1
|
Huang Z, Li X, Wang X, Wu J, Gong Z, Kõks S, Wang M. Nuclear paraspeckle assembly transcript 1 promotes photophobia behavior in mice via miR-196a-5p/Trpm3 coupling. J Headache Pain 2025; 26:118. [PMID: 40399770 PMCID: PMC12096706 DOI: 10.1186/s10194-025-02057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/30/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND The long noncoding RNA, NEAT1, is recognized as a key regulator of proinflammatory gene expression; Yet, its functional role in migraine remains unexplored, despite the central role of neuroinflammatory mechanisms in migraine pathophysiology. This study examines the implication of NEAT1 in the trigeminal ganglion activation, which underlies photophobia associated with migraine. METHODS Light aversion behavior was induced by intranasal injection of the TRPA1 activator, umbellulone. Male mouse behavior was assessed by the total time the mouse stays in the light between the dark and light compartments. To gain insight to the NEAT1-mediated photophobia mechanism, gene expression of candidate genes and non-coding RNAs interactions were assessed using RNA-sequencing, qPCR analysis, histology and dual-luciferase reporter gene assay. RESULTS NEAT1 was upregulated in the trigeminal ganglion of male photophobia mice; Downregulation of NEAT1 by intravenous injection of shNEAT1 adeno-associated virus vectors attenuated NEAT1 expression and alleviated photophobia-like behavior in mice. The elevated NEAT1 expression in the trigeminal ganglion of photophobia mice corresponds to the downregulation of miR-196a-5p and upregulation Trpm3 RNA level. Predicted analysis suggested NEAT1/miR-196a-5p ceRNA network exists in photophobia mice. Indeed, knocking down NEAT1 upregulated miR-196a-5p, whilst downregulated Trpm3 gene expression level, in the trigeminal ganglion of photophobia mice. Further investigation using dual-luciferase reporter gene assay identified NEAT1 interacting with miR-196a-5p, whilst miR-196a-5p interacting with Trpm3. Similar to knocking down NEAT1, TRPM3 inhibition reduced photophobia-like behavior. CONCLUSION We conclude that NEAT1 is critical for promoting photophobia behavior via miR-196a-5p/Trpm3 coupling.
Collapse
Affiliation(s)
- Zhuoan Huang
- Department of Biosciences and Bioinformatics, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Xingshen Li
- Department of Biosciences and Bioinformatics, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123, China
| | - Xiaolin Wang
- Department of Biosciences and Bioinformatics, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123, China
| | - Jiaqi Wu
- Department of Biosciences and Bioinformatics, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123, China
| | - Ziyang Gong
- Department of Biosciences and Bioinformatics, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Sulev Kõks
- Personalised Medicine Centre, Perron Institute for Neurological and Translational Science, Murdoch University, Perth, WA, 6009, Australia.
| | - Minyan Wang
- Department of Biosciences and Bioinformatics, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
2
|
Wang Z, Jiao P. Roles of non-coding RNAs and exosomal non-coding RNAs, particularly microRNAs, long non-coding RNAs, and circular RNAs, in pathogenic mechanisms behind chronic pain: A review. Int J Biol Macromol 2025; 307:141945. [PMID: 40074135 DOI: 10.1016/j.ijbiomac.2025.141945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Chronic pain is a significant public health concern that diminishes patients' quality of life and imposes considerable socioeconomic costs. Effective pharmacological treatments for ongoing pain are limited. Recent studies have indicated that various models of chronic pain-such as neuropathic pain, inflammatory pain, and pain associated with cancer-have abnormal levels of long noncoding RNAs (lncRNAs). Research has explored how these abnormal lncRNAs influence the activation of inflammatory cytokines, microRNAs, and other related molecules, which are crucial to the development of chronic pain. These findings suggest that these lncRNAs are vital in chronic pain mechanisms within the spinal cord and dorsal root ganglion following nerve injury. Additionally, exosomes, which can traverse the blood-brain barrier, are considered carriers of noncoding RNAs (ncRNAs) from neurons to systemic circulation. This study aims to summarize the existing knowledge on ncRNAs and exosomal ncRNAs in the context of chronic pain, highlighting potential biomarkers for diagnosis, regulatory roles in disease progression, therapeutic strategies, and clinical implications.
