1
|
Seke M, Stankovic A, Zivkovic M. Capacity of fullerenols to modulate neurodegeneration induced by ferroptosis: Focus on multiple sclerosis. Mult Scler Relat Disord 2025; 97:106378. [PMID: 40088719 DOI: 10.1016/j.msard.2025.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/10/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system (CNS), characterized by oligodendrocyte loss and demyelination of axons leading to neurodegeneration and severe neurological disability. Despite the existing drugs that have immunomodulatory effects an adequate therapy that slow down or stop neuronal death has not yet been found. Oxidative stress accompanied by excessive release of iron into the extracellular space, mitochondrial damage and lipid peroxidation are important factors in the controlled cell death named ferroptosis, latterly recognized in MS. As the fullerenols exhibit potent antioxidant activity, recent results imply that they could have protective effects by suppressing ferroptosis. Based on the current knowledge we addressed the main mechanisms of the protective effects of fullerenols in the CNS in relation to ferroptosis. Inhibition of inflammation, iron overload and lipid peroxidation through the signal transduction mechanism of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2), chelation of heavy metals and free radical scavenging using fullerenols are proposed as benefitial strategy preventing MS progression. Current review connects ferroptosis molecular targets and important factors of MS progression, with biomedical properties and mechanisms of fullerenols' actions, to propose new treatment strategies that could be addaptobale in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariana Seke
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia.
| |
Collapse
|
2
|
Bilek F, Ercan Z, Deniz G, Ozgul S, Demir CF. High-intensity intermittent exercise increases serum levels of chitinase 3-like protein-1 and matrix metalloproteinase-9 in persons with multiple sclerosis. J Neuroimmunol 2024; 395:578434. [PMID: 39178495 DOI: 10.1016/j.jneuroim.2024.578434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
The study aimed to evaluate the effect of high-intensity intermittent exercise (HIIE) on serum levels of MMP-9 and CHI3L1 in multiple sclerosis. Study group received HIIE twice a week for 12 weeks, while control group received no treatment. In intra-group comparison, study group showed a significant increase in MMP-9 and CHI3L1 levels, while control group showed no significant difference. In intergroup comparison, a significant difference was found only in CHI3L1 levels after treatment. The increase in MMP-9 and CH3L-1 concentrations in study group suggests that these biomarkers may play a role in regulating specific skeletal muscle adaptations due to HIIE.
Collapse
Affiliation(s)
- Furkan Bilek
- Muğla Sıtkı Koçman University, Fethiye Faculty of Health Sciences, Department of Gerontology, Muğla, Türkiye.
| | - Zubeyde Ercan
- Fırat University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Elazığ, Türkiye.
| | - Gulnihal Deniz
- Erzurum Technical University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Erzurum, Türkiye.
| | - Sinem Ozgul
- Fırat University Hospital, Physiotherapy and Rehabilitation Clinic, Elazığ, Türkiye
| | - Caner Feyzi Demir
- Fırat University, School of Medicine, Department of Neurology, Elazığ, Türkiye.
| |
Collapse
|
3
|
Tatomir A, Anselmo F, Boodhoo D, Chen H, Mekala AP, Nguyen V, Cuevas J, Rus V, Rus H. Multiple sclerosis disease activity, a multi-biomarker score of disease activity and response to treatment in multiple sclerosis. Front Immunol 2024; 15:1338585. [PMID: 38994359 PMCID: PMC11236682 DOI: 10.3389/fimmu.2024.1338585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Regular assessment of disease activity in relapsing-remitting multiple sclerosis (RRMS) is required to optimize clinical outcomes. Biomarkers can be a valuable tool for measuring disease activity in multiple sclerosis (MS) if they reflect the pathological processes underlying MS pathogenicity. In this pilot study, we combined multiple biomarkers previously analyzed in RRMS patients into an MS disease activity (MSDA) score to evaluate their ability to predict relapses and treatment response to glatiramer acetate (GA). Response Gene to Complement 32 (RGC-32), FasL, IL-21, SIRT1, phosphorylated SIRT1 (p-SIRT1), and JNK1 p54 levels were used to generate cut-off values for each biomarker. Any value below the cutoff for RGC-32, FasL SIRT1, or p-SIRT1 or above the cutoff for IL-21 or JNK1 p54 was given a +1 value, indicating relapse or lack of response to GA. Any value above the cutoff value for RGC-32, FasL, SIRT1, p-SIRT1 or below that for IL-21 or JNK1 p54 was given a -1 value, indicating clinical stability or response to GA. An MSDA score above +1 indicated a relapse or lack of response to treatment. An MSDA score below -1 indicated clinical stability or response to treatment. Our results showed that the MSDA scores generated using either four or six biomarkers had a higher sensitivity and specificity and significantly correlated with the expanded disability status scale. Although these results suggest that the MSDA test can be useful for monitoring therapeutic response to biologic agents and assessing clinically challenging situations, the present findings need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Neurology Department, Baltimore Veterans Administration Hospital, Baltimore, MD, United States
| | - Freidrich Anselmo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Hegang Chen
- Department of Epidemiology and Public Health, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Armugam P. Mekala
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Jacob Cuevas
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Neurology Department, Baltimore Veterans Administration Hospital, Baltimore, MD, United States
| |
Collapse
|
4
|
Al-Temaimi R, Alshammari N, Alroughani R. Analysis of potential microRNA biomarkers for multiple sclerosis. Exp Mol Pathol 2024; 137:104903. [PMID: 38772208 DOI: 10.1016/j.yexmp.2024.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating autoimmune neurodegenerative disorder for which no specific blood biomarker is available. MicroRNAs (miRNAs) have been investigated for their diagnostic potential in MS. However, MS-associated miRNAs are rarely replicated in different MS populations, thus impeding their use in clinical testing. Here, we evaluated the fold expression of seven reported MS miRNAs associated with MS incidence and clinical characteristics in 76 MS patients and 75 healthy control plasma samples. We found miR-23a-3p to be upregulated in relapsing-remitting MS (RRMS), while miR-326 was downregulated. MiR-150-5p and -320a-3p were significantly downregulated in secondary progressive MS (SPMS) patients compared to RRMS. High disability was associated with low miR-320a-3p, whereas low BDNF levels were associated with upregulation of miR-150-5p and downregulation of miR-326 expression in the total cohort. MiR-23a-3p and miR-326 showed significant diagnostic sensitivity, specificity, and accuracy for RRMS diagnosis. In addition, miR-150-5p and miR-320a-3p had comparable significant diagnostic test performance metrics distinguishing SPMS from RRMS. Therefore, there is potential for including miR-23a-3p and miR-326 in an RRMS diagnostic miRNA panel. Moreover, we have shown that miR-150-5p and miR-320a-3p could be novel RRMS conversion to SPMS biomarkers. The use of these miRNAs in MS diagnosis and prognosis warrants further investigation.
Collapse
Affiliation(s)
- Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait.
| | - Nashmeiah Alshammari
- Molecular Biology joint Master program, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | |
Collapse
|
5
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
6
|
Salama AM, Elmahy RA, Ibrahim HA, Amer AIM, Eltantawy AF, Elgendy DI. Effects of metformin on parasitological, pathological changes in the brain and liver and immunological aspects during visceral toxocariasis in mice. Parasitol Res 2023; 122:3213-3231. [PMID: 37874393 PMCID: PMC10667394 DOI: 10.1007/s00436-023-08011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
There are currently insufficient anthelmintic medications available for the treatment of toxocariasis. For instance, Albendazole (ABZ) is the preferred medication, but its effectiveness against tissue-dwelling parasites is limited. In addition, Metformin (MTF) is a widely used oral antidiabetic medication that is considered to be safe for treatment. This study aimed to investigate any potential effects of MTF, alone or in combination with ABZ, on mice infections caused by Toxocara canis (T. canis). The efficacy of the treatment was assessed in the acute and chronic phases of the infection by larval recovery and histopathological, immunohistochemical, and biochemical studies. The results showed that combined therapy significantly reduced larval counts in the liver, brain, and muscles and ameliorated hepatic and brain pathology. It reduced oxidative stress and TGF-β mRNA expression and increased FGF21 levels in the liver. It decreased TNF-α levels and MMP-9 expression in the brain. In addition, it increased serum levels of IL-12 and IFN-γ and decreased serum levels of IL-4 and IL-10. In the acute and chronic phases of the infection, the combined treatment was more effective than ABZ alone. In conclusion, this study highlights the potential role of MTF as an adjuvant in the treatment of experimental T. canis infection when administered with ABZ.
