1
|
Mai YD, Zhang Q, Fung CL, Leung SO, Chong CH. CD22 modulation alleviates amyloid β-induced neuroinflammation. J Neuroinflammation 2025; 22:32. [PMID: 39910617 PMCID: PMC11800469 DOI: 10.1186/s12974-025-03361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Neuroinflammation is a crucial driver of multiple neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Yet, therapeutic targets for neurodegenerative diseases based on neuroinflammation still warrant investigation. CD22 has been implicated in neuroinflammatory diseases, namely AD. Specifically, plasma soluble CD22 (sCD22) level is upregulated in patients with AD. Direct experimental evidence for the role of CD22 in neuroinflammation is needed, as is a better understanding of its impact on microglia activation and therapeutic potential. Here we reported that sCD22 promotes neuroinflammation both in vivo and in vitro. sCD22 activated microglia via both p38 and ERK1/2 signaling pathway for the secretion of TNFα, IL-6 and CCL3. Moreover, sCD22 activated microglia via sialic acid binding domain and 2,6 linked sialic acid glycan on sCD22. The pivotal therapeutic potential of targeting CD22 was demonstrated in Amyloid β (Aβ) induced-neuroinflammation in hCD22 transgenic mice. Suciraslimab improved working memory and resolved neuroinflammation in vivo. Further, membrane CD22 inhibited Amyloid β (Aβ) induced-NFκB signaling pathway and mechanistic study delineated that suciraslimab suppressed Aβ-induced IL-1β secretion in human microglia and PBMC. Suciraslimab also suppressed IL-12 and IL-23 secretion in human PBMC. Moreover, suciraslimab reduced the surface expression of α4 integrin on B cells. Intriguingly, we discovered that CD22 interact with Aβ and suciraslimab enhanced internalization of CD22-Aβ complex in microglia. Our data highlights the importance of sCD22 in driving neuroinflammation and the dual mechanism of targeting CD22 to resolve Aβ-induced inflammation and promote Aβ phagocytosis.
Collapse
Affiliation(s)
- Yu Dong Mai
- SinoMab BioScience Limited, Unit 303, 305-307, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
| | - Qingqing Zhang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 5/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Hong Kong, China.
- Centre for Translational Stem Cell Biology, 17W Science Park, Hong Kong SAR, China.
| | - Cheuk Lim Fung
- SinoMab BioScience Limited, Unit 303, 305-307, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
| | - Shui On Leung
- SinoMab BioScience Limited, Unit 303, 305-307, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
| | - Chi Ho Chong
- SinoMab BioScience Limited, Unit 303, 305-307, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China.
| |
Collapse
|
2
|
Pierson SR, Fiock KL, Wang R, Balasubramanian N, Reinhardt J, Khan KM, James TD, Hunter ML, Cooper BJ, Williamsen HR, Betters R, Deniz K, Lee G, Aldridge G, Hefti MM, Marcinkiewcz CA. Tau pathology in the dorsal raphe may be a prodromal indicator of Alzheimer's disease. Mol Psychiatry 2025; 30:532-546. [PMID: 39143322 PMCID: PMC12010729 DOI: 10.1038/s41380-024-02664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
Protein aggregation in brainstem nuclei is thought to occur in the early stages of Alzheimer's disease (AD), but its specific role in driving prodromal symptoms and disease progression is largely unknown. The dorsal raphe nucleus (DRN) contains a large population of serotonin (5-hydroxytryptamine; 5-HT) neurons that regulate mood, reward-related behavior, and sleep, which are all disrupted in AD. We report here that tau pathology is present in the DRN of individuals 25-80 years old without a known history of dementia, and its prevalence was comparable to the locus coeruleus (LC). By comparison, fewer cases were positive for other pathological proteins including α-synuclein, β-amyloid, and TDP-43. To evaluate how early tau pathology impacts behavior, we overexpressed human P301L-tau in the DRN of mice and observed depressive-like behaviors and hyperactivity without deficits in spatial memory. Tau pathology was predominantly found in neurons relative to glia and colocalized with a significant proportion of Tph2-expressing neurons in the DRN. 5-HT neurons were also hyperexcitable in P301L-tauDRN mice, and there was an increase in the amplitude of excitatory post-synaptic currents (EPSCs). Moreover, astrocytic density was elevated in the DRN and accompanied by an increase in IL-1α and Frk expression, which suggests increased inflammatory signaling. Additionally, tau pathology was detected in axonal processes in the thalamus, hypothalamus, amygdala, and caudate putamen. A significant proportion of this tau pathology colocalized with the serotonin reuptake transporter (SERT), suggesting that tau may spread in an anterograde manner to regions outside the DRN. Together these results indicate that tau pathology accumulates in the DRN in a subset of individuals over 50 years and may lead to behavioral dysregulation, 5-HT neuronal dysfunction, and activation of local astrocytes which may be prodromal indicators of AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kimberly L Fiock
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Jessica Reinhardt
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kanza M Khan
- Psychological Sciences Department, Daemen University, Amherst, NY, 14226, USA
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikayla L Hunter
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin J Cooper
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Ryan Betters
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaancan Deniz
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Georgina Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Abdelhamed HG, Hassan AA, Sakraan AA, Al-Deeb RT, Mousa DM, Aboul Ezz HS, Noor NA, Khadrawy YA, Radwan NM. Brain interleukins and Alzheimer's disease. Metab Brain Dis 2025; 40:116. [PMID: 39891777 PMCID: PMC11787210 DOI: 10.1007/s11011-025-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
