1
|
Patterson BK, Guevara-Coto J, Mora J, Francisco EB, Yogendra R, Mora-Rodríguez RA, Beaty C, Lemaster G, Kaplan DO G, Katz A, Bellanti JA. Long COVID diagnostic with differentiation from chronic lyme disease using machine learning and cytokine hubs. Sci Rep 2024; 14:19743. [PMID: 39187577 PMCID: PMC11347643 DOI: 10.1038/s41598-024-70929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
The absence of a long COVID (LC) or post-acute sequelae of COVID-19 (PASC) diagnostic has profound implications for research and potential therapeutics given the lack of specificity with symptom-based identification of LC and the overlap of symptoms with other chronic inflammatory conditions. Here, we report a machine-learning approach to LC/PASC diagnosis on 347 individuals using cytokine hubs that are also capable of differentiating LC from chronic lyme disease (CLD). We derived decision tree, random forest, and gradient-boosting machine (GBM) classifiers and compared their diagnostic capabilities on a dataset partitioned into training (178 individuals) and evaluation (45 individuals) sets. The GBM model generated 89% sensitivity and 96% specificity for LC with no evidence of overfitting. We tested the GBM on an additional random dataset (106 LC/PASC and 18 Lyme), resulting in high sensitivity (97%) and specificity (90%) for LC. We constructed a Lyme Index confirmatory algorithm to discriminate LC and CLD.
Collapse
Affiliation(s)
- Bruce K Patterson
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA.
| | - Jose Guevara-Coto
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Javier Mora
- Lab of Tumor Chemosensitivity, Faculty of Microbiology, CIET/CICICA, Universidad de Costa Rica, San José, Costa Rica
| | - Edgar B Francisco
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | | | - Rodrigo A Mora-Rodríguez
- Lab of Tumor Chemosensitivity, Faculty of Microbiology, CIET/CICICA, Universidad de Costa Rica, San José, Costa Rica
| | - Christopher Beaty
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Gwyneth Lemaster
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Gary Kaplan DO
- Department of Community and Family Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Amiram Katz
- Neurology Specialist Affiliated With Norwalk Hospital, Orange, CT, USA
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, and the International Center for Interdisciplinary Studies of Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
2
|
Smith PA. The Known Biology of Neuropathic Pain and Its Relevance to Pain Management. Can J Neurol Sci 2024; 51:32-39. [PMID: 36799022 DOI: 10.1017/cjn.2023.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Patients with neuropathic pain are heterogeneous in pathophysiology, etiology, and clinical presentation. Signs and symptoms are determined by the nature of the injury and factors such as genetics, sex, prior injury, age, culture, and environment. Basic science has provided general information about pain etiology by studying the consequences of peripheral injury in rodent models. This is associated with the release of inflammatory cytokines, chemokines, and growth factors that sensitize sensory nerve endings, alter gene expression, promote post-translational modification of proteins, and alter ion channel function. This leads to spontaneous activity in primary afferent neurons that is crucial for the onset and persistence of pain and the release of secondary mediators such as colony-stimulating factor 1 from primary afferent terminals. These promote the release of tertiary mediators such as brain-derived neurotrophic factor and interleukin-1β from microglia and astrocytes. Tertiary mediators facilitate the transmission of nociceptive information at the spinal, thalamic, and cortical levels. For the most part, these findings have failed to identify new therapeutic approaches. More recent basic science has better mirrored the clinical situation by addressing the pathophysiology associated with specific types of injury, refinement of methodology, and attention to various contributory factors such as sex. Improved quantification of sensory profiles in each patient and their distribution into defined clusters may improve translation between basic science and clinical practice. If such quantification can be traced back to cellular and molecular aspects of pathophysiology, this may lead to personalized medicine approaches that dictate a rational therapeutic approach for each individual.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Kildal ESM, Quintana DS, Szabo A, Tronstad C, Andreassen O, Nærland T, Hassel B. Heart rate monitoring to detect acute pain in non-verbal patients: a study protocol for a randomized controlled clinical trial. BMC Psychiatry 2023; 23:252. [PMID: 37060049 PMCID: PMC10103503 DOI: 10.1186/s12888-023-04757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Autism entails reduced communicative abilities. Approximately 30% of individuals with autism have intellectual disability (ID). Some people with autism and ID are virtually non-communicative and unable to notify their caregivers when they are in pain. In a pilot study, we showed that heart rate (HR) monitoring may identify painful situations in this patient group, as HR increases in acutely painful situations. OBJECTIVES This study aims to generate knowledge to reduce the number of painful episodes in non-communicative patients' everyday lives. We will 1) assess the effectiveness of HR as a tool for identifying potentially painful care procedures, 2) test the effect of HR-informed changes in potentially painful care procedures on biomarkers of pain, and 3) assess how six weeks of communication through HR affects the quality of communication between patient and caregiver. METHODS We will recruit 38 non-communicative patients with autism and ID residing in care homes. ASSESSMENTS HR is measured continuously to identify acutely painful situations. HR variability and pain-related cytokines (MCP-1, IL-1RA, IL-8, TGFβ1, and IL-17) are collected as measures of long-term pain. Caregivers will be asked to what degree they observe pain in their patients and how well they believe they understand their patient's expressions of emotion and pain. Pre-intervention: HR is measured 8 h/day over 2 weeks to identify potentially painful situations across four settings: physiotherapy, cast use, lifting, and personal hygiene. INTERVENTION Changes in procedures for identified painful situations are in the form of changes in 1) physiotherapy techniques, 2) preparations for putting on casts, 3) lifting techniques or 4) personal hygiene procedures. DESIGN Nineteen patients will start intervention in week 3 while 19 patients will continue data collection for another 2 weeks before procedure changes are introduced. This is done to distinguish between specific effects of changes in procedures and non-specific effects, such as caregivers increased attention. DISCUSSION This study will advance the field of wearable physiological sensor use in patient care. TRIAL REGISTRATION Registered prospectively at ClinicalTrials.gov (NCT05738278).