Collapse
Affiliation(s)
- Zhongkai Wang
- Department of Pain and Rehabilitation, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Pengqing Jiao
- Department of Rheumatism and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
3
|
Esmaeili A, Yazdanpanah N, Rezaei N. LncRNAs Orchestrating Neuroinflammation: A Comprehensive Review. Cell Mol Neurobiol 2025; 45:21. [PMID: 40056236 PMCID: PMC11890384 DOI: 10.1007/s10571-025-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
CNS diseases account for a major part of the comorbidity and mortality of the human population; moreover, neuroinflammation has become an indication for different CNS diseases, for instance, Parkinson's and Alzheimer's disease. Microglia and astrocytes are the two main glial cells that can be found in the CNS. Each of these plays an important role in mediating immune responses like inflammation. There are many studies suggesting the role of LncRNAs in mediating neuroinflammation. Indeed, LncRNAs orchestrate neuroinflammation through various mechanisms, namely miRNA sponge, and transcriptional activation/inhibition. In addition, LncRNAs regulate different downstream pathways like NF-κB, and PI3K/AKT. In this study, we gathered the existing studies regarding the mechanisms of action of LncRNAs in the pathogenesis of different CNS diseases like neurodegenerative diseases and traumatic injuries through regulating neuroinflammation. We aim to elaborate on the regulatory roles of LncRNAs in neuroinflammation and bring a more profound understanding of the etiology of CNS diseases in terms of neuroinflammation.
Collapse
Affiliation(s)
- Arash Esmaeili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
He X, Yang H, Zheng Y, Zhao X, Wang T. The role of non-coding RNAs in neuropathic pain. Pflugers Arch 2024; 476:1625-1643. [PMID: 39017932 DOI: 10.1007/s00424-024-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Neuropathic pain (NPP) is a refractory pain syndrome, caused by damage or disease of the somatosensory nervous system and characterized by spontaneous pain, hyperalgesia, abnormal pain and sensory abnormality. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA) and Piwi interacting RNA (piRNA), play a notable role in initiation and maintenance of NPP. In this review, we summarize the role of ncRNAs in NPP and their underlaying mechanism. Generally, ncRNAs are interacted with mRNA, protein or DNA to regulate the molecules and signals assciated with neuroinflammation, ion channels, neurotrophic factors and others, and then involved in the occurrence and development of NPP. Therefore, this review not only contributes to deepen our understanding of the pathophysiological mechanism of NPP, but also provides theoretical basis for the development of new therapy strategies for this disorder.
Collapse
Affiliation(s)
- Xiuying He
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Huisi Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yuexiang Zheng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650504, P.R. China.
| | - Tinghua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Bretová K, Svobodová V, Dubový P. Changes in Cx43 and AQP4 Proteins, and the Capture of 3 kDa Dextran in Subpial Astrocytes of the Rat Medial Prefrontal Cortex after Both Sham Surgery and Sciatic Nerve Injury. Int J Mol Sci 2024; 25:10989. [PMID: 39456773 PMCID: PMC11507206 DOI: 10.3390/ijms252010989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
A subpopulation of astrocytes on the brain's surface, known as subpial astrocytes, constitutes the "glia limitans superficialis" (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins in subpial astrocytes were examined in the medial prefrontal cortex at postoperative day 1, 3, 7, 14, and 21 after sham operation and sciatic nerve compression (SNC). In addition, we tested the altered uptake of TRITC-conjugated 3 kDa dextran by reactive subpial astrocytes. Cellular immunofluorescence (IF) detection and image analysis were used to examine changes in Cx43 and AQP4 protein levels, as well as TRITC-conjugated 3 kDa dextran, in subpial astrocytes. The intensity of Cx43-IF was significantly increased, but AQP4-IF decreased in subpial astrocytes of sham- and SNC-operated rats during all survival periods compared to naïve controls. Similarly, the uptake of 3 kDa dextran in the GLS was reduced following both sham and SNC operations. The results suggest that both sciatic nerve injury and peripheral tissue injury alone can induce changes in subpial astrocytes related to the spread of their reactivity across the cortical surface mediated by increased amounts of gap junctions. At the same time, water transport and solute uptake were impaired in subpial astrocytes.
