1
|
Jiang C, Zhou P, Zhang X, Ma N, Hu Y, Zhang M, Ghonaim AH, Li H, Dong L, Zeng W, Li C, Lang Y, Sun Y, He Q, Li W. ARF6 promotes Streptococcus suis suilysin induced apoptosis in HBMECs. Int J Biol Macromol 2024; 268:131839. [PMID: 38663699 DOI: 10.1016/j.ijbiomac.2024.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.
Collapse
Affiliation(s)
- Changsheng Jiang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaoqian Zhang
- China Institute of Veterinary Drug Control, Beijing 102629, China
| | - NingNing Ma
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yaofang Hu
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Desert Research Center, Cairo 11435, Egypt
| | - Huimin Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ling Dong
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wei Zeng
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yumei Sun
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
2
|
Pramitasuri TI, Susilawathi NM, Tarini NMA, Sudewi AAR, Evans MC. Cholesterol dependent cytolysins and the brain: Revealing a potential therapeutic avenue for bacterial meningitis. AIMS Microbiol 2023; 9:647-667. [PMID: 38173970 PMCID: PMC10758573 DOI: 10.3934/microbiol.2023033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacterial meningitis is a catastrophic nervous system disorder with high mortality and wide range of morbidities. Some of the meningitis-causing bacteria occupy cholesterol dependent cytolysins (CDCs) to increase their pathogenicity and arrange immune-evasion strategy. Studies have observed that the relationship between CDCs and pathogenicity in these meningitides is complex and involves interactions between CDC, blood-brain barrier (BBB), glial cells and neurons. In BBB, these CDCs acts on capillary endothelium, tight junction (TJ) proteins and neurovascular unit (NVU). CDCs also observed to elicit intriguing effects on brain inflammation which involves microglia and astrocyte activations, along with neuronal damage as the end-point of pathological pathways in bacterial meningitis. As some studies mentioned potential advantage of CDC-targeted therapeutic mechanisms to combat CNS infections, it might be a fruitful avenue to deepen our understanding of CDC as a candidate for adjuvant therapy to combat bacterial meningitis.
Collapse
Affiliation(s)
- Tjokorda Istri Pramitasuri
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
- Postgraduate Research Student, Faculty of Medicine, Imperial College London, United Kingdom
| | - Ni Made Susilawathi
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Ni Made Adi Tarini
- Department of Microbiology, Faculty of Medicine, Universitas Udayana-Rumah Sakit Umum Pusat Prof Dr dr IGNG Ngoerah, Bali, Indonesia
| | - AA Raka Sudewi
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Matthew C Evans
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom
- Department of Brain Sciences, Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| |
Collapse
|
3
|
Qi K, Yi X, Wang M, Wang J, Sun H, Liang P, Xu J, Zheng H. Streptococcus parasuis, an Emerging Zoonotic Pathogen, Possesses the Capacity to Induce Cerebral Inflammatory Responses. Pathogens 2023; 12:pathogens12040600. [PMID: 37111486 PMCID: PMC10141694 DOI: 10.3390/pathogens12040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
To date, three Streptococcus parasuis strains, BS26, BS27, and NN1, have been isolated from the blood cultures of patients with peritonitis, pneumonia, and arthritis, indicating that S. parasuis is an emerging threat to susceptible people. There is thus an urgent need to further evaluate the pathogenesis of S. parasuis clinical strains in order to design efficient anti-inflammatory strategies. Our previous study demonstrated the capacity of S. parasuis clinical strains to enter the central nervous system (CNS) of infected mice. However, the characteristics and inflammatory mechanism of CNS infections caused by S. parasuis are still non-available. In the present study, we investigated the proportion and time of two clinical S. parasuis strains NN1 and BS26 infected mice that developed neurological symptoms. The characteristics of histopathological changes and the cerebral immune response in mice with neurological symptoms were analyzed. Furthermore, we evaluated the roles of microglia and astrocytes in the S. parasuis clinical strain-induced cerebral inflammation. Our data indicated that S. parasuis clinical strains possess a high potential to induce cerebral inflammation in susceptible people at the early phase of infection. Our study contributes to increasing the understanding of the pathogenicity of S. parasuis and the inflammatory mechanisms of the brain against infection caused by S. parasuis.
