1
|
Zarobkiewicz M, Lehman N, Morawska-Michalska I, Michalski A, Kowalska W, Szymańska A, Tomczak W, Bojarska-Junak A. Characterisation of Cytotoxicity-Related Receptors on γδ T Cells in Chronic Lymphocytic Leukaemia. Cells 2025; 14:451. [PMID: 40136700 PMCID: PMC11941621 DOI: 10.3390/cells14060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a haematological malignancy primarily affecting older adults, characterised by the proliferation of functionally impaired B lymphocytes with abnormal expression of CD5, a typical T cell marker. The current study investigates the expression of cytotoxicity-related receptors (CD16, CD56, CD57, CD69) and a checkpoint (LAG-3) on γδ T cells in CLL patients. Sixty-nine treatment-naive CLL patients and fourteen healthy controls were recruited. Flow cytometry analysis revealed that the CLL patients had higher expressions of CD56 and LAG-3 and lower CD16 on their γδ T cells compared to the healthy controls. Subgroup analysis showed that ZAP-70-negative patients exhibited increased CD69, while CD38-negative patients showed higher CD16 expression. Additionally, CD16 expression was inversely correlated with serum LDH levels, a marker of disease progression. Bioinformatic analysis of the LAG-3 ligand mRNA in a CLL dataset indicated higher expression of HLA-DQA2 and HLA-DRB5 in patients with unmutated IGVH. Our findings highlight the altered expression of key cytotoxicity markers on γδ T cells in CLL, suggesting their potential role in disease progression and as a therapeutic target. In particular, the use of anti-LAG-3 antibodies seems promising.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Female
- Aged
- Middle Aged
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Lymphocyte Activation Gene 3 Protein
- Antigens, CD/metabolism
- Aged, 80 and over
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Case-Control Studies
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Natalia Lehman
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Izabela Morawska-Michalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Adam Michalski
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Agata Szymańska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (N.L.); (I.M.-M.); (A.M.); (W.K.); (A.S.); (A.B.-J.)
| |
Collapse
|
2
|
Casetti R, Sacchi A, Mazzotta V, Cristofanelli F, Grassi G, Gili S, Cimini E, Notari S, Bordoni V, Mastrorosa I, Giancola ML, Vergori A, Tempestilli M, Vita S, Mariotti D, Rosati S, Lalle E, Meschi S, Colavita F, Garbuglia AR, Girardi E, Nicastri E, Antinori A, Agrati C. Innate and SARS-CoV-2 specific adaptive immune response kinetic in neutralizing monoclonal antibody successfully treated COVID-19 patients. Int Immunopharmacol 2025; 148:113934. [PMID: 39832460 DOI: 10.1016/j.intimp.2024.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
The impact of anti-Spike monoclonal antibody (mAbs) treatment on the immune response of COVID19-patients is poorly explored. In particular, a comparison of the immunological influence of different therapeutic regimens has not yet been performed. Aim of the study was to compare the kinetic of innate and adaptive immune response as well as the SARS-CoV-2 specific humoral and T cell response in two groups of SARS-CoV-2-infected patients treated with two different mAbs regimens: Bamlanivimab/Etesevimab (BAM/ETE) or Casirivimab/Imdevimab (CAS/IMD). SARS-CoV-2-infected patients (n = 39) with mild/moderate disease were enrolled before (T0) and after 7 days (T7) and 30 day (T30) from mAbs infusion. Patients were divided in two groups on the basis of the mAb regimen: BAM/ETE (n = 15) and CAS/IMD (n = 24). The phenotype/function of immune cell subsets was evaluated by flow-cytometry and by ELISA. The Spike-specific T cell response (IFN-γ) and anti-Nucleocapside IgG were evaluated by chemiluminescence assay. SARS CoV-2 RNA in nasal swabs was evaluated by RT-PCR. Eleven out of the thirty-nine enrolled patients tested negative at T7, among which nine (81.8 %) had been treated with CAS/IMD regimen. A comparable increase in CD4 and CD8 T cells was observed in both treatment groups. Moreover, a reduction of CD38 expression on T (CD4, CD8 and Vδ2) and on NK cells was observed in both groups, as well as a reduction overtime of the perforin expression in T (CD8, Vδ2) and in NK cells reaching significance only in CAS/IMD-treated patients. The SARS-CoV-2-specific T cells response increased at T7 in BAM/ETE-treated patients and at T30 in CAS/IND group. Of note, at T30 SARS-CoV2-specific T cells was higher in CAS/IMD than in BAM/ETE group. Furthermore, the titre of anti-N IgG increased overtime in both groups with a faster kinetic in CAS/IMD group. The spontaneous production of inflammatory cytokines by monocytes and neutrophils was similar the two mAb regimens, as well as the level of plasmatic IL-6. Finally, patients were also analysed according to sex. The male group showed a higher frequency of activated CD4 T cells, NKG2A-expressing CD8 T cells and perforin-expressing Vδ2 T cells compared to female group. Moreover, a higher specific T cell response at T30 was observed in the male compared to female group. In conclusion, these results show similar effects of both mAb regimens in restoring T and NK cell homeostasis and in reducing inflammation. In contrast, CAS/IMD allows a better humoral and cellular SARS-CoV2 specific immunization.