Collapse
Affiliation(s)
- Emilie S M Kildal
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry, Lovisenberg Diakonale Sykehus, Oslo, Norway.
| | - Daniel S Quintana
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Christian Tronstad
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, Oslo, Norway
| | - Ole Andreassen
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Terje Nærland
- K.G. Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| | - Bjørnar Hassel
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Ferrari LF, Rey C, Ramirez A, Dziuba A, Zickella J, Zickella M, Raff H, Taylor NE. Characterization of the Dahl salt-sensitive rat as a rodent model of inherited, widespread, persistent pain. Sci Rep 2022; 12:19348. [PMID: 36369350 PMCID: PMC9652451 DOI: 10.1038/s41598-022-24094-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models are essential for studying the pathophysiology of chronic pain disorders and as screening tools for new therapies. However, most models available do not reproduce key characteristics of clinical persistent pain. This has limited their ability to accurately predict which new medicines will be clinically effective. Here, we characterize the Dahl salt-sensitive (SS) rat strain as the first rodent model of inherited widespread hyperalgesia. We show that this strain exhibits physiological phenotypes known to contribute to chronic pain, such as neuroinflammation, defective endogenous pain modulation, dysfunctional hypothalamic-pituitary-adrenal axis, increased oxidative stress and immune cell activation. When compared with Sprague Dawley and Brown Norway rats, SS rats have lower nociceptive thresholds due to increased inflammatory mediator concentrations, lower corticosterone levels, and high oxidative stress. Treatment with dexamethasone, the reactive oxygen species scavenger tempol, or the glial inhibitor minocycline attenuated the pain sensitivity in SS rats without affecting the other strains while indomethacin and gabapentin provided less robust pain relief. Moreover, SS rats presented impaired diffuse noxious inhibitory controls and an exacerbated response to the proalgesic mediator PGE2, features of generalized pain conditions. These data establish this strain as a novel model of spontaneous, widespread hyperalgesia that can be used to identify biomarkers for chronic pain diagnosis and treatment.
Collapse
Affiliation(s)
- Luiz F. Ferrari
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Charles Rey
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Anna Ramirez
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Adam Dziuba
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Jacqueline Zickella
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Michael Zickella
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| | - Hershel Raff
- grid.427152.7Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53215 USA ,grid.30760.320000 0001 2111 8460Department of Medicine (Endocrinology and Molecular Medicine), Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Norman E. Taylor
- grid.223827.e0000 0001 2193 0096Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108 USA
| |
Collapse
|
6
|
Yang JX, Wang HF, Chen JZ, Li HY, Hu JC, Yu AA, Wen JJ, Chen SJ, Lai WD, Wang S, Jin Y, Yu J. Potential Neuroimmune Interaction in Chronic Pain: A Review on Immune Cells in Peripheral and Central Sensitization. FRONTIERS IN PAIN RESEARCH 2022; 3:946846. [PMID: 35859655 PMCID: PMC9289261 DOI: 10.3389/fpain.2022.946846] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is a long-standing unpleasant sensory and emotional feeling that has a tremendous impact on the physiological functions of the body, manifesting itself as a dysfunction of the nervous system, which can occur with peripheral and central sensitization. Many recent studies have shown that a variety of common immune cells in the immune system are involved in chronic pain by acting on the peripheral or central nervous system, especially in the autoimmune diseases. This article reviews the mechanisms of regulation of the sensory nervous system by neutrophils, macrophages, mast cells, B cells, T cells, and central glial cells. In addition, we discuss in more detail the influence of each immune cell on the initiation, maintenance, and resolution of chronic pain. Neutrophils, macrophages, and mast cells as intrinsic immune cells can induce the transition from acute to chronic pain and its maintenance; B cells and T cells as adaptive immune cells are mainly involved in the initiation of chronic pain, and T cells also contribute to the resolution of it; the role of glial cells in the nervous system can be extended to the beginning and end of chronic pain. This article aims to promote the understanding of the neuroimmune mechanisms of chronic pain, and to provide new therapeutic ideas and strategies for the control of chronic pain at the immune cellular level.
Collapse
Affiliation(s)
- Jia-Xuan Yang
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Hong-Fei Wang
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Zhun Chen
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Han-Yu Li
- Second School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Chen Hu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - An-An Yu
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jun-Jun Wen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Si-Jia Chen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei-Dong Lai
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Song Wang
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yan Jin
| | - Jie Yu
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
- Jie Yu
| |
Collapse
|
7
|
Babaie S, Taghvimi A, Hong JH, Hamishehkar H, An S, Kim KH. Recent advances in pain management based on nanoparticle technologies. J Nanobiotechnology 2022; 20:290. [PMID: 35717383 PMCID: PMC9206757 DOI: 10.1186/s12951-022-01473-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain is a vital sense that indicates the risk of injury at a particular body part. Successful control of pain is the principal aspect in medical treatment. In recent years, the advances of nanotechnology in pain management have been remarkable. In this review, we focus on literature and published data that reveal various applications of nanotechnology in acute and chronic pain management. METHODS The presented content is based on information collected through pain management publications (227 articles up to April 2021) provided by Web of Science, PubMed, Scopus and Google Scholar services. RESULTS A comprehensive study of the articles revealed that nanotechnology-based drug delivery has provided acceptable results in pain control, limiting the side effects and increasing the efficacy of analgesic drugs. Besides the ability of nanotechnology to deliver drugs, sophisticated nanosystems have been designed to enhance imaging and diagnostics, which help in rapid diagnosis of diseases and have a significant impact on controlling pain. Furthermore, with the development of various tools, nanotechnology can accurately measure pain and use these measurements to display the efficiency of different interventions. CONCLUSIONS Nanotechnology has started a new era in the pain management and many promising results have been achieved in this regard. Nevertheless, there is still no substantial and adequate act of nanotechnology in this field. Therefore, efforts should be directed to broad investigations.