Collapse
Affiliation(s)
| | | | - Petr Dubový
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic; (K.B.)
| |
Collapse
|
6
|
Jia SY, Yin WQ, Xu WM, Li J, Yan W, Lin JY. Liquiritin ameliorates painful diabetic neuropathy in SD rats by inhibiting NLRP3-MMP-9-mediated reversal of aquaporin-4 polarity in the glymphatic system. Front Pharmacol 2024; 15:1436146. [PMID: 39295943 PMCID: PMC11408323 DOI: 10.3389/fphar.2024.1436146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background Despite advancements in diabetes treatment, the management of Painful Diabetic Neuropathy (PDN) remains challenging. Our previous research indicated a significant correlation between the expression and distribution of Aquaporin-4 (AQP4) in the spinal glymphatic system and PDN. However, the potential role and mechanism of liquiritin in PDN treatment remain uncertain. Methods This study established a rat model of PDN using a combination of low-dose Streptozotocin (STZ) and a high-fat, high-sugar diet. Rats were treated with liquiritin and MCC950 (an NLRP3 inhibitor). We monitored fasting blood glucose, body weight, and mechanical allodynia periodically. The glymphatic system's clearance function was evaluated using Magnetic Resonance Imaging (MRI), and changes in proteins including NLRP3, MMP-9, and AQP4 were detected through immunofluorescence and Western blot techniques. Results The rats with painful diabetic neuropathy (PDN) demonstrated several physiological changes, including heightened mechanical allodynia, compromised clearance function within the spinal glymphatic system, altered distribution of AQP4, increased count of activated astrocytes, elevated expression levels of NLRP3 and MMP-9, and decreased expression of AQP4. However, following treatment with liquiritin and MCC950, these rats exhibited notable improvements. Conclusion Liquiritin may promote the restoration of AQP4 polarity by inhibiting NLRP3 and MMP-9, thereby enhancing the clearance functions of the spinal cord glymphatic system in PDN rats, alleviating the progression of PDN.
Collapse
Affiliation(s)
- Shuai-Ying Jia
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wen-Qin Yin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wen-Mei Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wei Yan
- Department of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Yan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Wang T, Song L, Xu Y, Li Y. SNHG3 deficiency restrains spinal cord injury-induced inflammation through sponging miR-139-5p and provides a novel biomarker for disease severity. J Neurosurg Sci 2024; 68:459-467. [PMID: 36082835 DOI: 10.23736/s0390-5616.22.05704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
BACKGROUND MicroRNAs and long non-coding RNAs play pivotal roles in the progression and recovery of spinal cord injury (SCI), which is a serious traumatic disease in central nervous system. The purpose of this study was to investigate the expression and clinical value of SNHG3 in SCI patients and explore the regulatory effects of SNHG3 on SCI-induced inflammatory responses in vitro. METHODS The relationship between SNHG3 and miR-139-5p was confirmed using a dual-luciferase reporter assay. A SCI cell model was constructed in SH-SY5Y cells using hypoxia treatment. SNHG3 and miR-139-5p expression was analyzed using qRT-PCR. Effects of SNHG3 and miR-139-5p on cell model viability and inflammatory cytokines were evaluated by CCK-8 assay and ELISA kits, respectively. ROC curves based on serum SNHG3 and miR-139-5p were constructed to evaluate their diagnostic performance. RESULTS In SCI patients, serum SNHG3 was upregulated, but miR-139-5p was downregulated (P<0.05), and a negative correlation between the two ncRNAs was found. Both SNHG3 and miR-139-5p showed relatively high discrimination abilities for the screening of SCI and complete SCI (CSCI) patients. SNHG3 was positively correlated with inflammatory cytokines, and miR-139-5p showed opposite results in SCI patients. By in-vitro analysis, SNHG3 knockdown enhanced cell viability but inhibited inflammation by increasing miR-139-5p. CONCLUSIONS All the data found that serum upregulated SNHG3 and downregulated miR-139-5p served as biomarkers to diagnose SCI and indicate injury severity. The deficiency of SNHG3 alleviated neuronal injury by restraining inflammatory responses through targeting miR-139-5p. Thus, the SNHG3/miR-139-5p axis may provide novel biomarkers and therapeutic targets for SCI.