Collapse
Affiliation(s)
- Rita Casetti
- Cellular Immunology and Pharmacology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Alessandra Sacchi
- Molecular Virology and Antimicrobic Immunity Laboratory, Department of Science, University of Rome Three, 00146 Rome, Italy.
| | | | - Flavia Cristofanelli
- Cellular Immunology and Pharmacology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Germana Grassi
- Cellular Immunology and Pharmacology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Simona Gili
- Cellular Immunology and Pharmacology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Eleonora Cimini
- Cellular Immunology and Pharmacology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Stefania Notari
- Cellular Immunology and Pharmacology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Veronica Bordoni
- Unit of Pathogen Specific Immunity, Bambino Gesù Children's Hospital, IRCCS, Rome 00146 Italy.
| | | | | | | | - Massimo Tempestilli
- Cellular Immunology and Pharmacology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Serena Vita
- Clinical Department, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Davide Mariotti
- Virology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Silvia Rosati
- Clinical Department, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Eleonora Lalle
- Virology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Silvia Meschi
- Virology Laboratory, INMI L. Spallanzani, 00149 Rome, Italy.
| | | | | | - Enrico Girardi
- Scientific Directorate, INMI L. Spallanzani, 00149 Rome, Italy.
| | | | - Andrea Antinori
- Clinical Department, INMI L. Spallanzani, 00149 Rome, Italy.
| | - Chiara Agrati
- Unit of Pathogen Specific Immunity, Bambino Gesù Children's Hospital, IRCCS, Rome 00146 Italy.
| |
Collapse
|
3
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili S, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 PMCID: PMC10936236 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
| | - Sepehr Dadfar
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Shadab
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Niloufar Orooji
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - MohammadHossein Nemati
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Pazoki
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Rasoul Baharlou
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| | - Dariush Haghmorad
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
4
|
Wang L, Liang Y. MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Front Mol Neurosci 2022; 15:865529. [PMID: 35548667 PMCID: PMC9082748 DOI: 10.3389/fnmol.2022.865529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miRNA) is a class of endogenous non-coding small RNA with regulatory activities, which generally regulates the expression of target genes at the post-transcriptional level. Multiple Sclerosis (MS) is thought to be an autoimmune-mediated chronic inflammatory demyelinating disease of the central nervous system (CNS) that typically affect young adults. T lymphocytes play an important role in the pathogenesis of MS, and studies have suggested that miRNAs are involved in regulating the proliferation, differentiation, and functional maintenance of T lymphocytes in MS. Dysregulated expression of miRNAs may lead to the differentiation balance and dysfunction of T lymphocytes, and they are thus involved in the occurrence and development of MS. In addition, some specific miRNAs, such as miR-155 and miR-326, may have potential diagnostic values for MS or be useful for discriminating subtypes of MS. Moreover, miRNAs may be a promising therapeutic strategy for MS by regulating T lymphocyte function. By summarizing the recent literature, we reviewed the involvement of T lymphocytes in the pathogenesis of MS, the role of miRNAs in the pathogenesis and disease progression of MS by regulating T lymphocytes, the possibility of differentially expressed miRNAs to function as biomarkers for MS diagnosis, and the therapeutic potential of miRNAs in MS by regulating T lymphocytes.
