1
|
Blythe EN, Barreira C, Fink C, Brown A, Weaver LC, Dekaban GA. Humanized anti-CD11d monoclonal antibodies suitable for basic research and therapeutic applications. Antib Ther 2025; 8:26-39. [PMID: 39839909 PMCID: PMC11744312 DOI: 10.1093/abt/tbae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Background Immunomodulatory agents targeting the CD11d/CD18 integrin are in development for the treatment of several pathophysiologies including neurotrauma, sepsis, and atherosclerosis. Murine anti-human CD11d therapeutic antibodies have successfully improved neurological and behavioral recovery in rodent neurotrauma models. Here, we present the progression of CD11d-targeted agents with the development of humanized anti-CD11d monoclonal antibodies. Methods Primary human leukocytes and the THP-1 monocytic cell line were used to determine the binding of the CD11d antibodies, determine binding affinities, and assess outside-in signaling induced by CD11d antibody binding. In addition, a rat model of spinal cord injury was employed to demonstrate that the humanized monoclonal antibodies retained their therapeutic function in vivo. These determinations were made using a combination of flow cytometry, western blotting, immunohistochemistry, biochemical assays, and a locomotor behavioral assessment. Results Flow cytometric analysis demonstrated that the humanized anti-CD11d clones bind both human monocytes and neutrophils. Using a THP-1 model, the humanized anti-CD11d-2 clone was then determined to bind both the active and inactive CD11d/CD18 conformations without inducing inflammatory cell signaling. Finally, an investigation using anti-CD11d-2 as a detection tool uncovered a mismatch between total and surface-level CD11d and CD18 expression that was not altered by CK2 inhibition. Conclusions By developing humanized anti-CD11d monoclonal antibodies, new tools are now available to study CD11d biology and potentially treat inflammation arising from acute neurotrauma via CD11d targeting.
Collapse
Affiliation(s)
- Eoin N Blythe
- Department of Microbiology & Immunology and Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Christy Barreira
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Corby Fink
- Department of Microbiology & Immunology and Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Arthur Brown
- Department of Anatomy & Cell Biology and Robarts Research Institute University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lynne C Weaver
- Department of Physiology & Pharmacology and Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Gregory A Dekaban
- Department of Microbiology & Immunology and Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Ding SQ, Yan HZ, Gao JX, Chen YQ, Zhang N, Wang R, Li JY, Hu JG, Lü HZ. Genetic deletion of the apoptosis associated speck like protein containing a card in LysM + macrophages attenuates spinal cord injury by regulating M1/M2 polarization through ASC-dependent inflammasome signaling axis. Exp Neurol 2024; 382:114982. [PMID: 39353545 DOI: 10.1016/j.expneurol.2024.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Apoptosis associated speck like protein containing a card (ASC), the key adaptor protein of the assembly and activation of canonical inflammasomes, has been found to play a significant role in neuroinflammation after spinal cord injury (SCI). The previous studies indicated that widely block or knockout ASC can ameliorate SCI. However, ASC is ubiquitously expressed in infiltrated macrophages and local microglia, so further exploration is needed on which type of cell playing the key role. In this study, using the LysMcre;Ascflox/flox mice with macrophage-specifc ASC conditional knockout (CKO) and contusive SCI model, we focus on evaluating the specific role of ASC in lysozyme 2 (LysM)+ myeloid cells (mainly infiltrated macrophages) in this pathology. The results revealed that macrophage-specifc Asc CKO exhibited the follow effects: (1) A significant reduction in the numbers of infiltrated macrophages in the all phases of SCI, and activated microglia in the acute and subacute phases. (2) A significant reduction in ASC, caspase-1, interleukin (IL)-1β, and IL-18 compared to control mice. (3) In the acute and subacute phases of SCI, M1 subset differentiation was inhibited, and M2 differentiation was increased. (4) Histology and hindlimb motor recoveries were improved. In conclusion, this study elucidates that macrophage-specific ASC CKO can improve nerve function recovery after SCI by regulating M1/M2 polarization through inhibiting ASC-dependent inflammasome signaling axis. This indicates that ASC in peripheral infiltrated macrophages may play an important role in SCI pathology, at least in mice, could be a potential target for treatment.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Nan Zhang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jiang-Yan Li
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
3
|
Liu G, Pei Z, Bai H, Huo L, Deng B, Jiang S, Tao J, Xu L, Li J, Gao F, Mu X. Biomaterial-mediated delivery of traditional Chinese medicine ingredients for spinal cord injury: a systematic review. Front Pharmacol 2024; 15:1461708. [PMID: 39545067 PMCID: PMC11560789 DOI: 10.3389/fphar.2024.1461708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Objective Biomaterials loaded with ingredients derived from traditional Chinese medicine (TCM) are viewed as a promising strategy for treating spinal cord injury (SCI). However, a comprehensive analysis of the existing literature on this topic has not yet been conducted. Therefore, this paper systematically reviews researches related to this approach, aiming to identify gaps and shortcomings in the field. Methods PubMed, EMBASE, Web of Science, Chinese Biomedical Literature, Wanfang, and China National Knowledge Infrastructure (CNKI) were searched for retrieving studies on biomaterials loaded with TCM ingredients published from their inception to October 2024. Two reviewers performed screening of search results, information extraction, and literature quality assessment independently. Results For this systematic review, 41 publications were included. Six TCM ingredients-paclitaxel, curcumin, tetramethylpyrazine, resveratrol, berberine, and tanshinone IIA were combined with biomaterials for treatment of SCI. Biomaterials were categorized into hydrogels, biodegradable scaffolds, nanoparticles, and microspheres according to the type of scaffold. These drug delivery systems exhibit commendable biocompatibility, drug-loading capacity, and drug-release capabilities, and in combination with TCM ingredients, synergistically contribute to anti-oxidative stress, anti-inflammatory, neuroprotective, and anti-apoptotic effects. Conclusion These studies demonstrated the efficacy of biomaterials loaded with TCM ingredients in facilitating motor function recovery and neuroprotection in SCI rats, providing evidence for future research. However, in the complex microenvironment of SCI, achieving the maximum drug loading capacity of TCM ingredients within biomaterials, along with sustained and controlled release to fully exert their pharmacological effects, remains a major challenge for future research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/ identifier CRD42024505000.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenzhen Pei
- Guang’an Men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Huizhong Bai
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Luyao Huo
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bowen Deng
- Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Shengyuan Jiang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Tao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyu Li
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Gao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Mu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Cabrera-Aldana EE, Balderas-Martínez YI, Velázquez-Cruz R, Tovar-y-Romo LB, Sevilla-Montoya R, Martínez-Cruz A, Martinez-Cordero C, Valdés-Flores M, Santamaria-Olmedo M, Hidalgo-Bravo A, Guízar-Sahagún G. Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury. Curr Issues Mol Biol 2023; 45:7476-7491. [PMID: 37754256 PMCID: PMC10529143 DOI: 10.3390/cimb45090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes irreversible damage leading to incapacity. Molecular mechanisms underlying SCI damage are not fully understood, preventing the development of novel therapies. Tamoxifen (TMX) has emerged as a promising therapy. Our aim was to identify transcriptome changes in the acute phase of SCI and the effect of Tamoxifen on those changes in a rat model of SCI. Four groups were considered: (1) Non-injured without TMX (Sham/TMX-), (2) Non-injured with TMX (Sham/TMX+), (3) injured without TMX (SCI/TMX-), and (4) injured with TMX (SCI/TMX+). Tamoxifen was administered intraperitoneally 30 min after injury, and spinal cord tissues were collected 24 h after injury. Clariom S Assays Array was used for transcriptome analysis. After comparing Sham/TMX- versus SCI/TMX-, 708 genes showed differential expression. The enriched pathways were the SCI pathway and pathways related to the inflammatory response. When comparing SCI/TMX- versus SCI/TMX+, only 30 genes showed differential expression, with no pathways enriched. Our results showed differential expression of genes related to the inflammatory response after SCI, and Tamoxifen seems to regulate gene expression changes in Ccr2 and Mmp12. Our study contributes data regarding the potential value of tamoxifen as a therapeutic resource for traumatic SCI during the acute phase.
Collapse
Affiliation(s)
- Eibar E. Cabrera-Aldana
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Yalbi I. Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico;
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Periférico Sur 4809, Arenal Tepepan, Mexico City 14610, Mexico;
| | - Luis B. Tovar-y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Rosalba Sevilla-Montoya
- Reproductive Research and Perinatal Health Department, National Institute of Perinatology, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
| | - Angelina Martínez-Cruz
- Department of Experimental Surgery, Proyecto Camina, A.C. 4430 Calz. Tlalpan, Mexico City 14050, Mexico;
| | - Claudia Martinez-Cordero
- Regional Hospital of High Specialty of the Bajio, Blvd. Milenio 130, Col. San Carlos la Roncha, León 37660, Guanajuato, Mexico;
| | - Margarita Valdés-Flores
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Monica Santamaria-Olmedo
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Alberto Hidalgo-Bravo
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Gabriel Guízar-Sahagún
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, 330 Avenida Cuauhtémoc, Mexico City 06720, Mexico
| |
Collapse
|
5
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
6
|
Cao Y, Zhu S, Yu B, Yao C. Single-cell RNA sequencing for traumatic spinal cord injury. FASEB J 2022; 36:e22656. [PMID: 36374259 DOI: 10.1096/fj.202200943r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Traumatic spinal cord injury (tSCI) is a severe injury of the central nervous system (CNS) with complicated pathological microenvironment that results in hemorrhage, inflammation, and scar formation. The microenvironment of the injured spinal cord comprises heterogeneous neurons, glial cells, inflammatory cells, and stroma-related cells. Increasing evidence has indicated that the altered cellular and molecular microenvironment following tSCI is a key factor impeding functional recovery. Single-cell RNA sequencing (scRNA-seq) has provided deep insights into the dynamic cellular and molecular changes in the microenvironment by comprehensively characterizing the diversity of spinal cord cell types. Specifically, scRNA-seq enables the exploration of the molecular mechanisms underlying tSCI by elucidating intercellular communication in spinal cord samples between normal and injury conditions at a single-cell resolution. Here, we first described the pathological and physiological processes after tSCI and gave a brief introduction of the scRNA-seq technology. We then focused on the recent scRNA-seq researches in tSCI, which characterized diverse cell-type populations and specific cell-cell interactions in tSCI. In addition, we also highlighted some potential directions for the research of scRNA-seq in tSCI in the future.