Collapse
Affiliation(s)
- Tiecheng Wang
- Department of Neurosurgery, Huantai People's Hospital, Zibo, China
| | - Likun Song
- Department of Neurosurgery, Huantai People's Hospital, Zibo, China
| | - Yehuan Xu
- Department of Neurology, Huantai People's Hospital, Zibo, China
| | - Ye Li
- Department of Trauma Orthopedics, Zibo Central Hospital, Zibo, China -
| |
Collapse
|
8
|
Jmel H, Boukhalfa W, Gouiza I, Seghaier RO, Dallali H, Kefi R. Pharmacogenetic landscape of pain management variants among Mediterranean populations. Front Pharmacol 2024; 15:1380613. [PMID: 38813106 PMCID: PMC11134176 DOI: 10.3389/fphar.2024.1380613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024] Open
Abstract
Background Chronic pain is a major socioeconomic burden in the Mediterranean region. However, we noticed an under-representation of these populations in the pharmacogenetics of pain management studies. In this context, we aimed 1) to decipher the pharmacogenetic variant landscape among Mediterranean populations compared to worldwide populations in order to identify therapeutic biomarkers for personalized pain management and 2) to better understand the biological process of pain management through in silico investigation of pharmacogenes pathways. Materials and Methods We collected genes and variants implicated in pain response using the Prisma guidelines from literature and PharmGK database. Next, we extracted these genes from genotyping data of 829 individuals. Then, we determined the variant distribution among the studied populations using multivariate (MDS) and admixture analysis with R and STRUCTURE software. We conducted a Chi2 test to compare the interethnic frequencies of the identified variants. We used SNPinfo web server, miRdSNP database to identify miRNA-binding sites. In addition, we investigated the functions of the identified genes and variants using pathway enrichment analysis and annotation tools. Finally, we performed docking analysis to assess the impact of variations on drug interactions. Results We identified 63 variants implicated in pain management. MDS analysis revealed that Mediterranean populations are genetically similar to Mexican populations and divergent from other populations. STRUCTURE analysis showed that Mediterranean populations are mainly composed of European ancestry. We highlighted differences in the minor allele frequencies of three variants (rs633, rs4680, and rs165728) located in the COMT gene. Moreover, variant annotation revealed ten variants with potential miRNA-binding sites. Finally, protein structure and docking analysis revealed that two missense variants (rs4680 and rs6267) induced a decrease in COMT protein activity and affinity for dopamine. Conclusion Our findings revealed that Mediterranean populations diverge from other ethnic groups. Furthermore, we emphasize the importance of pain-related pathways and miRNAs to better implement these markers as predictors of analgesic responses in the Mediterranean region.