Collapse
Affiliation(s)
- Soraya Babaie
- Physical Medicine and Rehabilitation Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Deal B, Reynolds LM, Patterson C, Janjic JM, Pollock JA. Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Sci Rep 2022; 12:8472. [PMID: 35637203 PMCID: PMC9151909 DOI: 10.1038/s41598-022-12248-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Neuropathic pain affects millions of people worldwide, yet the molecular mechanisms of how it develops and persists are poorly understood. Given that males have historically been utilized as the primary sex in preclinical studies, less is known about the female neuroinflammatory response to injury, formation of pain, or response to pain-relieving therapies. Macrophages contribute to the development of neuroinflammatory pain via the activation of their cyclooxygenase-2 (COX-2) enzyme, which leads to the production of prostaglandin E2 (PGE2). PGE2 activates nociception and influences additional leukocyte infiltration. Attenuation of COX-2 activity decreases inflammatory pain, most commonly achieved by nonsteroidal anti-inflammatory drugs (NSAIDs), yet NSAIDs are considered ineffective for neuropathic pain due to off target toxicity. Using chronic constriction injury of the rat sciatic nerve, we show that males and females exhibit quantitatively the same degree of mechanical allodynia post injury. Furthermore, a low-dose nanotherapeutic containing the NSAID celecoxib is phagocytosed by circulating monocytes that then naturally accumulate at sites of injury as macrophages. Using this nanotherapeutic, we show that treated males exhibit complete reversal of hypersensitivity, while the same dose of nanotherapeutic in females provides an attenuated relief. The difference in behavioral response to the nanotherapy is reflected in the reduction of infiltrating macrophages at the site of injury. The observations contained in this study reinforce the notion that female neuroinflammation is different than males.
Collapse
|
9
|
Prossin A, Koch A, Campbell P, Laumet G, Stohler CS, Dantzer R, Zubieta JK. Effects of placebo administration on immune mechanisms and relationships with central endogenous opioid neurotransmission. Mol Psychiatry 2022; 27:831-839. [PMID: 34716408 PMCID: PMC9054677 DOI: 10.1038/s41380-021-01365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Behavioral conditioning and expectation can have profound impact on animal and human physiology. Placebo, administered under positive expectation in clinical trials, can have potent effects on disease pathology, obscuring active medications. Emerging evidence suggests placebo-responsive neurotransmitter systems (e.g., endogenous opioid) regulate immune function by manipulating inflammatory proteins including IL-18, a potent pro-inflammatory, nociceptive cytokine implicated in pathophysiology of various diseases. Validation that neuroimmune interactions involving brain μ-opioid receptor (MOR) activity and plasma IL-18 underlie placebo analgesic expectation could have widespread clinical applications. Unfortunately, current lack of mechanistic clarity obfuscates clinical translation. To elucidate neuroimmune interactions underlying placebo analgesia, we exposed 37 healthy human volunteers to a standardized pain challenge on each of 2 days within a Positron Emission Tomography (PET) neuroimaging paradigm using the MOR selective radiotracer, 11C-Carfentanil (CFN). Each day volunteers received an intervention (placebo under analgesic expectation or no treatment), completed PET scanning, and rated their pain experience. MOR BPND parametric maps were generated from PET scans using standard methods. Results showed placebo reduced plasma IL-18 during pain (W74 = -3.7, p < 0.001), the extent correlating with reduction in pain scores. Placebo reduction in IL-18 covaried with placebo-induced endogenous opioid release in the left nucleus accumbens (T148 = 3.33; puncorr < 0.001) and left amygdala (T148 = 3.30; puncorr < 0.001). These findings are consistent with a modulating effect of placebo (under analgesic expectation in humans) on a potent nociceptive, pro-inflammatory cytokine (IL-18) and underlying relationships with endogenous opioid activity, a neurotransmitter system critically involved in pain, stress, and mood regulation.
Collapse
Affiliation(s)
- Alan Prossin
- Department of Psychiatry and Behavioral Sciences, University of Texas McGovern Medical School, Houston, TX, USA. .,Translational Imaging Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA.
| | - Alisa Koch
- grid.214458.e0000000086837370Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Phillip Campbell
- grid.214458.e0000000086837370Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Geoffroy Laumet
- grid.17088.360000 0001 2150 1785Department of Physiology, Michigan State University, East Lansing, MI USA
| | - Christian S. Stohler
- grid.21729.3f0000000419368729College of Dental Medicine, Columbia University, New York, NY USA
| | - Robert Dantzer
- grid.240145.60000 0001 2291 4776Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jon-Kar Zubieta
- grid.416477.70000 0001 2168 3646Department of Psychiatry, John T Mather Memorial Hospital, Northwell Health, Port Jefferson, NY USA
| |
Collapse
|
10
|
Piotrowska A, Ciapała K, Pawlik K, Kwiatkowski K, Rojewska E, Mika J. Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model- In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms222011074. [PMID: 34681732 PMCID: PMC8538855 DOI: 10.3390/ijms222011074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.