Collapse
Affiliation(s)
- Kexin Qi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueli Yi
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Mingliu Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning 530021, China
| | - Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
4
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Wang J, Liang P, Sun H, Wu Z, Gottschalk M, Qi K, Zheng H. Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of Streptococcus suis epidemic strains. Virulence 2022; 13:1455-1470. [PMID: 36031944 PMCID: PMC9423846 DOI: 10.1080/21505594.2022.2116160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus suis epidemic strains were responsible for two outbreaks in China and possessed increased pathogenicity which was featured prominently by inducing an excessive inflammatory response at the early phase of infection. To discover the critical genes responsible for the pathogenicity increase of S. suis epidemic strains, the genome-wide transcriptional profiles of epidemic strain SC84 were investigated at the early phase of interaction with BV2 cells. The overall low expression levels of 89K pathogenicity island (PAI) and 129 known virulence genes in the SC84 interaction groups indicated that its pathogenicity increase should be attributed to novel mechanisms. Using highly pathogenic strain P1/7 and intermediately pathogenic strain 89–1591 as controls, 11 pathogenicity increase crucial genes (PICGs) and 38 pathogenicity increase-related genes (PIRGs) were identified in the SC84 incubation groups. The PICGs encoded proteins related to the methionine biosynthesis/uptake pathway and played critical roles in the pathogenicity increase of epidemic strains. A high proportion of PIRGs encoded surface proteins related to host cell adherence and immune escape, which may be conducive to the pathogenicity increase of epidemic strains by rapidly initiating infection. The fact that none of PICGs and PIRGs belonged to epidemic strain-specific gene indicated that the pathogenicity increase of epidemic strain may be determined by the expression level of genes, rather than the presence of them. Our results deepened the understanding on the mechanism of the pathogenicity increase of S. suis epidemic strains and provided novel approaches to control the life-threatening infections of S. suis epidemic strains.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- OIE Reference Lab for Swine Streptococcosis, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zongfu Wu
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Department of Clinical Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Kexin Qi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
6
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
7
|
Behera M, Ghorai SM, De S, Kaur H. Understanding eco-immunology of bacterial zoonoses and alternative therapeutics toward "One Health". INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.104-115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current review identifies key bacterial zoonoses, the understanding of comparative immunology, evolutionary trade-offs between emerging bacterial pathogens and their dynamics on both arms of immunity. The several gaps in the literature limit our understanding of spread of prominent bacterial zoonotic diseases and the host-pathogen interactions that may change in response to environmental and social factors. Gaining a more comprehensive understanding of how anthropogenic activities affects the spread of emerging zoonotic diseases, is essential for predicting and mitigating future disease emergence through fine-tuning of surveillance and control measures with respect to different pathogens. This review highlights the urgent need to increase understanding of the comparative immunity of animal reservoirs, design of vaccines according to the homology in host-pathogen interactions, and the alternative strategies to counter the risk of bacterial pathogenic spillover to humans with eventual spread of zoonotic diseases.
Collapse
Affiliation(s)
- Manisha Behera
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India; Department of Zoology, Hindu College, University of Delhi, Delhi, India
| | | | - Sachinandan De
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Woo YH, Martinez LR. Cryptococcus neoformans-astrocyte interactions: effect on fungal blood brain barrier disruption, brain invasion, and meningitis progression. Crit Rev Microbiol 2021; 47:206-223. [PMID: 33476528 DOI: 10.1080/1040841x.2020.1869178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryptococcus neoformans is an opportunistic, neurotropic, and encapsulated fungus that causes life-threatening cryptococcal meningitis (CM), especially in regions of the world where AIDS is endemic. The polysaccharide capsule of C. neoformans is the fungus major virulent factor, being copiously released during infection and causing immunosuppressive defects in the host. Although the capsular material is commonly associated with reactive astrocytes in fatal CM, little is known about the molecular and cellular interactions among astroglia and C. neoformans. As astrocytes also make up the neurovascular unit at the blood-brain barrier (BBB), which C. neoformans must transverse to colonize the central nervous system and cause CM; these cells may play a significant regulatory role in the prevention and progression of infection. For example, astrocytes are implicated in neurological disease including the regulation of cerebral intracranial pressure, immune function, and water homeostasis. Hence, in this review, we provide a general overview of astroglia biology and discuss the current knowledge on C. neoformans-astrocyte interactions including their involvement in the development of CM. This "gliocentric view" of cerebral cryptococcosis suggests that therapeutic interventions particularly targeting at preserving the neuroprotective function of astrocytes may be used in preventing and managing C. neoformans BBB transmigration, brain invasion, colonization, and meningitis.