Collapse
Affiliation(s)
- Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
7
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Mohammed OA, Nassar YA, Abulsoud AI, Raouf AA, Abdel-Reheim MA, Rashad AA, Elawady AS, Elsisi AM, Alsalme A, Ali MA. The role of miRNAs in multiple sclerosis pathogenesis, diagnosis, and therapeutic resistance. Pathol Res Pract 2023; 251:154880. [PMID: 37832353 DOI: 10.1016/j.prp.2023.154880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
In recent years, microRNAs (miRNAs) have gained increased attention from researchers around the globe. Although it is twenty nucleotides long, it can modulate several gene targets simultaneously. Their mal expression is a signature of various pathologies, and they provide the foundation to elucidate the molecular mechanisms of each pathology. Among the debilitating central nervous system (CNS) disorders with a growing prevalence globally is the multiple sclerosis (MS). Moreover, the diagnosis of MS is challenging due to the lack of disease-specific biomarkers, and the diagnosis mainly depends on ruling out other disabilities. MS could adversely affect patients' lives through its progression, and only symptomatic treatments are available as therapeutic options, but an exact cure is yet unavailable. Consequently, this review hopes to further the study of the biological features of miRNAs in MS and explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohammed Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Al-Arish, Egypt
| | - Ali Alsalme
- Chemistry Department, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
8
|
Wang Y, Danzeng Q, Jiang W, Han B, Zhu X, Liu Z, Sun J, Chen K, Zhang G. A retrospective study of myelin oligodendrocyte glycoprotein antibody-associated disease from a clinical laboratory perspective. Front Neurol 2023; 14:1187824. [PMID: 37771453 PMCID: PMC10523388 DOI: 10.3389/fneur.2023.1187824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Objectives To analyze the differences in laboratory data between patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD), multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Methods The study included 26 MOGAD patients who visited Beijing Tiantan Hospital from 2018 to 2021. MS and NMOSD patients who visited the clinic during the same period were selected as controls. Relevant indicators were compared between the MOGAD group and the MS/NMOSD groups, and the diagnostic performance of meaningful markers was assessed. Results The MOGAD group showed a slight female preponderance of 57.7%, with an average onset age of 29.8 years. The absolute and relative counts of neutrophils were higher in the MOGAD group than in the MS group, while the proportion of lymphocytes was lower. The cerebrospinal fluid (CSF) IgG level, IgG index, 24-h IgG synthesis rate, and positive rate of oligoclonal bands (OCB) were lower in MOGAD patients than in the MS group. The area under ROC curve (AUC) was 0.939 when combining the relative lymphocyte count and IgG index. Compared to the NMOSD group, the MOGAD group had higher levels of serum complement C4 and lower levels of serum IgG. The AUC of serum C4 combined with FT4 was 0.783. Conclusion Statistically significant markers were observed in the laboratory data of MOGAD patients compared to MS/NMOSD patients. The relative lymphocyte count combined with IgG index had excellent diagnostic efficacy for MOGAD and MS, while serum C4 combined with FT4 had better diagnostic efficacy for MOGAD and NMOSD.
Collapse
Affiliation(s)
- Yufei Wang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Qusang Danzeng
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Wencan Jiang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Bingqing Han
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Xiaowen Zhu
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Ziwei Liu
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Jialu Sun
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Kelin Chen
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Guojun Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| |
Collapse
|
9
|
Redenšek Trampuž S, Vogrinc D, Goričar K, Dolžan V. Shared miRNA landscapes of COVID-19 and neurodegeneration confirm neuroinflammation as an important overlapping feature. Front Mol Neurosci 2023; 16:1123955. [PMID: 37008787 PMCID: PMC10064073 DOI: 10.3389/fnmol.2023.1123955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Development and worsening of most common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been associated with COVID-19 However, the mechanisms associated with neurological symptoms in COVID-19 patients and neurodegenerative sequelae are not clear. The interplay between gene expression and metabolite production in CNS is driven by miRNAs. These small non-coding molecules are dysregulated in most common neurodegenerative diseases and COVID-19. Methods We have performed a thorough literature screening and database mining to search for shared miRNA landscapes of SARS-CoV-2 infection and neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were searched using PubMed, while differentially expressed miRNAs in patients with five most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis) were searched using the Human microRNA Disease Database. Target genes of the overlapping miRNAs, identified with the miRTarBase, were used for the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes and Genomes and Reactome. Results In total, 98 common miRNAs were found. Additionally, two of them (hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers of neurodegeneration, as they are dysregulated in all five most common neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was upregulated in four COVID-19 studies and found to be dysregulated in neurodegeneration processes as well. Screening for miRNA targets identified 746 unique genes with strong evidence for interaction. Target enrichment analysis highlighted most significant KEGG and Reactome pathways being involved in signaling, cancer, transcription and infection. However, the more specific identified pathways confirmed neuroinflammation as being the most important shared feature. Discussion Our pathway based approach has identified overlapping miRNAs in COVID-19 and neurodegenerative diseases that may have a valuable potential for neurodegeneration prediction in COVID-19 patients. Additionally, identified miRNAs can be further explored as potential drug targets or agents to modify signaling in shared pathways. Graphical AbstractShared miRNA molecules among the five investigated neurodegenerative diseases and COVID-19 were identified. The two overlapping miRNAs, hsa-miR-34a and has-miR-132, present potential biomarkers of neurodegenerative sequelae after COVID-19. Furthermore, 98 common miRNAs between all five neurodegenerative diseases together and COVID-19 were identified. A KEGG and Reactome pathway enrichment analyses was performed on the list of shared miRNA target genes and finally top 20 pathways were evaluated for their potential for identification of new drug targets. A common feature of identified overlapping miRNAs and pathways is neuroinflammation. AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington's disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; MS, multiple sclerosis; PD, Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
11
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021; 101:108172. [PMID: 34601331 PMCID: PMC8452524 DOI: 10.1016/j.intimp.2021.108172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, as the causative agent of COVID-19, is an enveloped positives-sense single-stranded RNA virus that belongs to the Beta-CoVs sub-family. A sophisticated hyper-inflammatory reaction named cytokine storm is occurred in patients with severe/critical COVID-19, following an imbalance in immune-inflammatory processes and inhibition of antiviral responses by SARS-CoV-2, which leads to pulmonary failure, ARDS, and death. The miRNAs are small non-coding RNAs with an average length of 22 nucleotides which play various roles as one of the main modulators of genes expression and maintenance of immune system homeostasis. Recent evidence has shown that Homo sapiens (hsa)-miRNAs have the potential to work in three pivotal areas including targeting the virus genome, regulating the inflammatory signaling pathways, and reinforcing the production/signaling of IFNs-I. However, it seems that several SARS-CoV-2-induced interfering agents such as viral (v)-miRNAs, cytokine content, competing endogenous RNAs (ceRNAs), etc. preclude efficient function of hsa-miRNAs in severe/critical COVID-19. This subsequently leads to increased virus replication, intense inflammatory processes, and secondary complications development. In this review article, we provide an overview of hsa-miRNAs roles in viral genome targeting, inflammatory pathways modulation, and IFNs responses amplification in severe/critical COVID-19 accompanied by probable interventional factors and their function. Identification and monitoring of these interventional elements can help us in designing the miRNAs-based therapy for the reduction of complications/mortality rate in patients with severe/critical forms of the disease.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Circulating miRNAs as Potential Biomarkers Distinguishing Relapsing-Remitting from Secondary Progressive Multiple Sclerosis. A Review. Int J Mol Sci 2021; 22:ijms222111887. [PMID: 34769314 PMCID: PMC8584709 DOI: 10.3390/ijms222111887] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating neurodegenerative, highly heterogeneous disease with a variable course. The most common MS subtype is relapsing–remitting (RR), having interchanging periods of worsening and relative stabilization. After a decade, in most RR patients, it alters into the secondary progressive (SP) phase, the most debilitating one with no clear remissions, leading to progressive disability deterioration. Among the greatest challenges for clinicians is understanding disease progression molecular mechanisms, since RR is mainly characterized by inflammatory processes, while in SP, the neurodegeneration prevails. This is especially important because distinguishing RR from the SP subtype early will enable faster implementation of appropriate treatment. Currently, the MS course is not well-correlated with the biomarkers routinely used in clinical practice. Despite many studies, there are still no reliable indicators correlating with the disease stage and its activity degree. Circulating microRNAs (miRNAs) may be considered valuable molecules for the MS diagnosis and, presumably, helpful in predicting disease subtype. MiRNA expression dysregulation is commonly observed in the MS course. Moreover, knowledge of diverse miRNA panel expression between RRMS and SPMS may allow for deterring disability progression through successful treatment. Therefore, in this review, we address the current state of research on differences in miRNA panel expression between the phases.
