1
|
Yamazaki N, Takahashi T, Misu T, Nishikawa Y. Novel Automated Chemiluminescent Immunoassay for the Detection of Autoantibodies Against Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders. Diagnostics (Basel) 2025; 15:298. [PMID: 39941228 PMCID: PMC11816824 DOI: 10.3390/diagnostics15030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-related neurological disease that primarily affects the optic nerve and spinal cord. According to current international consensus guidelines for NMOSD, confirming the presence of aquaporin-4 immunoglobulin G antibody (AQP4-IgG) is one of the most important diagnostic criteria because AQP4-IgG is a significant diagnostic biomarker of NMOSD. Several assays are currently available for detecting AQP4-IgG, including cell-based assays (CBAs) and enzyme-linked immunosorbent assays (ELISAs). However, each assay has certain disadvantages, including insufficient sensitivity and specificity, the need for sophisticated techniques, and semi-quantitative results. Methods: We developed a fully automated chemiluminescent enzyme immunoassay (CLEIA) to detect AQP4-IgG (AQP4-CLEIA). This assay utilizes the recombinant antigen purified from the newly generated AQP4-M23 stably expressing Chinese hamster ovary cell line and an anti-AQP4 monoclonal antibody as a calibrator. Results: In analytical performance studies, the assay demonstrates good precision and linearity over the entire measurement range. Moreover, this assay showed no high-dose hook effect and interference from endogenous substances. In clinical validation studies, patients with AQP4-IgG positive NMOSD, multiple sclerosis, or myelin oligodendrocyte glycoprotein antibody-associated disorder and healthy individuals were tested. A cutoff value of 10.0 U/mL was determined by receiver operating characteristic curves based on the results of a microscopic live CBA. The sensitivity and specificity for AQP4-IgG-positive NMOSD were 97.0% and 100.0%, respectively, at the cutoff value. Conclusions: The results suggest that AQP4-CLEIA is a convenient automated method for measuring AQP4-IgG titers in hospitals and clinical laboratories, offering an effective alternative to the gold-standard CBA.
Collapse
Affiliation(s)
- Nozomi Yamazaki
- Medical & Biological Laboratories Co., Ltd., Tokyo 105-0012, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa 992-1202, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | | |
Collapse
|
2
|
Namatame C, Abe Y, Miyasaka Y, Takai Y, Matsumoto Y, Takahashi T, Mashimo T, Misu T, Fujihara K, Yasui M, Aoki M. Humanized-Aquaporin-4-Expressing Rat Created by Gene-Editing Technology and Its Use to Clarify the Pathology of Neuromyelitis Optica Spectrum Disorder. Int J Mol Sci 2024; 25:8169. [PMID: 39125739 PMCID: PMC11311328 DOI: 10.3390/ijms25158169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Conventional rodent neuromyelitis optica spectrum disorder (NMOSD) models using patient-derived immunoglobulin G (IgG) are potentially affected by the differences between the human and rodent aquaporin-4 (AQP4) extracellular domains (ECDs). We hypothesized that the humanization of AQP4 ECDs would make the rodent model lesions closer to human NMOSD pathology. Humanized-AQP4-expressing (hAQP4) rats were generated using genome-editing technology, and the human AQP4-specific monoclonal antibody (mAb) or six patient-derived IgGs were introduced intraperitoneally into hAQP4 rats and wild-type Lewis (WT) rats after immunization with myelin basic protein and complete Freund's adjuvant. Human AQP4-specific mAb induced astrocyte loss lesions specifically in hAQP4 rats. The patient-derived IgGs also induced NMOSD-like tissue-destructive lesions with AQP4 loss, demyelination, axonal swelling, complement deposition, and marked neutrophil and macrophage/microglia infiltration in hAQP4 rats; however, the difference in AQP4 loss lesion size and infiltrating cells was not significant between hAQP4 and WT rats. The patient-derived IgGs bound to both human and rat AQP4 M23, suggesting their binding to the shared region of human and rat AQP4 ECDs. Anti-AQP4 titers positively correlated with AQP4 loss lesion size and neutrophil and macrophage/microglia infiltration. Considering that patient-derived IgGs vary in binding sites and affinities and some of them may not bind to rodent AQP4, our hAQP4 rat is expected to reproduce NMOSD-like pathology more accurately than WT rats.
Collapse
Affiliation(s)
- Chihiro Namatame
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, Suita 565-0871, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yuki Matsumoto
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa 992-1202, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis & Therapeutics, Fukushima Medical University, Fukushima 960-1295, Japan
- Multiple Sclerosis & Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama 963-8563, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
3
|
Li SJ, Wu YL, Chen JH, Shen SY, Duan J, Xu HE. Autoimmune diseases: targets, biology, and drug discovery. Acta Pharmacol Sin 2024; 45:674-685. [PMID: 38097717 PMCID: PMC10943205 DOI: 10.1038/s41401-023-01207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/20/2023] [Indexed: 03/17/2024]
Abstract
Autoimmune diseases (AIDs) arise from a breakdown in immunological self-tolerance, wherein the adaptive immune system mistakenly attacks healthy cells, tissues and organs. AIDs impose excessive treatment costs and currently rely on non-specific and universal immunosuppression, which only offer symptomatic relief without addressing the underlying causes. AIDs are driven by autoantigens, targeting the autoantigens holds great promise in transforming the treatment of these diseases. To achieve this goal, a comprehensive understanding of the pathogenic mechanisms underlying different AIDs and the identification of specific autoantigens are critical. In this review, we categorize AIDs based on their underlying causes and compile information on autoantigens implicated in each disease, providing a roadmap for the development of novel immunotherapy regimens. We will focus on type 1 diabetes (T1D), which is an autoimmune disease characterized by irreversible destruction of insulin-producing β cells in the Langerhans islets of the pancreas. We will discuss insulin as possible autoantigen of T1D and its role in T1D pathogenesis. Finally, we will review current treatments of TID and propose a potentially effective immunotherapy targeting autoantigens.