The central nervous system (CNS) is immune-privileged by several immuno-modulators as interleukins (ILs). ILs are cytokines secreted by immune cells for cell-cell signaling communications and affect the functions of the CNS. ILs were reported to orchestrate different molecular and cellular mechanisms of both physiological and pathological events, through overproduction or over-expression of their receptors. They interact with numerous receptors mediating pro-inflammatory and/or anti-inflammatory actions. Interleukins have been implicated to participate in neurodegenerative diseases. They play a critical role in Alzheimer's disease (AD) pathology which is characterized by the over-production of pro-inflammatory ILs. These may aggravate neurodegeneration, in addition to their contribution to detrimental mechanisms as oxidative stress, and excitotoxicity. However, recent research on the relation between ILs and AD revealed major discrepancies. Most of the major ILs were shown to play both pro- and anti-inflammatory roles in different experimental settings and models. The interactions between different ILs through shared pathways also add to the difficulty of drawing solid conclusions. In addition, targeting the different ILs has not yielded consistent results. The repeated failures of therapeutic drugs in treating AD necessitate the search for novel agents targeting multiple mechanisms of the disease pathology. In this context, the understanding of interleukins and their roles throughout the disease progression and interaction with other systems in the brain may provide promising therapeutic targets for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Heba G Abdelhamed
- Department of Zoology and Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Arwa A Hassan
- Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, Sinai, Egypt
| | - Alaa A Sakraan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Dalia M Mousa
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Neveen A Noor
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Nasr M Radwan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
5
|
Feng M, Zhou S, Liu T, Yu Y, Su Q, Li X, Zhang M, Xie X, Liu T, Lin W. Association Between Interleukin 35 Gene Single Nucleotide Polymorphisms and the Uveitis Immune Status in a Chinese Han Population. Front Immunol 2021; 12:758554. [PMID: 34950136 PMCID: PMC8688856 DOI: 10.3389/fimmu.2021.758554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune uveitis is characterized by immune disorders of the eyes and the whole body and is often recurrent in young adults, but its pathogenesis is still unclear. IL-35 is an essential regulatory factor in many autoimmune diseases, which is produced by Breg cells and can induce Breg cells to regulate the immune response. The relationship between the expression and gene polymorphism of IL-35 and the immune status of patients with autoimmune uveitis has not been reported. The peripheral blood of the subjects was collected from patients with Behçet’s Disease (BD) and those with Vogt–Koyanagi–Harada (VKH) syndrome. The percentage of immune cell subsets including B cells, DC, and T cells, and the expression of IL-35 in serum of these two kinds of disease were analyzed. And then, the associations between seven IL-35 single nucleotide polymorphism (SNP) sites and disease susceptibility, the immune status, the clinical characteristics, and the serum IL-35 levels were analyzed. Our results showed that the percentage of Breg cells was significantly decreased in the blood of patients with VKH syndrome compared to that of healthy controls. The levels of IL-35 in the serum of patients with VKH syndrome or BD patients were not changed significantly, compared to that of healthy controls. Furthermore, the associations between two subunits of IL-35 (IL-12p35 and EBI3) and BD or VKH patients were analyzed. We found that there was an association between the EBI3 rs428253 and the occurrence of BD. There was an association between the IL-12p35 rs2243131 and the low level of Breg cell of VKH patients. In addition, there were associations between the polymorphisms of EBI3 rs4740 and the occurrence of headache and tinnitus of VKH patients, respectively. And the genotype frequency of IL-12p35 rs2243115 was related to the concentration of serum IL-35 in patients with VKH syndrome. Thus, the specific SNP sites change of IL-35 were correlated to the immune disorders in uveitis. And they may also play a guiding role in the occurrence of clinical symptoms in patients with uveitis, especially for VKH syndrome.
Collapse
Affiliation(s)
- Meng Feng
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuping Zhou
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tong Liu
- Departments of Medicine, Tibet Nationalities University, Xianyang, China
| | - Yong Yu
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qinghong Su
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaofan Li
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Departments of Medicine, Tibet Nationalities University, Xianyang, China
| | - Xiao Xie
- Ophthalmology Department, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,The First Clinical Medical College, Shandong University of Chinese Medicine, Jinan, China
| | - Tingting Liu
- Ophthalmology Department, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Wei Lin
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
G N S HS, Marise VLP, Satish KS, Yergolkar AV, Krishnamurthy M, Ganesan Rajalekshmi S, Radhika K, Burri RR. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101421. [PMID: 34371203 DOI: 10.1016/j.arr.2021.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Drug discovery for Alzheimer's Disease (AD) is channeled towards unravelling key disease specific drug targets/genes to predict promising therapeutic candidates. Though enormous literature on AD genetics is available, there exists dearth in data pertinent to drug targets and crucial pathological pathways intertwined in disease progression. Further, the research findings revealing genetic associations failed to demonstrate consistency across different studies. This scenario prompted us to initiate a systematic review and meta-analysis with an aim of unearthing significant genetic hallmarks of AD. Initially, a Boolean search strategy was developed to retrieve case-control studies from PubMed, Cochrane, ProQuest, Europe PMC, grey literature and HuGE navigator. Subsequently, certain inclusion and exclusion criteria were framed to shortlist the relevant studies. These studies were later critically appraised using New Castle Ottawa Scale and Q-Genie followed by data extraction. Later, meta-analysis was performed only for those Single Nucleotide Polymorphisms (SNPs) which were evaluated in at least two different ethnicities from two different reports. Among, 204,351 studies retrieved, 820 met our eligibility criteria and 117 were processed for systematic review after critical appraisal. Ultimately, meta-analysis was performed for 23 SNPs associated with 15 genes which revealed significant associations of rs3865444 (CD33), rs7561528 (BIN1) and rs1801133 (MTHFR) with AD risk.