Collapse
Affiliation(s)
- Yuqi Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shunxing Zhu
- Laboratory Animals Center, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
7
|
Codelivery of minocycline hydrochloride and dextran sulfate via bionic liposomes for the treatment of spinal cord injury. Int J Pharm 2022; 628:122285. [DOI: 10.1016/j.ijpharm.2022.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022]
|
8
|
Hussen J, Al-Sukruwah MA. The Impact of the Animal Housing System on Immune Cell Composition and Function in the Blood of Dromedary Camels. Animals (Basel) 2022; 12:ani12030317. [PMID: 35158641 PMCID: PMC8833619 DOI: 10.3390/ani12030317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The present study investigated the impacts of a change in animal housing system on selected parameters of the camel immune system. Samples collected from camels during a free-ranging time were compared with samples collected from the same camels during movement-restricted housing. Movement-restricted camels showed elevated myeloperoxidase activity in their serum, a significant shape-change of their neutrophils, and higher reactive oxygen species content in their monocytes and neutrophils. The leukogram pattern of the camels under restricted housing was characterized by increased numbers of neutrophils, eosinophils, lymphocytes, and monocytes. Within the lymphocyte population, only the helper T cells and B cells were expanded in animals under restricted housing. In addition, restricted housing modulated the expression of several cell surface antigens, including monocyte-polarization markers and cell adhesion molecules. Functional analysis of bacterial phagocytosis indicated impaired antibacterial function of phagocytes in camels under restricted housing. In summary, the present study identified significant changes in blood immune cell composition, phenotype, and function in dromedary camels under restricted-housing conditions, and suggests the development of an excitement leukogram in those animals. Abstract Background: The dromedary camel (Camelus dromedarius) is an important livestock animal of desert and semi-desert ecosystems. In recent years, several elements of the camel immune system have been characterized. Stress and excitement induced by animal housing represent the most important environmental factors with potential modulatory effects on the immune system. The present study evaluated the impacts of a restricted-housing system on some phenotypic and functional properties of blood leukocytes in dromedary camels. Methods: Immunofluorescence and flow cytometry were used to comparatively analyze samples collected from camels during a free-ranging time and samples collected from the same camels during movement-restricted housing. Results: In comparison to blood samples collected from the camels during the free-ranging time, samples from movement-restricted camels showed elevated serum myeloperoxidase activity, a significant shape-change in their neutrophils, and higher reactive oxygen species content in their monocytes and neutrophils, indicating increased cellular oxidative stress under movement-restricted housing. The leukogram pattern of the camels under restricted housing was characterized by leukocytosis with increased numbers of neutrophils, eosinophils, lymphocytes, and monocytes, resembling an excitement leukogram pattern. Within the lymphocyte population, only the helper T cells and B cells were expanded in animals under restricted housing. The upregulation of CD163 together with the downregulation of MHC-II on monocytes from excited camels indicate a modulatory potential of animal excitement to polarize monocytes toward an anti-inflammatory phenotype. Functional analysis of bacterial phagocytosis indicates an impaired antibacterial function of phagocytes in excited camels. The downregulation of several cell adhesion molecules on leukocytes from excited camels suggests a role for impaired cell adhesion and tissue migration and leukocyte retention in blood in the observed leukocytosis in animals under excitement. Conclusions: The present study identified significant changes in blood immune cell composition, phenotype, and function in dromedary camels under restricted-housing conditions. The observed changes in leukocyte composition suggest the development of an excitement leukogram pattern in camels under movement-restricted housing. To evaluate the clinical relevance of the observed changes in immune cell phenotype and function for the immune competence of camels under restricted housing, further studies are required.
Collapse
|
9
|
Erens C, Van Broeckhoven J, Hoeks C, Schabbauer G, Cheng PN, Chen L, Hellings N, Broux B, Lemmens S, Hendrix S. L-Arginine Depletion Improves Spinal Cord Injury via Immunomodulation and Nitric Oxide Reduction. Biomedicines 2022; 10:biomedicines10020205. [PMID: 35203413 PMCID: PMC8869469 DOI: 10.3390/biomedicines10020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Spinal cord injury (SCI) elicits robust neuroinflammation that eventually exacerbates the initial damage to the spinal cord. L-arginine is critical for the responsiveness of T cells, which are important contributors to neuroinflammation after SCI. Furthermore, L-arginine is the substrate for nitric oxide (NO) production, which is a known inducer of secondary damage. Methods: To accomplish systemic L-arginine depletion, repetitive injections of recombinant arginase-1 (rArg-I) were performed. Functional recovery and histopathological parameters were analyzed. Splenic immune responses were evaluated by flow cytometry. Pro-inflammatory gene expression and nitrite concentrations were measured. Results: We show for the first time that systemic L-arginine depletion improves locomotor recovery. Flow cytometry and immunohistological analysis showed that intraspinal T-cell infiltration was reduced by 65%, and peripheral numbers of Th1 and Th17 cells were suppressed. Moreover, rArg-I treatment reduced the intraspinal NO production by 40%. Histopathological analyses revealed a 37% and 36% decrease in the number of apoptotic neurons and neuron-macrophage/microglia contacts in the spinal cord, respectively. Conclusions: Targeting detrimental T-cell responses and NO-production via rArg-I led to a reduced neuronal cell death and an improved functional recovery. These findings indicate that L-arginine depletion holds promise as a therapeutic strategy after SCI.
Collapse
Affiliation(s)
- Céline Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Cindy Hoeks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Centre of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Paul N. Cheng
- Department Research and Development, Bio-Cancer Treatment International Limited, Hong Kong 999077, China; (P.N.C.); (L.C.)
| | - Li Chen
- Department Research and Development, Bio-Cancer Treatment International Limited, Hong Kong 999077, China; (P.N.C.); (L.C.)
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Bieke Broux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
- Institute for Translational Medicine, Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence:
| |
Collapse
|
10
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation 2021; 18:284. [PMID: 34876174 PMCID: PMC8653609 DOI: 10.1186/s12974-021-02337-2] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/30/2021] [Indexed: 03/02/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition that results in a loss of motor and sensory function. Although extensive research to develop treatments for SCI has been performed, to date, none of these treatments have produced a meaningful amount of functional recovery after injury. The primary injury is caused by the initial trauma to the spinal cord and results in ischemia, oxidative damage, edema, and glutamate excitotoxicity. This process initiates a secondary injury cascade, which starts just a few hours post-injury and may continue for more than 6 months, leading to additional cell death and spinal cord damage. Inflammation after SCI is complex and driven by a diverse set of cells and signaling molecules. In this review, we utilize an extensive literature survey to develop the timeline of local immune cell and cytokine behavior after SCI in rodent models. We discuss the precise functional roles of several key cytokines and their effects on a variety of cell types involved in the secondary injury cascade. Furthermore, variations in the inflammatory response between rats and mice are highlighted. Since current SCI treatment options do not successfully initiate functional recovery or axonal regeneration, identifying the specific mechanisms attributed to secondary injury is critical. With a more thorough understanding of the complex SCI pathophysiology, effective therapeutic targets with realistic timelines for intervention may be established to successfully attenuate secondary damage.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Charles M Quinn
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Zachariah J Piper
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Carolyn N Morehouse
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Jordyn A Fixel
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Amgad S Hanna
- Department of Neurological Surgery, School of Medicine and Public Health (UWSMPH), University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
11
|
Blythe EN, Weaver LC, Brown A, Dekaban GA. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front Immunol 2021; 12:775447. [PMID: 34858434 PMCID: PMC8630586 DOI: 10.3389/fimmu.2021.775447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.
Collapse
Affiliation(s)
- Eoin N Blythe
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Lynne C Weaver
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, Zhang K, Mei X, Wu C, Tian H. Engineered extracellular vesicles derived from primary M2 macrophages with anti-inflammatory and neuroprotective properties for the treatment of spinal cord injury. J Nanobiotechnology 2021; 19:373. [PMID: 34789266 PMCID: PMC8600922 DOI: 10.1186/s12951-021-01123-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Uncontrollable inflammation and nerve cell apoptosis are the most destructive pathological response after spinal cord injury (SCI). So, inflammation suppression combined with neuroprotection is one of the most promising strategies to treat SCI. Engineered extracellular vesicles with anti-inflammatory and neuroprotective properties are promising candidates for implementing these strategies for the treatment of SCI. Results By combining nerve growth factor (NGF) and curcumin (Cur), we prepared stable engineered extracellular vesicles of approximately 120 nm from primary M2 macrophages with anti-inflammatory and neuroprotective properties (Cur@EVs−cl−NGF). Notably, NGF was coupled with EVs by matrix metalloproteinase 9 (MMP9)-a cleavable linker to release at the injured site accurately. Through targeted experiments, we found that these extracellular vesicles could actively and effectively accumulate at the injured site of SCI mice, which greatly improved the bioavailability of the drugs. Subsequently, Cur@EVs−cl−NGF reached the injured site and could effectively inhibit the uncontrollable inflammatory response to protect the spinal cord from secondary damage; in addition, Cur@EVs−cl−NGF could release NGF into the microenvironment in time to exert a neuroprotective effect against nerve cell damage. Conclusions A series of in vivo and in vitro experiments showed that the engineered extracellular vesicles significantly improved the microenvironment after injury and promoted the recovery of motor function after SCI. We provide a new method for inflammation suppression combined with neuroprotective strategies to treat SCI. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01123-9.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Daoyong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Hengshuo Hu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Zhe Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Zhanshan Gao
- Pharmacy School, Jinzhou Medical University, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Kaihua Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, 121002, Liaoning, China. .,Key Laboratory of Medical Tissue Engineering of Liaoning Province, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China.