Collapse
Affiliation(s)
- Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, 350000, China.
| | - Yan-Li Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Juan-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Yi Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
4
|
Zakani M, Nigritinou M, Ponleitner M, Takai Y, Hofmann D, Hillebrand S, Höftberger R, Bauer J, Lasztoczi B, Misu T, Kasprian G, Rommer P, Bradl M. Paths to hippocampal damage in neuromyelitis optica spectrum disorders. Neuropathol Appl Neurobiol 2023; 49:e12893. [PMID: 36811295 PMCID: PMC10947283 DOI: 10.1111/nan.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
AIMS Many patients with neuromyelitis optica spectrum disorders (NMOSD) suffer from cognitive impairment affecting memory, processing speed and attention and suffer from depressive symptoms. Because some of these manifestations could trace back to the hippocampus, several magnetic resonance imaging (MRI) studies have been performed in the past, with a number of groups describing volume loss of the hippocampus in NMOSD patients, whereas others did not observe such changes. Here, we addressed these discrepancies. METHODS We performed pathological and MRI studies on the hippocampi of NMOSD patients, combined with detailed immunohistochemical analysis of hippocampi from experimental models of NMOSD. RESULTS We identified different pathological scenarios for hippocampal damage in NMOSD and its experimental models. In the first case, the hippocampus was compromised by the initiation of astrocyte injury in this brain region and subsequent local effects of microglial activation and neuronal damage. In the second case, loss of hippocampal volume was seen by MRI in patients with large tissue-destructive lesions in the optic nerves or the spinal cord, and the pathological work-up of tissue derived from a patient with such lesions revealed subsequent retrograde neuronal degeneration affecting different axonal tracts and neuronal networks. It remains to be seen whether remote lesions and associated retrograde neuronal degeneration on their own are sufficient to cause extensive volume loss of the hippocampus, or whether they act in concert with small astrocyte-destructive, microglia-activating lesions in the hippocampus that escape detection by MRI, either due to their small size or due to the chosen time window for examination. CONCLUSIONS Different pathological scenarios can culminate in hippocampal volume loss in NMOSD patients.
Collapse
Affiliation(s)
- Mona Zakani
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Magdalini Nigritinou
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | | | - Yoshiki Takai
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Daniel Hofmann
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Sophie Hillebrand
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Romana Höftberger
- Department of Neurology, Division of Neuropathology and NeurochemistryMedical University of ViennaViennaAustria
| | - Jan Bauer
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Balint Lasztoczi
- Division of Cognitive Neurobiology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Tatsuro Misu
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Gregor Kasprian
- Division of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Monika Bradl
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
5
|
Abe Y, Yasui M. Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders: A Target of Autoimmunity in the Central Nervous System. Biomolecules 2022; 12:biom12040591. [PMID: 35454180 PMCID: PMC9030581 DOI: 10.3390/biom12040591] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of a specific autoantibody in patients with neuromyelitis optica spectrum disorder (NMOSD) in 2004, the water channel aquaporin-4 (AQP4) has attracted attention as a target of autoimmune diseases of the central nervous system. In NMOSD, the autoantibody (NMO-IgG) binds to the extracellular loops of AQP4 as expressed in perivascular astrocytic end-feet and disrupts astrocytes in a complement-dependent manner. NMO-IgG is an excellent marker for distinguishing the disease from other inflammatory demyelinating diseases, such as multiple sclerosis. The unique higher-order structure of AQP4—called orthogonal arrays of particles (OAPs)—as well as its subcellular localization may play a crucial role in the pathogenesis of the disease. Recent studies have also demonstrated complement-independent cytotoxic effects of NMO-IgG. Antibody-induced endocytosis of AQP4 has been suggested to be involved in this mechanism. This review focuses on the binding properties of antibodies that recognize the extracellular region of AQP4 and the characteristics of AQP4 that are implicated in the pathogenesis of NMOSD.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Global Research Institute, Tokyo 108-8345, Japan
- Correspondence: (Y.A.); (M.Y.); Tel.: +81-3-5363-3751 (M.Y.)
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Global Research Institute, Tokyo 108-8345, Japan
- Correspondence: (Y.A.); (M.Y.); Tel.: +81-3-5363-3751 (M.Y.)
| |
Collapse
|
6
|
Cu 1+, but not Cu 2+ is capable of inhibition of AQP4 permeability in an in vitro CHO cell based model. Biochem Biophys Rep 2021; 28:101132. [PMID: 34557603 PMCID: PMC8446781 DOI: 10.1016/j.bbrep.2021.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aquaporin 4 (AQP4) is an important water channel in the central nervous system which is implicated in several neurological disorders. Due to its significance, the identification of molecules which are able to modulate its activity is quite important for potential therapeutic applications. Here we used a novel screening method involving CHO cell lines which stably express AQP4 to test for potential molecules of interest. Using this method we identified a metal ion, Cu1+, which is able to inhibit AQP4 activity in a cell model, an interaction which has not been previously described. This inhibition was effective at concentrations greater than 500 nM in the CHO cell model, and was confirmed in a proteoliposome based model. Furthermore, the binding sites for Cu1+ inhibition of AQP4 are identified as cysteine 178 and cysteine 253 on the intracellular domain of the protein via the synthesis of AQP4 containing point mutations to remove these cysteines. These results suggest that Cu1+ is able to access intracellular binding sites and inhibit AQP4 in a cell based model. Cu1+ inhibits water permeability through AQP4 in a novel in vitro cell model. Inhibition is mediated by binding to C178 and C253 on the AQP4 intracellular domain. Other metal ions, including Cu2+, do not inhibit AQP4 in in vitro cell models.