Collapse
Affiliation(s)
- Yeon Hwa Woo
- Department of Metallurgical, Materials and Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 2021; 91:740-755. [PMID: 33039660 PMCID: PMC7543714 DOI: 10.1016/j.bbi.2020.10.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Central nervous system (CNS) innate immunity plays essential roles in infections, neurodegenerative diseases, and brain or spinal cord injuries. Astrocytes and microglia are the principal cells that mediate innate immunity in the CNS. Pattern recognition receptors (PRRs), expressed by astrocytes and microglia, sense pathogen-derived or endogenous ligands released by damaged cells and initiate the innate immune response. Toll-like receptors (TLRs) are a well-characterized family of PRRs. The contribution of microglial TLR signaling to CNS pathology has been extensively investigated. Even though astrocytes assume a wide variety of key functions, information about the role of astroglial TLRs in CNS disease and injuries is limited. Because astrocytes display heterogeneity and exhibit phenotypic plasticity depending on the effectors present in the local milieu, they can exert both detrimental and beneficial effects. TLRs are modulators of these paradoxical astroglial properties. The goal of the current review is to highlight the essential roles played by astroglial TLRs in CNS infections, injuries and diseases. We discuss the contribution of astroglial TLRs to host defense as well as the dissemination of viral and bacterial infections in the CNS. We examine the link between astroglial TLRs and the pathogenesis of neurodegenerative diseases and present evidence showing the pivotal influence of astroglial TLR signaling on sterile inflammation in CNS injury. Finally, we define the research questions and areas that warrant further investigations in the context of astrocytes, TLRs, and CNS dysfunction.
Collapse
Affiliation(s)
- Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Robert F. Heary
- Department of Neurological Surgery, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
10
|
Inflammatory Monocytes and Neutrophils Regulate Streptococcus suis-Induced Systemic Inflammation and Disease but Are Not Critical for the Development of Central Nervous System Disease in a Mouse Model of Infection. Infect Immun 2020; 88:IAI.00787-19. [PMID: 31818962 PMCID: PMC7035915 DOI: 10.1128/iai.00787-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Moreover, monocytes are composed of two main subsets: shorter-lived inflammatory monocytes and longer-lived patrolling monocytes. However, regardless of their presence in blood and the fact that S. suis-induced meningitis is characterized by infiltration of monocytes and neutrophils into the CNS, their role during the S. suis systemic and CNS diseases remains unknown. Consequently, we hypothesized that monocytes and neutrophils participate in S. suis infection via bacterial clearance and inflammation. Results demonstrated that inflammatory monocytes and neutrophils regulate S. suis-induced systemic disease via their role in inflammation required for bacterial burden control. In the CNS, inflammatory monocytes contributed to exacerbation of S. suis-induced local inflammation, while neutrophils participated in bacterial burden control. However, development of clinical CNS disease was independent of both cell types, indicating that resident immune cells are mostly responsible for S. suis-induced CNS inflammation and clinical disease and that inflammatory monocyte and neutrophil infiltration is a consequence of the induced inflammation. In contrast, the implication of patrolling monocytes was minimal throughout the S. suis infection. Consequently, this study demonstrates that while inflammatory monocytes and neutrophils modulate S. suis-induced systemic inflammation and disease, they are not critical for CNS disease development.
Collapse
|
11
|
Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7420189. [PMID: 31396533 PMCID: PMC6668540 DOI: 10.1155/2019/7420189] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Toll-like receptors mediate important cellular immune responses upon activation via various pathogenic stimuli such as bacterial or viral components. The activation and subsequent secretion of cytokines and proinflammatory factors occurs in the whole body including the brain. The subsequent inflammatory response is crucial for the immune system to clear the pathogen(s) from the body via the innate and adaptive immune response. Within the brain, astrocytes, neurons, microglia, and oligodendrocytes all bear unique compositions of Toll-like receptors. Besides pathogens, cellular damage and abnormally folded protein aggregates, such as tau and Amyloid beta peptides, have been shown to activate Toll-like receptors in neurodegenerative diseases such as Alzheimer's disease. This review provides an overview of the different cell type-specific Toll-like receptors of the human brain, their activation mode, and subsequent cellular response, as well as their activation in Alzheimer's disease. Finally, we critically evaluate the therapeutic potential of targeting Toll-like receptors for treatment of Alzheimer's disease as well as discussing the limitation of mouse models in understanding Toll-like receptor function in general and in Alzheimer's disease.