Collapse
|
13
|
Yousuf A, Qurashi A. Non-coding RNAs in the Pathogenesis of Multiple Sclerosis. Front Genet 2021; 12:717922. [PMID: 34659340 PMCID: PMC8514772 DOI: 10.3389/fgene.2021.717922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple sclerosis (MS) is an early onset chronic neurological condition in adults characterized by inflammation, demyelination, gliosis, and axonal loss in the central nervous system. The pathological cause of MS is complex and includes both genetic and environmental factors. Non-protein-coding RNAs (ncRNAs), specifically miRNAs and lncRNAs, are important regulators of various biological processes. Over the past decade, many studies have investigated both miRNAs and lncRNAs in patients with MS. Since then, insightful knowledge has been gained in this field. Here, we review the role of miRNAs and lncRNAs in MS pathogenesis and discuss their implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Aadil Yousuf
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
14
|
Yang R, Xu B, Yang B, Fu J, Chen H, Wang X. Non-coding RNAs: the extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol 2021; 18:108-116. [PMID: 34241576 PMCID: PMC8677028 DOI: 10.1080/15476286.2021.1950465] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB), which controls permeability into and out of the nervous system, is a tightly connected, structural, and functional separation between the central nervous system (CNS) and circulating blood. CNS diseases, such as Alzheimer’s disease, multiple sclerosis, traumatic brain injury, stroke, meningitis, and brain cancers, often develop with the increased BBB permeability and further leads to irreversible CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that generally lack the coding abilities but can actively regulate the mRNA expression and function through different mechanisms. Various types of ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are highly expressed in brain microvascular endothelial cells and are potential mediators of BBB permeability. Here, we summarized the recent research progress on miRNA, lncRNA, and circRNA roles regulating the BBB permeability in different CNS diseases. Understanding how these ncRNAs affect the BBB permeability shall provide important therapeutic insights into the prevention and control of the BBB dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bojie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bo Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Jiyang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
15
|
Franzoi AEDA, de Moraes Machado FS, de Medeiros Junior WLG, Bandeira IP, Brandão WN, Gonçalves MVM. Altered expression of microRNAs and B lymphocytes during Natalizumab therapy in multiple sclerosis. Heliyon 2021; 7:e07263. [PMID: 34179535 PMCID: PMC8214090 DOI: 10.1016/j.heliyon.2021.e07263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 01/18/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of non-translated small ribonucleic acids (RNAs) measuring 21–25 nucleotides in length that play various roles in multiple sclerosis (MS). By regulating gene expression via either mediating translational repression or cleavage of the target RNA, miRNAs can alter the expression of transcripts in different cells, such as B lymphocytes, also known as B cells. They are crucial in the pathogenesis of MS; however, they have not been extensively studied during the treatment of some drugs such as natalizumab (NTZ). NTZ is a humanized immunoglobulin G4 antibody antagonist for integrin alpha 4 (α4) used in the treatment of MS. The drug reduces the homing of lymphocytes to inflammation sites. Integrin α4 expression on the cell surface of B cells is related to MS severity, indicating a critical component in the pathogenesis of the disease. NTZ plays an important role in modifying the gene expression in B cells and the levels of miRNAs in the treatment of MS. In this review, we have described changes in gene expression in B cells and the levels of miRNAs during NTZ therapy in MS and its relapse. Studies using the experimental autoimmune encephalomyelitis (EAE) model and those involving patients with MS have described changes in the levels of microRNAs in the regulation of proteins affected by specific miRNAs, gene expression in B cells, and certain functions of B cells as well as their subpopulations. Therefore, there is a possibility that some miRNAs could be studied at different stages of MS during NTZ treatment, and these specific miRNAs can be tested as markers of therapeutic response to this drug in future studies. Physiopathology, gene expression in B cells and their subpopulations can help understand this complex puzzle involving miRNAs and the therapeutic response of patients with MS.
Collapse
Affiliation(s)
| | | | | | | | - Wesley Nogueira Brandão
- Department of Neuroimmunology at the Institute of Biological Sciences, University of São Paulo (ICB-USP), Brazil
| | | |
Collapse
|
16
|
Association of dietary intake, medication and anthropometric indices with serum levels of advanced glycation end products, caspase-3, and matrix metalloproteinase-9 in diabetic patients. J Diabetes Metab Disord 2021; 20:719-725. [PMID: 34222087 DOI: 10.1007/s40200-021-00803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Background and objective Increased serum levels of advanced glycation end products (AGEs), caspase-3 (Cas-3) and matrix metalloproteinase-9 (MMP-9) have been reported in diabetic patients. This study aimed to evaluate association of anthropometric, dietary, and therapeutic factors with serum levels of methylglyoxal (MGO), carboxymethyl lysine (CML), pentosidine (Pen), Cas-3, and MMP-9 in diabetic patients. Methods The current study included 36 diabetic subjects. Dietary intake of the participants was assessed using three-day 24-h recall survey and anthropometric indices were measured. Demographic factors and medication intake of every subject were obtained. Serum levels of CML, MGO, Pen, MMP-9, and Cas-3 were measured using ELISA method. Results Gliclazide consumption was positively correlated with MMP-9 and Cas-3, but not AGEs levels. Females had higher MGO level compared with males. Further, CML levels were negatively correlated with BMI and WHR. Dietary protein intake was positively correlated with MMP-9, Cas-3, and MGO levels. As well as dietary energy and fat intake had significant positive relationship with serum Cas-3 concentration. Conclusion It is concluded that anthropometric characteristics, dietary intake, and therapeutic medications are possible factors that may determine the circulating levels of AGEs, MMP-9, and Cas-3 in patients with diabetes.
Collapse
|
17
|
Floudas A, Neto N, Marzaioli V, Murray K, Moran B, Monaghan MG, Low C, Mullan RH, Rao N, Krishna V, Nagpal S, Veale DJ, Fearon U. Pathogenic, glycolytic PD-1+ B cells accumulate in the hypoxic RA joint. JCI Insight 2020; 5:139032. [PMID: 33148884 PMCID: PMC7710281 DOI: 10.1172/jci.insight.139032] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/24/2020] [Indexed: 01/11/2023] Open
Abstract
While autoantibodies are used in the diagnosis of rheumatoid arthritis (RA), the function of B cells in the inflamed joint remains elusive. Extensive flow cytometric characterization and SPICE algorithm analyses of single-cell synovial tissue from patients with RA revealed the accumulation of switched and double-negative memory programmed death-1 receptor–expressing (PD-1–expressing) B cells at the site of inflammation. Accumulation of memory B cells was mediated by CXCR3, evident by the observed increase in CXCR3-expressing synovial B cells compared with the periphery, differential regulation by key synovial cytokines, and restricted B cell invasion demonstrated in response to CXCR3 blockade. Notably, under 3% O2 hypoxic conditions that mimic the joint microenvironment, RA B cells maintained marked expression of MMP-9, TNF, and IL-6, with PD-1+ B cells demonstrating higher expression of CXCR3, CD80, CD86, IL-1β, and GM-CSF than their PD-1– counterparts. Finally, following functional analysis and flow cell sorting of RA PD-1+ versus PD-1– B cells, we demonstrate, using RNA-Seq and emerging fluorescence lifetime imaging microscopy of cellular NAD, a significant shift in metabolism of RA PD-1+ B cells toward glycolysis, associated with an increased transcriptional signature of key cytokines and chemokines that are strongly implicated in RA pathogenesis. Our data support the targeting of pathogenic PD-1+ B cells in RA as a focused, novel therapeutic option. A pathogenic glycolytic B cell population at the site of inflammation in patients with Rheumatoid Arthritis associates with disease severity.
Collapse
Affiliation(s)
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, and.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Viviana Marzaioli
- Molecular Rheumatology, Trinity Biomedical Sciences Institute.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Kieran Murray
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, and.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Candice Low
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ronan H Mullan
- Department of Rheumatology, Tallaght University Hospital, Dublin, Ireland
| | - Navin Rao
- Janssen Research & Development, Immunology, Spring House, Pennsylvania, USA
| | - Vinod Krishna
- Janssen Research & Development, Immunology, Spring House, Pennsylvania, USA
| | - Sunil Nagpal
- Janssen Research & Development, Immunology, Spring House, Pennsylvania, USA
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Sharan R, Bucşan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, Khader SA, Kaushal D. Chronic Immune Activation in TB/HIV Co-infection. Trends Microbiol 2020; 28:619-632. [PMID: 32417227 PMCID: PMC7390597 DOI: 10.1016/j.tim.2020.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022]
Abstract
HIV co-infection is the most critical risk factor for the reactivation of latent tuberculosis (TB) infection (LTBI). While CD4+ T cell depletion has been considered the major cause of HIV-induced reactivation of LTBI, recent work in macaques co-infected with Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) suggests that cytopathic effects of SIV resulting in chronic immune activation and dysregulation of T cell homeostasis correlate with reactivation of LTBI. This review builds on compelling data that the reactivation of LTBI during HIV co-infection is likely to be driven by the events of HIV replication and therefore highlights the need to have optimum translational interventions directed at reactivation due to co-infection.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Allison N Bucşan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
19
|
Abstract
Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction of risk for MS, extrinsic risk factors including smoking, infection and lack of vitamin D or sunshine, which cause changes in gene expression, contribute to disease development through epigenetic regulation. To date, there is a growing body of scientific evidence to support the important roles of epigenetic processes in MS. In this chapter, the three main layers of epigenetic regulatory mechanisms, namely DNA methylation, histone modification and microRNA-mediated gene regulation, will be discussed, with a particular focus on the role of epigenetics on dysregulated immune responses and neurodegenerative events in MS. Also, the potential for epigenetic modifiers as biomarkers and therapeutics for MS will be reviewed.