Collapse
|
7
|
Ramadhanti J, Yamada T, Yasui M, Nuriya M. Differentially regulated pools of aquaporin-4 (AQP4) proteins in the cerebral cortex revealed by biochemical fractionation analyses. J Pharmacol Sci 2021; 146:58-64. [PMID: 33858656 DOI: 10.1016/j.jphs.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022] Open
Abstract
Aquaporin-4 (AQP4) is a predominant water channel in the central nervous system. It regulates water movement in the brain and has been suggested to play critical roles in various pathological conditions. However, the molecular mechanisms underlying its regulation are not yet well understood. In this study, we biochemically characterized AQP4 in the brain using acute cortical brain slices prepared from mice. Using biochemical fractionation, we found that AQP4 is enriched in the detergent-resistant membrane (DRM) fraction that is not soluble in 1% Triton X-100. In contrast, β-dystroglycan and syntrophin, which are part of the dystrophin complex in the brain, primarily reside in the non-DRM fraction. DRM enrichment of AQP4 is insensitive to cholesterol depletion, suggesting that it is not tightly associated with lipid rafts. Furthermore, AQP4 in the DRM fraction is more enriched in the M23 isoform than in the non-DRM fraction. Finally, by employing oxygen-glucose deprivation (OGD), an in vitro model of ischemia, we examined the molecular changes of AQP4. Under OGD conditions, a reduction in AQP4 in the DRM fraction was observed before the total AQP4 protein level dropped. Our data therefore highlight the characteristics of two pools of AQP4 that are distinctly regulated under ischemic conditions.
Collapse
Affiliation(s)
- Julia Ramadhanti
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Biomedical Science, Medical Faculty, Universitas Padjadjaran, Jalan Professor Eijkman no.38, Bandung, 40161, Indonesia
| | - Tomoko Yamada
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, 240-8501, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan; Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan.
| |
Collapse
|
8
|
Chau S, Fujii A, Wang Y, Vandebroek A, Goda W, Yasui M, Abe Y. Di-lysine motif-like sequences formed by deleting the C-terminal domain of aquaporin-4 prevent its trafficking to the plasma membrane. Genes Cells 2021; 26:152-164. [PMID: 33474763 DOI: 10.1111/gtc.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 11/30/2022]
Abstract
Aquaporin-4 is a transmembrane water channel protein, the C-terminal domain of which is facing the cytosol. In the process of investigating the role of the C-terminal domain of aquaporin-4 with regard to intracellular trafficking, we observed that a derivative of aquaporin-4, in which the C-terminal 53 amino acids had been removed (Δ271-323), was localized to intracellular compartments, including the endoplasmic reticulum, but was not expressed on the plasma membranes. This was determined by immunofluorescence staining and labeling of the cells with monoclonal antibody specifically recognizing the extracellular domain of aquaporin-4, followed by confocal microscopy and flow cytometry. Deletion of additional amino acids in the C-terminal domain of aquaporin-4 led to its redistribution to the plasma membrane. This suggests that the effect of the 53-amino acid deletion on the subcellular localization of aquaporin-4 could be attributed to the formation of a signal at the C terminus that retained aquaporin-4 in intracellular compartments, rather than the loss of a signal required for plasma membrane targeting. Substitution of the lysine at position 268 with alanine could rescue the Δ271-323-associated retention in the cytosol, suggesting that the C-terminal sequence of the mutant served as a signal similar to a di-lysine motif.
Collapse
Affiliation(s)
- Simon Chau
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Fujii
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Yingqi Wang
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Arno Vandebroek
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Wakami Goda
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan.,Center for Water Biology & Medicine, Keio University Global Research Institute, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan.,Center for Water Biology & Medicine, Keio University Global Research Institute, Tokyo, Japan
| |
Collapse
|
9
|
Monoclonal Antibody-Based Treatments for Neuromyelitis Optica Spectrum Disorders: From Bench to Bedside. Neurosci Bull 2020; 36:1213-1224. [PMID: 32533450 DOI: 10.1007/s12264-020-00525-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Neuromyelitis optica (NMO)/NMO spectrum disorder (NMOSD) is a chronic, recurrent, antibody-mediated, inflammatory demyelinating disease of the central nervous system, characterized by optic neuritis and transverse myelitis. The binding of NMO-IgG with astrocytic aquaporin-4 (AQP4) functions directly in the pathogenesis of >60% of NMOSD patients, and causes astrocyte loss, secondary inflammatory infiltration, demyelination, and neuron death, potentially leading to paralysis and blindness. Current treatment options, including immunosuppressive agents, plasma exchange, and B-cell depletion, are based on small retrospective case series and open-label studies. It is noteworthy that monoclonal antibody (mAb) therapy is a better option for autoimmune diseases due to its high efficacy and tolerability. Although the pathophysiological mechanisms of NMOSD remain unknown, increasingly, therapeutic studies have focused on mAbs, which target B cell depletion, complement and inflammation cascade inactivation, blood-brain-barrier protection, and blockade of NMO-IgG-AQP4 binding. Here, we review the targets, characteristics, mechanisms of action, development, and potential efficacy of mAb trials in NMOSD, including preclinical and experimental investigations.
Collapse
|
10
|
Hillebrand S, Schanda K, Nigritinou M, Tsymala I, Böhm D, Peschl P, Takai Y, Fujihara K, Nakashima I, Misu T, Reindl M, Lassmann H, Bradl M. Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathol 2019; 137:467-485. [PMID: 30564980 PMCID: PMC6514074 DOI: 10.1007/s00401-018-1950-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022]
Abstract
It is well established that the binding of pathogenic aquaporin-4 (AQP4)-specific autoantibodies to astrocytes may initiate a cascade of events culminating in the destruction of these cells and in the formation of large tissue-destructive lesions typical for patients with neuromyelitis optica spectrum disorders (NMOSD). To date, not a single experimental study has shown that the systemic presence of the antibody alone can induce any damage to the central nervous system (CNS), while pathological studies on brains of NMOSD patients suggested that there might be ways for antibody entry and subsequent tissue damage. Here, we systemically applied a highly pathogenic, monoclonal antibody with high affinity to AQP4 over prolonged period of time to rats, and show that AQP4-abs can enter the CNS on their own, via circumventricular organs and meningeal or parenchymal blood vessels, that these antibodies initiate the formation of radically different lesions with AQP4 loss, depending on their mode and site of entry, and that lesion formation is much more efficient in the presence of encephalitogenic T-cell responses. We further demonstrate that the established tissue-destructive lesions trigger the formation of additional lesions by short and far reaching effects on blood vessels and their branches, and that AQP4-abs have profound effects on the AQP4 expression in peripheral tissues which counter-act possible titer loss by antibody absorption outside the CNS. Cumulatively, these data indicate that directly induced pathological changes caused by AQP4-abs inside and outside the CNS are efficient drivers of disease evolution in seropositive organisms.