Collapse
|
7
|
Nitsch L, Schneider L, Zimmermann J, Müller M. Microglia-Derived Interleukin 23: A Crucial Cytokine in Alzheimer's Disease? Front Neurol 2021; 12:639353. [PMID: 33897596 PMCID: PMC8058463 DOI: 10.3389/fneur.2021.639353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal cell death, amyloid β plaque formation and development of neurofibrillary tangles are among the characteristics of Alzheimer's disease (AD). In addition to neurodegeneration, inflammatory processes such as activation of microglia and astrocytes are crucial in the pathogenesis and progression of AD. Cytokines are essential immune mediators of the immune response in AD. Recent data suggest a role of interleukin 23 (IL-23) and its p40 subunit in the pathogenesis of AD and corresponding animal models, in particular concerning microglia activation and amyloid β plaque formation. Moreover, in animal models, the injection of anti-p40 antibodies resulted in reduced amyloid β plaque formation and improved cognitive performance. Here, we discuss the pathomechanism of IL-23 mediated inflammation and its role in AD.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Marcus Müller
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Li H, Liu YX, Huang JY, Zhu YF, Wang K. Analysis for interaction between interleukin-35 genes polymorphisms and risk factors on susceptibility to coronary heart disease in the Chinese Han population. BMC Cardiovasc Disord 2021; 21:6. [PMID: 33407151 PMCID: PMC7789631 DOI: 10.1186/s12872-020-01811-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/03/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The relationship between IL-35 genes polymorphism and susceptibility to coronary heart disease has not been tested in the largest Han population in China. The aim of this study was to explore the effect of single nucleotide polymorphisms (SNPs) of interleukin-35 (IL-35) genes and its relationship with environment on the risk of coronary heart disease (CHD). METHODS We performed Hardy-Weinberg equilibrium test on the control group. The relationship between the four SNPs of IL-35 genes and the risk of coronary heart disease was studied by multivariate logistic regression. The best interaction was identified with generalized multifactor dimensionality reduction (GMDR). Logistic regression was used for investigation on association between four SNPs and CHD risk. RESULTS Logistic regression analysis showed that the C allele of rs428253 and the G allele of rs2243115 were independently correlated with increased risk of CHD, and adjusted ORs (95% CI) were 1.91 (1.28-2.64) and 1.80 (1.30-2.23), respectively. However, there was no significant association between CHD and rs4740 or rs568408. GMDR model indicated a best model for CHD risk consisted of rs428253 and current smoking, which scored 10/10 for both the sign test and cross-validation consistency (p = 0.010). Therefore, this overall multi-dimensional model had the highest cross-validation consistency, regardless of how the data were divided. This provided an evidence of gene-environment interaction effects. We also found that current smokers with rs428253-GC/CC genotype have the highest CHD risk, compared to never smokers with rs428253-GG genotype, OR (95% CI) = 3.04 (1.71-4.41), after adjustment for age, gender, hypertension, T2DM and alcohol consumption status. CONCLUSIONS In this study, the C allele of rs428253 and the G allele of rs2243115, and the interaction rs428253 and current smoking were correlated with increased risk of CHD.
Collapse
Affiliation(s)
- Hu Li
- Deputy Chief Physician, Director of Cardiovascular Department of the First Naval Hospital of Southern Theater Command, PLA, Haibin Avenue 10, Zhanjiang, 524005, Guangdong Province, People's Republic of China.
| | - Ying-Xue Liu
- Out Patient Department of the First Naval Hospital of Southern Theater Command, PLA, Zhanjiang, 524005, People's Republic of China
| | - Jin-Yan Huang
- Department of Cardiovascular of the First Naval Hospital of Southern Theater Command, PLA, Zhanjiang, 524005, People's Republic of China
| | - Yu-Feng Zhu
- Department of Cardiovascular of the First Naval Hospital of Southern Theater Command, PLA, Zhanjiang, 524005, People's Republic of China
| | - Kui Wang
- Department of Cardiovascular of the First Naval Hospital of Southern Theater Command, PLA, Zhanjiang, 524005, People's Republic of China
| |
Collapse
|
9
|
Pollock TB, Cholico GN, Isho NF, Day RJ, Suresh T, Stewart ES, McCarthy MM, Rohn TT. Transcriptome Analyses in BV2 Microglial Cells Following Treatment With Amino-Terminal Fragments of Apolipoprotein E. Front Aging Neurosci 2020; 12:256. [PMID: 32922284 PMCID: PMC7456952 DOI: 10.3389/fnagi.2020.00256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022] Open
Abstract
Despite the fact that harboring the apolipoprotein E4 (APOE4) allele represents the single greatest risk factor for late-onset Alzheimer’s disease (AD), the exact mechanism by which ApoE4 contributes to disease progression remains unknown. Recently, we demonstrated that a 151 amino-terminal fragment of ApoE4 (nApoE41–151) localizes within the nucleus of microglia in the human AD brain and traffics to the nucleus causing toxicity in BV2 microglia cells. In the present study, we examined in detail what genes may be affected following treatment by nApoE41–151. Transcriptome analyses in BV2 microglial cells following sublethal treatment with nApoE41–151 revealed the upregulation of almost 4,000 genes, with 20 of these genes upregulated 182- to 715-fold compared to untreated control cells. The majority of these 20 genes play a role in the immune response and polarization toward microglial M1 activation. As a control, an identical nApoE31–151 fragment that differed by a single amino acid at position 112 (Cys→Arg) was tested and produced a similar albeit lower level of upregulation of an identical set of genes. In this manner, enriched pathways upregulated by nApoE31–151 and nApoE41–151 following exogenous treatment included Toll receptor signaling, chemokine/cytokine signaling and apoptosis signaling. There were unique genes differentially expressed by at least two-fold for either fragment. For nApoE31–151, these included 16 times as many genes, many of which are involved in physiological functions within microglia. For nApoE41–151, on the other hand the number genes uniquely upregulated was significantly lower, with many of the top upregulated genes having unknown functions. Taken together, our results suggest that while nApoE31–151 may serve a more physiological role in microglia, nApoE41–151 may activate genes that contribute to disease inflammation associated with AD. These data support the hypothesis that the link between harboring the APOE4 allele and dementia risk could be enhanced inflammation through activation of microglia.
