1
|
Lee S, Jung DM, Kim EM, Kim KK. Establishments of G3BP1-GFP stress granule monitoring system for real-time stress assessment in human neuroblastoma cells. CHEMOSPHERE 2024; 361:142485. [PMID: 38821132 DOI: 10.1016/j.chemosphere.2024.142485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Acute stress caused by short-term exposure to deleterious chemicals can induce the aggregation of RNA-binding proteins (RBPs) in the cytosol and the formation of stress granules (SGs). The cytoplasmic RBP, Ras GTPase-activating protein-binding protein 1 (G3BP1) is a critical organizer of SG, and its aggregation is considered a hallmark of cellular stress. However, assembly of SG is a highly dynamic process that involves RBPs; hence, existing methods based on fixation processes or overexpression of RBPs exhibit limited efficacy in detecting the assembly of SG under stress conditions. In this study, we established a G3BP1- Green fluorescent protein (GFP) reporter protein in a human neuroblastoma cell line to overcome these limitations. GFP was introduced into the G3BP1 genomic sequence via homologous recombination to generate a G3BP1-GFP fusion protein and further analyze the aggregation processes. We validated the assembly of SG under stress conditions using the G3BP1-GFP reporter system. Additionally, this system supported the evaluation of bisphenol A-induced SG response in the established human neuroblastoma cell line. In conclusion, the established G3BP1-GFP reporter system enables us to monitor the assembly of the SG complex in a human neuroblastoma cell line in real time and can serve as an efficient tool for assessing potential neurotoxicity associated with short-term exposure to chemicals.
Collapse
Affiliation(s)
- Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Da-Min Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Bio and Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Gravina G, Wasén C, Garcia-Bonete MJ, Turkkila M, Erlandsson MC, Töyrä Silfverswärd S, Brisslert M, Pullerits R, Andersson KM, Katona G, Bokarewa MI. Survivin in autoimmune diseases. Autoimmun Rev 2017; 16:845-855. [PMID: 28564620 DOI: 10.1016/j.autrev.2017.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Survivin is a protein functionally important for cell division, apoptosis, and possibly, for micro-RNA biogenesis. It is an established marker of malignant cell transformation. In non-malignant conditions, the unique properties of survivin make it indispensable for homeostasis of the immune system. Indeed, it is required for the innate and adaptive immune responses, controlling differentiation and maintenance of CD4+ and CD8+ memory T-cells, and in B cell maturation. Recently, survivin has emerged as an important player in the pathogenesis of autoimmune diseases. Under the conditions of unreserved inflammation, survivin enhances antigen presentation, maintains persistence of autoreactive cells, and supports production of autoantibodies. In this context, survivin takes its place as a diagnostic and prognostic marker in rheumatoid arthritis, psoriasis, systemic sclerosis and pulmonary arterial hypertension, neuropathology and multiple sclerosis, inflammatory bowel diseases and oral lichen planus. In this review, we summarise the knowledge about non-malignant properties of survivin and focus on its engagement in cellular and molecular pathology of autoimmune diseases. The review highlights utility of survivin measures for clinical applications. It provides rational for the survivin inhibiting strategies and presents results of recent reports on survivin inhibition in modern therapies of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- G Gravina
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - C Wasén
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M J Garcia-Bonete
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - M Turkkila
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - S Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - M Brisslert
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - R Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - K M Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - G Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - M I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
3
|
Roy K, Neerati P, Cheung CHA, Kanwar RK, Sandhir R, Kanwar JR. Topical Ophthalmic Formulation of Trichostatin A and SurR9-C84A for Quick Recovery Post-alkali Burn of Corneal Haze. Front Pharmacol 2017; 8:223. [PMID: 28529481 PMCID: PMC5418359 DOI: 10.3389/fphar.2017.00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/10/2017] [Indexed: 12/28/2022] Open
Abstract
Alkali burn injury is a true ocular emergency of the conjunctiva and cornea that requires immediate precision. Lack of an immediate therapy can lead to a substantial damage in the ocular surface and anterior segment further causing visual impairment and disfigurement. We explored the regenerative capability of dominant negative survivin protein (SurR9-C84A) and histone deacetylase inhibitor trichostatin-A (TSA) in vivo, in a rat alkali burn model. A topical insult in rat eyes with NaOH led to degradation of the conjunctival and corneal epithelium. The integrity of the conjunctival and corneal tissue was increased by TSA and SurR9-C84A by improving the clathrin and claudin expressions. Wound healing was initiated by an increase in TGF-beta-1 and, increased endogenous survivin which inhibited apoptosis post-TSA and SurR9-C84A treatments. Protein expressions of fibronectin and alpha-integrin 5 