Collapse
Affiliation(s)
- Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
20
|
Ghafouri-Fard S, Taheri M. A comprehensive review of non-coding RNAs functions in multiple sclerosis. Eur J Pharmacol 2020; 879:173127. [DOI: 10.1016/j.ejphar.2020.173127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
|
21
|
Ehtesham N, Mosallaei M, Karimzadeh MR, Moradikazerouni H, Sharifi M. microRNAs: key modulators of disease-modifying therapies in multiple sclerosis. Int Rev Immunol 2020; 39:264-279. [PMID: 32552273 DOI: 10.1080/08830185.2020.1779712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a high level of heterogeneity in symptom manifestations and response to disease-modifying therapies (DMTs) in multiple sclerosis (MS), an immune-based neurodegenerative disease with ever-increasing prevalence in recent decades. Because of unknown aspects of the etiopathology of MS and mechanism of action of DMTs, the reason for this variability is undetermined, and much remains to be understood. Traditionally, physicians consider switching to other DMTs based on the exacerbation of symptoms and/or change in the results of magnetic resonance imaging and biochemical factors. Therefore, identifying biological treatment response markers that help us recognizing non-responders rapidly and subsequently choosing another DMTs is necessary. microRNAs (miRNAs) are micromanagers of gene expression which have been profiled in different samples of MS patients, highlighting their role in pathogenetic of MS. Recent studies have investigated expression profiling of miRNAs after treatment with DMTs to clarify possible DMTs-mediated mechanism and obtaining response to therapy biomarkers. In this review, we will discuss the modulation of miRNAs by DMTs in cells and pathways involved in MS.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Mehdipour A, Ebrahimi A, Shiri-Shahsavar MR, Soleimani-Rad J, Roshangar L, Samiei M, Ebrahimi-Kalan A. The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis. Rev Neurosci 2020; 30:857-868. [PMID: 31026226 DOI: 10.1515/revneuro-2018-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Stem cell therapy has indicated a promising treatment capacity for tissue regeneration. Multiple sclerosis is an autoimmune-based chronic disease, in which the myelin sheath of the central nervous system is destructed. Scientists have not discovered any cure for multiple sclerosis, and most of the treatments are rather palliative. The pursuit of a versatile treatment option, therefore, seems essential. The immunoregulatory and non-chronic rejection characteristics of mesenchymal stem cells, as well as their homing properties, recommend them as a prospective treatment option for multiple sclerosis. Different sources of mesenchymal stem cells have distinct characteristics and functional properties; in this regard, choosing the most suitable cell therapy approach seems to be challenging. In this review, we will discuss umbilical cord/blood-derived mesenchymal stem cells, their identified exclusive properties compared to another adult mesenchymal stem cells, and the expectations of their potential roles in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | | | - Jafar Soleimani-Rad
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Endodontics Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran,
| |
Collapse
|
23
|
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109:102438. [PMID: 32184036 DOI: 10.1016/j.jaut.2020.102438] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are evolutionally conserved, single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate the differentiation, development and activation of immune cells in both innate and adaptive immunity. The disruption and dysfunction of miRNAs can perturb the immune response, stimulate the release of inflammatory cytokines and initiate the production of autoantibodies, and contribute to the pathogenesis of autoimmune diseases, including systemic lupus erythmatosus (SLE), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), and multiple sclerosis (MS). Accumulating studies demonstrate that miRNAs, which can be collected by noninvasive methods, have the potential to be developed as diagnostic and therapeutic biomarkers, the discovery and validation of which is essential for the improvement of disease diagnosis and clinical monitoring. Recently, with the development of detection tools, such as microarrays and NGS (Next Generation Sequencing), large amounts of miRNAs have been identified and suggest a critical role in the pathogenesis of autoimmune diseases. Several miRNAs associated diagnostic biomarkers have been developed and applied clinically, though the pharmaceutical industry is still facing challenges in commercialization and drug delivery. The development of miRNAs is less advanced for autoimmune diseases compared with cancer. However, drugs that target miRNAs have been introduced as candidates and adopted in clinical trials. This review comprehensively summarizes the differentially expressed miRNAs in several types of autoimmune diseases and discusses the role and the significance of miRNAs in clinical management. The study of miRNAs in autoimmunity promises to provide novel and broad diagnostic and therapeutic strategies for a clinical market that is still in its infancy.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical, Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
24
|
Teuber-Hanselmann S, Meinl E, Junker A. MicroRNAs in gray and white matter multiple sclerosis lesions: impact on pathophysiology. J Pathol 2020; 250:496-509. [PMID: 32073139 DOI: 10.1002/path.5399] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease of the CNS, hallmarked by inflammation and demyelination. Early stages of the disease frequently show active lesions containing numerous foamy macrophages and inflammatory cells. Disease progression is highlighted by increasing numbers of mixed active/inactive or inactive lesions showing sparse inflammation and pronounced astrogliosis. Furthermore, gray matter lesions increase in number and extent during disease progression. MicroRNAs (miRNAs) comprise a group of several thousand (in humans more than 2000), small non-coding RNA molecules with a fundamental influence on about one-third of all protein-coding genes. Furthermore, miRNAs have been detected in body fluids, including spinal fluid, and they are assumed to participate in intercellular communications. Several studies have determined miRNA profiles from dissected white and gray matter lesions of autoptic MS patients. In this review, we summarize in detail the current knowledge of individual miRNAs in gray and white matter lesions of MS patients and present the concepts of MS tissue lesion development based on the altered miRNA profiles. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| |
Collapse
|
25
|
Sadr NKS, Galehdari H, Seifi T, Delfan N, Khatami SR, Hafizi A. Matrix Metalloproteinase-9 Gene Polymorphisms in South-West Iranian Multiple Sclerosis (MS) Patients. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Chopra S, Overall CM, Dufour A. Matrix metalloproteinases in the CNS: interferons get nervous. Cell Mol Life Sci 2019; 76:3083-3095. [PMID: 31165203 PMCID: PMC11105576 DOI: 10.1007/s00018-019-03171-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) have been investigated in context of chronic inflammatory diseases and demonstrated to degrade multiple components of the extracellular matrix (ECM). However, following several disappointing MMP clinical trials, recent studies have demonstrated unexpected novel functions of MMPs in viral infections and autoimmune inflammatory diseases in unanticipated locations. Thus, MMPs play additional functions in inflammation than just ECM degradation. They can regulate the activity of chemokines and cytokines of the immune response by precise proteolytic processing resulting in activation or inactivation of signaling pathways. MMPs have been demonstrated to cleave multiple substrates of the central nervous systems (CNS) and contribute to promoting and dampening diseases of the CNS. Initially, believed to be solely promoting pathologies, more than 10 MMPs to date have been shown to have protective functions. Here, we present some of the beneficial and destructive roles of MMPs in CNS pathologies and discuss strategies for the use of MMP inhibitors.