Collapse
Affiliation(s)
- Tanner B Pollock
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Giovan N Cholico
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Noail F Isho
- Health Sciences Department, University of Washington School of Medicine, Seattle, WA, United States
| | - Ryan J Day
- Health Sciences Department, University of Washington School of Medicine, Seattle, WA, United States
| | - Tarun Suresh
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Erica S Stewart
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Madyson M McCarthy
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Troy T Rohn
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
10
|
Shi Y, Zhang S, Xue Y, Yang Z, Lin Y, Liu L, Liu H. IL-35 polymorphisms and cognitive decline did not show any association in patients with coronary heart disease over a 2-year period: A retrospective observational study (STROBE compliant). Medicine (Baltimore) 2020; 99:e21390. [PMID: 32756130 PMCID: PMC7402886 DOI: 10.1097/md.0000000000021390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Prior evidence suggested that inflammation and inflammatory cytokines polymorphisms might be essential in the development of coronary heart disease (CHD) and cognitive decline. The following study investigated the associations between interleukin-35 (IL-35) polymorphisms and cognitive decline in CHD patients over a 2-year period.CHD patients were enrolled between January 2015 and January 2016. Cognitive function, including memory, orientation, verbal and attention were assessed using Telephone Interview for Cognitive Status-Modified (TICS-m) during a 2-year follow-up. Genotypes of the single nucleotide polymorphisms (SNPs), including rs2243115, rs568408, rs582054, rs583911, rs428253, rs4740 and rs393581 of IL-35 were examined by MassArray (Sequenom). The differences of TICS-m score between 2-year interval were used to estimate the cognitive decline; linear regression model was used to analyze the association between IL-35 polymorphisms and cognitive decline in CHD patients after a 2-year follow-up.The mean age of study individuals was 60.58 (±7.86) years old. There were 255 (68.5%) males and 117 (31.5%) female patients. The TICS-m scores, including overall cognition score, verbal attention and memory scores gradually decreased over a 2 year follow up period (P < .001, respectively), whereas there was no difference in orientation function score between the 1-year and 2-year follow-up (P = .448). Furthermore, after adjusting for age, sex, history of hypertension(HT) and Diabetes mellitus(DM), smoking, education, Therapy regimen (PCI, CABG, medication) left ventricular ejection fraction (LVEF), and the severity of coronary artery stenosis (Gensini score), no association was found between IL-35 rs2243115, rs568408, rs582054, rs583911, rs428253, rs4740 genotypes and cognitive decline in CHD patients over a 2-year period.Our data reveled that IL-35 polymorphisms was not associated with cognitive decline in CHD patients over a 2-year period. Yet, further studies are needed to confirm the role of cytokine gene polymorphisms in cognitive decline among CHD patients.
Collapse
Affiliation(s)
- Ying Shi
- From the Department of Cardiology
| | | | - Yan Xue
- From the Department of Cardiology
| | | | | | - Ling Liu
- From the Department of Cardiology
| | - Hairun Liu
- From Center for Cognitive and Sleep, The people's hospital of Guangxi Zhuang autonomous region, Nanning, Guangxi, China
| |
Collapse
|
11
|
Eede P, Obst J, Benke E, Yvon-Durocher G, Richard BC, Gimber N, Schmoranzer J, Böddrich A, Wanker EE, Prokop S, Heppner FL. Interleukin-12/23 deficiency differentially affects pathology in male and female Alzheimer's disease-like mice. EMBO Rep 2020; 21:e48530. [PMID: 32003148 PMCID: PMC7054677 DOI: 10.15252/embr.201948530] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/30/2022] Open
Abstract
Pathological aggregation of amyloid‐β (Aβ) is a main hallmark of Alzheimer's disease (AD). Recent genetic association studies have linked innate immune system actions to AD development, and current evidence suggests profound gender differences in AD pathogenesis. Here, we characterise gender‐specific pathologies in the APP23 AD‐like mouse model and find that female mice show stronger amyloidosis and astrogliosis compared with male mice. We tested the gender‐specific effect of lack of IL12p40, the shared subunit of interleukin (IL)‐12 and IL‐23, that we previously reported to ameliorate pathology in APPPS1 mice. IL12p40 deficiency gender specifically reduces Aβ plaque burden in male APP23 mice, while in female mice, a significant reduction in soluble Aβ1–40 without changes in Aβ plaque burden is seen. Similarly, plasma and brain cytokine levels are altered differently in female versus male APP23 mice lacking IL12p40, while glial properties are unchanged. These data corroborate the therapeutic potential of targeting IL‐12/IL‐23 signalling in AD, but also highlight the importance of gender considerations when studying the role of the immune system and AD.