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, No. 40, Songpo Road, Jinzhou, 121002, Liaoning, China.
| |
Collapse
|
13
|
Chen KB, Chang MM, Wang SL, Li YX, Wang YX, Xu ZG, Wang H, Zhao BC, Ma WY. High mobility group box-1 serves a pathogenic role in spinal cord injury via the promotion of pro-inflammatory cytokines. J Leukoc Biol 2021; 110:1131-1142. [PMID: 34402106 DOI: 10.1002/jlb.3ma0721-007r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition marked by permanent motor, sensory, and autonomic dysfunction, in which the inflammatory response serves an important and preventable role. High mobility group box-1 (HMGB1) is a potent regulator of inflammation in numerous acute and chronic inflammatory conditions.; however, the role of HMGB1 in SCI remains unclear. The present study aimed to characterize the temporal dynamics of HMGB1 release after SCI, to investigate the role of spinal microglia activation in mediating the effects of HMGB1 on SCI, and to explore the therapeutic potential of intrathecal anti-HMGB1 polyclonal antibody on alleviating SCI. The present study demonstrated that HMGB1 expression was increased immediately after traumatic injury of a primary spinal neuron culture. It was found that neutralizing HMGB1 significantly ameliorated SCI pathogenesis and hind limb paralysis. Moreover, the levels of a number of pro-inflammatory cytokines in the SCI lesion were reduced when local HMGB1 was blocked by anti-HMGB1 antibody. In addition, the injured neuron-derived conditioned medium increased TNF-α secretion and the NF-κB pathway in the BV2 microglia cell line via HMGB1. Collectively, these results indicated that HMGB1 served an important role in SCI inflammation and suggested the therapeutic potential of an anti-HMGB1 antibody for SCI.
Collapse
Affiliation(s)
- Ke-Bing Chen
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Min-Min Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Sheng-Li Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, P.R. China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Yong-Xin Li
- Vascular Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Yi-Xi Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Zhi-Guang Xu
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Wei-Ying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
14
|
Immunomodulatory Effects of the Cyclooxygenase Inhibitor Lornoxicam on Phenotype and Function of Camel Blood Leukocytes. Animals (Basel) 2021; 11:ani11072023. [PMID: 34359151 PMCID: PMC8300418 DOI: 10.3390/ani11072023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The present study investigated the immunomodulatory effects of the unspecific cyclooxygenase inhibitor lornoxicam on the immunophenotype and some functions of dromedary camel blood leukocytes. Intravenous injection of camels with a single dose of lornoxicam induced a significant change in the camel leukogram, which is characterized by reduced cell numbers of all leukocyte subpopulations. In vitro analysis of cell vitality revealed a pro-apoptotic effect of lornoxicam on camel leukocytes, which may be responsible for the lornoxicam-induced leukocytopenia in vivo. Functional ex vivo and in vitro analysis of the key antimicrobial functions, phagocytosis and ROS production indicates inhibitory effects of lornoxicam on the antimicrobial capacity of the blood phagocytes, monocytes and neutrophils. Furthermore, lornoxicam induced an anti-inflammatory phenotype of monocytes, characterized by reduced expression of major histocompatibility complex (MHC) class II molecules and increased expression of CD163 molecules. The present study identified for the first time inhibitory effects of the COX-inhibitor lornoxicam on some phenotypic and functional properties of camel blood immune cells and recommends considering these effects when using lornoxicam in camel medicine. Abstract (1) Background: Lornoxicam is a nonsteroidal anti-inflammatory drug (NSAID) with analgesic, antiphlogistic and antipyretic effects. The improved tolerance of lornoxicam due to the relatively shorter elimination half-life in comparison to other members of the oxicams may favor its application in the management of pain and inflammation in race dromedary camels. There are no studies conducted yet on the immunomodulatory or immunotoxilogic effect of lornoxicam in camels. Therefore, the current study aimed to evaluate the immunomodulatory effects of the cyclooxygenase inhibitor lornoxicam on some phenotypic and functional properties of camel blood leukocytes; (2) Methods: Using flow cytometry, blood leukocyte composition, monocyte phenotype, and antimicrobial functions of neutrophils and monocytes were analyzed ex vivo after a single dose injection with lornoxicam. In addition, the effect of in vitro incubation of camel blood with lornoxicam on leukocyte cell vitality and antimicrobial functions were evaluated; (3) Results: The injection of camels with a single dose of lornoxicam resulted in a significant change in their leukogram with reduced numbers of total leukocytes, neutrophils, eosinophils, monocytes, and lymphocytes. Within the lymphocyte population, the numbers of CD4+ T cells, γδ T cells, and B cells decreased significantly in blood after injection of camels with lornoxicam. In addition, injection of lornoxicam resulted in decreased abundance of major histocompatibility complex (MHC) class II molecules and increased abundance of the scavenger receptor CD163 on blood monocytes, indicating an anti-inflammatory phenotype of monocytes. Functionally, administration of lornoxicam decreased the capacity of camel neutrophils and monocytes to uptake bacteria and to produce reactive oxygen species (ROS) after bacterial stimulation. Similarly, the in vitro whole blood incubation with lornoxicam resulted in reduced phagocytosis and ROS production activity of the camel blood phagocytes. Flow cytometric analysis of cell vitality, including cell necrosis and apoptosis, revealed a pro-apoptotic effect of lornoxicam on camel leukocytes; (4) Conclusions: Lornoxicam administration, at the dose and intervals utilized herein, induces significant changes in the phenotype and function of camel blood leukocytes. The reduced cell numbers of all studied leukocyte subpopulations in lornoxicam-treated camels, which seems to be a result of enhanced cell apoptosis, indicates an inhibitory effect rather than a modulatory effect of lornoxicam on the camel immune system, which need to be considered when using lornoxicam in camel medicine.
Collapse
|
15
|
Cystine-glutamate antiporter deletion accelerates motor recovery and improves histological outcomes following spinal cord injury in mice. Sci Rep 2021; 11:12227. [PMID: 34108554 PMCID: PMC8190126 DOI: 10.1038/s41598-021-91698-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 01/20/2023] Open
Abstract
xCT is the specific subunit of System xc-, an antiporter importing cystine while releasing glutamate. Although xCT expression has been found in the spinal cord, its expression and role after spinal cord injury (SCI) remain unknown. The aim of this study was to characterize the role of xCT on functional and histological outcomes following SCI induced in wild-type (xCT+/+) and in xCT-deficient mice (xCT−/−). In the normal mouse spinal cord, slc7a11/xCT mRNA was detected in meningeal fibroblasts, vascular mural cells, astrocytes, motor neurons and to a lesser extent in microglia. slc7a11/xCT gene and protein were upregulated within two weeks post-SCI. xCT−/− mice recovered muscular grip strength as well as pre-SCI weight faster than xCT+/+ mice. Histology of xCT−/− spinal cords revealed significantly more spared motor neurons and a higher number of quiescent microglia. In xCT−/− mice, inflammatory polarization shifted towards higher mRNA expression of ym1 and igf1 (anti-inflammatory) while lower levels of nox2 and tnf-a (pro-inflammatory). Although astrocyte polarization did not differ, we quantified an increased expression of lcn2 mRNA. Our results show that slc7a11/xCT is overexpressed early following SCI and is detrimental to motor neuron survival. xCT deletion modulates intraspinal glial activation by shifting towards an anti-inflammatory profile.
Collapse
|
16
|
David S, López-Vales R. Bioactive Lipid Mediators in the Initiation and Resolution of Inflammation after Spinal Cord Injury. Neuroscience 2021; 466:273-297. [PMID: 33951502 DOI: 10.1016/j.neuroscience.2021.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a prominent feature of the response to CNS trauma. It is also an important hallmark of various neurodegenerative diseases in which inflammation contributes to the progression of pathology. Inflammation in the CNS can contribute to secondary damage and is therefore an excellent therapeutic target for a range of neurological conditions. Inflammation in the nervous system is complex and varies in its fine details in different conditions. It involves a wide variety of secreted factors such as chemokines and cytokines, cell adhesion molecules, and different cell types that include resident cell of the CNS, as well as immune cells recruited from the peripheral circulation. Added to this complexity is the fact that some aspects of inflammation are beneficial, while other aspects can induce secondary damage in the acute, subacute and chronic phases. Understanding these aspects of the inflammatory profile is essential for developing effective therapies. Bioactive lipids constitute a large group of molecules that modulate the initiation and the resolution of inflammation. Dysregulation of these bioactive lipid pathways can lead to excessive acute inflammation, and failure to resolve this by specialized pro-resolution lipid mediators can lead to the development of chronic inflammation. The focus of this review is to discuss the effects of bioactive lipids in spinal cord trauma and their potential for therapies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.