Collapse
Affiliation(s)
- Sameeksha Chopra
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
27
|
Wang T, Li B, Wang Z, Yuan X, Chen C, Zhang Y, Xia Z, Wang X, Yu M, Tao W, Zhang L, Wang X, Zhang Z, Guo X, Ning G, Feng S, Chen X. miR-155-5p Promotes Dorsal Root Ganglion Neuron Axonal Growth in an Inhibitory Microenvironment via the cAMP/PKA Pathway. Int J Biol Sci 2019; 15:1557-1570. [PMID: 31337984 PMCID: PMC6643145 DOI: 10.7150/ijbs.31904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Sensory dysfunction post spinal cord injury causes patients great distress. Sciatic nerve conditioning injury (SNCI) has been shown to restore sensory function after spinal cord dorsal column injury (SDCL); however, the underlying mechanism of this recovery remains unclear. We performed a microarray assay to determine the associated miRNAs that might regulate the process of SNCI promoting SDCL repair. In total, 13 miRNAs were identified according to our inclusion criteria, and RT-qPCR was used to verify the microarray results. Among the 13 miRNAs, the miR-155-5p levels were decreased at 9 h, 3 d, 7 d, 14 d, 28 d, 2 m and 3 m timepoints in the SDCL group, while the SNCI group had a smaller decrease. Thus, miR-155-5p was chosen for further study after a literature review and an analysis with the TargetScan online tool. Specifically, miR-155-5p targets PKI-α, and the expression pattern of PKI-α was opposite that of miR-155-5p in both the SDCL and SNCI groups. Interestingly, miR-155-5p could promote dorsal root ganglion (DRG) neuron axon growth via the cAMP/PKA pathway and in a TNF-α, IL-1β or MAG inhibitory microenvironment in vitro. Furthermore, miR-155-5p could regulate the cAMP/PKA pathway and promote sensory conduction function recovery post dorsal column injury as detected by NF-200 immunohistochemistry, somatosensory-evoked potentials, BBB scale and tape removal test. Collectively, our results demonstrated that miR-155-5p participates in the molecular mechanism by which SNCI promotes the repair of SDCL and that upregulated miR-155-5p can repair SDCL by enhancing DRG neuron axon growth via the cAMP/PKA pathway. These findings suggest a novel treatment target for spinal cord injury.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Chuanjie Chen
- Department of Orthopedics, Chengde Central Hospital, Chengde 067000, Hebei Province, P.R. China
| | - Yanjun Zhang
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Ziwei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xin Wang
- Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Mei Yu
- Leukemia Center, Chinese Academy of Medical Sciences & Peking Union of Medical College, Institute of Hematology & Hospital of Blood Diseases, Tianjin 30020, P.R. China
| | - Wen Tao
- Chengde Medical University, Chengde 067000, Hebei Province, P.R. China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zheng Zhang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Xiaoling Guo
- Department of Neurology, The 981st Hospital of the Chinese People's Liberation Army, Chengde 067000, Hebei Province, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, P.R. China
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100000, P.R. China
| |
Collapse
|
28
|
Tripathi A, Volsko C, Datta U, Regev K, Dutta R. Expression of disease-related miRNAs in white-matter lesions of progressive multiple sclerosis brains. Ann Clin Transl Neurol 2019; 6:854-862. [PMID: 31139683 PMCID: PMC6530016 DOI: 10.1002/acn3.750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Background MicroRNA (miRNA) expression in the serum of multiple sclerosis (MS) patients has been correlated with white matter (WM) magnetic resonance imaging (MRI) abnormalities. The expression levels and cellular specificity of the target genes of these miRNAs are unknown in MS brain. Objective The aim of this study was to analyze and validate the expression of miRNAs, previously reported as dysregulated in sera of MS patients, in white‐matter lesions (WMLs) of progressive MS brains. Methods We performed global miRNA expression profiling analysis in demyelinated WMLs of progressive MS brains (n = 5) and compared the significantly altered miRNAs to previously identified miRNAs from sera of MS patients. Top dysregulated miRNAs common between the two datasets were validated in an independent cohort of MS brains by quantitative PCR (qPCR) and in situ hybridization. Results Among the miRNAs that were significantly changed in WML tissues, 11 were similar to pathogenic and 12 were common to protective miRNAs previously identified in sera and correlating with WM MRI abnormalities. Importantly, the expression levels of 58% of the protective miRNAs (7 of 12) were decreased in MS lesions compared to surrounding normal‐appearing tissue. Target genes of these miRNAs were also altered in MS lesions and queries of cell‐specific databases identified astrocytes and microglia as the key cellular expressers of these genes in MS brains. Conclusions We identified miRNAs that correlate with MRI abnormalities in lesioned tissue from MS brains.
Collapse
Affiliation(s)
- Ajai Tripathi
- Department of Neurosciences Cleveland Clinic Cleveland Ohio
| | | | - Ushasi Datta
- Department of Neurosciences Cleveland Clinic Cleveland Ohio
| | - Keren Regev
- Department of Neurology Tel Aviv Sourasky Medical Center Tel Aviv Israel
| | - Ranjan Dutta
- Department of Neurosciences Cleveland Clinic Cleveland Ohio
| |
Collapse
|
29
|
La Starza S, Ferraldeschi M, Buscarinu MC, Romano S, Fornasiero A, Mechelli R, Umeton R, Ristori G, Salvetti M. Genome-Wide Multiple Sclerosis Association Data and Coagulation. Front Neurol 2019; 10:95. [PMID: 30837932 PMCID: PMC6383413 DOI: 10.3389/fneur.2019.00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 12/28/2022] Open
Abstract
The emerging concept of a crosstalk between hemostasis, inflammation, and immune system prompt recent works on coagulation cascade in multiple sclerosis (MS). Studies on MS pathology identified several coagulation factors since the beginning of the disease pathophysiology: fibrin deposition with breakdown of blood brain barrier, and coagulation factors within active plaques may exert pathogenic role, especially through the innate immune system. Studies on circulating coagulation factors showed complex imbalance involving several components of hemostasis cascade (thrombin, factor X, factor XII). To analyze the role of the coagulation process in connection with other pathogenic pathways, we implemented a systematic matching of genome-wide association studies (GWAS) data with an informative and unbiased network of coagulation pathways. Using MetaCore (version 6.35 build 69300, 2018) we analyzed the connectivity (i.e., direct and indirect interactions among two networks) between the network of the coagulation process and the network resulting from feeding into MetaCore the MS GWAS data. The two networks presented a remarkable over-connectivity: 958 connections vs. 561 expected by chance; z-score = 17.39; p-value < 0.00001. Moreover, genes coding for cluster of differentiation 40 (CD40) and plasminogen activator, urokinase (PLAU) shared both networks, pointed to an integral interplay between coagulation cascade and main pathogenic immune effectors. In fact, CD40 pathways is especially operative in B cells, that are currently a major therapeutic target in MS field. The potential interaction of PLAU with a signal of paramount importance for B cell pathogenicity, such as CD40, suggest new lines of research and pave the way to implement new therapeutic targets.
Collapse
Affiliation(s)
- Sara La Starza
- Geriatrics, Neuroscience, Orthopaedics, Head and Neck Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michela Ferraldeschi
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Maria Chiara Buscarinu
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Silvia Romano
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Arianna Fornasiero
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Rosella Mechelli
- Department of Human Science and Promotion of Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Renato Umeton
- Department of Informatics & Analytics, Dana-Farber Cancer Institute, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Giovanni Ristori
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| |
Collapse
|
30
|
Yang X, Wu Y, Zhang B, Ni B. Noncoding RNAs in multiple sclerosis. Clin Epigenetics 2018; 10:149. [PMID: 30497529 PMCID: PMC6267072 DOI: 10.1186/s13148-018-0586-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system, is characterized by axonal degeneration and gliosis. Although the causes of MS remain unknown, gene dysregulation in the central nervous system has been associated with the disease pathogenesis. As such, the various regulators of gene expression may be contributing factors. The noncoding (nc) RNAs have piqued the interest of MS researchers due to their known functions in human physiology and various pathological processes, despite being generally characterized as transcripts without apparent protein-coding capacity. Accumulating evidence has indicated that ncRNAs participate in the regulation of MS by acting as epigenetic factors, especially the long (l) ncRNAs and the micro (mi) RNAs, and they are now recognized as key regulatory molecules in MS. In this review, we summarize the most current studies on the contribution of ncRNAs in MS pathogenic processes and discuss their potential applications in the diagnosis and treatment of MS.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Immunology, Medical College of Qingdao University, 308 Ningxia Road, Shinan District, Qingdao, 266003, China.,Department of Pathophysiology, Third Military Medical University, 30 Gaotanyan St., Shapingba District, Chongqing, 400038, China
| | - Yuzhang Wu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan St., Shapingba District, Chongqing, 400038, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, 308 Ningxia Road, Shinan District, Qingdao, 266003, China.
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, 30 Gaotanyan St., Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
31
|
Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. SENSORS 2018; 18:s18103249. [PMID: 30262739 PMCID: PMC6211011 DOI: 10.3390/s18103249] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
As one of the most widely investigated matrix metalloproteinases (MMPs), MMP-9 is a significant protease which plays vital roles in many biological processes. MMP-9 can cleave many extracellular matrix (ECM) proteins to regulate ECM remodeling. It can also cleave many plasma surface proteins to release them from the cell surface. MMP-9 has been widely found to relate to the pathology of cancers, including but not limited to invasion, metastasis and angiogenesis. Some recent research evaluated the value of MMP-9 as biomarkers to various specific cancers. Besides, recent research of MMP-9 biosensors discovered various novel MMP-9 biosensors to detect this enzyme. In this review, some recent advances in exploring MMP-9 as a biomarker in different cancers are summarized, and recent discoveries of novel MMP-9 biosensors are also presented.
Collapse
|
32
|
Annibali V, Umeton R, Palermo A, Severa M, Etna MP, Giglio S, Romano S, Ferraldeschi M, Buscarinu MC, Vecchione A, Annese A, Policano C, Mechelli R, Pizzolato Umeton R, Fornasiero A, Angelini DF, Guerrera G, Battistini L, Coccia EM, Salvetti M, Ristori G. Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients. J Neuroimmunol 2018; 324:165-171. [PMID: 30270021 DOI: 10.1016/j.jneuroim.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/15/2023]
Abstract
Several evidences emphasize B-cell pathogenic roles in multiple sclerosis (MS). We performed transcriptome analyses on peripheral B cells from therapy-free patients and age/sex-matched controls. Down-regulation of two transcripts (interferon response factor 1-IRF1, and C-X-C motif chemokine 10-CXCL10), belonging to the same pathway, was validated by RT-PCR in 26 patients and 21 controls. IRF1 and CXCL10 transcripts share potential seeding sequences for hsa-miR-424, that resulted up-regulated in MS patients. We confirmed this interaction and its functional effect by transfection experiments. Consistent findings indicate down-regulation of IRF1/CXCL10 axis, that may plausibly contribute to a pro-survival status of B cells in MS.