were found to increase promoting corneal integrity. The cytokine analysis confirmed increased expressions of IL-1beta, IL-6, IL-12, IL-13, IFN-gamma, TNF-alpha, GMCSF, Rantes, and MMP-2 in injured cornea, which were found to be significantly downregulated by the combined treatment of SurR9-C84A and TSA. The ocular and systemic pharmacokinetic (PK) parameters were measured post-topical ocular administration of TSA and SurR9-C84A. The SurR9-C84A and TSA sustained relatively longer in the cornea, conjunctiva, and aqueous humor than in the tear fluid and plasma. Our results confirmed that a combination of TSA with SurR9-C8A worked in synergy and showed a promising healing and anti-inflammatory effect in a very short time against alkali burn. Therefore, a combination of TSA and SurR9-C84A can fulfill the need for an immediate response to wound healing in alkali burnt cornea. We also synthesized ultra-small chitosan nanoparticles (USC-NPs) targeted with alpha-SMA antibodies that can be used for delivery of TSA and SurR9-C84A specifically to the ocular burn site.
Collapse
Affiliation(s)
- Kislay Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, Centre for Molecular and Medical Research, School of Medicine, Faculty of Health, Deakin University, GeelongVIC, Australia
| | - Prasad Neerati
- Drug Metabolism and Clinical Pharmacokinetics Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Chun Hei Antonio Cheung
- Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rupinder K. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, Centre for Molecular and Medical Research, School of Medicine, Faculty of Health, Deakin University, GeelongVIC, Australia
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Jagat R. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, Centre for Molecular and Medical Research, School of Medicine, Faculty of Health, Deakin University, GeelongVIC, Australia
| |
Collapse
|
4
|
Ashok A, Kanwar JR, Krishnan UM, Kanwar RK. SurR9C84A protects and recovers human cardiomyocytes from hypoxia induced apoptosis. Exp Cell Res 2016; 350:19-31. [PMID: 27816606 DOI: 10.1016/j.yexcr.2016.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 02/05/2023]
Abstract
Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxic microenvironment in vitro, well characterized HCM were treated with 100µm (48h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic injury.
Collapse
Affiliation(s)
- Ajay Ashok
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research (C-MMR), Deakin University, Waurn Ponds, Victoria 3216, Australia; Department of Pathology, Case Western Reserve University, 2103 Cornell Rd. WRB 5128, Cleveland, OH 44106-7288, USA
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research (C-MMR), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology (SCBT), SASTRA University, Thanjavur 613401, India
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research (C-MMR), Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
5
|
Sriramoju B, Neerati P, Kanwar RK, Kanwar JR. Brain targeted PLGA nanocarriers alleviating amyloid-Β expression and preserving basal survivin in degenerating mice model. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2423-31. [DOI: 10.1016/j.bbadis.2015.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/31/2022]
|
6
|
Anand N, Sehgal R, Kanwar RK, Dubey ML, Vasishta RK, Kanwar JR. Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii. Int J Nanomedicine 2015; 10:6355-69. [PMID: 26504384 PMCID: PMC4605239 DOI: 10.2147/ijn.s85286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is a deadly intracellular parasite known to reside in every nucleated cell and known to cause severe complications in immunocompromised host. Standard drugs are cost effective and cause side effects, therefore, there is a necessity for a new drug molecule with immunomodulatory potential. Lactoferrin (Lf) is a natural milk protein, which has shown antimicrobial properties in its nanoformulation using alginate chitosan calcium phosphate bovine lactoferrin nanocapsules (AEC-CCo-CP-bLf-NCs). The present study was aimed to analyze and compare the effect of bovine Lf (bLf) in its native as well as nanoformulation (AEC-CCo-CP-bLf-NC) against coccidian parasite T. gondii. In vitro analysis has shown a significant increase in nitric oxide production and low parasitemia in in vitro cell culture model. In vivo BALB/c mice model have been used to develop human toxoplasmosis model. After treatment with NCs it has substantially increased the bioavailability of the protein and showed comparatively increased levels of reactive oxygen species, nitric oxide production, and Th1 cytokine which helped in parasite clearance. The mechanism of action of NCs has been clarified by immunoreactivity analysis, which showed accumulation of Lf in macrophages of various visceral organs, which is the site of parasite multiplication. Effect of NCs has significantly decreased (P<0.05) the parasite load in various organs and helped survival of mice till day 25 postinfection. Fe metabolism inside the mice has been found to be maintained even after administration of mono form of Lf, this indicates novelty of Lf protein. From the present study we concluded that nanoformulation did not reduce the therapeutic potential of Lf protein; however, nanoformulation has enhanced the stability of the protein and shown anti-toxoplasmal activity. Our study presents for the first time nanoformulation of Lf protein against Toxoplasma, which has advantages over the standard drug therapy without any side effects.