Collapse
|
12
|
Han L, Fu L, Peng Y, Zhang A. Triggering Receptor Expressed on Myeloid Cells-1 Signaling: Protective and Pathogenic Roles on Streptococcal Toxic-Shock-Like Syndrome Caused by Streptococcus suis. Front Immunol 2018; 9:577. [PMID: 29619033 PMCID: PMC5871666 DOI: 10.3389/fimmu.2018.00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis infections can cause septic shock, which is referred to as streptococcal toxic-shock-like syndrome (STSLS). The disease is characterized by a severe inflammatory response, multiple organ failure, and high mortality. However, no superantigen that is responsible for toxic shock syndrome was detected in S. suis, indicating that the mechanism underlying STSLS is different and remains to be elucidated. Triggering receptor expressed on myeloid cells-1 (TREM-1), belonging to the Ig superfamily, is an activating receptor expressed on myeloid cells, and has been recognized as a critical immunomodulator in several inflammatory diseases of both infectious and non-infectious etiologies. In this review, we discuss the current understanding of the immunoregulatory functions of TREM-1 on acute infectious diseases and then highlight the crucial roles of TREM-1 on the development of STSLS.
Collapse
Affiliation(s)
- Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
| | - Yongbo Peng
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Schimunek L, Serve R, Teuben MPJ, Störmann P, Auner B, Woschek M, Pfeifer R, Horst K, Simon TP, Kalbitz M, Sturm R, Pape HC, Hildebrand F, Marzi I, Relja B. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model. PLoS One 2017; 12:e0187404. [PMID: 29125848 PMCID: PMC5681268 DOI: 10.1371/journal.pone.0187404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased immediately and remained lower during the first 3.5 h after trauma, but increased after 24 h. Antagonizing TLR2 significantly decreased the phagocytizing activity of monocytes. Both, decreased percentage of activated as well as TLR2 expressing monocytes persisted as long as the reduced phagocytosis was observed. Moreover, neutralizing TLR2 led to a reduced capability of phagocytosis as well. Therefore, we assume that reduced TLR2 expression may be responsible for the decreased phagocytizing capacity of circulating monocytes in the early post-traumatic phase.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Rafael Serve
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Michel P. J. Teuben
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Störmann
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Birgit Auner
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Mathias Woschek
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Roman Pfeifer
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klemens Horst
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Tim-P. Simon
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Miriam Kalbitz
- Department of Orthopedic Trauma, Hand, Plastic, and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Ramona Sturm
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Hans-C. Pape
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Borna Relja
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
14
|
Auger JP, Fittipaldi N, Benoit-Biancamano MO, Segura M, Gottschalk M. Virulence Studies of Different Sequence Types and Geographical Origins of Streptococcus suis Serotype 2 in a Mouse Model of Infection. Pathogens 2016; 5:pathogens5030048. [PMID: 27409640 PMCID: PMC5039428 DOI: 10.3390/pathogens5030048] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023] Open
Abstract
Multilocus sequence typing previously identified three predominant sequence types (STs) of Streptococcus suis serotype 2: ST1 strains predominate in Eurasia while North American (NA) strains are generally ST25 and ST28. However, ST25/ST28 and ST1 strains have also been isolated in Asia and NA, respectively. Using a well-standardized mouse model of infection, the virulence of strains belonging to different STs and different geographical origins was evaluated. Results demonstrated that although a certain tendency may be observed, S. suis serotype 2 virulence is difficult to predict based on ST and geographical origin alone; strains belonging to the same ST presented important differences of virulence and did not always correlate with origin. The only exception appears to be NA ST28 strains, which were generally less virulent in both systemic and central nervous system (CNS) infection models. Persistent and high levels of bacteremia accompanied by elevated CNS inflammation are required to cause meningitis. Although widely used, in vitro tests such as phagocytosis and killing assays require further standardization in order to be used as predictive tests for evaluating virulence of strains. The use of strains other than archetypal strains has increased our knowledge and understanding of the S. suis serotype 2 population dynamics.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Nahuel Fittipaldi
- Public Health Ontario and Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| | - Marie-Odile Benoit-Biancamano
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
15
|
Tenenbaum T, Asmat TM, Seitz M, Schroten H, Schwerk C. Biological activities of suilysin: role in Streptococcus suis pathogenesis. Future Microbiol 2016; 11:941-54. [PMID: 27357518 DOI: 10.2217/fmb-2016-0028] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Streptococcus suis is an important swine and zoonotic pathogen equipped with several virulence factors. The pore-forming toxins are the most abundant bacterial toxins and classified as critical virulence (associated) factors of several pathogens. The role of suilysin (SLY), a pore-forming cholesterol-dependent cytolysin of S. suis, as a true virulence factor is under debate. Most of the bacterial toxins have been reported to modulate the host immune system to facilitate invasion and subsequent replication of bacteria within respective host cells. SLY has been demonstrated to play an important role in the pathogenesis of S. suis infection and inflammatory response in vitro and in vivo. This review highlights the contributions of SLY to the pathogenicity of S. suis. It will address its role during the development of S. suis meningitis in pigs, as well as humans, and discuss SLY as a potential vaccine candidate.