Collapse
|
5
|
Improving Immunotherapy Against B-Cell Malignancies Using γδ T-Cell-specific Stimulation and Therapeutic Monoclonal Antibodies. J Immunother 2020; 42:331-344. [PMID: 31318724 DOI: 10.1097/cji.0000000000000289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor antigen-targeting monoclonal antibodies (mAbs) are an important element of current cancer therapies. Some of these therapeutic mAbs enable antibody-dependent cell mediated cytotoxicity (ADCC) against tumor cells. However, cancer-related functional impairment of immune effector cells may limit the clinical efficacy of antibody treatments. We reckoned that combining mAbs with cell-based immunotherapies would provide a clinically relevant synergism and benefit for cancer patients. Here, we focus on γδ T cells, as earlier studies demonstrated that γδ T-cell-based therapies are safe and promising for several types of malignancies. Similar to natural killer cells, their antitumor effects can be enhanced using antibodies, and they could, therefore, become a versatile effector cell platform for use with a variety of licensed therapeutic mAbs against cancer. In this study, we explore the potential of a combination therapy of activated γδ T cells with rituximab and the more recently developed mAbs (obinutuzumab and daratumumab) in different B-cell malignancies in vitro. Obinutuzumab outperformed the other mAbs with regard to direct target cell lysis and ADCC by γδ T cells in several CD20 cell lines and primary lymphoma specimens. We demonstrate that comparatively few CD16 γδ T cells are sufficient to mediate a strong ADCC. Using Fc-receptor-positive B-cell lymphomas as target cells, ADCC cannot be blocked by high concentrations of immunoglobulins or anti-CD16 antibodies, but both substances can promote cell mediated target cell lysis. This study expands on earlier reports on the therapeutic potential of distinctive tumor antigen-targeting mAbs and facilitates the understanding of the mechanism and potential of ADCC by γδ T-cell subsets.
Collapse
|
6
|
Schilbach K, Krickeberg N, Kaißer C, Mingram S, Kind J, Siegers GM, Hashimoto H. Suppressive activity of Vδ2 + γδ T cells on αβ T cells is licensed by TCR signaling and correlates with signal strength. Cancer Immunol Immunother 2020; 69:593-610. [PMID: 31982940 PMCID: PMC7113223 DOI: 10.1007/s00262-019-02469-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
Despite recent progress in the understanding of γδ T cells' roles and functions, their interaction with αβ T cells still remains to be elucidated. In this study, we sought to clarify what precisely endows peripheral Vδ2+ T cells with immunosuppressive function on autologous αβ T cells. We found that negatively freshly isolated Vδ2+ T cells do not exhibit suppressive behavior, even after stimulation with IL-12/IL-18/IL-15 or the sheer contact with butyrophilin-3A1-expressing tumor cell lines (U251 or SK-Mel-28). On the other hand, Vδ2+ T cells positively isolated through TCR crosslinking or after prolonged stimulation with isopentenyl pyrophosphate (IPP) mediate strong inhibitory effects on αβ T cell proliferation. Stimulation with IPP in the presence of IL-15 induces the most robust suppressive phenotype of Vδ2+ T cells. This indicates that Vδ2+ T cells' suppressive activity is dependent on a TCR signal and that the degree of suppression correlates with its strength. Vδ2+ T cell immunosuppression does not correlate with their Foxp3 expression but rather with their PD-L1 protein expression, evidenced by the massive reduction of suppressive activity when using a blocking antibody. In conclusion, pharmacologic stimulation of Vδ2+ T cells via the Vδ2 TCR for activation and expansion induces Vδ2+ T cells' potent killer activity while simultaneously licensing them to suppress αβ T cell responses. Taken together, the study is a further step to understand-in more detail-the suppressive activity of Vδ2+ γδ T cells.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/immunology
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cells, Cultured
- Gene Expression/drug effects
- Gene Expression/immunology
- Hemiterpenes/pharmacology
- Humans
- Immune Tolerance/drug effects
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Interleukin-15/pharmacology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Organophosphorus Compounds/pharmacology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany.
| | - Naomi Krickeberg
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Carlotta Kaißer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Simon Mingram
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Janika Kind
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | | | - Hisayoshi Hashimoto
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| |
Collapse
|
7
|
Morello M, Pieri M, Zenobi R, Talamo A, Stephan D, Landel V, Féron F, Millet P. The Influence of Vitamin D on Neurodegeneration and Neurological Disorders: A Rationale for its Physio-pathological Actions. Curr Pharm Des 2020; 26:2475-2491. [PMID: 32175837 DOI: 10.2174/1381612826666200316145725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Vitamin D is a steroid hormone implicated in the regulation of neuronal integrity and many brain functions. Its influence, as a nutrient and a hormone, on the physiopathology of the most common neurodegenerative diseases is continuously emphasized by new studies. This review addresses what is currently known about the action of vitamin D on the nervous system and neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Further vitamin D research is necessary to understand how the action of this "neuroactive" steroid can help to optimize the prevention and treatment of several neurological diseases.