Collapse
Affiliation(s)
- Viviana Annibali
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Renato Umeton
- Department of Informatics, Dana-Farber Cancer Institute, Boston, MA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Antonia Palermo
- Department of Mathematics and Computer Science, University of Calabria
| | - Martina Severa
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Marilena Paola Etna
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Giglio
- Division of Pathology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Silvia Romano
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Michela Ferraldeschi
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Andrea Vecchione
- Division of Pathology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Anita Annese
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Claudia Policano
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Rosella Mechelli
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Arianna Fornasiero
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Eliana Marina Coccia
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Salvetti
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed (M.S.), Pozzilli, IS, Italy.
| | - Giovanni Ristori
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
33
|
Regev K, Healy BC, Paul A, Diaz-Cruz C, Mazzola MA, Raheja R, Glanz BI, Kivisäkk P, Chitnis T, Jagodic M, Piehl F, Olsson T, Khademi M, Hauser S, Oksenberg J, Khoury SJ, Weiner HL, Gandhi R. Identification of MS-specific serum miRNAs in an international multicenter study. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e491. [PMID: 30175165 PMCID: PMC6117192 DOI: 10.1212/nxi.0000000000000491] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Objective To identify circulating microRNAs (miRNAs) linked to disease, disease stage, and disability in MS across cohorts. Methods Samples were obtained from the Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB, Boston, MA), EPIC (San Francisco, CA), AMIR (Beirut, Lebanon) as part of the SUMMIT consortium, and Stockholm Prospective Assessment of Multiple Sclerosis (Stockholm, Sweden) cohorts. Serum miRNA expression was measured using locked nucleic acid–based quantitative PCR. Four groups were compared: (1) MS vs healthy control (HC), (2) relapsing-remitting (RR) vs HC, (3) secondary progressive (SP) vs HC, and (4) RR vs SP. A Wilcoxon rank-sum test was used for the comparisons. The association between each miRNA and the Expanded Disability Status Scale (EDSS) score was assessed using the Spearman correlation coefficient. For each comparison, the p values were corrected for multiple comparisons using the approach of Benjamini and Hochberg to control the false discovery rate. Results In the CLIMB cohort, 5 miRNAs (hsa-miR-484, hsa-miR-140-5p, hsa-miR-320a, hsa-miR-486-5p, and hsa-miR-320c) showed a significant difference between patients with MS and healthy individuals; among these, miR-484 remained significant after accounting for multiple comparisons (p = 0.01). When comparing RRMS with HCs, hsa-miR-484 showed a significant difference (p = 0.004) between the groups after accounting for multiple group comparisons. When SP and HC were compared, 6 miRNAs (hsa-miR-484, hsa-miR-140-5p, hsa-miR-142-5p, hsa-miR-320a, hsa-miR-320b, and hsa-miR-320c) remained significantly different after accounting for multiple comparisons. Disability correlation analysis with miRNA provided 4 miRNAs (hsa-miR-320a, hsa-miR-337-3p, hsa-miR-199a-5p, and hsa-miR-142-5p) that correlated with the EDSS during the internal reproducibility phase. Among these, hsa-miR-337-3p was the most statistically significant miRNA that negatively correlated with the EDSS in three of the MS cohorts tested. Conclusions These findings further confirm the use of circulating serum miRNAs as biomarkers to diagnose and monitor disease status in MS. Classification of evidence This study provides Class III evidence that levels of circulating miRNAs identify patients with MS.
Collapse
Affiliation(s)
- Keren Regev
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Brian C Healy
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Anu Paul
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Camilo Diaz-Cruz
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Maria Antonietta Mazzola
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Radhika Raheja
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Bonnie I Glanz
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Pia Kivisäkk
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Tanuja Chitnis
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Maja Jagodic
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Fredrik Piehl
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Tomas Olsson
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Mohsen Khademi
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Stephen Hauser
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Jorge Oksenberg
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Samia J Khoury
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Howard L Weiner
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| | - Roopali Gandhi
- Partners Multiple Sclerosis Center (K.R., B.C.H., A.P., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), Brigham and Women's Hospital; Department of Neurology, Harvard Medical School (B.C.H., C.D.-C., B.I.G., T.C., H.L.W, R.G.), Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Biostatistics Center (B.C.H.); Massachusetts General Hospital, Boston, MA; Department of Clinical Neuroscience, Neuroimmunology Unit (M.J., F.P., T.O., M.K.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (S.H., J.O.), School of Medicine, University of California, San Francisco; and Nehme and Therese Tohme Multiple Sclerosis Center (S.J.K.), Faculty of Medicine, American University of Beirut Medical Center, Lebanon
| |
Collapse
|
34
|
Dysregulated Network of miRNAs Involved in the Pathogenesis of Multiple Sclerosis. Biomed Pharmacother 2018; 104:280-290. [DOI: 10.1016/j.biopha.2018.05.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
|
35
|
Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J Neuroimmunol 2018; 317:67-76. [DOI: 10.1016/j.jneuroim.2018.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023]
|
36
|
Dolati S, Aghebati-Maleki L, Ahmadi M, Marofi F, Babaloo Z, Ayramloo H, Jafarisavari Z, Oskouei H, Afkham A, Younesi V, Nouri M, Yousefi M. Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J Cell Physiol 2018; 233:5222-5230. [PMID: 29194612 DOI: 10.1002/jcp.26301] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023]
Abstract
In the current study, we aimed to identify nanocurcumin effects on microRNAs (miRNAs) in the peripheral blood of patients with relapsing-remitting multiple sclerosis (RRMS). We intended to investigate the expression pattern of these miRNAs in experimental settings in vivo. The expression levels of the selected 27 miRNAs known to be involved in the regulation of immune responses were analyzed in 50 RRMS patients and 35 healthy controls. The miRNA expression profiles were investigated by quantitative PCR (qPCR) at baseline and after 6 months of nanocurcumin therapy. Our data revealed that the expression of a number of microRNAs including miR-16, miR-17-92, miR-27, miR-29b, miR-126, miR-128, miR-132, miR-155, miR-326, miR-550, miR-15a, miR-19b, miR-106b, miR-320a, miR-363, miR-31, miR-150, and miR-340 is regulated by nanocurcumin. The results of the current work indicate that nanocurcumin is able to restore the expression pattern of dysregulated miRNAs in MS patients. We discovered that some miRNAs are deregulated in untreated patients compared with healthy controls and nanocurcumin-treated patients. This is a new finding that might represent the potential contribution of these miRNAs to MS pathogenesis. Taken together, these data provide novel insights into miRNA-dependent regulation of the function of B and T cells in MS disease and enrich our understanding of the effects mediated by a therapeutic approach that targets B and T cells.
Collapse
Affiliation(s)
- Sanam Dolati
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayramloo
- Faculty of Medicine, Departments of Neurology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Jafarisavari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Oskouei
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afkham
- Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This article discusses acute exacerbations (relapses) of multiple sclerosis (MS). Relapses are a hallmark of MS and are often associated with significant functional impairment and decreased quality of life. This review discusses the proposed pathophysiology of MS relapses, triggering factors, associated markers, variants of clinical presentation, and diagnostic recommendations. RECENT FINDINGS Most MS exacerbations are followed by a period of repair leading to clinical remission; however, residual deficits may persist after MS relapse and contribute to the stepwise progression of disability. Treatment of MS relapses is important as it helps to shorten the duration of disability associated with their course. Successful treatment of relapse helps patients with MS obtain a vital sense of being able to gain control over the disease. Patients with relapsing MS who receive treatment report better outcomes than those who are simply observed. This article discusses treatment options for MS relapse, including systemic corticosteroids, adrenocorticotropic hormone, and plasma exchange. Recent findings related to the mechanisms of action of steroids and adrenocorticotropic hormone are also reviewed, and other potential therapies are assessed. A proposed algorithm for MS relapse management is presented, including strategies for steroid-resistant MS exacerbations. SUMMARY MS relapses need to be recognized in a timely manner and treated using recommended therapeutic methods.