Collapse
Affiliation(s)
- Tobias Tenenbaum
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| | - Tauseef M Asmat
- Center for Advanced Studies in Vaccinology and Biotechnology, Brewery Road, University of Balochistan, 87300 Quetta, Pakistan
| | - Maren Seitz
- Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover D-30173, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim D-68167, Germany
| |
Collapse
|
16
|
Seele J, Nau R, Prajeeth CK, Stangel M, Valentin-Weigand P, Seitz M. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures. Pathogens 2016; 5:pathogens5020043. [PMID: 27304968 PMCID: PMC4931394 DOI: 10.3390/pathogens5020043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/28/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023] Open
Abstract
Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.
Collapse
Affiliation(s)
- Jana Seele
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
- Institute for Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen 37099, Germany.
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, Göttingen 37075, Germany.
| | - Roland Nau
- Institute for Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen 37099, Germany.
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, An der Lutter 24, Göttingen 37075, Germany.
| | - Chittappen K Prajeeth
- Department of Neurology, Center for Systems Neuroscience (ZSN), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany.
| | - Martin Stangel
- Department of Neurology, Center for Systems Neuroscience (ZSN), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany.
| | - Peter Valentin-Weigand
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
| | - Maren Seitz
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover 30173, Germany.
| |
Collapse
|
17
|
Haas B, Grenier D. Impact of Sub-Inhibitory Concentrations of Amoxicillin on Streptococcus suis Capsule Gene Expression and Inflammatory Potential. Pathogens 2016; 5:pathogens5020037. [PMID: 27104570 PMCID: PMC4931388 DOI: 10.3390/pathogens5020037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis is an important swine pathogen and emerging zoonotic agent worldwide causing meningitis, endocarditis, arthritis and septicemia. Among the 29 serotypes identified to date, serotype 2 is mostly isolated from diseased pigs. Although several virulence mechanisms have been characterized in S. suis, the pathogenesis of S. suis infections remains only partially understood. This study focuses on the response of S. suis P1/7 to sub-inhibitory concentrations of amoxicillin. First, capsule expression was monitored by qRT-PCR when S. suis was cultivated in the presence of amoxicillin. Then, the pro-inflammatory potential of S. suis P1/7 culture supernatants or whole cells conditioned with amoxicillin was evaluated by monitoring the activation of the NF-κB pathway in monocytes and quantifying pro-inflammatory cytokines secreted by macrophages. It was found that amoxicillin decreased capsule expression in S. suis. Moreover, conditioning the bacterium with sub-inhibitory concentrations of amoxicillin caused an increased activation of the NF-κB pathway in monocytes following exposure to bacterial culture supernatants and to a lesser extent to whole bacterial cells. This was associated with an increased secretion of pro-inflammatory cytokines (CXCL8, IL-6, IL-1β) by macrophages. This study identified a new mechanism by which S. suis may increase its inflammatory potential in the presence of sub-inhibitory concentrations of amoxicillin, a cell wall-active antibiotic, thus challenging its use for preventive treatments or as growth factor.
Collapse
Affiliation(s)
- Bruno Haas
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada.