Collapse
Affiliation(s)
- Maria Morello
- Clinical Biochemistry, Department of Experimental Medicine, Faculty of Medicine, University of Rome "Tor Vergata" and University Hospital of Tor Vergata, 00133 Rome, Italy
| | - Massimo Pieri
- Clinical Biochemistry, Department of Experimental Medicine, Faculty of Medicine, University of Rome "Tor Vergata" and University Hospital of Tor Vergata, 00133 Rome, Italy
| | - Rossella Zenobi
- Clinical Biochemistry, Department of Experimental Medicine, Faculty of Medicine, University of Rome "Tor Vergata" and University Hospital of Tor Vergata, 00133 Rome, Italy
| | - Alessandra Talamo
- Psychiatric Clinic, University Hospital of Tor Vergata, 00133 Rome, Italy
| | - Delphine Stephan
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France
| | - Verena Landel
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France
| | - François Féron
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France
| | - Pascal Millet
- Aix Marseille University, CNRS, INP, UMR 7051, Marseille, France.,Association UNIVI (Agirc-Arrco), 75010 Paris, France.,Hôpital Gériatrique les Magnolias, Ballainvilliers, France
| |
Collapse
|
8
|
Zarobkiewicz MK, Kowalska W, Roliński J, Bojarska-Junak AA. γδ T lymphocytes in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 330:67-73. [PMID: 30831520 DOI: 10.1016/j.jneuroim.2019.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 12/18/2022]
Abstract
The aim of the current review is to summarize the results of studies on the role of γδ T cells in the pathogenesis of multiple sclerosis and its animal model - the experimental autoimmune encephalomyelitis. Despite the fact that numerous studies have been performed, the role of γδ T is still not fully understood. It seems that there are two distinct subpopulations - one exacerbating the disease (IL-17-producing) and the other playing a protective role (IFN-γ-secreting). Nevertheless, future studies are required for an understanding of γδ T cells role in multiple sclerosis.
Collapse
Affiliation(s)
| | - Wioleta Kowalska
- Chair and Department of Clinical Immunology, Medical University of Lublin, Poland
| | - Jacek Roliński
- Chair and Department of Clinical Immunology, Medical University of Lublin, Poland
| | | |
Collapse
|
9
|
Sawaisorn P, Tangchaikeeree T, Chan-On W, Leepiyasakulchai C, Udomsangpetch R, Hongeng S, Jangpatarapongsa K. Antigen-Presenting Cell Characteristics of Human γδ T Lymphocytes in Chronic Myeloid Leukemia. Immunol Invest 2018; 48:11-26. [PMID: 30321079 DOI: 10.1080/08820139.2018.1529039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human γδ T lymphocytes play a role in the immune system defense against cancer. Their broad anti-cancer activity against different types of cancers makes them outstanding candidates for cancer immunotherapy. An issue of recent interest is whether their antigen presentation features are similar to mature dendritic cells. The antigen-presenting cell (APC)-like phenotype and function of γδ T lymphocytes have been confirmed in many clinical trials. In this study, to support the strong role played by Vγ9Vδ2 T cells against cancer, we provide evidence that Vγ9Vδ2 T cells activated with chronic myeloid leukemia (CML) cell lysate antigens can efficiently express an APC phenotype and function. Vγ9Vδ2 T cells derived from normal peripheral blood mononuclear cells were activated with tumor cell lysate, and the tumor-activated Vγ9Vδ2 T cells could recognize and kill CML through their cytotoxic activity. In conclusion, the Vγ9Vδ2 T cells activated by cancer cell lysate showed APC characteristics, and this may greatly increase interest in investigating their therapeutic potential in hematologic malignancies. Abbreviations: CML: chronic myeloid leukemia; APC: antigen-presenting cell; TCR: T cell receptor; MHC: major histocompatibility complex; N-BPs: nitrogen-containing bisphosphonates; IPP: isopentenyl pyrophosphate; PBMC: peripheral blood mononuclear cells; NKG2D: natural killer receptor group 2, member D; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand.