Collapse
Affiliation(s)
- Namrata Anand
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mohan Lal Dubey
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vasishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
7
|
Kanwar JR, Samarasinghe RM, Kumar K, Arya R, Sharma S, Zhou SF, Sasidharan S, Kanwar RK. Cissus quadrangularis inhibits IL-1β induced inflammatory responses on chondrocytes and alleviates bone deterioration in osteotomized rats via p38 MAPK signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2927-40. [PMID: 26089642 PMCID: PMC4467655 DOI: 10.2147/dddt.s77369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Inflammatory mediators are key players in the pathogenesis of osteoarthritis (OA) and bone destruction. Conventional drugs suppress symptomatic activity and have no therapeutic influence on disease. Cissus quadrangularis and Withania somnifera are widely used for the treatment of bone fractures and wounds; however, the cellular and molecular mechanisms regulated by these herbals are still unclear. METHODS We established an in vitro OA culture model by exposing human chondrocytes to proinflammatory cytokine and interleukin (IL)-1β for 36 hours prior to treatment with the herbals: C. quadrangularis, W. somnifera, and the combination of the two herbals. Cell viability, toxicity, and gene expression of OA modifying agents were examined. In addition, expression of survivin, which is crucial for cell growth, was analyzed. In vivo work on osteotomized rats studied the bone and cartilage regenerative effects of C. quadrangularis, W. somnifera, and the combination therapy. RESULTS Exposure of chondrocytes to IL-1β induced significant toxicity and cell death. However, herbal treatment alleviated IL-1β induced cell toxicity and upregulated cell growth and proliferation. C. quadrangularis inhibited gene expression of cytokines and matrix metalloproteinases, known to aggravate cartilage and bone destruction, and augmented expression of survivin by inhibiting p38 MAPK. Interestingly, osteotomized rats treated with C. quadrangularis drastically enhanced alkaline phosphatase and cartilage tissue formation as compared to untreated, W. somnifera only, or the combination of both herbals. CONCLUSION Our findings demonstrate for the first time the signaling mechanisms regulated by C. quadrangularis and W. somnifera in OA and osteogenesis. We suggest that the chondroprotective effects and regenerative ability of these herbals are via the upregulation of survivin that exerts inhibitory effects on the p38 MAPK signaling pathway. These findings thus validate C. quadrangularis as a potential therapeutic for rheumatic disorders.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Geelong Technology Precinct (GTP), Deakin University, Waurn Ponds, VIC, Australia
| | - Rasika M Samarasinghe
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Geelong Technology Precinct (GTP), Deakin University, Waurn Ponds, VIC, Australia
| | - Kuldeep Kumar
- Ayurvedic College, Paprola, Kangra, Himachal Pradesh, India
| | - Ramesh Arya
- Ayurvedic College, Paprola, Kangra, Himachal Pradesh, India
| | - Sanjeev Sharma
- Ayurvedic College, Paprola, Kangra, Himachal Pradesh, India
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Geelong Technology Precinct (GTP), Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
8
|
Singh N, Krishnakumar S, Kanwar RK, Cheung CHA, Kanwar JR. Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers. Drug Discov Today 2015; 20:578-87. [DOI: 10.1016/j.drudis.2014.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
|
9
|
Kanwar JR, Mahidhara G, Roy K, Sasidharan S, Krishnakumar S, Prasad N, Sehgal R, Kanwar RK. Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine (Lond) 2015; 10:35-55. [DOI: 10.2217/nnm.14.132] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To validate the anticancer efficacy of alginate-enclosed, chitosan-conjugated, calcium phosphate, iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (NCs) with improved sustained release and ability to induce apoptosis by downregulating survivin, as well as cancer stem cells. Materials & methods: The stability, nanotoxicity of the modified nanoformulation was evaluated and their anticancer efficacy was re-examined. Their mechanism of internalization was studied and we identified the role of various miRNAs in absorption of these NCs/iron in various body parts of mice. We determined the effect of these NCs on survivin, stem cell markers, red blood cell count, iron, calcium and zinc concentration in mice, determined the antiangiogenic properties of these NCs and studied their effect on cancer stem-like cells. Results: Spherical NCs (396.1 ± 27.2 nm) exceedingly reduced viability of Caco-2 cells (32 ± 2.83%). The NCs also showed effective