Collapse
|
38
|
Lisak RP, Nedelkoska L, Benjamins JA, Schalk D, Bealmear B, Touil H, Li R, Muirhead G, Bar-Or A. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J Neuroimmunol 2017; 309:88-99. [DOI: 10.1016/j.jneuroim.2017.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/26/2022]
|
39
|
Zou M, Huang C, Li X, He X, Chen Y, Liao W, Liao Y, Sun J, Liu Z, Zhong L, Bin J. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection. Oncotarget 2017; 8:81825-81837. [PMID: 29137225 PMCID: PMC5669851 DOI: 10.18632/oncotarget.18998] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/18/2017] [Indexed: 12/29/2022] Open
Abstract
Objective To assess the circular RNAs (circRNAs) expression profile and explore the potential functions in human thoracic aortic dissection (TAD). Methods The differentially expressed circRNAs profiles of the aortic segments between human type A TAD patients (n=3) and age-matched normal donors (NA; n=3) were analyzed using the Arraystar human circRNAs microarray. Quantitative real-time PCR was used to validate the expression pattern of circRNAs, parental genes, and hsa-miR-320a; Western blotting confirmed MMP9 expression with additional samples. Bioinformatic tools including network analysis, Gene ontology, and KEGG pathway analysis were utilized. Results Among 8,173 detected circRNA genes, 156 upregulated and 106 downregulated significantly in human TAD as compared to NA (P£0.05). Quantitative real-time PCR showed an elevated expression of the upregulated hsa_circRNA_101238, hsa_circRNA_104634, hsa_circRNA_002271, hsa_circRNA_102771, hsa_circRNA_104349, COL1A1, and COL6A3 and reduced of the downregulated hsa_circRNA_102683, hsa_circRNA_005525, hsa_circRNA_103458, and FLNA. Gene ontology analysis revealed that the parental genes favored several pathological processes, such as negative regulation of cell proliferation and extracellular matrix organization. The circRNA-miRNA co-expression network predicted that 33 circRNAs might interact with at least one target miRNAs altered in TAD. KEGG pathway analysis revealed that 28 altered miRNAs were enriched on focal adhesion and vascular smooth muscle contraction. The hsa_circRNA_101238-miRNA-mRNA network indicated the highest degree of hsa-miR-320a. Quantitative real-time PCR and Western blot manifested the low expression of hsa-miR-320a and high of MMP9 in human TAD tissues, respectively. Conclusions This study revealed hundreds of differentially expressed circular RNAs in human TAD, suggesting that hsa_circRNA_101238 might inhibit the expression of hsa-miR-320a and increase that of MMP9 in TAD.
Collapse
Affiliation(s)
- Meisheng Zou
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Wards of Cadres, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou, China
| | - Chixiong Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Cardiology, Zhongshan Hospital, Sun Yat-Sen University, Zhongshan, China
| | - Ze Liu
- Wards of Cadres, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Grossman I, Knappertz V, Laifenfeld D, Ross C, Zeskind B, Kolitz S, Ladkani D, Hayardeny L, Loupe P, Laufer R, Hayden M. Pharmacogenomics strategies to optimize treatments for multiple sclerosis: Insights from clinical research. Prog Neurobiol 2017; 152:114-130. [DOI: 10.1016/j.pneurobio.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/10/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
|
41
|
Gao X, Han D, Fan W. Down-regulation of RBP-J mediated by microRNA-133a suppresses dendritic cells and functions as a potential tumor suppressor in osteosarcoma. Exp Cell Res 2016; 349:264-272. [PMID: 27794430 DOI: 10.1016/j.yexcr.2016.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE In recent years, immunotherapy for the treatment of tumors have been established. Dendritic cells (DCs) are extremely efficient and professional antigen presenting cells (APCs), which are an important target for immune therapeutic interventions in cancer. In present study, we investigated whether RBP-J signaling regulated by miR-133a was involved in the DCs mediated tumor suppressor in osteosarcoma. METHODS DCs were isolated from 30 osteosarcoma patients and 30 healthy subjects. Mouse macrophage-like cell line RAW264.7 were cultured and osteosarcoma mouse model with injection of murine osteosarcoma cell line S180 were established. RESULTS In osteosarcoma patients, miR-133a expression level of DCs was increased, and RBP-J expression in mRNA and protein levels were decreased. MiR-133a inhibitor promoted maturation and activation of DCs in osteosarcoma patients. In osteosarcoma mouse model, miR-133a mimic suppressed the maturation and activation of spleen DCs, while miR-133a inhibitor promoted them. Overexpression of miR-133a decreased therapeutic effect of DCs on osteosarcoma mice. In RAW264.7 cells, miR-133a was observed to target RBP-J and regulate its expression. MiR-133a mimic inhibited the maturation of DCs in cells exposed to LPS, the effect of which was reversed by overexpression of RBP-J. CONCLUSION RBP-J mediated by miR-133a probably contributed to the regulation of DCs maturation and activation in osteosarcoma, which functioned as a therapeutic target for the immunotherapy in cancers.
Collapse
Affiliation(s)
- Xuren Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, PR China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dong Han
- Central laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, PR China.
| |
Collapse
|
42
|
Goudarzi S, Rivera A, Butt AM, Hafizi S. Gas6 Promotes Oligodendrogenesis and Myelination in the Adult Central Nervous System and After Lysolecithin-Induced Demyelination. ASN Neuro 2016; 8:8/5/1759091416668430. [PMID: 27630207 PMCID: PMC5027908 DOI: 10.1177/1759091416668430] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/11/2016] [Indexed: 01/24/2023] Open
Abstract
A key aim of therapy for multiple sclerosis (MS) is to promote the regeneration of oligodendrocytes and remyelination in the central nervous system (CNS). The present study provides evidence that the vitamin K-dependent protein growth arrest specific 6 (Gas6) promotes such repair in in vitro cultures of mouse optic nerve and cerebellum. We first determined expression of Gas6 and TAM (Tyro3, Axl, Mer) receptors in the mouse CNS, with all three TAM receptors increasing in expression through postnatal development, reaching maximal levels in the adult. Treatment of cultured mouse optic nerves with Gas6 resulted in significant increases in oligodendrocyte numbers as well as expression of myelin basic protein (MBP). Gas6 stimulation also resulted in activation of STAT3 in optic nerves as well as downregulation of multiple genes involved in MS development, including matrix metalloproteinase-9 (MMP9), which may decrease the integrity of the blood-brain barrier and is found upregulated in MS lesions. The cytoprotective effects of Gas6 were examined in in vitro mouse cerebellar slice cultures, where lysolecithin was used to induce demyelination. Cotreatment of cerebellar slices with Gas6 significantly attenuated demyelination as determined by MBP immunostaining, and Gas6 activated Tyro3 receptor through its phosphorylation. In conclusion, these results demonstrate that Gas6/TAM signaling stimulates the generation of oligodendrocytes and increased myelin production via Tyro3 receptor in the adult CNS, including repair after demyelinating injury. Furthermore, the effects of Gas6 on STAT3 signaling and matrix MMP9 downregulation indicate potential glial cell repair and immunoregulatory roles for Gas6, indicating that Gas6-TAM signaling could be a potential therapeutic target in MS and other neuropathologies.
Collapse
Affiliation(s)
- Salman Goudarzi
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, UK
| | - Andrea Rivera
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, UK
| | - Arthur M Butt
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, UK
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, UK
| |
Collapse
|
43
|
Regev K, Paul A, Healy B, von Glenn F, Diaz-Cruz C, Gholipour T, Mazzola MA, Raheja R, Nejad P, Glanz BI, Kivisakk P, Chitnis T, Weiner HL, Gandhi R. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e267. [PMID: 27606352 PMCID: PMC4996540 DOI: 10.1212/nxi.0000000000000267] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/16/2016] [Indexed: 01/01/2023]
Abstract
Objective: To identify circulating microRNAs (miRNAs) linked to disease stage and disability in multiple sclerosis (MS). Methods: Sera from 296 participants including patients with MS, other neurologic diseases (Alzheimer disease and amyotrophic lateral sclerosis), and inflammatory diseases (rheumatoid arthritis and asthma) and healthy controls (HCs) were tested. miRNA profiles were determined using LNA (locked nucleic acid)-based quantitative PCR. Patients with MS were categorized according to disease stage and disability. In the discovery phase, 652 miRNAs were measured in sera from 26 patients with MS and 20 HCs. Following this, significant miRNAs (p < 0.05) from the discovery set were validated using quantitative PCR in 58 patients with MS, 30 HCs, and in 74 samples from other disease controls (Alzheimer disease, amyotrophic lateral sclerosis, asthma, and rheumatoid arthritis). Results: We validated 7 miRNAs that differentiate patients with MS from HCs (p < 0.05 in both the discovery and validation phase); miR-320a upregulation was the most significantly changing serum miRNA in patients with MS. We also identified 2 miRNAs linked to disease progression, with miR-27a-3p being the most significant. Ten miRNAs correlated with the Expanded Disability Status Scale of which miR.199a.5p had the strongest correlation with disability. Of the 15 unique miRNAs we identified in the different group comparisons, 12 have previously been reported to be associated with MS but not in serum. Conclusions: Our findings identify circulating serum miRNAs as potential biomarkers to diagnose and monitor disease status in MS. Classification of evidence: This study provides Class III evidence that circulating serum miRNAs can be used as biomarker for MS.