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Tienrat Tangchaikeeree
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Waraporn Chan-On
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Chaniya Leepiyasakulchai
- b Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Rachanee Udomsangpetch
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Suradej Hongeng
- c Department of Pediatrics , Ramathibodi Hospital, Mahidol University , Bangkok , Thailand
| | - Kulachart Jangpatarapongsa
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| |
Collapse
|
10
|
Van Acker HH, Campillo-Davo D, Roex G, Versteven M, Smits EL, Van Tendeloo VF. The role of the common gamma-chain family cytokines in γδ T cell-based anti-cancer immunotherapy. Cytokine Growth Factor Rev 2018; 41:54-64. [PMID: 29773448 DOI: 10.1016/j.cytogfr.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Cytokines of the common gamma-chain receptor family, comprising interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are vital with respect to organizing and sustaining healthy immune cell functions. Supporting the anti-cancer immune response, these cytokines inspire great interest for their use as vaccine adjuvants and cancer immunotherapies. It is against this background that gamma delta (γδ) T cells, as special-force soldiers and natural contributors of the tumor immunosurveillance, also received a lot of attention the last decade. As γδ T cell-based cancer trials are coming of age, this present review focusses on the effects of the different cytokines of the common gamma-chain receptor family on γδ T cells with respect to boosting γδ T cells as a therapeutic target in cancer immunotherapy. This review also gathers data that IL-15 in particular exhibits key features for augmenting the anti-tumor activity of effector killer γδ T cells whilst overcoming the myriad of immune escape mechanisms used by cancer cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Gils Roex
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
11
|
Podbielska M, O'Keeffe J, Hogan EL. Autoimmunity in multiple sclerosis: role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J Neurol Sci 2017; 385:198-214. [PMID: 29406905 DOI: 10.1016/j.jns.2017.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis. This review summarizes current understanding of the characteristics of MS autoimmunity in the initiation and progression of the disease. In particular we find it timely to classify the autoimmune responses by focusing on the immunogenic features of myelin-derived lipids in MS including molecular mimicry; on alterations of bioactive sphingolipids mediators in MS; and on functional roles for regulatory effector cells, including innate lymphocyte populations, like the invariant NKT (iNKT) cells which bridge adaptive and innate immune systems. Recent progress in identifying the nature of sphingolipids recognition for iNKT cells in immunity and the functional consequences of the lipid-CD1d interaction opens new avenues of access to the pathogenesis of demyelination in MS as well as design of lipid antigen-specific therapeutics.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA; Laboratory of Signal Transduction Molecules, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Joan O'Keeffe
- Department of Biopharmaceutical & Medical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
12
|
Bank I, Marcu-Malina V. Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications. Clin Rev Allergy Immunol 2015; 47:311-33. [PMID: 24126758 DOI: 10.1007/s12016-013-8391-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human γδ T cells, which play innate and adaptive, protective as well as destructive, roles in the immune response, were discovered in 1986, but the clinical significance of alterations of the levels of these cells in the peripheral blood in human diseases has not been comprehensively reviewed. Here, we review patterns of easily measurable changes of this subset of T cells in peripheral blood from relevant publications in PubMed and their correlations with specific disease categories, specific diagnoses within disease categories, and prognostic outcomes. These collective data suggest that enumeration of γδ T cells and their subsets in the peripheral blood of patients could be a useful tool to evaluate diagnosis and prognosis in the clinical setting.