Collapse
Affiliation(s)
- Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Genetic Typing Service, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Genetic Typing Service, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Genetic Typing Service, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- MitoLab Team, Unité MitoVasc, Unité Mixte de Recherche Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U1083, SFR ICAT, University of Angers, Angers, France
| | - Roua Ouled Seghaier
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Genetic Typing Service, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Genetic Typing Service, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
10
|
Bai Q, Zhou Y, Cui X, Si H, Wu T, Nasir A, Ma H, Xing J, Wang Y, Cheng X, Liu X, Qi S, Li Z, Tang H. Mitochondria-targeting nanozyme alleviating temporomandibular joint pain by inhibiting the TNFα/NF-κB/NEAT1 pathway. J Mater Chem B 2023; 12:112-121. [PMID: 37655721 DOI: 10.1039/d3tb00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Inflammatory cytokines that are secreted into the spinal trigeminal nucleus caudalis (Sp5C) may augment inflammation and cause pain associated with temporomandibular joint disorders (TMD). In a two-step process, we attached triphenylphosphonium (TPP) to the surface of a cubic liposome metal-organic framework (MOF) loaded with ruthenium (Ru) nanozyme. The design targeted mitochondria and was designated Mito-Ru MOF. This structure scavenges free radicals and reactive oxygen species (ROS) and alleviates oxidative stress. The present study aimed to investigate the effects and mechanisms by which Mito-Ru MOF ameliorates TMD pain. Intra-temporomandibular joint (TMJ) injections of complete Freund's adjuvant (CFA) induced inflammatory pain for ≥10 d in the skin areas innervated by the trigeminal nerve. Tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1), and ROS also have been proved to be significantly upregulated in the Sp5C of TMD mice. Moreover, a single Mito-Ru MOF treatment alleviated TMD pain for 3 d and downregulated TNF-α, NF-κB, lncRNA NEAT1, and ROS. NF-κB knockdown downregulated NEAT1 in the TMD mice. Hence, Mito-Ru MOF inhibited the production of ROS and alleviated CFA-induced TMD pain via the TNF-α/NF-κB/NEAT1 pathway. Therefore, Mito-Ru MOF could effectively treat the pain related to TMD and other conditions associated with severe acute inflammatory activation.
Collapse
Affiliation(s)
- Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yaoyao Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaona Cui
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Haichao Si
- Department of Anesthesiology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Tingting Wu
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Abdul Nasir
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Heng Ma
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Xiaolei Cheng
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Xiaojun Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Shaoyan Qi
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| |
Collapse
|
11
|
Zhu B, Zhou W, Chen C, Cao A, Luo W, Huang C, Wang J. AQP4 is an Emerging Regulator of Pathological Pain: A Narrative Review. Cell Mol Neurobiol 2023; 43:3997-4005. [PMID: 37864629 PMCID: PMC11407711 DOI: 10.1007/s10571-023-01422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023]
Abstract
Pathological pain presents significant challenges in clinical practice and research. Aquaporin-4 (AQP4), which is primarily found in astrocytes, is being considered as a prospective modulator of pathological pain. This review examines the association between AQP4 and pain-related diseases, including cancer pain, neuropathic pain, and inflammatory pain. In cancer pain, upregulated AQP4 expression in tumor cells is linked to increased pain severity, potentially through tumor-induced inflammation and edema. Targeting AQP4 may offer therapeutic strategies for managing cancer pain. AQP4 has also been found to play a role in nerve damage. Changes in AQP4 expression have been detected in pain-related regions of the brain and spinal cord; thus, modulating AQP4 expression or function may provide new avenues for treating neuropathic pain. Of note, AQP4-deficient mice exhibit reduced chronic pain responses, suggesting potential involvement of AQP4 in chronic pain modulation, and AQP4 is involved in pain modulation during inflammation, so understanding AQP4-mediated pain modulation may lead to novel anti-inflammatory and analgesic therapies. Recent advancements in magnetic resonance imaging (MRI) techniques enable assessment of AQP4 expression and localization, contributing to our understanding of its involvement in brain edema and clearance pathways related to pathological pain. Furthermore, targeting AQP4 through gene therapies and small-molecule modulators shows promise as a potential therapeutic intervention. Future research should focus on utilizing advanced MRI techniques to observe glymphatic system changes and the exchange of cerebrospinal fluid and interstitial fluid. Additionally, investigating the regulation of AQP4 by non-coding RNAs and exploring novel small-molecule medicines are important directions for future research. This review shed light on AQP4-based innovative therapeutic strategies for the treatment of pathological pain. Dark blue cells represent astrocytes, green cells represent microglia, and red ones represent brain microvasculature.