| | - Rubén López-Vales
- Departament de Biologia Cellular, Fisiologia i Inmunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
17
|
Hussen J. Changes in Cell Vitality, Phenotype, and Function of Dromedary Camel Leukocytes After Whole Blood Exposure to Heat Stress in vitro. Front Vet Sci 2021; 8:647609. [PMID: 33898545 PMCID: PMC8062783 DOI: 10.3389/fvets.2021.647609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
The dromedary camel (Camelus dromedarius) is well-adapted to the desert environment with the ability to tolerate increased internal body temperatures rising daily to 41–42°C during extreme hot. This study was undertaken to assess whether in vitro incubation of camel blood at 41°C, simulating conditions of heat stress, differently alters cell vitality, phenotype, and function of leukocytes, compared to incubation at 37°C (normothermia). Using flow cytometry, the cell vitality (necrosis and apoptosis), the expression of several cell markers and adhesion molecules, and the antimicrobial functions of camel leukocytes were analyzed in vitro. The fraction of apoptotic cells within the granulocytes, lymphocytes, and monocytes increased significantly after incubation of camel whole blood at 41°C for 4 h. The higher increase in apoptotic granulocytes and monocytes compared to lymphocytes suggests higher resistance of camel lymphocytes to heat stress. Functionally, incubation of camel blood at 41°C for 4 h enhanced the phagocytosis and ROS production activities of camel neutrophils and monocytes toward S. aureus. Monocytes from camel blood incubated at 41°C for 4 h significantly decreased their expression level of MHC class II molecules with no change in the abundance of CD163, resulting in a CD163high MHC-IIlow M2-like macrophage phenotype. In addition, heat stress treatment showed an inhibitory effect on the LPS-induced changes in camel monocytes phenotype. Furthermore, in vitro incubation of camel blood at 41°C reduced the expression of the cell adhesion molecules CD18 and CD11a on neutrophils and monocytes. Collectively, the present study identified some heat-stress-induced phenotypic and functional alterations in camel blood leukocytes, providing a paradigm for comparative immunology in the large animals. The clinical relevance of the observed changes in camel leukocytes for the adaptation of the camel immune response to heat stress conditions needs further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
18
|
Hassanzadeh S, Jalessi M, Jameie SB, Khanmohammadi M, Bagher Z, Namjoo Z, Davachi SM. More attention on glial cells to have better recovery after spinal cord injury. Biochem Biophys Rep 2021; 25:100905. [PMID: 33553683 PMCID: PMC7844125 DOI: 10.1016/j.bbrep.2020.100905] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
Functional improvement after spinal cord injury remains an unsolved difficulty. Glial scars, a major component of SCI lesions, are very effective in improving the rate of this recovery. Such scars are a result of complex interaction mechanisms involving three major cells, namely, astrocytes, oligodendrocytes, and microglia. In recent years, scientists have identified two subtypes of reactive astrocytes, namely, A1 astrocytes that induce the rapid death of neurons and oligodendrocytes, and A2 astrocytes that promote neuronal survival. Moreover, recent studies have suggested that the macrophage polarization state is more of a continuum between M1 and M2 macrophages. M1 macrophages that encourage the inflammation process kill their surrounding cells and inhibit cellular proliferation. In contrast, M2 macrophages promote cell proliferation, tissue growth, and regeneration. Furthermore, the ability of oligodendrocyte precursor cells to differentiate into adult oligodendrocytes or even neurons has been reviewed. Here, we first scrutinize recent findings on glial cell subtypes and their beneficial or detrimental effects after spinal cord injury. Second, we discuss how we may be able to help the functional recovery process after injury.
Collapse
Affiliation(s)
- Sajad Hassanzadeh
- Skull Base Research Center, Hazrat Rasoul Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, Hazrat Rasoul Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Basic Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, Hazrat Rasoul Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Zohre Bagher
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Namjoo
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Kozyrev N, Albers S, Yang J, Prado VF, Prado MAM, Fonseca GJ, Rylett RJ, Dekaban GA. Infiltrating Hematogenous Macrophages Aggregate Around β-Amyloid Plaques in an Age- and Sex-Dependent Manner in a Mouse Model of Alzheimer Disease. J Neuropathol Exp Neurol 2021; 79:1147-1162. [PMID: 33011810 DOI: 10.1093/jnen/nlaa093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
β-Amyloid (Aβ) plaques can trigger chronic inflammation in the cellular environment that recruits infiltrating macrophages during the course of Alzheimer disease (AD). Activated macrophages release pro-inflammatory cytokines that increase neurotoxicity associated with AD. A major impediment to investigating neuroinflammation involving macrophage activity is the inability to discriminate resident microglial macrophages (mMϕ) from hematogenous macrophages (hMϕ), as they are morphologically and phenotypically similar when activated. To distinguish between mMϕ and hMϕ and to determine their respective roles in chronic inflammation associated with the progression of amyloidosis, we used lys-EGFP-ki transgenic mice that express enhanced green fluorescent protein in hMϕ, but not in mMϕ. These mice were crossed with 5XFAD mice. The offspring demonstrated robust AD pathology and enabled visual discrimination of mMϕ from hMϕ. Mutant mice demonstrated robust increases in Aβ1-42, area of Aβ plaques, gliosis and deficits in spatial learning by age 5 months. The time-course of Aβ accumulation, paralleled by the accumulation of hMϕ around Aβ plaques, was more robust in female compared with male mice and preceded behavioral changes. Thus, the accumulation of infiltrating hMϕ around Aβ plaques was age- and sex-dependent and preceded cognitive impairment.
Collapse
Affiliation(s)
- Natalie Kozyrev
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, Ontario
| | - Shawn Albers
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, Ontario.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Jennifer Yang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Vania F Prado
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, Ontario.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Anatomy & Cell Biology (VFP, MAMP), Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Marco A M Prado
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, Ontario.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Anatomy & Cell Biology (VFP, MAMP), Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Gregory J Fonseca
- Division of Experimental Medicine, Department of Medicine, McGill University, Canada
| | - R Jane Rylett
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, Ontario.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, Ontario.,Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| |
Collapse
|
20
|
Abstract
Camels are domesticated animals that are highly adapted to the extreme desert ecosystem with relatively higher resistance to a wide range of pathogens compared to many other species from the same geographical region. Recently, there has been increased interest in the field of camel immunology. As the progress in the analysis of camel immunoglobulins has previously been covered in many recent reviews, this review intends to summarize published findings related to camel cellular immunology with a focus on the phenotype and functionality of camel leukocyte subpopulations. The review also describes the impact of different physiological (age and pregnancy) and pathological (e.g. infection) conditions on camel immune cells. Despite the progress achieved in the field of camel immunology, there are gaps in our complete understanding of the camel immune system. Questions remain regarding innate recognition mechanisms, the functional characterization of antigen-presenting cells, and the characterization of camel NK and cytotoxic T cells.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
21
|
Zhang W, Qu X, Zhu Z, Wang L, Qi Q, Zhou P, Wang X, Li W. Inhibition of miR-139-5p by topical JTXK gel promotes healing of Staphylococcus aureus-infected skin wounds. Cells Dev 2021; 166:203658. [PMID: 33994349 DOI: 10.1016/j.cdev.2021.203658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The inflammatory skin wound response is regulated by argonaute 2-bound microRNAs (Ago2-miRNAs) such as miR-139-5p, which inhibit transcription of their target mRNAs. Jiang Tang Xiao Ke (JTXK) is a traditional Chinese medicine that reduces miR-139-5p expression, suggesting that topical application of JTXK may have effects on wound healing. METHODS miR-139-/- mice and wild-type (WT) mice were employed to characterize the in vivo effects of miR-139-5p on sterile wound healing. Neutrophil migration and activation into the wound site were examined by live imaging analysis in lys-EGFP mice and myeloperoxidase/aminophenyl fluorescein assays, respectively. In silico and in vitro studies in differentiated HL60 cells were performed to identify miR-139-5p's downstream mediator(s). miR-139-/- neutrophil transplantation (with or without Eif4g2-knockdown rescue) or a topical JTXK gel preparation (with or without miR-139-5p mimic rescue) were employed to characterize the in vivo effects of miR-139-5p and JTXK, respectively, on Staphylococcus aureus (S. aureus)-infected wound healing. RESULTS miR-139-/- mice display impaired sterile wound healing but improved S. aureus-infected wound healing. Eif4g2, a protein that supports neutrophil proliferation and differentiation, was identified as a key downstream mediator of miR-139-5p. miR-139-/- mice show elevated neutrophilic activation and Eif4g2 upregulation. miR-139-/- neutrophils enhanced S. aureus-infected wound healing in an Eif4g2-dependent manner. Moreover, topical JTXK gel therapy also enhanced S. aureus-infected wound healing in a miR-139-5p-dependent manner. CONCLUSIONS miR-139-5p negatively regulates the neutrophilic response during S. aureus-infected wound healing, suggesting that JTXK or other miR-139-5p suppressants may be effective for treating infected skin wounds.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China.
| | - Xu Qu
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Zhang Zhu
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Liwen Wang
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Qian Qi
- Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Pengjun Zhou
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Xiaoli Wang
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Wenna Li
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| |
Collapse
|
22
|
Mitochondria exert age-divergent effects on recovery from spinal cord injury. Exp Neurol 2021; 337:113597. [PMID: 33422552 PMCID: PMC7870583 DOI: 10.1016/j.expneurol.2021.113597] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue sparing, reduced ROS-associated 3-nitrotyrosine (3-NT) accumulation, and improved anatomical and functional recovery in 14-MO SCI-mice. By directly comparing the effects of DNP between ages we demonstrate that mitochondrial contributions to neurodegeneration diverge with age after SCI. Collectively, our data indicate an essential role of mitochondria in age-associated neurodegeneration.