Collapse
MESH Headings
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Behavior, Animal/drug effects
- Cells, Cultured
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Down-Regulation/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/pathology
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats
- Rats, Wistar
- Receptors, CXCR3/antagonists & inhibitors
- Receptors, CXCR3/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Stress, Mechanical
Collapse
|
11
|
Wang YH, Tang YR, Gao X, Liu J, Zhang NN, Liang ZJ, Li Y, Pan LX. The anti-inflammatory and analgesic effects of intraperitoneal melatonin after spinal nerve ligation are mediated by inhibition of the NF-κB/NLRP3 inflammasome signaling pathway. Brain Res Bull 2021; 169:156-166. [PMID: 33508403 DOI: 10.1016/j.brainresbull.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To explore the potential analgesic effect of melatonin and its underlying molecular mechanisms in a neuropathic pain model induced by spinal nerve ligation (SNL). METHODS The experimental animals were divided into different groups including sham, vehicle, melatonin (MT) treatment, caspase-1 inhibitor (VX-765) treatment and MT2 antagonist (4P-PDOT) treatment. On the first three successive postoperative days, rats were intraperitoneally administered with MT, VX-765 or combination of MT and 4P-PDOT. Hyperalgesic behavior after SNL was evaluated using the paw withdrawal threshold (PWT). We then assessed expression of tumor necrosis factor-α (TNF-α), IL-18, interleukin-1β (IL-1β), NLRP3 inflammasome components, and nuclear factor-κB (NF-κB) activation using enzyme-linked immunosorbent assay kits (ELISA), real-time PCR, immunohistochemistry, and western blot, respectively, in spinal cord horn tissues extracted on postoperative day 7. RESULTS The results showed that melatonin treatment alleviated SNL-induced allodynia. We observed an SNL-induced upregulation of TNF-α, IL-18, IL-1β, NLRP3, ASC, cleaved caspase-1, and NF-κB in the lumbar spinal cord horn of rats, which was significantly attenuated by intraperitoneal injection of melatonin or VX-765. Additionally, co-treatment of melatonin and 4P-PDOT abrogated the analgesic and anti-inflammatory effect of melatonin. CONCLUSION Melatonin had potent analgesic and anti-inflammatory effects in SNL-induced neuropathic pain via NF-κB/NLRP3 inflammasome signaling pathway. Our results therefore suggested that this pathway could represent a novel therapeutic target for the management of neuropathic pain.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Qingdao Municipal Hospital, Shandong Province, 266011, China
| | - Yu-Ru Tang
- Qingdao Mental Health Center, Qingdao University, Shandong Province, 266034, China
| | - Xiao Gao
- Qingdao Mental Health Center, Qingdao University, Shandong Province, 266034, China
| | - Juan Liu
- Department of Anesthesiology, Maternity and Child Hospital of Shandong Province, Shandong Province, 250014, China
| | - Nan-Nan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China
| | - Zhao-Jun Liang
- Department of Anesthesiology, Qingdao Municipal Hospital, Shandong Province, 266011, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China
| | - Li-Xiao Pan
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China.
| |
Collapse
|
12
|
Starobova H, Nadar EI, Vetter I. The NLRP3 Inflammasome: Role and Therapeutic Potential in Pain Treatment. Front Physiol 2020; 11:1016. [PMID: 32973552 PMCID: PMC7468416 DOI: 10.3389/fphys.2020.01016] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Pain is a fundamental feature of inflammation. The immune system plays a critical role in the activation of sensory neurons and there is increasing evidence of neuro-inflammatory mechanisms contributing to painful pathologies. The inflammasomes are signaling multiprotein complexes that are key components of the innate immune system. They are intimately involved in inflammatory responses and their activation leads to production of inflammatory cytokines that in turn can affect sensory neuron function. Accordingly, the contribution of inflammasome activation to pain signaling has attracted considerable attention in recent years. NLRP3 is the best characterized inflammasome and there is emerging evidence of its role in a variety of inflammatory pain conditions. In vitro and in vivo studies have reported the activation and upregulation of NLRP3 in painful conditions including gout and rheumatoid arthritis, while inhibition of NLRP3 function or expression can mediate analgesia. In this review, we discuss painful conditions in which NLRP3 inflammasome signaling has been pathophysiologically implicated, as well as NLRP3 inflammasome-mediated mechanisms and signaling pathways that may lead to the activation of sensory neurons.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Evelyn Israel Nadar
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia.,School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
13
|
Stevens AM, Saleem M, Deal B, Janjic J, Pollock JA. Targeted cyclooxygenase-2 inhibiting nanomedicine results in pain-relief and differential expression of the RNA transcriptome in the dorsal root ganglia of injured male rats. Mol Pain 2020; 16:1744806920943309. [PMID: 32762277 PMCID: PMC7543154 DOI: 10.1177/1744806920943309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic constriction injury of the sciatic nerve in rats causes peripheral neuropathy leading to pain-like behaviors commonly seen in humans. Neuropathy is a leading cause of neuropathic pain, which involves a complex cellular and molecular response in the peripheral nervous system with interactions between neurons, glia, and infiltrating immune cells. In this study, we utilize a nonsteroidal anti-inflammatory drug -loaded nanoemulsion to deliver the cyclooxygenase-2 inhibitor, Celecoxib, directly to circulating monocytes following nerve injury, which provides long-lasting pain relief. However, it is not fully understood how cyclooxygenase-2 inhibition in a macrophage traveling to the site of injury impacts gene expression in the dorsal root ganglia. To elucidate aspects of the molecular mechanisms underlying pain-like behavior in chronic constriction injury, as well as subsequent pain relief with treatment, we employ RNAseq transcriptome profiling of the dorsal root ganglia associated with the injured sciatic nerve in rats. Using high throughput RNA sequencing in this way provides insight into the molecular mechanisms involved in this neuroinflammatory response. We compare the transcriptome from the dorsal root ganglias of the following study groups: chronic constriction injury animals administered with cyclooxygenase-2 inhibiting celecoxib-loaded nanoemulsion, chronic constriction injury animals administered with vehicle treatment, a drug-free nanoemulsion, and a group of naïve, unoperated and untreated rats. The results show an extensive differential expression of 115 genes. Using the protein annotation through evolutionary relationship classification system, we have revealed pain-related signaling pathways and underlying biological mechanisms involved in the neuroinflammatory response. Quantitative polymerase chain reaction validation confirms expression changes for several genes. This study shows that by directly inhibiting cyclooxygenase-2 activity in infiltrating macrophages at the injured sciatic nerve, there is an associated change in the transcriptome in the cell bodies of the dorsal root ganglia.
