesis of experimental autoimmune encephalomyelitis. Toxicol Appl Pharmacol 2019; 362:105-115. [PMID: 30385269 DOI: 10.1016/j.taap.2018.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
CD4+ T cells, especially T-helper (Th) cells (Th1, Th2 and Th17) and regulatory T cells (Treg) play pivotal role in the pathogenesis of multiple sclerosis (MS), a demyelinating autoimmune disease occurring in central nervous system (CNS). Astragaloside IV (ASI, CAS: 84687-43-4) is one of the saponins isolated from Astragalus membranceus, a traditional Chinese medicine with immunomodulatory effect. So far, whether ASI has curative effect on experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and how it affects the subsets of CD4+ T cells, as well as the underlying mechanism have not been clearly elucidated. In the present study, ASI was found to ameliorate the progression and hamper the recurrence of EAE effectively in the treatment regimens. It significantly reduced the demyelination and inflammatory infiltration of CNS in EAE mice by suppressing the percentage of Th1 and Th17 cells, which was closely associated with the inhibition of JAK/STAT and NF-κB signaling pathways. ASI also increased the percentage of Treg cells in spleen and CNS, which was accompanied by elevated Foxp3. However, in vitro experiments disclosed that ASI could regulate the differentiation of Th17 and Treg cells but not Th1 cells. In addition, it induced the apoptosis of MOG-stimulated CD4+ T cells probably through modulating STAT3/Bcl-2/Bax signaling pathways. Together, our findings suggested that ASI can modulate the differentiation of autoreactive CD4+ T cells and is a potential prodrug or drug for the treatment of MS and other similar autoimmune diseases.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Faping Xing
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhifei Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Peng W. G-CSF treatment promotes apoptosis of autoreactive T cells to restrict the inflammatory cascade and accelerate recovery in experimental allergic encephalomyelitis. Exp Neurol 2017; 289:73-84. [DOI: 10.1016/j.expneurol.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
|
4
|
Macchi B, Marino-Merlo F, Nocentini U, Pisani V, Cuzzocrea S, Grelli S, Mastino A. Role of inflammation and apoptosis in multiple sclerosis: Comparative analysis between the periphery and the central nervous system. J Neuroimmunol 2015; 287:80-7. [PMID: 26439966 DOI: 10.1016/j.jneuroim.2015.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is a complex, multifactorial disease associated with damage to the axonal myelin sheaths and neuronal degeneration. The pathognomonic event in MS is oligodendrocyte loss accompanied by axonal damage, blood-brain barrier leakage, inflammation and infiltration of immune cells. The etiopathogenesis of MS is far from being elucidated. However, increasing evidence suggests that the inflammatory and apoptotic responses, occurring in patients either at the peripheral level or the central nervous system (CNS), can play a role. In this review, we give a comprehensive picture of general aspects of inflammation and apoptosis in MS, with special emphasis on the until now not well highlighted possible links between phenomena relevant to these aspects occurring in either the periphery or in the CNS during MS.
Collapse
Affiliation(s)
- Beatrice Macchi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Francesca Marino-Merlo
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Ugo Nocentini
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; I.R.C.C.S. "Santa Lucia" Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | - Valerio Pisani
- I.R.C.C.S. "Santa Lucia" Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Antonio Mastino
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy; The Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
5
|
McNally JP, Elfers EE, Terrell CE, Grunblatt E, Hildeman DA, Jordan MB, Katz JD. Eliminating encephalitogenic T cells without undermining protective immunity. THE JOURNAL OF IMMUNOLOGY 2013; 192:73-83. [PMID: 24277699 DOI: 10.4049/jimmunol.1301891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current clinical approach for treating autoimmune diseases is to broadly blunt immune responses as a means of preventing autoimmune pathology. Among the major side effects of this strategy are depressed beneficial immunity and increased rates of infections and tumors. Using the experimental autoimmune encephalomyelitis model for human multiple sclerosis, we report a novel alternative approach for purging autoreactive T cells that spares beneficial immunity. The moderate and temporally limited use of etoposide, a topoisomerase inhibitor, to eliminate encephalitogenic T cells significantly reduces the onset and severity of experimental autoimmune encephalomyelitis, dampens cytokine production and overall pathology, while dramatically limiting the off-target effects on naive and memory adaptive immunity. Etoposide-treated mice show no or significantly ameliorated pathology with reduced antigenic spread, yet have normal T cell and T-dependent B cell responses to de novo antigenic challenges as well as unimpaired memory T cell responses to viral rechallenge. Thus, etoposide therapy can selectively ablate effector T cells and limit pathology in an animal model of autoimmunity while sparing protective immune responses. This strategy could lead to novel approaches for the treatment of autoimmune diseases with both enhanced efficacy and decreased treatment-associated morbidities.