Collapse
Affiliation(s)
- Sophie Hillebrand
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Magdalini Nigritinou
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Irina Tsymala
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Denise Böhm
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Patrick Peschl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
11
|
Aquaporin-4 Water Channel in the Brain and Its Implication for Health and Disease. Cells 2019; 8:cells8020090. [PMID: 30691235 PMCID: PMC6406241 DOI: 10.3390/cells8020090] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Aquaporin-4 (AQP4) is a water channel expressed on astrocytic endfeet in the brain. The role of AQP4 has been studied in health and in a range of pathological conditions. Interest in AQP4 has increased since it was discovered to be the target antigen in the inflammatory autoimmune disease neuromyelitis optica spectrum disorder (NMOSD). Emerging data suggest that AQP4 may also be implicated in the glymphatic system and may be involved in the clearance of beta-amyloid in Alzheimer’s disease (AD). In this review, we will describe the role of AQP4 in the adult and developing brain as well as its implication for disease.
Collapse
|
12
|
Comparison of diffusion-weighted MRI and anti-Stokes Raman scattering (CARS) measurements of the inter-compartmental exchange-time of water in expression-controlled aquaporin-4 cells. Sci Rep 2018; 8:17954. [PMID: 30560905 PMCID: PMC6298983 DOI: 10.1038/s41598-018-36264-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/19/2018] [Indexed: 12/30/2022] Open
Abstract
We performed multi-b and multi-diffusion-time diffusion-weighted magnetic resonance imaging on aquaporin-4-expressing (AQ) and -non-expressing (noAQ) cells, and demonstrated a clear difference between the signals from the two cell types. The data were interpreted using a two-compartment (intra and extracellular spaces) model including inter-compartmental exchange. It was also assumed that restricted diffusion of water molecules inside the cells leads to the intracellular diffusion coefficient being inversely proportional to the diffusion-time. Estimates of the water-exchange-times obtained with this model are compared to those measured using an independent optical imaging technique (coherent anti-Stokes Raman scattering imaging, CARS). For both techniques it was found that the exchange-time estimated for the noAQ cells was significantly longer than that for the AQ cells.
Collapse
|
13
|
Sato J, Horibe S, Kawauchi S, Sasaki N, Hirata KI, Rikitake Y. Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and α-syntrophin in aquaporin-4 expression. J Neurochem 2018; 147:495-513. [PMID: 29981530 DOI: 10.1111/jnc.14548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/27/2018] [Accepted: 06/27/2018] [Indexed: 01/13/2023]
Abstract
In the central nervous system, astrocytes extend endfoot processes to ensheath synapses and microvessels. However, the mechanisms underlying this astrocytic process extension remain unclear. A limitation of the use of 2D cultured astrocytes for such studies is that they display a flat, epithelioid morphology, with no or very few processes, which is markedly different from the stellate morphology observed in vivo. In this study, we obtained 2D cultured astrocytes with a rich complexity of processes using differentiation of neurospheres in vitro. Using these process-bearing astrocytes, we showed that laminin, an extracellular matrix molecule abundant in perivascular sites, efficiently induced process formation and branching. Specifically, the numbers of the first- and second-order branch processes and the maximal process length of astrocytes were increased when cultured on laminin, compared with when they were cultured on poly-L-ornithine or type IV collagen. Knockdown of dystroglycan or α-syntrophin, constituent proteins of the dystrophin-glycoprotein complex that provides a link between laminin and the cytoskeleton, using small interference RNAs inhibited astrocyte process formation and branching, and down-regulated expression of the water channel aquaporin-4 (AQP4). Direct knockdown and a specific inhibitor of AQP4 also inhibited, whereas over-expression of AQP4 enhanced astrocyte process formation and branching. Knockdown of AQP4 decreased phosphorylation of focal adhesion kinase (FAK) that is critically implicated in actin remodeling. Collectively, these results indicate that the laminin-dystroglycan-α-syntrophin-AQP4 axis is important for process formation and branching of 2D cultured astrocytes. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Read the Editorial Highlight for this article on page 436.
Collapse
Affiliation(s)
- Junya Sato
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Sayo Horibe
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Shoji Kawauchi
- Educational Center for Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan.,Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
14
|
Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1326-1334. [PMID: 28477975 DOI: 10.1016/j.bbamem.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023]
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which most patients have serum autoantibodies (called NMO-IgG) that bind to astrocyte water channel aquaporin-4 (AQP4). A potential therapeutic strategy in NMO is to block the interaction of NMO-IgG with AQP4. Building on recent observation that some single-point and compound mutations of the AQP4 extracellular loop C prevent NMO-IgG binding, we carried out comparative Molecular Dynamics (MD) investigations on three AQP4 mutants, TP137-138AA, N153Q and V150G, whose 295-ns long trajectories were compared to that of wild type human AQP4. A robust conclusion of our modeling is that loop C mutations affect the conformation of neighboring extracellular loop A, thereby interfering with NMO-IgG binding. Analysis of individual mutations suggested specific hydrogen bonding and other molecular interactions involved in AQP4-IgG binding to AQP4.