Collapse
Affiliation(s)
- Ilan Bank
- Department of Medicine F, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, 52621, Israel,
| | | |
Collapse
|
13
|
Seidel UJE, Vogt F, Grosse-Hovest L, Jung G, Handgretinger R, Lang P. γδ T Cell-Mediated Antibody-Dependent Cellular Cytotoxicity with CD19 Antibodies Assessed by an Impedance-Based Label-Free Real-Time Cytotoxicity Assay. Front Immunol 2014; 5:618. [PMID: 25520723 PMCID: PMC4251440 DOI: 10.3389/fimmu.2014.00618] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
γδ T cells are not MHC restricted, elicit cytotoxicity against various malignancies, are present in early post-transplant phases in novel stem cell transplantation strategies and have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) with monoclonal antibodies (mAbs). These features make γδ T cells promising effector cells for antibody-based immunotherapy in pediatric patients with B-lineage acute lymphoblastic leukemia (ALL). To evaluate combination of human γδ T cells with CD19 antibodies for immunotherapy of B-lineage ALL, γδ T cells were expanded after a GMP-compliant protocol and ADCC of both primary and expanded γδ T cells with an Fc-optimized CD19 antibody (4G7SDIE) and a bi-specific antibody with the specificities CD19 and CD16 (N19-C16) was evaluated in CD107a-degranulation assays and intracellular cytokine staining. CD107a, TNFα, and IFNγ expression of primary γδ T cells were significantly increased and correlated with CD16-expression of γδ T cells. γδ T cells highly expressed CD107a after expansion and no further increased expression by 4G7SDIE and N19-C16 was measured. Cytotoxicity of purified expanded γδ T cells targeting CD19-expressing cells was assessed in both europium-TDA release and in an impedance-based label-free method (using the xCELLigence system) measuring γδ T cell lysis in real-time. Albeit in the 2 h end-point europium-TDA release assay no increased lysis was observed, in real-time xCELLigence assays both significant antibody-independent cytotoxicity and ADCC of γδ T cells were observed. The xCELLigence system outperformed the end-point europium-TDA release assay in sensitivity and allows drawing of conclusions to lysis kinetics of γδ T cells over prolonged periods of time periods. Combination of CD19 antibodies with primary as well as expanded γδ T cells exhibits a promising approach, which may enhance clinical outcome of patients with pediatric B-lineage ALL and requires clinical evaluation.
Collapse
Affiliation(s)
- Ursula Jördis Eva Seidel
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen , Tübingen , Germany
| | - Fabian Vogt
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany ; Partner Site Tübingen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Tübingen , Germany
| | - Ludger Grosse-Hovest
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany ; SYNIMMUNE GmbH , Tübingen , Germany
| | - Gundram Jung
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany ; Partner Site Tübingen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Tübingen , Germany
| | - Rupert Handgretinger
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen , Tübingen , Germany ; Partner Site Tübingen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Tübingen , Germany
| | - Peter Lang
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen , Tübingen , Germany ; Partner Site Tübingen, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Tübingen , Germany
| |
Collapse
|
14
|
Møller-Larsen A, Brudek T, Petersen T, Petersen EL, Aagaard M, Hansen DT, Christensen T. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells. Clin Exp Immunol 2013; 173:398-410. [PMID: 23656307 DOI: 10.1111/cei.12133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 01/08/2023] Open
Abstract
Damage of target cells by cytotoxicity, either mediated by specific lymphocytes or via antibody-dependent reactions, may play a decisive role in causing the central nervous system (CNS) lesions seen in multiple sclerosis (MS). Relevant epitopes, antibodies towards these epitopes and a reliable assay are all mandatory parts in detection and evaluation of the pertinence of such cytotoxicity reactions. We have adapted a flow cytometry assay detecting CD107a expression on the surface of cytotoxic effector cells to be applicable for analyses of the effect on target cells from MS patients expressing increased amounts of human endogenous retrovirus antigens. MS patients also have increased antibody levels to these antigens. The target cells are spontaneously growing peripheral blood mononuclear cells (PBMCs) of B cell lineage, expressing human endogenous retrovirus HERV epitopes on their surface. Polyclonal antibodies against defined peptides in the Env- and Gag-regions of the HERVs were raised in rabbits and used in antibody-dependent cell-mediated cytotoxicity (ADCC) -assays. Rituximab® (Roche), a chimeric monoclonal antibody against CD20 expressed primarily on B cells, was used as control antibody. Without antibodies this system is suitable for analyses of natural killer cell activity. In optimization of the assay we have used effector lymphocytes from healthy donors. The most effective effector cells are CD56(+) cells. CD8(+) T cells also express CD107a in ADCC. Using the adapted assay, we demonstrate significant ADCC activity to target cells expressing HERV epitopes, and additionally a low level of NK activity.