Collapse
Affiliation(s)
- Jonathan P McNally
- Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229
| | | | | | | | | | | | | |
Collapse
|
6
|
Rena Hesse A, Hagemeier K, Lürbke A, Held J, Friedman H, Peterson A, Brück W, Kuhlmann T. XIAP protects oligodendrocytes against cell death in vitro but has no functional role in toxic demyelination. Glia 2011; 60:271-80. [DOI: 10.1002/glia.21261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/12/2011] [Accepted: 10/05/2011] [Indexed: 12/13/2022]
|
7
|
Abstract
INTRODUCTION MS is a heterogeneous disorder that requires the development of better diagnostics to identify disease subtypes enabling appropriate therapeutic intervention at an early stage of the disease. Accumulating evidence indicates that members of the inhibitor of apoptosis (IAP) family play an important role in the pathogenesis of MS by reducing the apoptotic elimination of autoreactive immune cells. AREAS COVERED The authors describe improved animal modeling strategies to identify compounds that have immunomodulatory, neurorestorative and neuroprotective properties. In addition, the authors propose new approaches to better model cognitive dysfunction in MS, which will aid the development of novel therapeutics for this complex disorder. The paper provides the reader with an appreciation for the diagnostic and therapeutic potential of apoptosis-related proteins for MS. EXPERT OPINION Recent evidence suggests that increased resistance of autoreactive immune cells to apoptotic elimination is a contributing factor to both disease susceptibility and progression in MS. This occurs, at least in part, because of elevated levels of the IAP family of anti-apoptotic genes that display distinct expression profiles associated with different subtypes of MS. The authors believe that the detection and targeting of members of the IAP family can provide better drugs for MS. Particularly, the authors feel that the overexpression of IAPs in animal models can provide novel insights into MS for both its pathogenesis and the discovery of new lead compounds.
Collapse
Affiliation(s)
- Jordan Warford
- Dalhousie University , Department of Pharmacology , Halifax, NS B3H 1X5 , Canada
| | | |
Collapse
|
8
|
Thorne M, Moore CS, Robertson GS. Lack of TIMP-1 increases severity of experimental autoimmune encephalomyelitis: Effects of darbepoetin alfa on TIMP-1 null and wild-type mice. J Neuroimmunol 2009; 211:92-100. [DOI: 10.1016/j.jneuroim.2009.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/02/2009] [Accepted: 04/08/2009] [Indexed: 12/27/2022]
|
9
|
Increased X-linked inhibitor of apoptosis protein (XIAP) expression exacerbates experimental autoimmune encephalomyelitis (EAE). J Neuroimmunol 2009; 203:79-93. [PMID: 18687476 DOI: 10.1016/j.jneuroim.2008.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/17/2008] [Accepted: 06/19/2008] [Indexed: 01/27/2023]
Abstract
Dysregulated apoptotic signaling has been implicated in most forms of cancer and many autoimmune diseases, such as multiple sclerosis (MS). We have previously shown that the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP) is elevated in T cells from mice with experimental autoimmune encephalomyelitis (EAE). In MS and EAE, the failure of autoimmune cells to undergo apoptosis is thought to exacerbate clinical symptoms and contribute to disease progression and CNS tissue damage. Antisense-mediated knockdown of XIAP, in vivo, increases the susceptibility of effector T cells to apoptosis, thus attenuating CNS inflammation and thereby alleviating the clinical signs of EAE. We report for the first time, generation of transgenic mice whereby the ubiquitin promoter drives expression of XIAP (ubXIAP), resulting in increased XIAP expression in a variety of tissues, including cells comprising the immune system. Transgenic ubXIAP mice and wild-type (WT) littermates were immunized with myelin oligodendrocyte glycoprotein (MOG35-55) in complete Freund's adjuvant and monitored daily for clinical symptoms of EAE over a 21-day period. The severity of EAE was increased in ubXIAP mice relative to WT-littermates, suggesting that XIAP overexpression enhanced the resistance of T cells to apoptosis. Consistent with this finding, T cells derived from MOG35-55-immunized ubXIAP mice and cultured in the presence of antigen were more resistant to etoposide-mediated apoptosis compared to WT-littermates. This work identifies XIAP is an important apoptotic regulator in EAE and a potential pharmacological target for treating autoimmune diseases such as MS.