Collapse
|
15
|
Nagata N, Iwanari H, Kumagai H, Kusano-Arai O, Ikeda Y, Aritake K, Hamakubo T, Urade Y. Generation and characterization of an antagonistic monoclonal antibody against an extracellular domain of mouse DP2 (CRTH2/GPR44) receptors for prostaglandin D2. PLoS One 2017; 12:e0175452. [PMID: 28394950 PMCID: PMC5386288 DOI: 10.1371/journal.pone.0175452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin D2 (PGD2) is a lipid mediator involved in sleep regulation and inflammation. PGD2 interacts with 2 types of G protein-coupled receptors, DP1 and DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on T helper type 2 cells)/GPR44 to show a variety of biological effects. DP1 activation leads to Gs-mediated elevation of the intracellular cAMP level, whereas activation of DP2 decreases this level via the Gi pathway; and it also induces G protein-independent, arrestin-mediated cellular responses. Activation of DP2 by PGD2 causes the progression of inflammation via the recruitment of lymphocytes by enhancing the production of Th2-cytokines. Here we developed monoclonal antibodies (MAbs) against the extracellular domain of mouse DP2 by immunization of DP2-null mutant mice with DP2-overexpressing BAF3, murine interleukin-3 dependent pro-B cells, to reduce the generation of antibodies against the host cells by immunization of mice. Moreover, we immunized DP2-KO mice to prevent immunological tolerance to mDP2 protein. After cell ELISA, immunocytochemical, and Western blot analyses, we successfully obtained a novel monoclonal antibody, MAb-1D8, that specifically recognized native mouse DP2, but neither human DP2 nor denatured mouse DP2, by binding to a particular 3D receptor conformation formed by the N-terminus and extracellular loop 1, 2, and 3 of DP2. This antibody inhibited the binding of 0.5 nM [3H]PGD2 to mouse DP2 (IC50 = 46.3 ± 18.6 nM), showed antagonistic activity toward 15(R)-15-methyl PGD2-induced inhibition of 300 nM forskolin-activated cAMP production (IC50 = 16.9 ± 2.6 nM), and gave positive results for immunohistochemical staining of DP2-expressing CD4+ Th2 lymphocytes that had accumulated in the kidney of unilateral ureteral obstruction model mice. This monoclonal antibody will be very useful for in vitro and in vivo studies on DP2-mediated diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibody Specificity
- CD4-Positive T-Lymphocytes/metabolism
- CHO Cells
- COS Cells
- Cricetulus
- Cyclic AMP/metabolism
- Disease Models, Animal
- Epitope Mapping
- HEK293 Cells
- Humans
- Hybridomas/metabolism
- Immunization
- Immunohistochemistry
- Kidney/metabolism
- Kidney/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Precursor Cells, B-Lymphoid/immunology
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Ureteral Obstruction/immunology
- Ureteral Obstruction/metabolism
- Ureteral Obstruction/pathology
- beta-Arrestins/metabolism
Collapse
Affiliation(s)
- Nanae Nagata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
- * E-mail: (YU); (NN)
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Kumagai
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Aritake
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
- * E-mail: (YU); (NN)
| |
Collapse
|
16
|
Pisani F, Simone L, Gargano CD, De Bellis M, Cibelli A, Mola MG, Catacchio G, Frigeri A, Svelto M, Nicchia GP. Role of the H-bond between L53 and T56 for Aquaporin-4 epitope in Neuromyelitis Optica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:368-376. [PMID: 28027883 DOI: 10.1016/j.bbamem.2016.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/23/2016] [Indexed: 11/29/2022]
Abstract
Aquaporin-4 (AQP4) is the CNS water channel organized into well-ordered protein aggregates called Orthogonal Arrays of Particles (OAPs). Neuromyelitis Optica (NMO) is an autoimmune disease caused by anti-OAP autoantibodies (AQP4-IgG). Molecular Dynamics (MD) simulations have identified an H-bond between L53 and T56 as the key for AQP4 epitope and therefore of potential interest for drug design in NMO field. In the present study, we have experimentally tested this MD-prediction using the classic mutagenesis approach. We substituted T56 with V56 and tested this mutant for AQP4 aggregates and AQP4-IgG binding. gSTED super-resolution microscopy showed that the mutation does not affect AQP4 aggregate dimension; immunofluorescence and cytofluorimetric analysis demonstrated its unaltered AQP4-IgG binding, therefore invalidating the MD-prediction. We later investigated whether AQP4, expressed in Sf9 insect and HEK-293F cells, is able to correctly aggregate before and after the purification steps usually applied to obtain AQP4 crystal. The results demonstrated that AQP4-IgG recognizes AQP4 expressed in Sf9 and HEK-293F cells by immunofluorescence even though BN-PAGE analysis showed that AQP4 forms smaller aggregates when expressed in insect cells compared to mammalian cell lines. Notably, after AQP4 purification, from both insect and HEK-293F cells, no aggregates are detectable by BN-PAGE and AQP4-IgG binding is impaired in sandwich ELISA assays. All together these results indicate that 1) the MD prediction under analysis is not supported by experimental data and 2) the procedure to obtain AQP4 crystals might affect its native architecture and, as a consequence, MD simulations. In conclusion, given the complex nature of the AQP4 epitope, MD might not be the suitable for molecular medicine advances in NMO.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Laura Simone
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; IRCCS "Casa Sollievo della Sofferenza", Research Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Concetta Domenica Gargano
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Cibelli
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomo Catacchio
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| |
Collapse
|
17
|
Neuroimmunological Implications of AQP4 in Astrocytes. Int J Mol Sci 2016; 17:ijms17081306. [PMID: 27517922 PMCID: PMC5000703 DOI: 10.3390/ijms17081306] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed.