Collapse
|
23
|
Gao TY, Huang FF, Xie YY, Wang WQ, Wang LD, Mu D, Cui Y, Wang B. Dynamic changes in the systemic immune responses of spinal cord injury model mice. Neural Regen Res 2021; 16:382-387. [PMID: 32859802 PMCID: PMC7896203 DOI: 10.4103/1673-5374.290910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Intraspinal inflammatory and immune responses are considered to play central roles in the pathological development of spinal cord injury. This study aimed to decipher the dynamics of systemic immune responses, initiated by spinal cord injury. The spinal cord in mice was completely transected at T8. Changes in the in vivo inflammatory response, between the acute and subacute stages, were observed. A rapid decrease in C-reactive protein levels, circulating leukocytes and lymphocytes, spleen-derived CD4+ interferon-γ+ T-helper cells, and inflammatory cytokines, and a marked increase in neutrophils, monocytes, and CD4+CD25+FOXP3+ regulatory T-cells were observed during the acute phase. These systemic immune alterations were gradually restored to basal levels during the sub-acute phase. During the acute phase of spinal cord injury, systemic immune cells and factors showed significant inhibition; however, this inhibition was transient, and the indicators of these serious disorders gradually returned to baseline levels during the subacute phase. All experiments were performed in accordance with the institutional animal care guidelines, approved by the Institutional Animal Care and Use Committee of Experimental Animal Center of Drum Tower Hospital, China (approval No. 2019AE01040) on June 25, 2019.
Collapse
Affiliation(s)
- Tian-Yun Gao
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Fei-Fei Huang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Wen-Qing Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Liu-Di Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Dan Mu
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
24
|
Li Y, Ritzel RM, Khan N, Cao T, He J, Lei Z, Matyas JJ, Sabirzhanov B, Liu S, Li H, Stoica BA, Loane DJ, Faden AI, Wu J. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Am J Cancer Res 2020; 10:11376-11403. [PMID: 33052221 PMCID: PMC7545988 DOI: 10.7150/thno.49199] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Neuropsychological deficits, including impairments in learning and memory, occur after spinal cord injury (SCI). In experimental SCI models, we and others have reported that such changes reflect sustained microglia activation in the brain that is associated with progressive neurodegeneration. In the present study, we examined the effect of pharmacological depletion of microglia on posttraumatic cognition, depressive-like behavior, and brain pathology after SCI in mice. Methods: Young adult male C57BL/6 mice were subjected to moderate/severe thoracic spinal cord contusion. Microglial depletion was induced with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 administered starting either 3 weeks before injury or one day post-injury and continuing through 6 weeks after SCI. Neuroinflammation in the injured spinal cord and brain was assessed using flow cytometry and NanoString technology. Neurological function was evaluated using a battery of neurobehavioral tests including motor function, cognition, and depression. Lesion volume and neuronal counts were quantified by unbiased stereology. Results: Flow cytometry analysis demonstrated that PLX5622 pre-treatment significantly reduced the number of microglia, as well as infiltrating monocytes and neutrophils, and decreased reactive oxygen species production in these cells from injured spinal cord at 2-days post-injury. Post-injury PLX5622 treatment reduced both CD45int microglia and CD45hi myeloid counts at 7-days. Following six weeks of PLX5622 treatment, there were substantial changes in the spinal cord and brain transcriptomes, including those involved in neuroinflammation. These alterations were associated with improved neuronal survival in the brain and neurological recovery. Conclusion: These findings indicate that pharmacological microglia-deletion reduces neuroinflammation in the injured spinal cord and brain, improving recovery of cognition, depressive-like behavior, and motor function.
Collapse
|
25
|
Enam SF, Kader SR, Bodkin N, Lyon JG, Calhoun M, Azrak C, Tiwari PM, Vanover D, Wang H, Santangelo PJ, Bellamkonda RV. Evaluation of M2-like macrophage enrichment after diffuse traumatic brain injury through transient interleukin-4 expression from engineered mesenchymal stromal cells. J Neuroinflammation 2020; 17:197. [PMID: 32563258 PMCID: PMC7306141 DOI: 10.1186/s12974-020-01860-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Appropriately modulating inflammation after traumatic brain injury (TBI) may prevent disabilities for the millions of those inflicted annually. In TBI, cellular mediators of inflammation, including macrophages and microglia, possess a range of phenotypes relevant for an immunomodulatory therapeutic approach. It is thought that early phenotypic modulation of these cells will have a cascading healing effect. In fact, an anti-inflammatory, "M2-like" macrophage phenotype after TBI has been associated with neurogenesis, axonal regeneration, and improved white matter integrity (WMI). There already exist clinical trials seeking an M2-like bias through mesenchymal stem/stromal cells (MSCs). However, MSCs do not endogenously synthesize key signals that induce robust M2-like phenotypes such as interleukin-4 (IL-4). METHODS To enrich M2-like macrophages in a clinically relevant manner, we augmented MSCs with synthetic IL-4 mRNA to transiently express IL-4. These IL-4 expressing MSCs (IL-4 MSCs) were characterized for expression and functionality and then delivered in a modified mouse TBI model of closed head injury. Groups were assessed for functional deficits and MR imaging. Brain tissue was analyzed through flow cytometry, multi-plex ELISA, qPCR, histology, and RNA sequencing. RESULTS We observed that IL-4 MSCs indeed induce a robust M2-like macrophage phenotype and promote anti-inflammatory gene expression after TBI. However, here we demonstrate that acute enrichment of M2-like macrophages did not translate to improved functional or histological outcomes, or improvements in WMI on MR imaging. To further understand whether dysfunctional pathways underlie the lack of therapeutic effect, we report transcriptomic analysis of injured and treated brains. Through this, we discovered that inflammation persists despite acute enrichment of M2-like macrophages in the brain. CONCLUSION The results demonstrate that MSCs can be engineered to induce a stronger M2-like macrophage response in vivo. However, they also suggest that acute enrichment of only M2-like macrophages after diffuse TBI cannot orchestrate neurogenesis, axonal regeneration, or improve WMI. Here, we also discuss our modified TBI model and methods to assess severity, behavioral studies, and propose that IL-4 expressing MSCs may also have relevance in other cavitary diseases or in improving biomaterial integration into tissues.
Collapse
Affiliation(s)
- Syed Faaiz Enam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Nicholas Bodkin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Johnathan G Lyon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mark Calhoun
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Cesar Azrak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Pooja Munnilal Tiwari
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Daryll Vanover
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haichen Wang
- Department of Neurology, Duke University, Durham, NC, USA
| | - Philip J Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
26
|
Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. Int J Mol Sci 2020; 21:ijms21093219. [PMID: 32370112 PMCID: PMC7247358 DOI: 10.3390/ijms21093219] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
There are sexual differences in the onset, prevalence, and outcome of numerous neurological diseases. Thus, in Alzheimer’s disease, multiple sclerosis, and major depression disorder, the incidence in women is higher than in men. In contrast, men are more likely to present other pathologies, such as amyotrophic lateral sclerosis, Parkinson’s disease, and autism spectrum. Although the neurological contribution to these diseases has classically always been studied, the truth is that neurons are not the only cells to be affected, and there are other cells, such as glial cells, that are also involved and could be key to understanding the development of these pathologies. Sexual differences exist not only in pathology but also in physiological processes, which shows how cells are differentially regulated in males and females. One of the reasons these sexual differences may occur could be due to the different action of sex hormones. Many studies have shown an increase in aromatase levels in the brain, which could indicate the main role of estrogens in modulating proinflammatory processes. This review will highlight data about sex differences in glial physiology and how estrogenic compounds, such as estradiol and tibolone, could be used as treatment in neurological diseases due to their anti-inflammatory effects and the ability to modulate glial cell functions.
Collapse
|
27
|
Inhibition of MALT1 paracaspase activity improves lesion recovery following spinal cord injury. Sci Bull (Beijing) 2019; 64:1179-1194. [PMID: 36659689 DOI: 10.1016/j.scib.2019.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023]
Abstract
Spinal cord injury (SCI) is a devastating traumatic injury that causes persistent, severe motor and sensory dysfunction. Immune responses are involved in functional recovery after SCI. Mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) has been shown to regulate the survival and differentiation of immune cells and to play a critical role in many diseases, but its function in lesion recovery after SCI remains unclear. In this paper, we generated KI (knock in) mice with a point mutation (C472G) in the active center of MALT1 and found that the KI mice exhibited improved functional recovery after SCI. Fewer macrophages were recruited to the injury site in KI mice and these macrophages differentiated into anti-inflammatory macrophages. Moreover, macrophages from KI mice exhibited reduced phosphorylation of p65, which in turn resulted in decreased SOCS3 expression and increased pSTAT6 levels. Similar results were obtained upon inhibition of MALT1 paracaspase with the small molecule inhibitor "MI-2" or the more specific inhibitor "MLT-827". In patients with SCI, peripheral blood mononuclear cells (PBMC) displayed increased MALT1 paracaspase. Human macrophages showed reduced pro-inflammatory and increased anti-inflammatory characteristics following the inhibition of MALT1 paracaspase. These findings suggest that inhibition of MALT1 paracaspase activity in the clinic may improve lesion recovery in subjects with SCI.