Collapse
Affiliation(s)
- Andrea M Stevens
- Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Muzamil Saleem
- Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Brooke Deal
- Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | - Jelena Janjic
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - John A Pollock
- Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Differential Expression of Neuroinflammatory mRNAs in the Rat Sciatic Nerve Following Chronic Constriction Injury and Pain-Relieving Nanoemulsion NSAID Delivery to Infiltrating Macrophages. Int J Mol Sci 2019; 20:ijms20215269. [PMID: 31652890 PMCID: PMC6862677 DOI: 10.3390/ijms20215269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The neuroinflammatory response to peripheral nerve injury is associated with chronic pain and significant changes in the molecular expression profiles of mRNAs in neurons, glia and infiltrating immune cells. Chronic constriction injury (CCI) of the rat sciatic nerve provides an opportunity to mimic neuropathic injury and quantitatively assess behavior and differential gene expression in individual animals. Previously, we have shown that a single intravenous injection of nanoemulsion containing celecoxib (0.24 mg/kg) reduces inflammation of the sciatic nerve and relieves pain-like behavior for up to 6 days. Here, we use this targeted therapy to explore the impact on mRNA expression changes in both pain and pain-relieved states. Sciatic nerve tissue recovered from CCI animals is used to evaluate the mRNA expression profiles utilizing quantitative PCR. We observe mRNA changes consistent with the reduced recruitment of macrophages evident by a reduction in chemokine and cytokine expression. Furthermore, genes associated with adhesion of macrophages, as well as changes in the neuronal and glial mRNAs are observed. Moreover, genes associated with neuropathic pain including Maob, Grin2b/NMDAR2b, TrpV3, IL-6, Cacna1b/Cav2.2, Itgam/Cd11b, Scn9a/Nav1.7, and Tac1 were all found to respond to the celecoxib loaded nanoemulsion during pain relief as compared to those animals that received drug-free vehicle. These results demonstrate that by targeting macrophage production of PGE2 at the site of injury, pain relief includes partial reversal of the gene expression profiles associated with chronic pain.
Collapse
|
15
|
Saleem M, Deal B, Nehl E, Janjic JM, Pollock JA. Nanomedicine-driven neuropathic pain relief in a rat model is associated with macrophage polarity and mast cell activation. Acta Neuropathol Commun 2019; 7:108. [PMID: 31277709 PMCID: PMC6612172 DOI: 10.1186/s40478-019-0762-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
We explored the immune neuropathology underlying multi-day relief from neuropathic pain in a rat model initiated at the sciatic nerve, by using a nanoemulsion-based nanomedicine as a biological probe. The nanomedicine is theranostic: both therapeutic (containing celecoxib drug) and diagnostic (containing near-infrared fluorescent (NIRF) dye) and is small enough to be phagocytosed by circulating monocytes. We show that pain-like behavior reaches a plateau of maximum hypersensitivity 8 days post-surgery, and is the rationale for intravenous delivery at this time-point. Pain relief is evident within 24 h, lasting approximately 6 days. The ipsilateral sciatic nerve and associated L4 and L5 dorsal root ganglia (DRG) tissue of both nanomedicine and control (nanoemulsion without drug) treated animals was investigated by immunofluorescence and confocal microscopy at the peak of pain relief (day-12 post-surgery), and when pain-like hypersensitivity returns (day-18 post-surgery). At day-12, a significant reduction of infiltrating macrophages, mast cells and mast cell degranulation was observed at the sciatic nerve following treatment. In the DRG, there was no effect of treatment at both day-12 and day-18. Conversely, at the DRG, there is a significant increase in macrophage infiltration and mast cell degranulation at day-18. The treatment effect on immune pathology in the sciatic nerve was investigated further by assessing the expression of macrophage cyclooxygenase-2 (COX-2)-the drug target-and extracellular prostaglandin E2 (PGE2), as well as the proportion of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. At day-12, there is a significant reduction of COX-2 positive macrophages, extracellular PGE2, and a striking reversal of macrophage polarity. At day-18, these measures revert to levels observed in control-treated animals. Here we present a new paradigm of immune neuropathology research, by employing a nanomedicine to target a mechanism of neuropathic pain-resulting in long-lasting pain relief--whilst revealing novel immune pathology at the injured nerve and associated DRG.