Collapse
|
18
|
Huang P, Takai Y, Kusano-Arai O, Ramadhanti J, Iwanari H, Miyauchi T, Sakihama T, Han JY, Aoki M, Hamakubo T, Fujihara K, Yasui M, Abe Y. The binding property of a monoclonal antibody against the extracellular domains of aquaporin-4 directs aquaporin-4 toward endocytosis. Biochem Biophys Rep 2016; 7:77-83. [PMID: 28955892 PMCID: PMC5613303 DOI: 10.1016/j.bbrep.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/03/2022] Open
Abstract
Neuromyelitis optica (NMO), an autoimmune disease of the central nervous system, is characterized by an autoantibody called NMO-IgG that recognizes the extracellular domains (ECDs) of aquaporin-4 (AQP4). In this study, monoclonal antibodies (mAbs) against the ECDs of mouse AQP4 were established by a baculovirus display method. Two types of mAb were obtained: one (E5415A) recognized both M1 and M23 isoforms, and the other (E5415B) almost exclusively recognized the square-array-formable M23 isoform. While E5415A enhanced endocytosis of both M1 and M23, followed by degradation in cells expressing AQP4, including astrocytes, E5415B did so to a much lesser degree, as determined by live imaging using fluorescence-labeled antibodies and by Western blotting of lysate of cells treated with these mAbs. E5415A promoted cluster formation of AQP4 on the cell surface prior to endocytosis as determined by immunofluorescent microscopic observation of bound mAbs to astrocytes as well as by Blue native PAGE analysis of AQP4 in the cells treated with the mAbs. These observations clearly indicate that an anti-AQP4-ECDs antibody possessing an ability to form a large cluster of AQP4 by cross-linking two or more tetramers outside the AQP4 arrays enhances endocytosis and the subsequent lysosomal degradation of AQP4. Two mAbs against the ECD of mAQP4 with different binding properties was established. One of them, E5415A, bound to mAQP4 independent of OAP-formation of AQP4. E5415A but not E5415B strongly enhanced endocytosis of endogenous AQP4 in astrocytes. E5415A formed large clusters of AQP4 cross-linking multiple AQP4 functional units. It is the cluster formation of AQP4 that triggers AQP4 endocytosis.
Collapse
Affiliation(s)
- Ping Huang
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Osamu Kusano-Arai
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Julia Ramadhanti
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroko Iwanari
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takayuki Miyauchi
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| | - Toshiko Sakihama
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Jing-Yan Han
- Department Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Takao Hamakubo
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
19
|
Kurosawa K, Misu T, Takai Y, Sato DK, Takahashi T, Abe Y, Iwanari H, Ogawa R, Nakashima I, Fujihara K, Hamakubo T, Yasui M, Aoki M. Severely exacerbated neuromyelitis optica rat model with extensive astrocytopathy by high affinity anti-aquaporin-4 monoclonal antibody. Acta Neuropathol Commun 2015; 3:82. [PMID: 26637322 PMCID: PMC4670539 DOI: 10.1186/s40478-015-0259-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
Introduction Neuromyelitis optica (NMO), an autoimmune astrocytopathic disease associated with anti-aquaporin-4 (AQP4) antibody, is characterized by extensive necrotic lesions preferentially involving the optic nerves and spinal cord. However, previous in-vivo experimental models injecting human anti-AQP4 antibodies only resulted in mild spinal cord lesions compared to NMO autopsied cases. Here, we investigated whether the formation of severe NMO-like lesions occurs in Lewis rats in the context of experimental autoimmune encephalomyelitis (EAE), intraperitoneally injecting incremental doses of purified human immunoglobulin-G from a NMO patient (hIgGNMO) or a high affinity anti-AQP4 monoclonal antibody (E5415A), recognizing extracellular domain of AQP4 made by baculovirus display method. Results NMO-like lesions were observed in the spinal cord, brainstem, and optic chiasm of EAE-rats with injection of pathogenic IgG (hIgGNMO and E5415A), but not in control EAE. Only in higher dose E5415A rats, there were acute and significantly severer clinical exacerbations (tetraparesis or moribund) compared with controls, within half day after the injection of pathogenic IgG. Loss of AQP4 was observed both in EAE rats receiving hIgGNMO and E5415A in a dose dependent manner, but the ratio of AQP4 loss in spinal sections became significantly larger in those receiving high dose E5415A up to about 50 % than those receiving low-dose E5415A or hIgGNMO less than 3 %. These lesions were also characterized by extensive loss of glial fibrillary acidic protein but relatively preserved myelin sheaths with perivascular deposition of IgG and C5b-9, which is compatible with post mortem NMO pathology. In high dose E5415A rats, massive neutrophil infiltration was observed especially at the lesion edge, and such lesions were highly vacuolated with partial demyelination and axonal damage. In contrast, such changes were absent in EAE rats receiving low-dose E5415A and hIgGNMO. Conclusions In the present study, we established a severe experimental NMO rat model with highly clinical exacerbation and extensive tissue destructive lesions typically observed in NMO patients, which has not adequately been realized in in-vivo rodent models. Our data suggest that the pathogenic antibodies could induce immune mediated astrocytopathy with mobilized neutrophils, resulted in early lesion expansion of NMO lesion with vacuolation and other tissue damages. (350/350) Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0259-2) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Miyazaki-Komine K, Takai Y, Huang P, Kusano-Arai O, Iwanari H, Misu T, Koda K, Mitomo K, Sakihama T, Toyama Y, Fujihara K, Hamakubo T, Yasui M, Abe Y. High avidity chimeric monoclonal antibodies against the extracellular domains of human aquaporin-4 competing with the neuromyelitis optica autoantibody, NMO-IgG. Br J Pharmacol 2015; 173:103-14. [PMID: 26398585 DOI: 10.1111/bph.13340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Most of the cases of neuromyelitis optica (NMO) are characterized by the presence of an autoantibody, NMO-IgG, which recognizes the extracellular domains of the water channel, aquaporin-4. Binding of NMO-IgG to aquaporin-4 expressed in end-feet of astrocytes leads to complement-dependent disruption of astrocytes followed by demyelination. One therapeutic option for NMO is to prevent the binding of NMO-IgG to aquaporin-4, using high-avidity, non-pathogenic-chimeric, monoclonal antibodies to this water channel. We describe here the development of such antibodies. EXPERIMENTAL APPROACH cDNAs encoding variable regions of heavy and light chains of monoclonal antibodies against the extracellular domains of human aquaporin-4 were cloned from hybridoma total RNA and fused to those encoding constant regions of human IgG1 and Igκ respectively. Then mammalian expression vectors were constructed to establish stable cell lines secreting mature chimeric antibodies. KEY RESULTS Original monoclonal antibodies showed high avidity binding to human aquaporin-4, as determined by ELISA. Live imaging using Alexa-Fluor-555-labelled antibodies revealed that the antibody D15107 more rapidly bound to cells expressing human aquaporin-4 than others and strongly enhanced endocytosis of this water channel, while D12092 also bound rapidly to human aquaporin-4 but enhanced endocytosis to a lesser degree. Chimeric D15107 prevented complement-dependent cytotoxicity induced by NMO-IgG from patient sera in vitro. CONCLUSIONS AND IMPLICATIONS We have established non-pathogenic, high-avidity, chimeric antibodies against the extracellular domains of human aquaporin-4, which provide a novel therapeutic option for preventing the progress and recurrence of NMO/NMO spectrum disorders.