Collapse
Affiliation(s)
- Pascale Eede
- Department of Neuropathology, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Obst
- Department of Neuropathology, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eileen Benke
- Department of Neuropathology, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Genevieve Yvon-Durocher
- Department of Neuropathology, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard C Richard
- Department of Neuropathology, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility (AMBIO), corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility (AMBIO), corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annett Böddrich
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefan Prokop
- Department of Neuropathology, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Cluster of Excellence, NeuroCure, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| |
Collapse
|
12
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Association and Interaction Effects of Interleukin-12 Related Genes and Physical Activity on Cognitive Aging in Old Adults in the Taiwanese Population. Front Neurol 2019; 10:1065. [PMID: 31649612 PMCID: PMC6795278 DOI: 10.3389/fneur.2019.01065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Evidence suggests that the neuro-inflammation mechanisms associated with interleukin-12 (IL-12) may be linked to Alzheimer's diseases and cognitive aging. In this study, we speculate that single nucleotide polymorphisms (SNPs) in IL-12-associated genes, such as IL12A, IL12B, IL12RB1, and IL12RB2 genes, could be associated with cognitive aging individually and/or via complicated interactions in the elder Taiwanese population. There were totally 3,730 Taiwanese individuals with age ≥60 years from the Taiwan Biobank. Mini-Mental State Examination (MMSE) was analyzed for all participants. We employed MMSE scores to assess cognitive functions. Our analysis revealed that the IL12A gene (including rs116910715, rs78902931, and rs78569420), the IL12B gene (including rs730691), and the IL12RB2 gene (including rs3790558, rs4655538, rs75699623, and rs1874396) were associated with cognitive aging. Among these SNPs, the association with the IL12RB2 rs3790558 SNP remained significant after performing Bonferroni correction (P = 6.87 × 10−4). Additionally, we found that interactions between the IL12A and IL12RB2 genes influenced cognitive aging (P = 0.022). Finally, we pinpointed the effects of interactions between IL12A, IL12B, and IL12RB2 with physical activity (P < 0.001, = 0.002, and < 0.001, respectively). Our study suggests that the IL-12-associated genes may contribute to susceptibility to cognitive aging independently as well as through gene-gene and gene-physical activity interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA, United States.,Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, United States.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Hsinchu, Taiwan
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
13
|
Lin Y, Xue Y, Huang X, Lu J, Yang Z, Ye J, Zhang S, Liu L, Liu Y, Shi Y. Association between interleukin-35 polymorphisms and coronary heart disease in the Chinese Zhuang population: a case-control study. Coron Artery Dis 2019; 29:423-428. [PMID: 29738342 DOI: 10.1097/mca.0000000000000635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Inflammatory cytokines play an important role in the pathogenesis of cardiovascular disease. Few studies have investigated the association between interleukin-35 (IL-35) genetic variants and the risk of coronary heart disease (CHD). We examined the association between IL-35 polymorphisms and CHD in the Chinese Zhuang population. PATIENTS AND METHODS A total of 707 CHD patients and 707 age-matched and sex-matched controls were enrolled in this case-control study. Genotypes of the single nucleotide polymorphisms (SNPs) of IL-35, including rs428253, rs6613, rs9807813, rs2243115, rs568408, rs582054, rs583911, rs4740, and rs393581, were examined by MassArray. Plasma IL-35 level was measured using an enzyme-linked immunosorbent assay. The multivariate logistic regression model was used to evaluate the association between the SNPs and the risk of CHD. RESULTS In the Chinese Zhuang population, compared with the GG genotype of EBI3 rs428253, individuals with the CC genotype had a 2.02-fold (95% confidence interval: 1.07-3.84, P=0.031) higher risk of CHD. Further adjustment for potential risk factors did not alter the positive association (CC vs. GG, odds ratio=2.30, 95% confidence interval: 1.16-4.54, P=0.042). SNPs rs4740, rs2243115, rs568408, and rs582054 were not statistically related to the risk of CHD. The plasma IL-35 levels showed a marginally significant difference between rs428253 genotypes [GG: 13.39 (7.89-19.25) vs. CC+GC: 17.53 (8.98-22.56) pg/ml, P=0.057]. CONCLUSION The EBI3 rs428253 CC genotype was associated with an increased risk of CHD in the Chinese Zhuang population, although no significant difference in IL-35 levels was observed between genotypes in healthy controls.
Collapse
|
14
|
Guan SY, Liu LN, Mao YM, Zhao CN, Wu Q, Dan YL, Bellua Sam N, Pan HF. Association between Interleukin 35 Gene Single Nucleotide Polymorphisms and Systemic Lupus Erythematosus in a Chinese Han Population. Biomolecules 2019; 9:biom9040157. [PMID: 31013577 PMCID: PMC6523873 DOI: 10.3390/biom9040157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/13/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin-35 (IL-35) exerts crucial roles in the pathogenesis and development of systemic lupus erythematosus (SLE), in this study we aim to explore the associations between IL-35 gene polymorphisms and the susceptibility, clinical features and plasma IL-35 levels of SLE patients, respectively. 490 SLE patients and 489 healthy controls were recruited in our study. The correlations between the polymorphisms of seven SNPs of IL-35 encoding gene and the susceptibility, main clinical manifestations of SLE were evaluated, respectively. Plasma IL-35 levels were assessed in 76 SLE patients, and the associations between plasma IL-35 levels and the polymorphisms of genotyped SNPs were explored. There were significant associations between the polymorphisms of rs4740 and the occurrence of renal disorder, hematological disorder in SLE patients, respectively (p = 0.001; p = 0.001). In addition, there were no significant associations observed between the genotype frequencies of genotyped SNPs and the risk of SLE, plasma IL-35 levels, respectively. The polymorphism of rs4740 of IL-35 encoding gene is associated with the occurrence of renal disorder and hematological disorder of SLE patients.