Collapse
Affiliation(s)
- A Møller-Larsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
15
|
Parlakgul G, Guney E, Erer B, Kılıcaslan Z, Direskeneli H, Gul A, Saruhan-Direskeneli G. Expression of regulatory receptors on γδ T cells and their cytokine production in Behcet's disease. Arthritis Res Ther 2013; 15:R15. [PMID: 23336215 PMCID: PMC3672743 DOI: 10.1186/ar4147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Behcet's disease (BD) is a multi-systemic disorder with muco-cutaneous, ocular, arthritic, vascular or central nervous system involvement. The role of γδ T cells is implicated in BD. The activation status of γδ T cells and their cytokine secretion against phosphoantigens are evaluated in BD. METHODS NKG2A, NKG2C, NKG2D, CD16 and CCR7 molecules on γδ T cells were analyzed in 70 BD, 27 tuberculosis (TB) patients and 26 healthy controls (HC). Peripheral γδ T cells were expanded with a phosphoantigen (BrHPP) and IL-2, restimulated with BrHPP and a TLR3 ligand, and cytokine production was measured. RESULTS γδ T cells were not increased in both BD and TB patients, but the proportions of TCRVδ2+ T cells were lower (58.9 and 50.7 vs. 71.7%, P=0.04 and P=0.005) compared to HC. Higher proportion of TCRVδ2+ T cells were CD16+ (26.2 and 33.9 vs. 16.6%, P=0.02 and P=0.001) and CCR7- (32.2 and 27.9 vs. 17.7%, P<0.0001 and P=0.014) in BD and TB patients compared to HC. NKG2C+ γδ+ T cells were relatively increased (0.5 and 0.6 vs. 0.3%, P=0.008 and 0.018), whereas NKG2D positivity was decreased in patients with BD and TB (77.7 and 75.8 vs. 87.5%, P=0.001 and 0.004). Expansion capacity of γδ T cells in BD and TB as well as production of IL-13, IFN-γ, granulocyte monocyte colony stimulating factor (GM-CSF), TNF-α, CCL4 and CCL5 in BD was lower compared to HC, when restimulated by TLR3 ligand and BrHPP. CONCLUSION The changes on γδ T cells of BD as well as TB patients implicate that γδ T cells have already been exposed to regulatory effects, which changed their activity. Lower cytokine response of γδ T cells implicates down modulation of these cells in BD.
Collapse
|
16
|
Abstract
Demyelinating diseases such as multiple sclerosis are chronic inflammatory autoimmune diseases with a heterogeneous clinical presentation and course. Both the adaptive and the innate immune systems have been suggested to contribute to their pathogenesis and recovery. In this review, we discuss the role of the innate immune system in mediating demyelinating diseases. In particular, we provide an overview of the anti-inflammatory or pro-inflammatory functions of dendritic cells, mast cells, natural killer (NK) cells, NK-T cells, γδ T cells, microglial cells, and astrocytes. We emphasize the interaction of astroctyes with the immune system and how this interaction relates to the demyelinating pathologies. Given the pivotal role of the innate immune system, it is possible that targeting these cells may provide an effective therapeutic approach for demyelinating diseases.
Collapse
Affiliation(s)
- Lior Mayo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
17
|
γδ T cells and multiple sclerosis: Friends, foes, or both? Autoimmun Rev 2010; 10:364-7. [PMID: 21195807 DOI: 10.1016/j.autrev.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/16/2010] [Indexed: 01/12/2023]
Abstract
Multiple sclerosis (MS) is a debilitating CNS disease characterized by demyelination and neuro-axonal loss. Though the exact etiology is still unknown, accumulated evidence points to the immune system being involved in the MS disease-process. Both ill-fated adaptive and innate immune responses can potentially contribute to the etiopathogenesis. We have been interested in deciphering how innate immunity might be involved; in particular, the role of γδ T cells. In this review, we discuss the current understanding about γδ T cells and describe the evidence implicating them in myelin injury, neurotoxicity, and immunoregulation in the development of MS.
Collapse
|
18
|
Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/TH1 paradigm. Ann Anat 2010; 192:179-93. [DOI: 10.1016/j.aanat.2010.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/11/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
19
|
Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 2010; 221:7-14. [PMID: 19931190 DOI: 10.1016/j.jneuroim.2009.10.015] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease with heterogeneous clinical presentations and course. MS is considered to be a T cell mediated disease but in recent years contribution of innate immune cells in mediating MS pathogenesis is being appreciated. In this review, we have discussed the role of various innate immune cells in mediating MS. In particular, we have provided an overview of potential anti-inflammatory or pro-inflammatory function of DCs, microglial Cells, NK cells, NK-T cells and gamma delta T cells along with their interaction among themselves and with myelin. Given the understanding of the role of the innate immune cells in MS, it is possible that immunotherapeutic intervention targeting these cells may provide a better and effective treatment.