Collapse
Affiliation(s)
- Kaori Miyazaki-Komine
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Ping Huang
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Kusano-Arai
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Institute of Immunology Co., Ltd., 1-1-10 Koraku, Bunkyo-ku, Tokyo, 112-0004, Japan
| | - Hiroko Iwanari
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tatsuro Misu
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Katsushi Koda
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo, 153-0041, Japan
| | - Katsuyuki Mitomo
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo, 153-0041, Japan
| | - Toshiko Sakihama
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takao Hamakubo
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
21
|
Mangiatordi GF, Alberga D, Siragusa L, Goracci L, Lattanzi G, Nicolotti O. Challenging AQP4 druggability for NMO-IgG antibody binding using molecular dynamics and molecular interaction fields. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1462-71. [PMID: 25839357 DOI: 10.1016/j.bbamem.2015.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/30/2022]
Abstract
Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability.
Collapse
Affiliation(s)
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica "M. Merlin", Università di Bari "Aldo Moro" and INFN, Via E. Orabona, 4, I-70126 Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy
| | - Lydia Siragusa
- Molecular Discovery Limited, 215 Marsh Road, Pinner, Middlesex, London HA5 5NE, UK
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Gianluca Lattanzi
- Dipartimento Interateneo di Fisica "M. Merlin", Università di Bari "Aldo Moro" and INFN, Via E. Orabona, 4, I-70126 Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Via Orabona, 4, Università di Bari "Aldo Moro", Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy.
| |
Collapse
|
22
|
Tom I, Estevez A, Bowman K, Gonzalez LC. Baculovirus display for discovery of low-affinity extracellular receptor-ligand interactions using protein microarrays. Anal Biochem 2015; 479:1-5. [PMID: 25797350 DOI: 10.1016/j.ab.2015.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
When used in conjunction with multivalent protein probes, protein microarrays offer a robust technology for discovery of low-affinity extracellular protein-protein interactions. Probes for receptor-matching screens generally consist of purified extracellular domains fused to affinity tags. Given that approximately two-thirds of extracellular proteins are transmembrane domain-containing proteins, it would be desirable to develop a system to express and display probe receptors in a native-like membrane environment. Toward this end, we evaluated baculovirus display as a platform for generating multivalent probes for protein microarray screens. Virion particles were generated displaying single-transmembrane domain receptors BTLA, CD200, and EFNB2, representing a range of affinities for their interacting partners. Virions directly labeled with Cy5 fluorophore were screened against a microarray containing more than 600 extracellular proteins, and the results were compared with data derived from soluble Fc protein or probe-coated protein A microbeads. An optimized protocol employing a blocking step with a nonrelated probe-expressing control baculovirus allowed identification of the expected interactions with a signal-to-noise ratio similar to or higher than those obtained with the other formats. Our results demonstrate that baculovirus display is suitable for detection of high- and low-affinity extracellular protein-protein interactions on protein microarrays. This platform eliminates the need for protein purification and provides a native-like lipid environment for membrane-associated receptors.
Collapse
Affiliation(s)
- Irene Tom
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Alberto Estevez
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Krista Bowman
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Lino C Gonzalez
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Abstract
Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system directed against astrocytes. Initially diagnosed in individuals with monophasic or relapsing optic neuritis and transverse myelitis, NMO is now recognized as a demyelinating disorder with pleiotropic presentations due to the identification of a specific autoantibody response against the astrocyte water channel aquaporin-4 in the majority of individuals. As visual impairment and neurologic dysfunction in NMO are commonly severe, aggressive treatment of relapses and prophylactic immunomodulatory therapy are the focus of treatment. Although there are no approved treatments for NMO, medications and therapeutic interventions for acute and chronic treatment have been the subject of retrospective study and case reports. The goal of this review is to familiarize the reader with biologic and clinical data supporting current treatments in NMO and highlight future strategies based on advancements in our understanding of NMO pathogenesis.
Collapse
|
24
|
Hamakubo T, Kusano-Arai O, Iwanari H. Generation of antibodies against membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1920-1924. [PMID: 25135856 DOI: 10.1016/j.bbapap.2014.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/30/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022]
Abstract
The monoclonal antibody has become an important therapeutic in the treatment of both hematological malignancies and solid tumors. The recent success of antibody-drug conjugates (ADCs) has broadened the extent of the potential target molecules in cancer immunotherapy. As a result, even molecules of low abundance have become targets for cytotoxic reagents. The multi-pass membrane proteins are an emerging target for the next generation antibody therapeutics. One outstanding challenge is the difficulty in preparing a sufficient amount of these membrane proteins so as to be able to generate the functional antibody. We have pursued the expression of various membrane proteins on the baculovirus particle and the utilization of displayed protein for immunization. The strong antigenicity of the virus acts either as a friend or foe in the making of an efficient antibody against an immunologically tolerant antigen. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan.