Collapse
Affiliation(s)
- Shi-Yang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Yi-Lin Dan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Napoleon Bellua Sam
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| |
Collapse
|
15
|
Messeha SS, Zarmouh NO, Mendonca P, Kolta MG, Soliman KFA. The attenuating effects of plumbagin on pro-inflammatory cytokine expression in LPS-activated BV-2 microglial cells. J Neuroimmunol 2017; 313:129-137. [PMID: 28950995 DOI: 10.1016/j.jneuroim.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/24/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Activated microglial cells produce the pro-inflammatory mediators such as nitric oxide (NO) and cytokines. The excessive release of these mediators can lead to neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Inhibition of the release of these pro-inflammatory molecules may prevent or halt the progression of these diseases. Plumbagin (PL), a naphthoquinone compound in the roots of the traditional medicinal plant Plumbago zeylanica L., showed anti-inflammatory effects on macrophages. However, PL effects on activated microglia remain unknown. In the present study, PL has been examined for its anti-inflammatory effect on LPS - activated microglial BV-2 cells. In this study, NO and iNOS expression were investigated in BV-2 microglial cells in the presence of PL or the selective iNOS inhibitor L-N6-(1-iminoethyl) lysine (L-NIL). The results obtained indicate that PL was >30-fold potent than L-NIL in inhibiting NO production with an IC50 of 0.39μM. Our immunofluorescence study confirmed the ability of PL to significantly inhibit iNOS expression in the activated microglia. Furthermore, the extracellular microglial pro-inflammatory cytokine expression in the presence of 2μM of PL was detected, quantified, and validated using cytokine antibody protein arrays and quantitative ELISA. The results obtained showed that PL significantly downregulated the expression of many cytokines including IL-1α, G-CSF, IL-12 p40/p70, MCP-5, MCP-1, and IL-6. In conclusion, PL potency in attenuating multiple pro-inflammatory agents indicates its potential to be used for neurodegenerative diseases.
Collapse
Affiliation(s)
- Samia S Messeha
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL 32307, USA
| | - Najla O Zarmouh
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL 32307, USA
| | - Malak G Kolta
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
16
|
Levels of Proinflammatory Cytokines and Growth Factor VEGF in Patients with Alzheimer’s Disease and Mild Cognitive Impairment. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, Zetterberg H, Svensson J. Reduced cerebrospinal fluid concentration of interleukin-12/23 subunit p40 in patients with cognitive impairment. PLoS One 2017; 12:e0176760. [PMID: 28464009 PMCID: PMC5413050 DOI: 10.1371/journal.pone.0176760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/17/2017] [Indexed: 12/03/2022] Open
Abstract
Background The role of inflammation in Alzheimer’s disease (AD) and other cognitive disorders is unclear. In a well-defined mono-center population, we measured cytokines and chemokines in paired serum and cerebrospinal fluid (CSF) samples. Methods Consecutive patients with AD (n = 30), stable mild cognitive impairment (SMCI, n = 11), other dementias (n = 11), and healthy controls (n = 18) were included. None of the subjects was treated with glucocorticoids, cholinesterase inhibitors, or non-steroidal anti-inflammatory drugs. Serum and CSF concentrations of interleukin-6 (IL-6), IL-8, IL-12/23 p40, IL-15, IL-16, vascular endothelial growth factor-A (VEGF-A), and three chemokines were measured using a multiplex panel. Results After correction for multiple comparisons, only CSF IL-12/23 p40 concentration differed significantly between the total patient group (n = 52) and controls (n = 18; p = 0.002). Further analyses showed that CSF IL-12/23 p40 concentration was decreased in all patient subgroups (AD, other dementias, and SMCI) compared to healthy controls (p < 0.01, p < 0.05, and p < 0.05, respectively). In the total study population (n = 70), CSF IL-12/23 p40 concentrations correlated positively with CSF concentrations of β-amyloid1-42 (Aβ1–42) and phosphorylated tau protein (P-tau) whereas in AD patients (n = 30), CSF IL-12/23 p40 only correlated positively with CSF P-Tau (r = 0.46, p = 0.01). Conclusions Most cytokines and chemokines were similar in patients and controls, but CSF IL-12/23 subunit p40 concentration was decreased in patients with cognitive impairment, and correlated with markers of AD disease status. Further studies are needed to evaluate the role of CSF IL-12/23 p40 in other dementias and SMCI.