Collapse
|
28
|
Smith PLP, Mottahedin A, Svedin P, Mohn CJ, Hagberg H, Ek J, Mallard C. Peripheral myeloid cells contribute to brain injury in male neonatal mice. J Neuroinflammation 2018; 15:301. [PMID: 30376851 PMCID: PMC6208095 DOI: 10.1186/s12974-018-1344-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background Neonatal brain injury is increasingly understood to be linked to inflammatory processes that involve specialised CNS and peripheral immune interactions. However, the role of peripheral myeloid cells in neonatal hypoxic-ischemic (HI) brain injury remains to be fully investigated. Methods We employed the Lys-EGFP-ki mouse that allows enhanced green fluorescent protein (EGFP)-positive mature myeloid cells of peripheral origin to be easily identified in the CNS. Using both flow cytometry and confocal microscopy, we investigated the accumulation of total EGFP+ myeloid cells and myeloid cell subtypes: inflammatory monocytes, resident monocytes and granulocytes, in the CNS for several weeks following induction of cerebral HI in postnatal day 9 mice. We used antibody treatment to curb brain infiltration of myeloid cells and subsequently evaluated HI-induced brain injury. Results We demonstrate a temporally biphasic pattern of inflammatory monocyte and granulocyte infiltration, characterised by peak infiltration at 1 day and 7 days after hypoxia-ischemia. This occurs against a backdrop of continuous low-level resident monocyte infiltration. Antibody-mediated depletion of circulating myeloid cells reduced immune cell accumulation in the brain and reduced neuronal loss in male but not female mice. Conclusion This study offers new insight into sex-dependent central-peripheral immune communication following neonatal brain injury and merits renewed interest in the roles of granulocytes and monocytes in lesion development. Electronic supplementary material The online version of this article (10.1186/s12974-018-1344-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter L P Smith
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Amin Mottahedin
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Carl-Johan Mohn
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.,Institute of Clinical Sciences, Department of Obstetrics and Gynaecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joakim Ek
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
29
|
Greenhalgh AD, Zarruk JG, Healy LM, Baskar Jesudasan SJ, Jhelum P, Salmon CK, Formanek A, Russo MV, Antel JP, McGavern DB, McColl BW, David S. Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biol 2018; 16:e2005264. [PMID: 30332405 PMCID: PMC6205650 DOI: 10.1371/journal.pbio.2005264] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/29/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Infiltrating monocyte-derived macrophages (MDMs) and resident microglia dominate central nervous system (CNS) injury sites. Differential roles for these cell populations after injury are beginning to be uncovered. Here, we show evidence that MDMs and microglia directly communicate with one another and differentially modulate each other's functions. Importantly, microglia-mediated phagocytosis and inflammation are suppressed by infiltrating macrophages. In the context of spinal cord injury (SCI), preventing such communication increases microglial activation and worsens functional recovery. We suggest that macrophages entering the CNS provide a regulatory mechanism that controls acute and long-term microglia-mediated inflammation, which may drive damage in a variety of CNS conditions.
Collapse
Affiliation(s)
- Andrew D. Greenhalgh
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Quebec, Canada
- Laboratory of Nutrition and Integrated Neurobiology, UMR INRA 1286, University of Bordeaux, Bordeaux, France
| | - Juan G. Zarruk
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Quebec, Canada
| | - Luke M. Healy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sam J. Baskar Jesudasan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Quebec, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Quebec, Canada
| | - Christopher K. Salmon
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Quebec, Canada
| | - Albert Formanek
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Quebec, Canada
| | - Matthew V. Russo
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barry W. McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Quebec, Canada
| |
Collapse
|
30
|
Zhou Y, Guo W, Zhu Z, Hu Y, Wang Y, Zhang X, Wang W, Du N, Song T, Yang K, Guan Z, Wang Y, Guo A. Macrophage migration inhibitory factor facilitates production of CCL5 in astrocytes following rat spinal cord injury. J Neuroinflammation 2018; 15:253. [PMID: 30180853 PMCID: PMC6122456 DOI: 10.1186/s12974-018-1297-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/29/2018] [Indexed: 11/23/2022] Open
Abstract
Background Astrocytes act as immune effector cells with the ability to produce a wide array of chemokines and cytokines in response to various stimuli. Macrophage migration inhibitory factor (MIF) is inducibly expressed in injured spinal cord contributing to excessive inflammation that affects motor functional recovery. Unknown is whether MIF can facilitate inflammatory responses through stimulating release of chemokines from astrocytes following spinal cord injury. Methods Following the establishment of the contusion spinal cord injury rat model, the correlation of chemokine (C-C motif) ligand 5 (CCL5) expression with that of MIF was assayed by Western blot, ELISA, and immunohistochemistry. Immunoprecipitation was used to detect MIF interaction with membrane CD74 receptor. Intracellular signal transduction of MIF/CD74 axis was analyzed by transcriptome sequencing of primary astrocytes and further validated by treatment of various inhibitors. The effects of CCL5 released by astrocytes on macrophage migration were performed by transwell migration assay. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results The protein levels of chemokine CCL5/RANTES were remarkably increased in the astrocytes of rat injured spinal cord, in parallel with the expression of MIF. Treatment of MIF inhibitor 4-IPP in the lesion sites resulted in a significant decrease of CCL5 protein levels. In vitro study revealed MIF was capable of facilitating CCL5 production of astrocytes through interaction with CD74 membrane receptor, and knockdown of this receptor attenuated such effects. Production of CCL5 in astrocytes was significantly blocked by inhibitor of c-Jun N-terminal kinase, rather than by those of ERK and P38. Recombinant CCL5 protein was found to be more effective in promoting migration of M2- compared to M1-type macrophages. Conclusion Collectively, these data reveal a novel function of MIF in regulation of CCL5 release from astrocytes, which in turn favors for recruitment of inflammatory cells to the injured site of the spinal cord, in association with activation of excessive inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1297-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Wei Guo
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhenjie Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yuming Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Xuejie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Wenjuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Nan Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Tiancheng Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Kaini Yang
- Medical College, Nantong University, Nantong, 226001, People's Republic of China
| | - Zongyu Guan
- Medical College, Nantong University, Nantong, 226001, People's Republic of China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| | - Aisong Guo
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
31
|
Zhou Y, Li N, Zhu L, Lin Y, Cheng H. The microglial activation profile and associated factors after experimental spinal cord injury in rats. Neuropsychiatr Dis Treat 2018; 14:2401-2413. [PMID: 30275694 PMCID: PMC6157579 DOI: 10.2147/ndt.s169940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) has imposed a great impact on the quality of life of patients due to its relatively young age of onset. The pathophysiology of SCI has been proven to be complicated. Microglia plays an important role in neuroinflammation and second injuries after SCI. Different environment and other factors may determine the microglial activation profile and what role they play. However, neither accurate time-course profiles of microglial activation nor influence factors have been demonstrated in varied SCI models. METHODS A rat compressive SCI model was used. Microglial activation profile and contents of inflammatory factors including IL-1β, IL-6 and TNF-α were detected. Myelination status as well as levels of iron and glutamate concentration, adenosine triphosphate (ATP) and potassium are also assessed. RESULTS Our results showed that the activated microglia participating in immune-mediated responses peaked at day 7 post SCI and gradually decreased during the following 3 weeks. Contrarily, myelination and oligodendroglia showed an opposite trend, indicating that microglia may be a key factor partly through inflammatory reaction. Iron and glutamate concentration were found to be the highest at day 7 after SCI while both ATP and potassium reached a low valley at the same time. CONCLUSION These findings showed a microglial activation profile and the alterations of associated factors after experiment SCI model. Moreover, our data suggest that high iron and glutamate concentration may be released by damaged oligodendroglia and contribute to the activation of microglial after SCI.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China,
| | - Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Lin Zhu
- Department of Neurosurgery, Jinling Hospital, Jiangsu, China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Jiangsu, China
| | - Huilin Cheng
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China,
| |
Collapse
|
32
|
Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Zheng G, Zhang Z, Wu Y, Tian N, Zhou Y, Xu H, Zhang X. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med 2017; 22:1148-1166. [PMID: 29148269 PMCID: PMC5783886 DOI: 10.1111/jcmm.13368] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disease; however, few drugs have been proved to treat SCI effectively. Neuroinflammation is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Salidroside (Sal) has been reported to exert anti‐inflammatory effects in airway, adipose and myocardial tissue; however, the role of Sal in SCI therapeutics has not been clarified. In this study, we showed that Sal could improve the functional recovery of spinal cord in rats as revealed by increased BBB locomotor rating scale, angle of incline, and decreased cavity of spinal cord injury and apoptosis of neurons in vivo. Immunofluorescence double staining of microglia marker and M1/M2 marker demonstrated that Sal could suppress M1 microglia polarization and activate M2 microglia polarization in vivo. To verify how Sal exerts its effects on microglia polarization and neuron protection, we performed the mechanism study in vitro in microglia cell line BV‐2 and neuron cell line PC12. The results showed that Sal prevents apoptosis of PC12 cells in coculture with LPS‐induced M1 BV‐2 microglia, also the inflammatory secretion phenotype of M1 BV‐2 microglia was suppressed by Sal, and further studies demonstrated that autophagic flux regulation through AMPK/mTOR pathway was involved in Sal regulated microglia polarization after SCI. Overall, our study illustrated that Sal could promote spinal cord injury functional recovery in rats, and the mechanism may relate to its microglia polarization modulation through AMPK‐/mTOR‐mediated autophagic flux stimulation.