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Institute of Immunology Co. Ltd, .1-1-10 Koraku, Bunkyo, Tokyo 112-0004, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
25
|
Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014; 176:149-64. [PMID: 24666204 DOI: 10.1111/cei.12271] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
The term 'neuromyelitis optica' ('Devic's syndrome', NMO) refers to a syndrome characterized by optic neuritis and myelitis. In recent years, the condition has raised enormous interest among scientists and clinical neurologists, fuelled by the detection of a specific serum immunoglobulin (Ig)G reactivity (NMO-IgG) in up to 80% of patients with NMO. These autoantibodies were later shown to target aquaporin-4 (AQP4), the most abundant water channel in the central nervous system (CNS). Here we give an up-to-date overview of the clinical and paraclinical features, immunopathogenesis and treatment of NMO. We discuss the widening clinical spectrum of AQP4-related autoimmunity, the role of magnetic resonance imaging (MRI) and new diagnostic means such as optical coherence tomography in the diagnosis of NMO, the role of NMO-IgG, T cells and granulocytes in the pathophysiology of NMO, and outline prospects for new and emerging therapies for this rare, but often devastating condition.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
26
|
Ramadhanti J, Huang P, Kusano-Arai O, Iwanari H, Sakihama T, Misu T, Fujihara K, Hamakubo T, Yasui M, Abe Y. A novel monoclonal antibody against the C-terminal region of aquaporin-4. Monoclon Antib Immunodiagn Immunother 2014; 32:270-6. [PMID: 23909421 DOI: 10.1089/mab.2013.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquaporin-4 (AQP4), the most abundant water channel in the brain, plays a central role in water homeostasis, neuronal activity, and migration of astrocytes in the central nervous system. Recent studies have demonstrated that AQP4 is a target of an autoantibody specifically detected in an autoimmune neurologic disease called neuromyelitis optica. Here we have generated a monoclonal antibody (MAb) against the C-terminal region of AQP4 using a baculovirus expressing mouse AQP4 as an immunogen. This antibody (clone E5206) recognized both human and mouse AQP4s in a denaturing condition and was able to precipitate AQP4 from cell lysates of CHO cells stably expressing AQP4. Western blot analysis using deletion mutants revealed that the epitope was located within a region between Asp(303) and Leu(320) in the C-terminal tail of AQP4. Although clone E5206 could not be used for immunostaining when cells or tissues were fixed with 4% paraformaldehyde or 10% formalin, it could be used when cells were fixed with 10% trichloroacetic acid and when a formalin-fixed tissue section was pretreated with antigen-retrieval reagents. This MAb can be a valuable tool for analysis of AQP4 in a variety of physiological and pathophysiological contexts, in human tissues and organs as well as in rodent models, both in vitro and in vivo.
Collapse
Affiliation(s)
- Julia Ramadhanti
- Department of Pharmacology, School of Medicine, Keio University, Shinjyuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Unprecedented cell-selection using ultra-quick freezing combined with aquaporin expression. PLoS One 2014; 9:e87644. [PMID: 24558371 PMCID: PMC3928110 DOI: 10.1371/journal.pone.0087644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
Freezing is usually used for preservation and storage of biological samples; however, this process may have some adverse effects such as cell membrane damage. Aquaporin (AQP), a water channel protein, has been suggested to play some roles for cryopreservation although its molecular mechanism remains unclear. Here we show that membrane damage caused by ultra-quick freezing is rescued by the expression of AQP4. We next examine if the expression of AQP combined with ultra-quick freezing can be used to select cells efficiently under freezing conditions where most cells are died. CHO cells stably expressing AQP4 were exclusively selected from mixed cell cultures. Having identified the increased expression of AQP4 during ES cell differentiation into neuro-ectoderm using bioinformatics, we confirmed the improved survival of differentiated ES cells with AQP4 expression. Finally we show that CHO cells transiently transfected with Endothelin receptor A and Aqp4 were also selected and concentrated by multiple cycles of freezing/thawing, which was confirmed with calcium imaging in response to endothelin. Furthermore, we found that the expression of AQP enables a reduction in the amount of cryoprotectants for freezing, thereby decreasing osmotic stress and cellular toxicity. Taken together, we propose that this simple but efficient and safe method may be applicable to the selection of mammalian cells for applications in regenerative medicine as well as cell-based functional assays or drug screening protocols.
Collapse
|
28
|
Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, Borisow N, Kleiter I, Aktas O, Kümpfel T. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2013; 261:1-16. [PMID: 24272588 PMCID: PMC3895189 DOI: 10.1007/s00415-013-7169-7] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/26/2022]
Abstract
Neuromyelitis optica (NMO, Devic’s syndrome), long considered a clinical variant of multiple sclerosis, is now regarded as a distinct disease entity. Major progress has been made in the diagnosis and treatment of NMO since aquaporin-4 antibodies (AQP4-Ab; also termed NMO-IgG) were first described in 2004. In this review, the Neuromyelitis Optica Study Group (NEMOS) summarizes recently obtained knowledge on NMO and highlights new developments in its diagnosis and treatment, based on current guidelines, the published literature and expert discussion at regular NEMOS meetings. Testing of AQP4-Ab is essential and is the most important test in the diagnostic work-up of suspected NMO, and helps to distinguish NMO from other autoimmune diseases. Furthermore, AQP4-Ab testing has expanded our knowledge of the clinical presentation of NMO spectrum disorders (NMOSD). In addition, imaging techniques, particularly magnetic resonance imaging of the brain and spinal cord, are obligatory in the diagnostic workup. It is important to note that brain lesions in NMO and NMOSD are not uncommon, do not rule out the diagnosis, and show characteristic patterns. Other imaging modalities such as optical coherence tomography are proposed as useful tools in the assessment of retinal damage. Therapy of NMO should be initiated early. Azathioprine and rituximab are suggested as first-line treatments, the latter being increasingly regarded as an established therapy with long-term efficacy and an acceptable safety profile in NMO patients. Other immunosuppressive drugs, such as methotrexate, mycophenolate mofetil and mitoxantrone, are recommended as second-line treatments. Promising new therapies are emerging in the form of anti-IL6 receptor, anti-complement or anti-AQP4-Ab biologicals.
Collapse
Affiliation(s)
- Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|