Collapse
Affiliation(s)
- Muzamil Saleem
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - Brooke Deal
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - Emily Nehl
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY USA
| | - Jelena M. Janjic
- Graduate School of Pharmacy, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - John A. Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| |
Collapse
|
16
|
Changes in Dorsal Root Ganglion Gene Expression in Response to Spinal Cord Stimulation. Reg Anesth Pain Med 2018; 42:246-251. [PMID: 28079752 DOI: 10.1097/aap.0000000000000550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Spinal cord stimulation (SCS) has been shown to influence pain-related genes in the spinal cord directly under the stimulating electrodes. There is limited information regarding changes occurring at the dorsal root ganglion (DRG). This study evaluates gene expression in the DRG in response to SCS therapy. METHODS Rats were randomized into experimental or control groups (n = 6 per group). Experimental animals underwent spared-nerve injury, implantation of lead, and continuous SCS (72 hours). Behavioral assessment for mechanical hyperalgesia was conducted to compare responses after injury and treatment. Ipsilateral DRG tissue was collected, and gene expression quantified for interleukin 1b (IL-1b), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), GABA B receptor 1 (GABAbr1), substance P (subP), Integrin alpha M (ITGAM), sodium/potassium ATP-ase (Na/K ATPase), fos proto-oncogene (cFOS), serotonin receptor 3A (5HT3r), galanin (Gal), vasoactive intestinal peptide (VIP), neuropeptide Y (NpY), glial fibrillary acidic protein (GFAP), and brain derived neurotropic factor (BDNF) via quantitative polymerase chain reaction. Statistical significance was established using analysis of variance (ANOVA), independent t tests, and Pearson correlation tests. RESULTS Expression of IL-1b and IL-6 was reversed following SCS therapy relative to the increase caused by the injury model. Both GABAbr1 and Na/K ATPase were significantly up-regulated upon implantation of the lead, and SCS therapy reversed their expression to within control levels. Pearson correlation analyses reveal that GABAbr1 and Na/K ATPase expression was dependent on the stimulating current intensity. CONCLUSIONS Spinal cord stimulation modulates expression of key pain-related genes in the DRG. Specifically, SCS led to reversal of IL-1b and IL-6 expression induced by injury. Interleukin 6 expression was still significantly larger than in sham animals, which may correlate to residual sensitivity following continuous SCS treatment. In addition, expression of GABAbr1 and Na/K ATPase was down-regulated to within control levels following SCS and correlates with applied current.
Collapse
|
17
|
Janjic JM, Vasudeva K, Saleem M, Stevens A, Liu L, Patel S, Pollock JA. Low-dose NSAIDs reduce pain via macrophage targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat. J Neuroimmunol 2018. [PMID: 29519721 DOI: 10.1016/j.jneuroim.2018.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroinflammation involving macrophages elevates Prostaglandin E2, associated with neuropathic pain. Treatment with non-steroidal anti-inflammatory drugs (NSAIDs) inhibits cyclooxygenase, reducing PGE2. However, NSAIDs cause physiological complications. We developed nanoemulsions incorporating celecoxib and near infrared dye. Intravenous injected nanoemulsion is incorporated into monocytes that accumulate at the injury; revealed in live animals by fluorescence. A single dose (celecoxib 0.24 mg/kg) provides targeted delivery in chronic constriction injury rats, resulting in significant reduction in the visualized inflammation, infiltration of macrophages, COX-2 and PGE2. Animals exhibit relief from hypersensitivity persisting at least four-days. The total body burden of drug is reduced by >2000 fold over oral drug delivery.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, United States; Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Kiran Vasudeva
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States; Department of Biological Sciences, Bayer School of Natural & Environmental Science, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Muzamil Saleem
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States; Department of Biological Sciences, Bayer School of Natural & Environmental Science, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Andrea Stevens
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States; Department of Biological Sciences, Bayer School of Natural & Environmental Science, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Lu Liu
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, United States; Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Sravan Patel
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, United States; Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States.
| | - John A Pollock
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, United States; Department of Biological Sciences, Bayer School of Natural & Environmental Science, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
18
|
Yoshida S, Hagiwara Y, Tsuchiya M, Shinoda M, Koide M, Hatakeyama H, Chaweewannakorn C, Yano T, Sogi Y, Itaya N, Sekiguchi T, Yabe Y, Sasaki K, Kanzaki M, Itoi E. Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain. Mol Pain 2018; 14:1744806918757286. [PMID: 29353540 PMCID: PMC5802617 DOI: 10.1177/1744806918757286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Muscle pain is a common condition that relates to various pathologies. Muscle overuse induces muscle pain, and neutrophils are key players in pain production. Neutrophils also play a central role in chronic pain by secreting interleukin (IL)-18. The aim of this study was to investigate the involvement of neutrophils and IL-18 in a mouse model of muscle pain. The right hind leg muscles of BALB/c mice were stimulated electrically to induce excessive muscle contraction. The left hind leg muscles were not stimulated. The pressure pain threshold, number of neutrophils, and IL-18 levels were investigated. Furthermore, the effects of the IL-18-binding protein and Brilliant Blue G on pain were investigated. In stimulated muscles, pressure pain thresholds decreased, and neutrophil and IL-18 levels increased compared with that in non-stimulated muscles. The administration of IL-18-binding protein and Brilliant Blue G attenuated hyperalgesia caused by excessive muscle contraction. These results suggest that increased IL-18 secretion from larger numbers of neutrophils elicits mechanical hyperalgesia.
Collapse
Affiliation(s)
- Shinichirou Yoshida
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Hagiwara
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Masamichi Shinoda
- 3 Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Koide
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyasu Hatakeyama
- 4 Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | | | - Toshihisa Yano
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhito Sogi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Itaya
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuya Sekiguchi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaka Yabe
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Sasaki
- 4 Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Makoto Kanzaki
- 4 Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Eiji Itoi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
Mamik MK, Power C. Inflammasomes in neurological diseases: emerging pathogenic and therapeutic concepts. Brain 2017; 140:2273-2285. [PMID: 29050380 DOI: 10.1093/brain/awx133] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/15/2017] [Indexed: 12/23/2022] Open
Abstract
Inflammasome activation in the central nervous system occurs in both health and disease. Inflammasomes are cytosolic protein complexes that sense specific infectious or host stimuli and initiate inflammatory responses through caspase activation. Assembly of inflammasomes results in caspase-1-mediated proteolytic cleavage and release of the pro-inflammatory cytokines, interleukin-1β and interleukin-18, with initiation of pyroptosis, an inflammatory programmed cell death. Recent developments in the inflammasome field have uncovered novel molecular mechanisms that contribute to a broad range of neurological disorders including those associated with specific mutations in inflammasome genes as well as diseases modulated by inflammasome activation. This update focuses on recent developments in the field of inflammasome biology highlighting different inflammasome activators and pathways discovered in the nervous system. We also discuss targeted therapies that regulate inflammasomes and improve neurological outcomes.