Collapse
|
10
|
Alirezaei M, Fox HS, Flynn CT, Moore CS, Hebb ALO, Frausto RF, Bhan V, Kiosses WB, Whitton JL, Robertson GS, Crocker SJ. Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy 2009; 5:152-8. [PMID: 19066443 PMCID: PMC2779564 DOI: 10.4161/auto.5.2.7348] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory central nervous system (CNS) disorder characterized by T cell-mediated demyelination. In MS, prolonged T cell survival and increased T cell proliferation have been linked to disease relapse and progression. Recently, the autophagy-related gene 5 (Atg5) has been shown to modulate T cell survival. In this study, we examined the expression of Atg5 using both a mouse model of autoimmune demyelination as well as blood and brain tissues from MS cases. Quantitative real-time PCR analysis of RNA isolated from blood samples of experimental autoimmune encephalomyelitis (EAE) mice revealed a strong correlation between Atg5 expression and clinical disability.Analysis of protein extracted from these cells confirmed both upregulation and post-translational modification of Atg5, the latter of which was positively correlated with EAE severity. Analysis of RNA extracted from T cells isolated by negative selection indicated that Atg5 expression was significantly elevated in individuals with active relapsing-remitting MS compared to non-diseased controls. Brain tissue sections from relapsing-remitting MS cases examined by immunofluorescent histochemistry suggested that encephalitogenic T cells are a source of Atg5 expression in MS brain samples. Together these data suggest that increased T cell expression of Atg5 may contribute to inflammatory demyelination in MS.
Collapse
Affiliation(s)
- Mehrdad Alirezaei
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Irony-Tur-Sinai M, Grigoriadis N, Tsiantoulas D, Touloumi O, Abramsky O, Brenner T. Immunomodulation of EAE by alpha-fetoprotein involves elevation of immune cell apoptosis markers and the transcription factor FoxP3. J Neurol Sci 2009; 279:80-7. [PMID: 19171355 DOI: 10.1016/j.jns.2008.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 11/16/2008] [Accepted: 12/09/2008] [Indexed: 11/16/2022]
Abstract
Alpha-fetoprotein (AFP) is an immunomodulatory glycoprotein associated with the normal growth of the mammalian fetus. Ws have shown that treatment with recombinant human AFP (rhAFP) reduced lymphocyte reactivity and the extent of neuroinflammation in mice with experimental autoimmune encephalomyelitis (EAE). In the present study we found involvement of AFP in immune cell apoptosis, attesting to its possible mechanism of action. AFP increased the expression of the Bax, Bid, Bad and ApaF genes in peripheral lymphocytes, together with an enhanced expression of Caspase-3, Fas, FasL and TRAIL among infiltrating immune cells. The induction of apoptosis markers was accompanied with an increased expression of Foxp3 in lymph node cells, as well as accumulation of CD4+Foxp3+ regulatory T cells in the CNS. Overall, these immunological alterations gave rise to a milder disease and accelerated remission rate. Our results suggest a new role for AFP in controlling the autoimmune inflammation associated with EAE.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis/drug effects
- Apoptosis/physiology
- Brain/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Forkhead Transcription Factors/metabolism
- Humans
- Lymph Nodes/cytology
- Lymph Nodes/drug effects
- Lymphocytes/drug effects
- Lymphocytes/physiology
- Mice
- Mice, Inbred C57BL
- Neuroimmunomodulation/drug effects
- Recombinant Proteins/therapeutic use
- Remission Induction
- Spinal Cord/drug effects
- Spinal Cord/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/physiology
- alpha-Fetoproteins/biosynthesis
- alpha-Fetoproteins/therapeutic use
Collapse
Affiliation(s)
- Michal Irony-Tur-Sinai
- Laboratory of Neuroimmunology, Department of Neurology, the Agnes-Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|