Collapse
Affiliation(s)
- Keren Regev
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Brian Healy
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Felipe von Glenn
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Camilo Diaz-Cruz
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Taha Gholipour
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Maria Antonietta Mazzola
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Parham Nejad
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Bonnie I Glanz
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Pia Kivisakk
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases (K.R., A.P., B.H., F.v.G., M.A.M., R.R., P.K., T.C., H.L.W., R.G.), and Partners MS Center (C.D.-C., T.G., P.N., B.I.G., T.C., H.L.W.), Brigham & Women's Hospital, Harvard Medical School, Boston; and Biostatistics Center (B.H.), Massachusetts General Hospital, Boston
| |
Collapse
|
44
|
Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic Modifications and Therapy in Multiple Sclerosis. Neuromolecular Med 2016; 19:11-23. [PMID: 27382982 DOI: 10.1007/s12017-016-8422-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Breakthroughs in genetic studies, like whole human genome sequencing and genome-wide association studies (GWAS), have richened our knowledge of etiopathology of autoimmune diseases (AID) through discovery of genetic patterns. Nonetheless, the precise etiology of autoimmune diseases remains largely unknown. The lack of complete concordance of autoimmune disease in identical twins suggests that non-genetic factors also play a major role in determining disease susceptibility. Although there is no certain definition, epigenetics has been known as heritable alterations in gene function without changes in the nucleotide sequence. DNA methylation, histone modifications, and microRNA-associated gene expression suppression are the central mechanisms for epigenetic regulations. Multiple sclerosis (MS) is a disorder of the central nervous system (CNS), characterized by both inflammatory and neurodegenerative features. Although studies on epigenetic alterations in MS only began in the past decade, a mounting number of surveys suggest that epigenetic changes may be involved in the initiation and development of MS, probably through bridging the effects of environmental risk factors to genetics. Arming with clear understanding of epigenetic dysregulations underpins development of epigenetic therapies. Identifying agents inhibiting the enzymes controlling epigenetic modifications, particularly DNA methyltransferases and histone deacetylases, will be promising therapeutic tool toward MS. In the article underway, it is aimed to go through the recent progresses, attempting to disclose how epigenetics associates with the pathogenesis of MS and how can be used as therapeutic approach.
Collapse
Affiliation(s)
- Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, 741 South Limestone St. Biomedical Biological Research Building (BBSRB), 378D, Lexington, KY, 40506, USA.
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Jafarnejad
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| |
Collapse
|
45
|
Bhise V, Dhib-Jalbut S. Further understanding of the immunopathology of multiple sclerosis: impact on future treatments. Expert Rev Clin Immunol 2016; 12:1069-89. [PMID: 27191526 DOI: 10.1080/1744666x.2016.1191351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The understanding of the immunopathogenesis of multiple sclerosis (MS) has expanded with more research into T-cell subtypes, cytokine contributors, B-cell participation, mitochondrial dysfunction, and more. Treatment options have rapidly expanded with three relatively recent oral therapy alternatives entering the arena. AREAS COVERED In the following review, we discuss current mechanisms of immune dysregulation in MS, how they relate to current treatments, and the impact these findings will have on the future of therapy. Expert commentary: The efficacy of these medications and understanding their mechanisms of actions validates the immunopathogenic mechanisms thought to underlie MS. Further research has exposed new targets, while new promising therapies have shed light on new aspects into the pathophysiology of MS.
Collapse
Affiliation(s)
- Vikram Bhise
- a Rutgers Biomedical and Health Sciences - Departments of Pediatrics , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| | - Suhayl Dhib-Jalbut
- b Rutgers Biomedical and Health Sciences - Departments of Neurology , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| |
Collapse
|
46
|
Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, Nagarkatti M, Zhou J. MicroRNAs associated with the pathogenesis of multiple sclerosis. J Neuroimmunol 2016; 295-296:148-61. [DOI: 10.1016/j.jneuroim.2016.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
|
47
|
Del Boccio P, Rossi C, di Ioia M, Cicalini I, Sacchetta P, Pieragostino D. Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine. Proteomics Clin Appl 2016; 10:470-84. [DOI: 10.1002/prca.201500083] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/17/2015] [Accepted: 12/30/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Piero Del Boccio
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Claudia Rossi
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Maria di Ioia
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
- Department of Neurosciences and Imaging; University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Ilaria Cicalini
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Paolo Sacchetta
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Damiana Pieragostino
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| |
Collapse
|
48
|
miR-320a affects spinal cord edema through negatively regulating aquaporin-1 of blood-spinal cord barrier during bimodal stage after ischemia reperfusion injury in rats. BMC Neurosci 2016; 17:10. [PMID: 26850728 PMCID: PMC4744445 DOI: 10.1186/s12868-016-0243-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/25/2016] [Indexed: 01/19/2023] Open
Abstract
Background Spinal cord edema is a serious complication and pathophysiological change after ischemia reperfusion (IR) injury. It has been demonstrated closely associated with bimodal disruption of blood–spinal cord barrier (BSCB) in our previous work. Aquaporin (AQP)1 plays important but contradictory roles in water homeostasis. Recently, microRNAs (miRs) effectively regulate numerous target mRNAs during ischemia. However, whether miRs are able to protect against dimodal disruption of BSCB by regulating perivascular AQP1 remains to be elucidated.
Results Spinal water content and EB extravasation were suggested as a bimodal distribution in directly proportion to AQP1, since all maximal changes were detected at 12 and 48 h after reperfusion. Further TEM and double immunofluorescence showed that former disruption of BSCB at 12 h was attributed to cytotoxic edema by up-regulated AQP1 expressions in astrocytes, whereas the latter at 48 h was mixed with vasogenic edema with both endothelial cells and astrocytes involvement. Microarray analysis revealed that at 12 h post-injury, ten miRs were upregulated (>2.0 fold) and seven miRs were downregulated (<0.5 fold) and at 48 h, ten miRs were upregulated and eleven were downregulated compared to Sham-operated controls. Genomic screening and luciferase assays identified that miR-320a was a potential modulator of AQP1 in spinal cord after IR in vitro. In vivo, compared to rats in IR and negative control group, intrathecal infusion of miR-320a mimic attenuated IR-induced lower limb motor function deficits and BSCB dysfunction as decreased EB extravasation and spinal water content through down-regulating AQP1 expressions, whereas pretreated with miR-320a AMO reversed above effects.
Conclusion These findings indicate miR-320a directly and functionally affects spinal cord edema through negatively regulating AQP1 of BSCB after IR.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Recent studies indicate a role for immune dysregulation in the pathogenesis of multiple sclerosis, an inflammatory demyelinating and degenerative disease of the central nervous system. This review addresses the current mechanisms of immune dysregulation in the development of multiple sclerosis, including the impact of environmental risk factors on immunity in both multiple sclerosis and its animal models. RECENT FINDINGS CD4 T-helper (Th) cells have long been implicated as the main drivers of pathogenesis of multiple sclerosis. However, current studies indicate that multiple sclerosis is largely a heterogeneous disease process, which involves both innate and adaptive immune-mediated inflammatory mechanisms that ultimately contribute to demyelination and neurodegeneration. Therefore, B cells, CD8 T cells, and microglia/macrophages can also play an important role in the immunopathogenesis of multiple sclerosis apart from proinflammatory CD4 Th1/Th17 cell subsets. Furthermore, increasing evidence indicates that environmental risk factors, such as Vitamin D deficiency, Epstein-Barr virus, smoking, Western diet, and the commensal microbiota, influence the development of multiple sclerosis through interactions with genetic variants of multiple sclerosis, thus leading to the dysregulation of immune responses. SUMMARY A better understanding of immune-mediated mechanisms in the pathogenesis of multiple sclerosis and the contribution of environmental risk factors toward the development of multiple sclerosis will help further improve therapeutic approaches to prevent disease progression.
Collapse
|
50
|
Baulina NM, Kulakova OG, Favorova OO. MicroRNAs: The Role in Autoimmune Inflammation. Acta Naturae 2016; 8:21-33. [PMID: 27099782 PMCID: PMC4837569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level through base-pairing predominantly with a 3'-untranslated region of target mRNA, followed by mRNA degradation or translational repression. Totally, miRNAs change, through a complex regulatory network, the expression of more than 60% of human genes. MiRNAs are key regulators of the immune response that affect maturation, proliferation, differentiation, and activation of immune cells, as well as antibody secretion and release of inflammatory mediators. Disruption of this regulation may lead to the development of various pathological conditions, including autoimmune inflammation. This review summarizes the data on biogenesis and the mechanisms of miRNA action. We discuss the role of miRNAs in the development and the action of the immune system, as well as in the development of an autoimmune inflammatory response. Special attention is given to the role of miRNAs in the autoimmune inflammation in multiple sclerosis, which is a serious socially significant disease of the central nervous system. Currently, a lot of research is focused on this problem.
Collapse
Affiliation(s)
- N. M. Baulina
- Pirogov Russian National Research Medical University, Ostrovityanova St., 1, Moscow, 117997, Russia
- Russian Cardiology Research and Production Complex, 3-rd Cherepkovskay St., 15a, Moscow, 121552 , Russia
| | - O. G. Kulakova
- Pirogov Russian National Research Medical University, Ostrovityanova St., 1, Moscow, 117997, Russia
- Russian Cardiology Research and Production Complex, 3-rd Cherepkovskay St., 15a, Moscow, 121552 , Russia
| | - O. O. Favorova
- Pirogov Russian National Research Medical University, Ostrovityanova St., 1, Moscow, 117997, Russia
- Russian Cardiology Research and Production Complex, 3-rd Cherepkovskay St., 15a, Moscow, 121552 , Russia
| |
Collapse
|