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec-Nature et Technologies (FRQNT), Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
18
|
Auger JP, Christodoulides M, Segura M, Xu J, Gottschalk M. Interactions of Streptococcus suis serotype 2 with human meningeal cells and astrocytes. BMC Res Notes 2015; 8:607. [PMID: 26502903 PMCID: PMC4624383 DOI: 10.1186/s13104-015-1581-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/14/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Streptococcus suis serotype 2 is an important porcine pathogen and emerging zoonotic agent responsible for meningitis, of which different sequence types predominate worldwide. Though bacterial meningitis is defined as an exacerbated inflammation of the meninges, the underlying astrocytes of the glia limitans superficialis may also be implicated. However, the interactions between this pathogen and human meningeal cells or astrocytes remain unknown. Furthermore, the roles of well-described virulence factors (capsular polysaccharide, suilysin and cell wall modifications) in these interactions have yet to be studied. Consequently, the interactions between S. suis serotype 2 and human meningeal cells or astrocytes were evaluated for the first time in order to better understand their involvement during meningitis in humans. RESULTS Streptococcus suis serotype 2 adhered to human meningeal cells and astrocytes; invasion of meningeal cells was rare however, whereas invasion of astrocytes was generally more frequent. Regardless of the interaction or cell type, differences were not observed between sequence types. Though the capsular polysaccharide modulated the adhesion to and invasion of meningeal cells and astrocytes, the suilysin and cell wall modifications only influenced astrocyte invasion. Surprising, S. suis serotype 2 induced little or no inflammatory response from both cell types, but this absence of inflammatory response was probably not due to S. suis-induced cell death. CONCLUSIONS Though S. suis serotype 2 interacted with human meningeal cells and astrocytes, there was no correlation between sequence type and interaction. Consequently, the adhesion to and invasion of human meningeal cells and astrocytes are strain-specific characteristics. As such, the meningeal cells of the leptomeninges and the astrocytes of the glia limitans superficialis may not be directly implicated in the inflammatory response observed during meningitis in humans.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK.
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases of Swine (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
19
|
Zhang Q, Yang Y, Yan S, Liu J, Xu Z, Yu J, Song Y, Zhang A, Jin M. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway. Front Microbiol 2015; 6:178. [PMID: 25806027 PMCID: PMC4353370 DOI: 10.3389/fmicb.2015.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/18/2015] [Indexed: 12/29/2022] Open
Abstract
Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Qiang Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Yujie Yang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Shuxian Yan
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Jiantao Liu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Zhongmin Xu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Junping Yu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Yajing Song
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Anding Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China ; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture Wuhan, China
| |
Collapse
|
20
|
Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence 2014; 5:477-97. [PMID: 24667807 PMCID: PMC4063810 DOI: 10.4161/viru.28595] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis.
Collapse
Affiliation(s)
- Youjun Feng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases & State Key Laboratory for Diagnosis and Treatment of Infectious Disease; First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, Zhejiang, PR China; Department of Medical Microbiology and Parasitology; Zhejiang University School of Medicine; Hangzhou, Zhejiang, PR China
| | - Huimin Zhang
- University of Illinois at Urbana-Champaign (UIUC); Urbana, IL USA
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine; Iowa State University; Ames, IA USA
| | - Shihua Wang
- College of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou, Fujian, PR China
| | - Min Cao
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| | - Dan Hu
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| | - Changjun Wang
- Department of Epidemiology; Research Institute for Medicine of Nanjing Command; Nanjing, Jiangsu, PR China
| |
Collapse
|
21
|
Zheng H, Lan R, Zheng X, Cui Z, Liu Z, Bai X, Ji S, Gottschalk M, Xu J. Comparative genomic hybridization identifies virulence differences in Streptococcus suis. PLoS One 2014; 9:e87866. [PMID: 24503649 PMCID: PMC3913679 DOI: 10.1371/journal.pone.0087866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen. However, identification of virulent S. suis strains is complicated because of the high diversity of the species. Here we evaluated the genetic difference among S. suis strains using comparative genomic hybridization (CGH) and virulence variation in vivo and in vitro. We showed that different clades differed in their ability to activate TLR2/6 in vitro and their capacity to induce cytokine production in vivo as well as their resistance to phagocytosis and survival in vivo. Our data showed the S. suis strains tested can be classified into three groups having differing levels of virulence: epidemic and highly virulent strains were clustered into clade Ia (epidemic and highly virulent group, E/HV group), virulent strains were clustered into clade Ib (virulent group, V group), and intermediately or weakly virulent strains were clustered into other clades (intermediately or weakly virulent group, I/WV group). Our study provided further insight into the genomic and virulence variation of S. suis.