Collapse
Affiliation(s)
- Binbin Zhu
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Weijian Zhou
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chunqu Chen
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Angyang Cao
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Wenjun Luo
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Changshun Huang
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Jianhua Wang
- Health Science Center, Ningbo University, Ningbo, China.
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
12
|
Yang X, Huang X, Lu W, Yan F, Ye Y, Wang L, Tang X, Zeng W, Huang J, Xie J. Transcriptome Profiling of miRNA-mRNA Interactions and Associated Mechanisms in Chemotherapy-Induced Neuropathic Pain. Mol Neurobiol 2023; 60:5672-5690. [PMID: 37332017 DOI: 10.1007/s12035-023-03398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a dose-limiting adverse event affecting 40% of chemotherapy patients. MiRNA-mRNA interaction plays an important role in various processes. However, detailed profiling of miRNA-mRNA interactions in CINP remains unclear. Here, a rat-based CINP model was established using paclitaxel, followed by nociceptive behavioral tests related to mechanical allodynia, thermal hyperalgesia, and cold allodynia. The landscape of miRNA-mRNA interaction in the spinal dorsal horn was investigated through mRNA transcriptomics and small RNA sequencing. Under CINP condition, 86 differentially expressed mRNAs and 56 miRNAs were identified. Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated the activity of Odorant binding, postsynaptic specialization and synaptic density, extracellular matrix, mitochondrial matrix, retrograde endocannabinoid signaling, and GTPase activity. Protein-protein interaction (PPI), networks of circRNA-miRNA-mRNA, lncRNA-miRNA-mRNA, and TF-genes were demonstrated. We next explored the immune infiltration microenvironment and found a higher infiltration abundance of Th17 and a lower abundance of MDSC in CINP. RT-qPCR and dual-luciferase assays were used to verify the sequencing results, and single-cell analysis based on the SekSeeq database was conducted. Combined with bioinformatics analyses and experimental validations, Mpz, a protein-coding gene specifically expressed in Schwann cells, was found critical in maintaining CINP under miRNA regulation. Therefore, these data highlight the expression patterns of miRNA-mRNA, and the underlying mechanism in the spinal dorsal horn under CINP condition, and Mpz may serve as a promising therapeutic target for patients with CINP.
Collapse
Affiliation(s)
- Xiaohua Yang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiqiang Huang
- Department of Anesthesiology, Zhongshan People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Weicheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Fang Yan
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yaqi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Linjie Wang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Xiaole Tang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Weian Zeng
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Jingxiu Huang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Jingdun Xie
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
13
|
Wu B, Zhou X. LncRNA UCA1 could regulate the progression of neuropathic pain by regulating miR-135a-5p. Mutat Res 2023; 827:111833. [PMID: 37480811 DOI: 10.1016/j.mrfmmm.2023.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Neuropathic pain (NPP) is known as a common neurological disease with high incidence rate. The present work focused on the roles of long non-coding RNA urothelial carcinoma antigen 1(LncRNA UCA1) in NPP and the possible underlying mechanism. METHODS NPP rat model has been established and the levels of UCA1 NPP as well as the group has been determined by RT-PCR method. Next, NPP rats were treated by UCA1 over-expression plasmid and the behaviors, as well as expression of inflammatory cytokines have been examined. Furthermore, target miRNA of UCA1, miR-135a-5p, has been predicted by bioinformatic method, and further verified with the dual-luciferase reporter assay. Finally, the effects of UCA1/ miR-135a-5p axis have been further evaluated. RESULTS Expressions of UCA1 were markedly decreased and miR-135a-5p were significantly increased in NPP rats in comparison with the control rats. Over-expression of UCA1 alleviated the inflammatory condition in NPP model by decreasing expression of inflammatory cytokines. miR-135a-5p was confirmed to be a target microRNA of UCA1, and UCA1 may regulate the progress of NPP via targeting miR-135a-5p. CONCLUSION UCA1 could regulate NPP via affecting miR-135a-5p expression.