Collapse
Affiliation(s)
- Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yiting Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zhenhua Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Qian Tang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
33
|
Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 2017; 95:1246-1265. [PMID: 28910616 DOI: 10.1016/j.neuron.2017.07.010] [Citation(s) in RCA: 511] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with a considerable socioeconomic burden. Heterogeneity of pathoanatomical subtypes and diversity in the pathogenesis and extent of injury contribute to differences in the course and outcome of TBI. Following the primary injury, extensive and lasting damage is sustained through a complex cascade of events referred to as "secondary injury." Neuroinflammation is proposed as an important manipulable aspect of secondary injury in animal and human studies. Because neuroinflammation can be detrimental or beneficial, before developing immunomodulatory therapies, it is necessary to better understand the timing and complexity of the immune responses that follow TBI. With a rapidly increasing body of literature, there is a need for a clear summary of TBI neuroimmunology. This review presents our current understanding of the immune response to TBI in a chronological and compartment-based manner, highlighting early changes in gene expression and initial signaling pathways that lead to activation of innate and adaptive immunity. Based on recent advances in our understanding of innate immune cell activation, we propose a new paradigm to study innate immune cells following TBI that moves away from the existing M1/M2 classification of activation states toward a stimulus- and disease-specific understanding of polarization state based on transcriptomic and proteomic profiling.
Collapse
|
34
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
35
|
Papa S, Caron I, Rossi F, Veglianese P. Modulators of microglia: a patent review. Expert Opin Ther Pat 2016; 26:427-37. [DOI: 10.1517/13543776.2016.1135901] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Hu JG, Shi LL, Chen YJ, Xie XM, Zhang N, Zhu AY, Jiang ZS, Feng YF, Zhang C, Xi J, Lü HZ. Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord. Exp Neurol 2016; 277:190-201. [PMID: 26772636 DOI: 10.1016/j.expneurol.2016.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 01/22/2023]
Abstract
Myelin basic protein (MBP) activated T cells (MBP-T) play an important role in the damage and repair process of the central nervous system (CNS). However, whether these cells play a beneficial or detrimental role is still a matter of debate. Although some studies showed that MBP-T cells are mainly helper T (Th) cells, their subtypes are still not very clear. One possible explanation for MBP-T immunization leading to conflicting results may be the different subtypes of T cells are responsible for distinct effects. In this study, the Th1 and Th2 type MBP-T cells (MBP-Th1 and -Th2) were polarized in vitro, and their effects on the local immune microenvironment and tissue repair of spinal cord injury (SCI) after adoptive immunization were investigated. In MBP-Th1 cell transferred rats, the high levels of pro-inflammatory cells (Th1 cells and M1 macrophages) and cytokines (IFN-γ, TNF-α, -β, IL-1β) were detected in the injured spinal cord; however, the anti-inflammatory cells (Th2 cells, regulatory T cells, and M2 macrophages) and cytokines (IL-4, -10, and -13) were found in MBP-Th2 cell transferred animals. MBP-Th2 cell transfer resulted in decreased lesion volume, increased myelination of axons, and preservation of neurons. This was accompanied by significant locomotor improvement. These results indicate that MBP-Th2 adoptive transfer has beneficial effects on the injured spinal cord, in which the increased number of Th2 cells may alter the local microenvironment from one primarily populated by Th1 and M1 cells to another dominated by Th2, Treg, and M2 cells and is conducive for SCI repair.
Collapse
Affiliation(s)
- Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Ling-Ling Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yue-Juan Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Xiu-Mei Xie
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - An-You Zhu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Zheng-Song Jiang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yi-Fan Feng
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Chen Zhang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
37
|
Papa S, Caron I, Erba E, Panini N, De Paola M, Mariani A, Colombo C, Ferrari R, Pozzer D, Zanier ER, Pischiutta F, Lucchetti J, Bassi A, Valentini G, Simonutti G, Rossi F, Moscatelli D, Forloni G, Veglianese P. Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials 2016; 75:13-24. [DOI: 10.1016/j.biomaterials.2015.10.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022]
|
38
|
IL-1α Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the Survival Factor Tox3. J Neurosci 2015. [PMID: 26224856 DOI: 10.1523/jneurosci.0498-15.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Spinal cord injury (SCI) causes the release of danger signals by stressed and dying cells, a process that leads to neuroinflammation. Evidence suggests that inflammation plays a role in both the damage and repair of injured neural tissue. We show that microglia at sites of SCI rapidly express the alarmin interleukin (IL)-1α, and that infiltrating neutrophils and macrophages subsequently produce IL-1β. Infiltration of these cells is dramatically reduced in both IL-1α(-/-) and IL-1β(-/-) mice, but only IL-1α(-/-) mice showed rapid (at day 1) and persistent improvements in locomotion associated with reduced lesion volume. Similarly, intrathecal administration of the IL-1 receptor antagonist anakinra restored locomotor function post-SCI. Transcriptome analysis of SCI tissue at day 1 identified the survival factor Tox3 as being differentially regulated exclusively in IL-1α(-/-) mice compared with IL-1β(-/-) and wild-type mice. Accordingly, IL-1α(-/-) mice have markedly increased Tox3 levels in their oligodendrocytes, beginning at postnatal day 10 (P10) and persisting through adulthood. At P10, the spinal cord of IL-1α(-/-) mice showed a transient increase in mature oligodendrocyte numbers, coinciding with increased IL-1α expression in wild-type animals. In adult mice, IL-1α deletion is accompanied by increased oligodendrocyte survival after SCI. TOX3 overexpression in human oligodendrocytes reduced cellular death under conditions mimicking SCI. These results suggest that IL-1α-mediated Tox3 suppression during the early phase of CNS insult plays a crucial role in secondary degeneration. SIGNIFICANCE STATEMENT The mechanisms underlying bystander degeneration of neurons and oligodendrocytes after CNS injury are ill defined. We show that microglia at sites of spinal cord injury (SCI) rapidly produce the danger signal interleukin (IL)-1α, which triggers neuroinflammation and locomotor defects. We uncovered that IL-1α(-/-) mice have markedly increased levels of the survival factor Tox3 in their oligodendrocytes, which correlates with the protection of this cell population, and reduced lesion volume, resulting in unprecedented speed, level, and persistence of functional recovery after SCI. Our data suggest that central inhibition of IL-1α or Tox3 overexpression during the acute phase of a CNS insult may be an effective means for preventing the loss of neurological function in SCI, or other acute injuries such as ischemia and traumatic brain injuries.
Collapse
|
39
|
Febinger HY, Thomasy HE, Pavlova MN, Ringgold KM, Barf PR, George AM, Grillo JN, Bachstetter AD, Garcia JA, Cardona AE, Opp MR, Gemma C. Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. J Neuroinflammation 2015; 12:154. [PMID: 26329692 PMCID: PMC4557842 DOI: 10.1186/s12974-015-0386-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases. METHODS In this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated the effects of genetic deletion of CX3CR1 on histopathology, cell death/survival, microglia activation, and cognitive function for 30 days post-injury. RESULTS During the acute post-injury period (24 h-15 days), motor deficits, cell death, and neuronal cell loss were more profound in injured wild-type than in CX3CR1(-/-) mice. In contrast, during the chronic period of 30 days post-TBI, injured CX3CR1(-/-) mice exhibited greater cognitive dysfunction and increased neuronal death than wild-type mice. The protective and deleterious effects of CX3CR1 were associated with changes in microglia phenotypes; during the acute phase CX3CR1(-/-) mice showed a predominant anti-inflammatory M2 microglial response, with increased expression of Ym1, CD206, and TGFβ. In contrast, increased M1 phenotypic microglia markers, Marco, and CD68 were predominant at 30 days post-TBI. CONCLUSION Collectively, these novel data demonstrate a time-dependent role for CX3CL1/CX3CR1 signaling after TBI and suggest that the acute and chronic responses to mild TBI are modulated in part by distinct microglia phenotypes.
Collapse
Affiliation(s)
- Heidi Y Febinger
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA.,Present address: Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Hannah E Thomasy
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA.,Neuroscience Graduate Program, University of Washington, Seattle, WA, 98104, USA
| | - Maria N Pavlova
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA
| | - Kristyn M Ringgold
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA
| | - Paulien R Barf
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA
| | - Amrita M George
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA
| | - Jenna N Grillo
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA.,Department of Biology, University of Washington, Seattle, WA, 98104, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Jenny A Garcia
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Astrid E Cardona
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Mark R Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA
| | - Carmelina Gemma
- Department of Anesthesiology and Pain Medicine, University of Washington, BOX # 359724, Seattle, WA, 98001, USA.