internalization and reduction of cancer stem cell markers in triple-positive CD133, survivin and CD44 cancer stem-like cells. Mice treated with the NCs showed no nanotoxicity and did not develop any tumors in xenograft colon cancer models. We found that the serum iron, zinc and calcium absorption were increased. DMT1, LRP, transferrin and lactoferrin receptors were responsible for internalization of the NCs. Different miRNAs were responsible for iron regulation in different organs. Interestingly, NCs inhibited survivin and its different isoforms. Conclusion: Our results confirmed that NCs internalized and changed the expression of selected miRNAs that further enhanced their uptake. The NCs activated both extrinsic, as well as intrinsic apoptotic pathways to induce apoptosis by targeting survivin in cancer cells and cancer stem cells, without inducing any nonspecific nanotoxicity. Apart from inhibiting angiogenesis and stem cell markers, NCs also maintained iron and calcium levels. Original submitted 4 May 2014; Revised submitted 25 June 2014
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Ganesh Mahidhara
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Kislay Roy
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision & Ophthalmology, Chennai, India
| | - Neerati Prasad
- Department of Pharmacology, Drug Metabolism & Pharmacokinetics Division (DMPK), University College of Pharmaceutical Science, Kakatiya University, Warangal, Andhra Pradesh, 506009, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Rupinder K Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
10
|
Samarasinghe RM, Gibbons J, Kanwar RK, Kanwar JR. Nanotechnology based platforms for survivin targeted drug discovery. Expert Opin Drug Discov 2012; 7:1083-92. [PMID: 22950742 DOI: 10.1517/17460441.2012.719869] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Development of an effective, safe and targeted drug delivery system to fight cancer and other diseases is a prime focus in the area of drug discovery. The emerging field of nanotechnology has revolutionised the way cancer therapy and diagnosis is achieved primarily due to the recent advances in material engineering and drug availability. Further, the recognition of the crucial role played by anti-apoptotic proteins such as survivin, has initiated the development of therapeutics that can target this protein as an attempt to develop alternative cancer therapies. However, a key challenge faced in drug development is the efficient delivery of survivin-targeted molecules to specific areas in the body. AREAS COVERED This review primarily focuses on the different strategies employing nanotechnology for targeting survivin expressed in human cancers. Different nanomaterials incorporating nucleic molecules or drugs targeted at survivin are discussed and the results obtained from studies are highlighted. EXPERT OPINION There are extensive studies reporting different treatment regimens for cancer, however, they still result in systemic toxicity, reduced bioavailability and ineffective delivery. Novel approaches involve the use of biocompatible nanomaterials together with gene or drug molecules to target proteins such as survivin, which is overexpressed in cancerous cells. These nanoformulations allow the benefits of protecting easily degradable molecules, allow controlled release, and enhance targeted delivery and effectiveness. Hence, nanotherapy utilizing survivin targeting can be considered to play a key role in the development of personalized nanomedicine for cancer.
Collapse
Affiliation(s)
- Rasika M Samarasinghe
- Deakin University, Institute for Frontier Materials (IFM), Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Waurn Ponds, Australia
| | | | | | | |
Collapse
|
11
|
Kanwar JR, Kamalapuram SK, Kanwar RK. Survivin Signaling in Clinical Oncology: A Multifaceted Dragon. Med Res Rev 2012; 33:765-89. [DOI: 10.1002/med.21264] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jagat R. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| | - Sishir K. Kamalapuram
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| | - Rupinder K. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR); Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin); Institute for Technology & Research Innovation; Deakin University, Geelong; Technology Precinct; Pigdons Road, Waurn Ponds; Geelong; Victoria; 3217; Australia
| |
Collapse
|
12
|
Lu X, Xiao XB. Investigation of mechanisms underlying inhibition of apoptosis-related signaling inhibited by survivin in human cholangiocarcinoma cells. Shijie Huaren Xiaohua Zazhi 2012; 20:644-648. [DOI: 10.11569/wcjd.v20.i8.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the mechanisms by which survivin regulates apoptosis-related signaling in human cholangiocarcinoma cells.