Collapse
Affiliation(s)
- Manmeet K Mamik
- Department of Medicine (Division of Neurology), University of Alberta, Edmonton, AB, Canada
| | - Christopher Power
- Department of Medicine (Division of Neurology), University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Dutartre P. Inflammasomes and Natural Ingredients towards New Anti-Inflammatory Agents. Molecules 2016; 21:molecules21111492. [PMID: 27834826 PMCID: PMC6273057 DOI: 10.3390/molecules21111492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are a family of proteins in charge of the initiation of inflammatory process during innate immune response. They are now considered major actors in many chronic inflammatory diseases. However, no major drug focusing on this target is currently on the market. Among the various approaches aiming to control this major metabolic pathway, compounds aiming to modify the intracellular antioxidant profile appear to be promising. This can be obtained by “light” antioxidants able to induce natural antioxidant response of the cell itself. This review will give an overview of the current available information on this promising pharmacology approach.
Collapse
Affiliation(s)
- Patrick Dutartre
- Laboratory BioperoxIL, Faculty of Sciences SVTE, University of Bourgogne Franche Comté, 6 Bd Gabriel F-21000 Dijon, France.
| |
Collapse
|
21
|
Abboud A, Mi Q, Puccio A, Okonkwo D, Buliga M, Constantine G, Vodovotz Y. Inflammation Following Traumatic Brain Injury in Humans: Insights from Data-Driven and Mechanistic Models into Survival and Death. Front Pharmacol 2016; 7:342. [PMID: 27729864 PMCID: PMC5037938 DOI: 10.3389/fphar.2016.00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/13/2016] [Indexed: 02/02/2023] Open
Abstract
Inflammation induced by traumatic brain injury (TBI) is a complex mediator of morbidity and mortality. We have previously demonstrated the utility of both data-driven and mechanistic models in settings of traumatic injury. We hypothesized that differential dynamic inflammation programs characterize TBI survivors vs. non-survivors, and sought to leverage computational modeling to derive novel insights into this life/death bifurcation. Thirteen inflammatory cytokines and chemokines were determined using Luminex™ in serial cerebrospinal fluid (CSF) samples from 31 TBI patients over 5 days. In this cohort, 5 were non-survivors (Glasgow Outcome Scale [GOS] score = 1) and 26 were survivors (GOS > 1). A Pearson correlation analysis of initial injury (Glasgow Coma Scale [GCS]) vs. GOS suggested that survivors and non-survivors had distinct clinical response trajectories to injury. Statistically significant differences in interleukin (IL)-4, IL-5, IL-6, IL-8, IL-13, and tumor necrosis factor-α (TNF-α) were observed between TBI survivors vs. non-survivors over 5 days. Principal Component Analysis and Dynamic Bayesian Network inference suggested differential roles of chemokines, TNF-α, IL-6, and IL-10, based upon which an ordinary differential equation model of TBI was generated. This model was calibrated separately to the time course data of TBI survivors vs. non-survivors as a function of initial GCS. Analysis of parameter values in ensembles of simulations from these models suggested differences in microglial and damage responses in TBI survivors vs. non-survivors. These studies suggest the utility of combined data-driven and mechanistic models in the context of human TBI.
Collapse
Affiliation(s)
- Andrew Abboud
- Department of Surgery, University of Pittsburgh Pittsburgh, PA, USA
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of PittsburghPittsburgh, PA, USA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA
| | - Ava Puccio
- Department of Neurological Surgery, University of Pittsburgh Pittsburgh, PA, USA
| | - David Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Pittsburgh, PA, USA
| | - Marius Buliga
- Department of Mathematics, University of Pittsburgh Bradford, PA, USA
| | - Gregory Constantine
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA; Department of Mathematics and Department of Statistics, University of PittsburghPittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of PittsburghPittsburgh, PA, USA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
22
|
Sun S, Chen D, Lin F, Chen M, Yu H, Hou L, Li C. Role of interleukin-4, the chemokine CCL3 and its receptor CCR5 in neuropathic pain. Mol Immunol 2016; 77:184-192. [PMID: 27522478 DOI: 10.1016/j.molimm.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 02/08/2023]
Abstract
Cytokines and chemokines are involved in chronic pain syndromes, and their expression is altered in injury-induced neuronal pain pathways. However, the exact cytokines/chemokines involved and their mechanism of action remain to be determined. In this study, we investigated the role of interleukin-4 and the chemokine/chemokine receptor pair CCL3/CCR5 in a mouse model of chronic constriction injury (CCI)-induced neuropathic pain. Neuropathic pain was induced by surgical ligation of the sciatic nerve and assessed by measuring thermal hyperalgesia and mechanical allodynia using a plantar test and a dynamic plantar esthesiometer. The underlying mechanisms were investigated by real-time quantitative reverse transcription polymerase chain reaction, western blotting, immunohistochemistry, ELISA, and histopathology. CCI-induced neuropathic pain was associated with CCL3 and CCR5 upregulation and microglial activation. Intrathecal injection of the anti-inflammatory cytokine interleukin-4 or CCL3-neutralizing antibody alleviated CCI-induced inflammation, suppressing the CCI-induced upregulation of tumor necrosis factor-α and interleukin-1β in the serum and spinal cord, restoring the CCI-induced upregulation of CCL3 and CCR5, and suppressing the CCI-induced activation of p38 mitogen-activated protein kinase. Knockout of CCR5 also suppressed CCI-induced neuropathic pain. Since the upregulation of chemokines and cytokines is directly or indirectly involved in chronic pain after nerve injury, these molecules are potential therapeutic targets in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Anaesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dan Chen