Collapse
Affiliation(s)
- Han Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiao Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zhigang Cui
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zhijie Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xuemei Bai
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shaobo Ji
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de Montréal, Montréal, Québec, Canada
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Takeuchi D, Akeda Y, Nakayama T, Kerdsin A, Sano Y, Kanda T, Hamada S, Dejsirilert S, Oishi K. The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis. J Infect Dis 2013; 209:1509-19. [PMID: 24285845 DOI: 10.1093/infdis/jit661] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus suis is an emerging zoonotic pathogen, and causes sepsis and meningitis in humans. Although sequence type (ST) 1 and ST104 strains are capable of causing sepsis, ST1 strains commonly cause meningitis. In this study, we investigated the role of suilysin, a member of cholesterol-dependent cytolysins, in differential pathogenicity between ST1 and ST104 strains. METHODS The levels of transcription and translation of the sly gene and messenger RNA of both ST strains were compared by means of quantitative polymerase chain reaction and Western blotting. Survival rates and bacterial densities in brain were compared between mice infected with wild-type and sly-knockout ST1 strain. ST104 infections with or without complementation of suilysin were also assessed. RESULTS The amounts of suilysin produced by ST1 strains were much higher than those produced by ST104 strains. Lower production of suilysin by ST104 strains were attributed to the attenuated sly gene expression, which seemed to be associated with 2 nucleotide insertions in sly promoter region. Furthermore, suilysin contributed to the higher bacterial density and enhanced inflammation in brain and increased mortality. CONCLUSIONS Our data may explain why ST1 strains, but not ST104 strains, commonly cause meningitis and also suggest the contribution of suilysin to the pathogenesis of meningitis in humans.
Collapse
Affiliation(s)
- Dan Takeuchi
- Laboratory for Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Du H, Huang W, Xie H, Ye C, Jing H, Ren Z, Xu J. The genetically modified suilysin, rSLY(P353L), provides a candidate vaccine that suppresses proinflammatory response and reduces fatality following infection with Streptococcus suis. Vaccine 2013; 31:4209-15. [PMID: 23856333 DOI: 10.1016/j.vaccine.2013.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 01/13/2023]
Abstract
Streptococcus suis is a persistent global hazard in the swine industry and an emerging threat to public health. The high mortality in China following outbreaks of streptococcal toxic shock syndrome (STSS) underscores the urgency for effective prevention. A limited understanding of the pathogenesis of S. suis in STSS may explain the lack of biological products for prevention. Suilysin (SLY) is an important virulence factor in the pathogenesis of S. suis. To identify a candidate vaccine for S. suis-induced STSS, we constructed a recombinant non-hemolytic mutant of SLY that has hemagglutination activity, rSLY(P353L), and evaluated its ability to induce inflammatory response and prevent fatal S. suis infection in mice. The rSLY(P353L) mutant, as compared with hemolytic rSLY, elicited lower levels of IL-6, KC and IL-10 at 3h and 5h post-treatment (p<0.05), indicating that hemolytic activity is associated with rSLY-mediated inflammation. Furthermore, passive immunization with anti-SLY(P353L) antisera protected mice from acute death after infection with S. suis SC84 (p<0.05). Effects were not due to protection against tissue damage, as S. suis SC84 caused no detectable histopathological lesions in mice within 24h. However, immunization with rSLY(P353L) caused significantly reduced levels of KC and IL-1β at 6 and 9h post-challenge and IL-6 at 9h post-challenge (p<0.05). In conclusion, rSLY(P353L) may provide a potential vaccine for protection against S. suis-induced STSS due to its reduction in proinflammatory response early in S. suis infection.
Collapse
Affiliation(s)
- Huamao Du
- College of Biotechnology, Southwest University, Beibei, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Lachance C, Segura M, Gerber PP, Xu J, Gottschalk M. Toll-like receptor 2-independent host innate immune response against an epidemic strain of Streptococcus suis that causes a toxic shock-like syndrome in humans. PLoS One 2013; 8:e65031. [PMID: 23724118 PMCID: PMC3665724 DOI: 10.1371/journal.pone.0065031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/20/2013] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic agent causing meningitis and septicemia. Outbreaks in humans in China with atypical cases of streptococcal toxic shock-like syndrome have been described to be caused by a clonal epidemic S. suis strain characterized as sequence type (ST) 7 by multilocus sequence typing, different from the classical ST1 usually isolated in Europe. Previous in vitro studies showed that Toll-like receptor (TLR) 2 plays a major role in S. suis ST1 interactions with host cells. In the present study, the in vivo role of TLR2 in systemic infections caused by S. suis ST1 or ST7 strains using TLR2 deficient (TLR2(-/-)) mice was evaluated. TLR2-mediated recognition significantly contributes to the acute disease caused by the highly virulent S. suis ST1 strain, since the TLR2(-/-) mice remained unaffected when compared to wild type (WT) mice. The lack of mortality could not be associated with a lower bacterial burden; however, a significant decrease in the induction of pro-inflammatory mediators, as evaluated by microarray, real-time PCR and protein assays, was observed. On the other hand, TLR2(-/-) mice infected with the epidemic ST7 strain presented no significant differences regarding survival and expression of pro-inflammatory mediators when compared to the WT mice. Together, these results show a TLR2-independent host innate immune response to S. suis that depends on the strain.