METHODS: SiRNA targeting the survivin gene and control siRNA were constructed and transfected into human cholangiocarcinoma cell line QBC939. The knockdown of survivin expression in QBC939 cells was confirmed by Western blot. Apoptosis rate was evaluated by flow cytometry. Capase-3 activity was determined using a commercial kit, and expression of caspase-3, caspase-9 and procaspase-9 in QBC939 cells was detected by Western blot.
RESULTS: Transfection of siRNA targeting the survivin gene significantly inhibited survivin expression in QBC939 cells (P < 0.05). Inhibition of survivin significantly increased apoptosis rate (18.9% ± 2.3%, P < 0.05) and caspase-3 activity (0.83 ± 0.15, P < 0.01), up-regulated the expression of caspase-3 and caspase-9 (both P < 0.05), and down-regulated the expression of procaspase-9 (P < 0.05) in QBC939 cells. No significant differences were observed in the above parameters between non-transfected QBC939 cells and cells transfected with control siRNA (all P > 0.05).
CONCLUSION: Survivin inhibits apoptosis of cholangiocarcinoma cells possibly by inhibiting caspase-3 and caspase-9 activities through activating procaspase-9.
Collapse
|
13
|
Kanwar JR, Kamalapuram SK, Kanwar RK. Targeting survivin in cancer: the cell-signalling perspective. Drug Discov Today 2011; 16:485-94. [PMID: 21511051 DOI: 10.1016/j.drudis.2011.04.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/23/2011] [Accepted: 04/01/2011] [Indexed: 01/12/2023]
Abstract
Survivin, a prominent anticancer target, is ubiquitously expressed in a plethora of cancers and the evolving complexity in functional regulation of survivin is yet to be deciphered. However, pertaining to the recent studies, therapeutic modulation of survivin is critically regulated by interaction with prominent cell-signalling pathways [HIF-1α, HSP90, PI3K/AKT, mTOR, ERK, tumour suppressor genes (p53, PTEN), oncogenes (Bcl-2, Ras)] and a wide range of growth factors (EGFR, VEGF, among others). In our article we discuss, in detail, an overview of the recent developments in the pharmacological modulation of survivin via cell-signalling paradigms and antisurvivin therapeutics, along with an outlook on therapeutic management of survivin in drug-resistant cancers.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin), Institute for Technology Research and Innovation (ITRI), Deakin University, Victoria, Australia.
| | | | | |
Collapse
|
14
|
Baratchi S, Kanwar RK, Kanwar JR. Survivin mutant protects differentiated dopaminergic SK-N-SH cells against oxidative stress. PLoS One 2011; 6:e15865. [PMID: 21249229 PMCID: PMC3018429 DOI: 10.1371/journal.pone.0015865] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress is due to an imbalance of antioxidant/pro-oxidant homeostasis and is associated with the progression of several neurological diseases, including Parkinson's and Alzheimer's disease and amyotrophic lateral sclerosis. Furthermore, oxidative stress is responsible for the neuronal loss and dysfunction associated with disease pathogenesis. Survivin is a member of the inhibitors of the apoptosis (IAP) family of proteins, but its neuroprotective effects have not been studied. Here, we demonstrate that SurR9-C84A, a survivin mutant, has neuroprotective effects against H₂O₂-induced neurotoxicity. Our results show that H₂O₂ toxicity is associated with an increase in cell death, mitochondrial membrane depolarisation, and the expression of cyclin D1 and caspases 9 and 3. In addition, pre-treatment with SurR9-C84A reduces cell death by decreasing both the level of mitochondrial depolarisation and the expression of cyclin D1 and caspases 9 and 3. We further show that SurR9-C84A increases the antioxidant activity of GSH-peroxidase and catalase, and effectively counteracts oxidant activity following exposure to H₂O₂. These results suggest for the first time that SurR9-C84A is a promising treatment to protect neuronal cells against H₂O₂-induced neurotoxicity.
Collapse
Affiliation(s)
- Sara Baratchi
- Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences, Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Rupinder K. Kanwar
- Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences, Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jagat R. Kanwar
- Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences, Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, Australia
- * E-mail:
| |
Collapse
|