- Department of Anaesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fuqing Lin
- Department of Anaesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Minghui Chen
- Department of Anaesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongli Yu
- Department of Anaesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lengchen Hou
- Department of Anaesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Cheng Li
- Department of Anaesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
23
|
Herder C, Schamarek I, Nowotny B, Carstensen-Kirberg M, Straßburger K, Nowotny P, Kannenberg JM, Strom A, Püttgen S, Müssig K, Szendroedi J, Roden M, Ziegler D. Inflammatory markers are associated with cardiac autonomic dysfunction in recent-onset type 2 diabetes. Heart 2016; 103:63-70. [PMID: 27481890 DOI: 10.1136/heartjnl-2015-309181] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Cardiovascular autonomic neuropathy is a common but underestimated diabetes-related disorder. Associations between cardiovascular autonomic dysfunction and subclinical inflammation, both risk factors of diabetic comorbidities and mortality, have been proposed in non-diabetic populations, while data for type 1 and type 2 diabetes are conflicting. Our aim was to investigate associations between inflammation-related biomarkers and cardiac autonomic dysfunction in patients with diabetes. METHODS We characterised the associations between seven biomarkers of subclinical inflammation and cardiac autonomic dysfunction based on heart rate variability and cardiovascular autonomic reflex tests (CARTs) in 161 individuals with type 1 and 352 individuals with type 2 diabetes (time since diagnosis of diabetes <1 year). Analyses were adjusted for age, sex, anthropometric, metabolic and lifestyle factors, medication and cardiovascular comorbidities. RESULTS In individuals with type 2 diabetes, higher serum interleukin (IL)-18 was associated with lower vagal activity (p≤0.015 for association with CARTs), whereas higher levels of total and high-molecular-weight adiponectin showed associations with very low frequency power, an indicator of reduced sympathetic activity (p≤0.014). Higher levels of soluble intercellular adhesion molecule-1 were associated with indicators of both lower vagal (p=0.025) and sympathetic (p=0.008) tone, soluble E-selectin with one indicator of lower vagal activity (p=0.047). Serum C-reactive protein and IL-6 were also related to cardiac autonomic dysfunction, but these associations were explained by confounding factors. No consistent associations were found in individuals with type 1 diabetes. CONCLUSIONS Biomarkers of inflammation were differentially associated with diminished cardiac autonomic dysfunction in recent-onset type 2 diabetes.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Imke Schamarek
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia M Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sonja Püttgen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
24
|
Starzl R, Wolfram D, Zamora R, Jefferson B, Barclay D, Ho C, Gorantla V, Brandacher G, Schneeberger S, Andrew Lee WP, Carbonell J, Vodovotz Y. Cardiac Arrest Disrupts Caspase-1 and Patterns of Inflammatory Mediators Differently in Skin and Muscle Following Localized Tissue Injury in Rats: Insights from Data-Driven Modeling. Front Immunol 2015; 6:587. [PMID: 26635801 PMCID: PMC4653302 DOI: 10.3389/fimmu.2015.00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Trauma often cooccurs with cardiac arrest and hemorrhagic shock. Skin and muscle injuries often lead to significant inflammation in the affected tissue. The primary mechanism by which inflammation is initiated, sustained, and terminated is cytokine-mediated immune signaling, but this signaling can be altered by cardiac arrest. The complexity and context sensitivity of immune signaling in general has stymied a clear understanding of these signaling dynamics. METHODOLOGY/PRINCIPAL FINDINGS We hypothesized that advanced numerical and biological function analysis methods would help elucidate the inflammatory response to skin and muscle wounds in rats, both with and without concomitant shock. Based on the multiplexed analysis of inflammatory mediators, we discerned a differential interleukin (IL)-1α and IL-18 signature in skin vs. muscle, which was suggestive of inflammasome activation in the skin. Immunoblotting revealed caspase-1 activation in skin but not muscle. Notably, IL-1α and IL-18, along with caspase-1, were greatly elevated in the skin following cardiac arrest, consistent with differential inflammasome activation. CONCLUSION/SIGNIFICANCE Tissue-specific activation of caspase-1 and the NLRP3 inflammasome appear to be key factors in determining the type and severity of the inflammatory response to tissue injury, especially in the presence of severe shock, as suggested via data-driven modeling.
Collapse
Affiliation(s)
- Ravi Starzl
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Plastic and Reconstructive Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Dolores Wolfram
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vijay Gorantla
- Department of Plastic and Reconstructive Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Stefan Schneeberger
- Department of Plastic and Reconstructive Surgery, Johns Hopkins Medicine, Baltimore, MD, USA
| | - W. P. Andrew Lee
- Department of Plastic and Reconstructive Surgery, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Jaime Carbonell
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Russo MA, Santarelli DM. Comment on "In vivo and systems biology studies implicate IL-18 as a central mediator in chronic pain" by Vasudeva et al., J. Neuroimmunol. 2015 June; 283:3-49. J Neuroimmunol 2015; 286:77-8. [PMID: 26298327 DOI: 10.1016/j.jneuroim.2015.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Marc A Russo
- Hunter Pain Clinic, Broadmeadow, NSW, Australia.
| | | |
Collapse
|