Collapse
Affiliation(s)
- Claude Lachance
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Mariela Segura
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Pehuén Pereyra Gerber
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
25
|
Zheng H, Sun H, Dominguez-Punaro MDLC, Bai X, Ji S, Segura M, Xu J. Evaluation of the pathogenesis of meningitis caused by Streptococcus suis sequence type 7 using the infection of BV2 microglial cells. J Med Microbiol 2013; 62:360-368. [DOI: 10.1099/jmm.0.046698-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | | | - Xuemei Bai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Shaobo Ji
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Mariela Segura
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| |
Collapse
|
26
|
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259-79. [PMID: 22324994 DOI: 10.2217/fmb.11.149] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc & Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, CP5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | | | |
Collapse
|
27
|
Severe cochlear inflammation and vestibular syndrome in an experimental model of Streptococcus suis infection in mice. Eur J Clin Microbiol Infect Dis 2012; 31:2391-400. [PMID: 22382820 DOI: 10.1007/s10096-012-1581-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 02/04/2012] [Indexed: 12/31/2022]
Abstract
Hearing impairment is a common and frequently permanent sequel of Streptococcus suis meningitis in humans. Nevertheless, mechanisms underlying the development of cochlear damage have not been addressed so far. In the present work, we characterized a mouse model of suppurative labyrinthitis and meningitis induced by a systemic infection with S. suis and studied the impact of the injected bacterial dosage on the progression of such inflammatory events. We observed that high infection doses of bacteria lead to sustained bacteremia, with an increase in the permeability of the blood-labyrinth and blood-brain barriers, causing suppurative labyrinthitis and meningitis, respectively. However, in mice infected with a low dose of S. suis, bacteria disappeared quickly from blood, hence, cochlear inflammation and meningitis were not consistent features. This model of S. suis infection seems ideal to evaluate novel drugs that may help alleviate the negative consequences of such important sequelae of S. suis-induced meningitis and labyrinthitis.
Collapse
|
28
|
Zheng H, Luo X, Segura M, Sun H, Ye C, Gottschalk M, Xu J. The role of toll-like receptors in the pathogenesis of Streptococcus suis. Vet Microbiol 2011; 156:147-56. [PMID: 22055206 DOI: 10.1016/j.vetmic.2011.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/08/2011] [Accepted: 10/12/2011] [Indexed: 01/03/2023]
Abstract
Streptococcus suis is an important agent of swine and human meningitis. Sequence type (ST) 7 emerged in China and was responsible for the human epidemic caused by S. suis in 2005. The virulence of S. suis ST7 is greater than the wild type pathogenic S. suis, ST1; however, the mechanisms for this increased pathogenicity are unknown. The aim of this study was to determine the role of different toll-like receptors (TLRs) involved in regulating the host response to the S. suis infection and to speculate on differing mechanisms used by ST7 strains to induce disease. Here we compared two ST7 strains isolated in the 2005 Sichuan outbreak to two ST1 strains. Our data show TLR2, 6 and 9 are involved in the recognition of heat-killed S. suis independent of the ST type. We found the TLR-dependent cytokine production differed between the two types of strains using whole cell lysate proteins. TLR6 played a greater role in cytokine production induced by the whole cell lysate proteins from the ST7 strain than in that induced by the ST1 strain lysates. The data suggest that mechanisms of inflammation induced by S. suis strains differ where this will be useful in designing efficient strategies in combating streptococcal toxic shock-like syndrome caused by the S. suis ST7 strains.
Collapse
Affiliation(s)
- Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | | | | | | | | | | | | |
Collapse
|