| |
Collapse
|
40
|
Zhang B, Bailey WM, Braun KJ, Gensel JC. Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol 2015; 273:83-91. [PMID: 26263843 DOI: 10.1016/j.expneurol.2015.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
Macrophages with different activation states are present after spinal cord injury (SCI). M1 macrophages purportedly promote secondary injury processes while M2 cells support axon growth. The average age at the time of SCI has increased in recent decades, however, little is known about how different physiological factors contribute to macrophage activation states after SCI. Here we investigate the effect of age on IL-10, a key indicator of M2 macrophage activation. Following mild-moderate SCI in 4 and 14 month old (MO) mice we detected significantly reduced IL-10 expression with age in the injured spinal cord. Specifically, CD86/IL-10 positive macrophages, also known as M2b or regulatory macrophages, were reduced in 14 vs. 4 MO SCI animals. This age-dependent shift in macrophage phenotype was associated with impaired functional recovery and enhanced tissue damage in 14-month-old SCI mice. In vitro, M2b macrophages release anti-inflammatory cytokines without causing neurotoxicity, suggesting that imbalances in the M2b response in 14-month-old mice may be contributing to secondary injury processes. Our data indicate that age is an important factor that regulates SCI inflammation and recovery even to mild-moderate injury. Further, alterations in macrophage activation states may contribute to recovery and we have identified the M2b phenotype as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - Kaitlyn J Braun
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
41
|
Shakhbazau A, Mishra M, Chu TH, Brideau C, Cummins K, Tsutsui S, Shcharbin D, Majoral JP, Mignani S, Blanchard-Desce M, Bryszewska M, Yong VW, Stys PK, van Minnen J. Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromol Biosci 2015; 15:1523-34. [PMID: 26175127 DOI: 10.1002/mabi.201500150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Antos Shakhbazau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Manoj Mishra
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Tak-Ho Chu
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Craig Brideau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Karen Cummins
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Shigeki Tsutsui
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | | | | | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique; Université Paris Descartes; Paris France
| | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection; University of Lodz; Lodz Poland
| | - V. Wee Yong
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Peter K. Stys
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Jan van Minnen
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| |
Collapse
|
42
|
Chen YJ, Zhu H, Zhang N, Shen L, Wang R, Zhou JS, Hu JG, Lü HZ. Temporal kinetics of macrophage polarization in the injured rat spinal cord. J Neurosci Res 2015; 93:1526-33. [PMID: 26096572 DOI: 10.1002/jnr.23612] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Yue-Juan Chen
- Central Laboratory; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
- Anhui Key Laboratory of Tissue Transplantation; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
| | - Hai Zhu
- Central Laboratory; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
- Department of Immunology; Bengbu Medical College; Anhui People's Republic of China
- Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College; Anhui People's Republic of China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
| | - Jian-Sheng Zhou
- Anhui Key Laboratory of Tissue Transplantation; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
| | - Jian-Guo Hu
- Anhui Key Laboratory of Tissue Transplantation; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
| | - He-Zuo Lü
- Central Laboratory; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
- Anhui Key Laboratory of Tissue Transplantation; First Affiliated Hospital of Bengbu Medical College; Anhui People's Republic of China
- Department of Immunology; Bengbu Medical College; Anhui People's Republic of China
- Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College; Anhui People's Republic of China
| |
Collapse
|
43
|
Haan N, Zhu B, Wang J, Wei X, Song B. Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation 2015; 12:109. [PMID: 26025034 PMCID: PMC4457974 DOI: 10.1186/s12974-015-0327-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/20/2015] [Indexed: 02/01/2023] Open
Abstract
Background Large-scale macrophage infiltration and reactive astrogliosis are hallmarks of early spinal cord injury (SCI) pathology. The exact nature of the macrophage response and relationship between these phenomena have not been explored in detail. Here, we have investigated these responses using a combination of in vivo SCI models, organotypic and primary cultures. Methods In vivo macrophage response was investigated using a contusive injury mouse model. Interactions between astrocytes and macrophages were studied in primary or organotypic cultures. Proliferation was assessed though MTT assay and nucleotide incorporation and gene expression changes through qPCR. Results Seven days following contusive SCI, a mixed M1/M2 macrophage response was seen in the injury site. Conditioned medium from primary M1, but not M2, macrophages are able to induce astrocyte proliferation in both organotypic spinal cord cultures and primary astrocytes. Soluble factors from M1 macrophages induce a reactive astrocyte gene expression pattern, whereas M2 factors inhibit expression of these genes. M2-stimulated astrocytes are also able to decrease both M1 and M2 macrophage proliferation and decrease TNFα production in M1 macrophages. Conclusions These results suggest a strong role of M1 macrophages in inducing reactive astrogliosis and the existence of an astrocyte-mediated negative feedback system in order to dampen the immune response. These results, combined with the poor outcomes of the current immunosuppressive steroid treatments in SCI, indicate the need for more targeted therapies, taking into account the significantly different effects of M1 and M2 macrophages, in order to optimise outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0327-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niels Haan
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Campus, Cardiff, CF14 4XY, UK. .,Neuroscience and Mental Health Research Institute, College of Biomedical and Life Sciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Bangfu Zhu
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Campus, Cardiff, CF14 4XY, UK.
| | - Jian Wang
- Institute of Neurosciences, Fourth Military Medical University, 169 West Changle Road, Xi'an, 710032, China.
| | - Xiaoqing Wei
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Campus, Cardiff, CF14 4XY, UK.
| | - Bing Song
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Campus, Cardiff, CF14 4XY, UK. .,Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
44
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
45
|
Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain Behav Immun 2015; 45:157-70. [PMID: 25476600 DOI: 10.1016/j.bbi.2014.11.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023] Open
Abstract
Classically activated pro-inflammatory (M1) and alternatively activated anti-inflammatory (M2) macrophages populate the local microenvironment after spinal cord injury (SCI). The former type is neurotoxic while the latter has positive effects on neuroregeneration and is less toxic. In addition, while the M1 macrophage response is rapidly induced and sustained, M2 induction is transient. A promising strategy for the repair of SCI is to increase the fraction of M2 cells and prolong their residence time. This study investigated the effect of M2 macrophages induced from bone marrow-derived macrophages on the local microenvironment and their possible role in neuroprotection after SCI. M2 macrophages produced anti-inflammatory cytokines such as interleukin (IL)-10 and transforming growth factor β and infiltrated into the injured spinal cord, stimulated M2 and helper T (Th)2 cells, and produced high levels of IL-10 and -13 at the site of injury. M2 cell transfer decreased spinal cord lesion volume and resulted in increased myelination of axons and preservation of neurons. This was accompanied by significant locomotor improvement as revealed by Basso, Beattie and Bresnahan locomotor rating scale, grid walk and footprint analyses. These results indicate that M2 adoptive transfer has beneficial effects for the injured spinal cord, in which the increased number of M2 macrophages causes a shift in the immunological response from Th1- to Th2-dominated through the production of anti-inflammatory cytokines, which in turn induces the polarization of local microglia and/or macrophages to the M2 subtype, and creates a local microenvironment that is conducive to the rescue of residual myelin and neurons and preservation of neuronal function.
Collapse
|
46
|
Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 2015; 1619:1-11. [PMID: 25578260 DOI: 10.1016/j.brainres.2014.12.045] [Citation(s) in RCA: 548] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/08/2014] [Indexed: 12/11/2022]
Abstract
The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States.
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| |
Collapse
|
47
|
Silver J, Schwab ME, Popovich PG. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 2014; 7:a020602. [PMID: 25475091 DOI: 10.1101/cshperspect.a020602] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal studies are now showing the exciting potential to achieve significant functional recovery following central nervous system (CNS) injury by manipulating both the inefficient intracellular growth machinery in neurons, as well as the extracellular barriers, which further limit their regenerative potential. In this review, we have focused on the three major glial cell types: oligodendrocytes, astrocytes, and microglia/macrophages, in addition to some of their precursors, which form major extrinsic barriers to regrowth in the injured CNS. Although axotomized neurons in the CNS have, at best, a limited capacity to regenerate or sprout, there is accumulating evidence that even in the adult and, especially after boosting their growth motor, neurons possess the capacity for considerable circuit reorganization and even lengthy regeneration when these glial obstacles to neuronal regrowth are modified, eliminated, or overcome.
Collapse
Affiliation(s)
- Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44140
| | - Martin E Schwab
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
48
|
Taylor RA, Hammond MD, Ai Y, Sansing LH. CX3CR1 signaling on monocytes is dispensable after intracerebral hemorrhage. PLoS One 2014; 9:e114472. [PMID: 25469644 PMCID: PMC4255025 DOI: 10.1371/journal.pone.0114472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/07/2014] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage is a subset of stroke for which there is no specific treatment. The Ly6Chi CCR2+ monocytes have been shown to contribute to acute injury after intracerebral hemorrhage. The other murine monocyte subset expresses CX3CR1 and lower Ly6C levels, and contributes to repair in other disease models. We hypothesized that the Ly6Clo CX3CR1+ monocytes would contribute to recovery after intracerebral hemorrhage. Intracerebral hemorrhage was modeled by blood injection in WT and CX3CR1-null bone marrow chimeras. Neurological outcomes and leukocyte recruitment were quantified at various time points. Functional outcomes were equal at 1, 3, 7, and 14 days after intracerebral hemorrhage in both genotypes. No differences were observed in leukocyte recruitment between genotypes on either 3 or 7 days after intracerebral hemorrhage. A few hundred Ly6Clo monocytes were found in the ipsilateral hemisphere in each genotype and they did not change over time. Peripherally derived CX3CR1+ monocytes were observed in the perihematomal brain 7 and 14 days after intracerebral hemorrhage. Our data suggests CX3CR1 signaling on monocytes does not play an influential role in acute injury or functional recovery after intracerebral hemorrhage and therefore CX3CR1 is not a therapeutic target to improve outcome after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Roslyn A. Taylor
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Matthew D. Hammond
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Youxi Ai
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bastien D, Lacroix S. Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Exp Neurol 2014; 258:62-77. [PMID: 25017888 DOI: 10.1016/j.expneurol.2014.04.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/20/2014] [Accepted: 04/08/2014] [Indexed: 01/13/2023]
Abstract
Injury to the nervous system causes the almost immediate release of cytokines by glial cells and neurons. These cytokines orchestrate a complex array of responses leading to microgliosis, immune cell recruitment, astrogliosis, scarring, and the clearance of cellular debris, all steps that affect neuronal survival and repair. This review will focus on cytokines released after spinal cord and peripheral nerve injury and the primary signalling pathways triggered by these inflammatory mediators. Notably, the following cytokine families will be covered: IL-1, TNF, IL-6-like, TGF-β, and IL-10. Whether interfering with cytokine signalling could lead to novel therapies will also be discussed. Finally, the review will address whether manipulating the above-mentioned cytokine families and signalling pathways could exert distinct effects in the injured spinal cord versus peripheral nerve.
Collapse
Affiliation(s)
- Dominic Bastien
- Centre de recherche du Centre hospitalier universitaire de Québec-CHUL, Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire de Québec-CHUL, Département de médecine moléculaire, Université Laval, Québec, QC, Canada..
| |
Collapse
|
50
|
Zhang B, Gensel J. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol 2014; 258:112-20. [DOI: 10.1016/j.expneurol.2014.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
|