Collapse
Affiliation(s)
- Per Johansson
- Department of Neuropsychiatry, Skaraborg Central Hospital, Falköping, Sweden
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik G. Almqvist
- Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Jan-Ove Johansson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Johan Svensson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden
- * E-mail:
| |
Collapse
|
18
|
Interleukin 35 Polymorphisms Are Associated with Decreased Risk of Premature Coronary Artery Disease, Metabolic Parameters, and IL-35 Levels: The Genetics of Atherosclerotic Disease (GEA) Study. Mediators Inflamm 2017; 2017:6012795. [PMID: 28321150 PMCID: PMC5340958 DOI: 10.1155/2017/6012795] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/24/2022] Open
Abstract
Interleukin 35 (IL-35) is a heterodimeric cytokine involved in the development of atherosclerosis. The aim of the present study was to establish if the polymorphisms of IL-12A and EBI3 genes that encode the IL-35 subunits are associated with the development of premature coronary artery disease (CAD) in Mexican individuals. The IL-12A and EBI3 polymorphisms were determined in 1162 patients with premature CAD and 873 controls. Under different models, the EBI3 rs428253 (OR = 0.831, Padd = 0.036; OR = 0.614, Prec = 0.033; OR = 0.591, Pcod2 = 0.027) and IL-12A rs2243115 (OR = 0.674, Padd = 0.010; OR = 0.676, Pdom = 0.014; OR = 0.698, Phet = 0.027; OR = 0.694, Pcod1 = 0.024) polymorphisms were associated with decreased risk of developing premature CAD. Some polymorphisms were associated with clinical and metabolic parameters. Significant different levels of IL-35 were observed in EBI3 rs4740 and rs4905 genotypes only in the group of healthy controls. In summary, our study suggests that the EBI3 and IL-12A polymorphisms play an important role in decreasing the risk of developing premature CAD; it also demonstrates the relationship of the EBI3 rs4740 and rs4905 genotypes with IL-35 levels in healthy individuals.
Collapse
|
19
|
Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y. Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs 2017; 31:1057-1082. [PMID: 29260466 PMCID: PMC5747579 DOI: 10.1007/s40263-017-0483-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Collapse
Affiliation(s)
- A. Ardura-Fabregat
- grid.5963.9Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - E. W. G. M. Boddeke
- 0000 0004 0407 1981grid.4830.fDepartment of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A. Boza-Serrano
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - S. Brioschi
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - S. Castro-Gomez
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Ceyzériat
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Dansokho
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - T. Dierkes
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dBiomedical Centre, Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - G. Gelders
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Michael T. Heneka
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - L. Hoeijmakers
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - L. Iaccarino
- grid.15496.3fVita-Salute San Raffaele University, Milan, Italy ,0000000417581884grid.18887.3eIn Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S. Jahnert
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Landreth
- 0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - N. Lonnemann
- 0000 0001 1090 0254grid.6738.aDepartment of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - R. M. McManus
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Paulus
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - K. Reemst
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J. M. Sanchez-Caro
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Tiberi
- grid.6093.cBio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - A. Van der Perren
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - A. Vautheny
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Venegas
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - A. Webers
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - P. Weydt
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - T. S. Wijasa
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - X. Xiang
- 0000 0004 1936 973Xgrid.5252.0Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany ,0000 0004 1936 973Xgrid.5252.0Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, 82152 Munich, Germany
| | - Y. Yang
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| |
Collapse
|
20
|
Cerajewska TL, Davies M, West NX. Periodontitis: a potential risk factor for Alzheimer's disease. Br Dent J 2016; 218:29-34. [PMID: 25571822 DOI: 10.1038/sj.bdj.2014.1137] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2014] [Indexed: 01/12/2023]
Abstract
The role of periodontitis as a risk factor for multiple systemic diseases is widely accepted and there is growing evidence of an association between periodontitis and sporadic late onset Alzheimer's disease (SLOAD). Recent epidemiologic, microbiologic and inflammatory findings strengthen this association, indicating that periodontal pathogens are possible contributors to neural inflammation and SLOAD. The aim of this article is to present contemporary evidence of this association.
Collapse
Affiliation(s)
- T L Cerajewska
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| | - M Davies
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| | - N X West
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| |
Collapse
|
21
|
Inflammatory Cytokines and Alzheimer's Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci Bull 2016; 32:469-80. [PMID: 27568024 DOI: 10.1007/s12264-016-0055-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/03/2016] [Indexed: 12/30/2022] Open
Abstract
Neuroinflammatory processes are a central feature of Alzheimer's disease (AD) in which microglia are over-activated, resulting in the increased production of pro-inflammatory cytokines. Moreover, deficiencies in the anti-inflammatory system may also contribute to neuroinflammation. Recently, advanced methods for the analysis of genetic polymorphisms have further supported the relationship between neuroinflammatory factors and AD risk because a series of polymorphisms in inflammation-related genes have been shown to be associated with AD. In this review, we summarize the polymorphisms of both pro- and anti-inflammatory cytokines related to AD, primarily interleukin-1 (IL-1), IL-6, tumor necrosis factor alpha, IL-4, IL-10, and transforming growth factor beta, as well as their functional activity in AD pathology. Exploration of the relationship between inflammatory cytokine polymorphisms and AD risk may facilitate our understanding of AD pathogenesis and contribute to improved treatment strategies.