Collapse
|
20
|
McCandless EE, Budde M, Lees JR, Dorsey D, Lyng E, Klein RS. IL-1R signaling within the central nervous system regulates CXCL12 expression at the blood-brain barrier and disease severity during experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:613-20. [PMID: 19535637 PMCID: PMC2892701 DOI: 10.4049/jimmunol.0802258] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the CNS characterized by disruption of the blood-brain barrier (BBB). This breach in CNS immune privilege allows undeterred trafficking of myelin-specific lymphocytes into the CNS where they induce demyelination. Although the mechanism of BBB compromise is not known, the chemokine CXCL12 has been implicated as a molecular component of the BBB whose pattern of expression is specifically altered during MS and which correlates with disease severity. The inflammatory cytokine IL-1beta has recently been shown to contribute not only to BBB permeability but also to the development of IL-17-driven autoimmune responses. Using experimental autoimmune encephalomyelitis, the rodent model of MS, we demonstrate that IL-1beta mediates pathologic relocation of CXCL12 during the induction phase of the disease, before the development of BBB disruption. We also show that CD4, CD8, and, surprisingly gammadelta T cells are all sources of IL-1beta. In addition, gammadelta T cells are also targets of this cytokine, contributing to IL-1beta-mediated production of IL-17. Finally, we show that the level of CNS IL-1R determines the clinical severity of experimental autoimmune encephalomyelitis. These data suggest that T cell-derived IL-1beta contributes to loss of immune privilege during CNS autoimmunity via pathologic alteration in the expression of CXCL12 at the BBB.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/immunology
- Chemokine CXCL12/biosynthesis
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Transport/genetics
- Protein Transport/immunology
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/physiology
- Severity of Illness Index
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Erin E. McCandless
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis MO 63110
| | - Matthew Budde
- Department of Radiology, Washington University School of Medicine, St Louis MO 63110
| | - Jason R. Lees
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis MO 63110
| | - Denise Dorsey
- Department of Internal Medicine, Washington University School of Medicine, St Louis MO 63110
| | - Eric Lyng
- Department of Internal Medicine, Washington University School of Medicine, St Louis MO 63110
| | - Robyn S. Klein
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis MO 63110
- Department of Internal Medicine, Washington University School of Medicine, St Louis MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis MO 63110
| |
Collapse
|
21
|
Chen Z, Freedman MS. CD16+ gammadelta T cells mediate antibody dependent cellular cytotoxicity: potential mechanism in the pathogenesis of multiple sclerosis. Clin Immunol 2008; 128:219-27. [PMID: 18501678 DOI: 10.1016/j.clim.2008.03.513] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Our overall objective is to understand the role of gammadelta T cells in the pathogenesis of the central nervous system (CNS) autoimmune disease multiple sclerosis (MS). We have demonstrated that gammadelta T cells are directly cytotoxic to CNS cells in vitro. Although the exact mechanism of damage in MS is unknown, recent evidence suggests a role for B cells and antibodies to myelin. We were therefore interested in examining whether gammadelta T cells can injure CNS cells via an indirect mechanism involving antibody dependent cellular cytotoxicity. To study this we developed an in vitro flow cytometric cellular cytotoxicity assay (called "FC(3)A") to quantitate the amount of cytotoxicity. We utilized known target cells (Burkitt's B lymphoma) that express CD20, together with a monoclonal antibody (mAb) to CD20, rituximab, that is being studied as a potential treatment for MS. Target cells are first coated with rituximab followed by co-culture with gammadelta T cells derived from patients with MS. Specific lysis of target cells was determined by quantitation of 7-AAD (which increases only upon nuclear disruption indicating cell death). We determined that this lysis was due to gammadelta T cells that express CD16 (Fc gamma receptor) and were therefore capable of binding the rituximab and mediating cytolysis via ADCC. This specific cell lysis correlated with rituximab concentration, E:T ratio, and the surface expression of CD16 on gammadelta T cells. These findings provide a new perspective with regards to the role of gammadelta T cells in the immunopathogenesis of MS and an insight into one of the potential therapeutic effects of rituximab in the treatment of MS. In addition, this new FC(3)A method we developed could readily be adapted to study other types of immune cells suspected of ADCC-type killing.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|