Collapse
|
22
|
Malashenkova IK, Hailov NA, Krynskiy SA, Ogurtsov DP, Kazanova GV, Velichkovckiy BB, Selezneva ND, Fedorova YB, Ponomareva EV, Kolyhalov IV, Gavrilova SI, Didkovsky NA. [Levels of proinflammatory cytokines and vascular endothelial growth factor in patients with Alzheimer's disease and mild cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:39-43. [PMID: 27070471 DOI: 10.17116/jnevro20161163139-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE to evaluate the levels of cytokines (IFNα, IFNγ, IL-2, Il-4, IL-6, IL-8, IL-10, IL-12, IL-15), IL-1β receptor antagonist (IL-1RA), vascular endothelial growth factor (VEGF) and its antagonist, the soluble form of receptor 1 (sVEGFR1) in the blood serum of patients with Alzheimer's disease, with early onset (ADEO) and late onset (ADLO), and in patients with mild cognitive impairment (MCI). MATERIAL AND METHODS Levels of interleukins, IL-1RA, VEGF and sVEGFR1 were measured in 20 patients with AD and 11 patients with MCI using ELISA. These parameters were compared to the severity of cognitive impairment assessed by the performance on neurocognitive tests. RESULTS AND CONCLUSION The levels of key cytokines (IL-8, TNFα, IL-12), VEGF and sVEGFR1 as well as anti-inflammatory proteins were different in patients with ADEO, ADLO and MCI. These differences suggest the phenotypic and genotypic heterogeneity of the disease that demands further research.
Collapse
Affiliation(s)
| | - N A Hailov
- National Research Center 'Kurchatov Institute', Moscow
| | - S A Krynskiy
- National Research Center 'Kurchatov Institute', Moscow
| | - D P Ogurtsov
- Research Institute of physical-chemical medicine, Moscow
| | - G V Kazanova
- National Research Center 'Kurchatov Institute', Moscow
| | | | | | | | | | | | | | - N A Didkovsky
- Research Institute of physical-chemical medicine, Moscow
| |
Collapse
|
23
|
Zheng C, Zhou XW, Wang JZ. The dual roles of cytokines in Alzheimer's disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener 2016; 5:7. [PMID: 27054030 PMCID: PMC4822284 DOI: 10.1186/s40035-016-0054-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/29/2016] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the elderly. Although the mechanisms underlying AD neurodegeneration are not fully understood, it is well recognized that inflammation plays a crucial role in the initiation and/or deterioration of AD neurodegeneration. Increasing evidence suggests that different cytokines, including interleukins, TNF-α, TGF-β and IFN-γ, are actively participated in AD pathogenesis and may serve as diagnostic or therapeutic targets for AD neurodegeneration. Here, we review the progress in understanding the important role that these cytokines or neuroinflammation has played in AD etiology and pathogenesis.
Collapse
Affiliation(s)
- Cong Zheng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xin-Wen Zhou
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ; Co-innovation Center of Neuroregeneration, Nantong, 226000 China
| |
Collapse
|
24
|
Dong X, Zhang L, Meng Q, Gao Q. Association Between Interleukin-1A, Interleukin-1B, and Bridging integrator 1 Polymorphisms and Alzheimer's Disease: a standard and Cumulative Meta-analysis. Mol Neurobiol 2016; 54:736-747. [PMID: 26768592 DOI: 10.1007/s12035-015-9683-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) has been one of the most prevalent health problems among senior population. Interleukin-1A (IL-1A) and IL-1B are two isoforms of IL-1. Recent studies suggested that certain polymorphisms on these two genes are associated with AD. Bridging integrator 1 (BIN1) is considered as common genetic risk factors for AD, whereas different studies have provided various conclusions regarding its role in AD. This study was designed to justify the association between multiple gene polymorphisms and AD through an evidence synthesis approach. We conducted a literature search to identify relevant articles published from 2000 to 2015 from PubMed, Embase, and Cochrane Library, in accordance with inclusion criteria. Pooled odds ratios (ORs) were calculated for the allele model. The effect estimates were summarized by both standard and cumulative meta-analysis. Finally, 54 articles with 88 independent studies were enrolled in this meta-analysis. Mutants in rs1800587 of IL-1A, rs1143634 of IL-1B, rs12989701, and rs744373 of BIN1 were significantly associated with AD onset. The difference effect of same single nucleotide polymorphisms (SNPs) on various ethnicities was also observed in our results. The present meta-analysis suggested that IL-1A, IL-1B, and BIN1 were candidate genes for AD pathogenesis. Polymorphisms of IL-1A, IL-1B, and BIN1 are associated with AD onset.
Collapse
Affiliation(s)
- Xiaoliu Dong
- Department of Neurology, Tangshan People's Hospital, Tangshan, 063000, China.
| | - Li Zhang
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan, 063000, China
| | - Qingling Meng
- Department of Internal Medicine, The People's Hospital of Qianxi County, Qianxi, 064300, China
| | - Qiuyan Gao
- Department of Ultrasound, Tangshan People's Hospital, Tangshan, 063000, China
| |
Collapse
|
25
|
Association of Parkinson’s Disease GWAS-Linked Loci with Alzheimer’s Disease in Han Chinese. Mol Neurobiol 2016; 54:308-318. [DOI: 10.1007/s12035-015-9649-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 01/03/2023]
|
26
|
Common Polymorphisms Within QPCT Gene Are Associated with the Susceptibility of Schizophrenia in a Han Chinese Population. Mol Neurobiol 2015; 53:6362-6366. [DOI: 10.1007/s12035-015-9541-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/11/2015] [Indexed: 01/09/2023]
|
27
|
Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer's disease? J Oral Microbiol 2015; 7:29143. [PMID: 26385886 PMCID: PMC4575419 DOI: 10.3402/jom.v7.29143] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/21/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a scourge of longevity that will drain enormous resources from public health budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly oral and non-oral Treponema species), viruses (herpes simplex type I), and yeasts (Candida species). A causal relationship between periodontal pathogens and non-oral Treponema species of bacteria has been proposed via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily, transient bacteremias. If and when genetic risk factors meet environmental risk factors in the brain, disease is expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as the plausible etiology of late-onset AD (LOAD).
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway;
| | - Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|