Collapse
Affiliation(s)
- Bingbing Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xiaogang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
14
|
Zhu J, Huang F, Hu Y, Qiao W, Guan Y, Zhang ZJ, Liu S, Liu Y. Non-Coding RNAs Regulate Spinal Cord Injury-Related Neuropathic Pain via Neuroinflammation. J Inflamm Res 2023; 16:2477-2489. [PMID: 37334347 PMCID: PMC10276590 DOI: 10.2147/jir.s413264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Secondary chronic neuropathic pain (NP) in addition to sensory, motor, or autonomic dysfunction can significantly reduce quality of life after spinal cord injury (SCI). The mechanisms of SCI-related NP have been studied in clinical trials and with the use of experimental models. However, in developing new treatment strategies for SCI patients, NP poses new challenges. The inflammatory response following SCI promotes the development of NP. Previous studies suggest that reducing neuroinflammation following SCI can improve NP-related behaviors. Intensive studies of the roles of non-coding RNAs in SCI have discovered that ncRNAs bind target mRNA, act between activated glia, neuronal cells, or other immunocytes, regulate gene expression, inhibit inflammation, and influence the prognosis of NP.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Fei Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
- Department of Rehabilitation Medicine, Nantong Health College of Jiangsu Province, Nantong, JiangSu Province, 226010, People’s Republic of China
| | - Yonglin Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
- Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Wei Qiao
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Yingchao Guan
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Zhi-Jun Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Ying Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| |
Collapse
|
15
|
Li D, Yuan C, Zhao B, Cai G, Xu Y. LncRNA Kcnq1ot1relieves neuropathic pain through downregulation of Myd88. Int Immunopharmacol 2023; 119:110218. [PMID: 37104915 DOI: 10.1016/j.intimp.2023.110218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have already been documented to become the therapeutic targets for neuropathic pain. Here, this work focused on exploring the specific mechanism underlying Kcnq1 overlapping transcript 1 (kcnq1ot1) in neuropathic pain. METHODS Sciatic nerve chronic constriction injury (CCI) in vivo and LPS-stimulated microglia BV2 cell injury in vitro were adopted to construct neuropathic pain models. Expressions of kcnq1ot1, MyD88, and microglia activation marker Iba-1 were measured. In this study, we carried out fluorescence in-situ Hybridization (FISH) and immunofluorescence for examining Kcnq1ot1 localization within microglial cells in mouse spinal dorsal horn. Subsequently, we evaluated binding between Kcnq1ot1 and Myd88, together with the expressions of IL-1β, IL-6, TNF-α, and Myd88 ubiquitination. RESULTS Kcnq1ot1 levels decreased within CCI mice and LPS-induced BV2 cells. According to the results of FISH and immunofluorescence, Kcnq1ot1 is located in microglia. Overexpression of Kcnq1ot1 suppressed Iba-1, IL-1β, IL-6 together with TNF-α expression. RNA pull-down and RIP assay confirmed that Kcnq1ot1 bound to Myd88. In addition, Kcnq1ot1 overexpression promoted the degradation, enhanced the ubiquitination, and reduced protein level of Myd88. Overexpression of Myd88 eliminated the effects of Kcnq1ot1 overexpression on Iba-1level and production of pro-inflammatory cytokines. Further in vivo results revealed that increased Kcnq1ot1 level alleviated neuropathic pain and myelinated nerve fiber injury of CCI mice. CONCLUSION Kcnq1ot1 downregulated Myd88 protein expression by binding to Myd88 and promoting its ubiquitination, which in turn suppressed microglia activation, pro-inflammatory cytokine production, and relieved neuropathic pain.
Collapse
Affiliation(s)
- Da Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Chang Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Bingxiao Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Gaige Cai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Ying Xu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Hyperbaric Oxygen Treatment in Spinal Cord Injury Recovery: Profiling Long Noncoding RNAs. Spine (Phila Pa 1976) 2023; 48:213-222. [PMID: 36607628 DOI: 10.1097/brs.0000000000004525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/27/2022] [Indexed: 01/07/2023]
Abstract
STUDY DESIGN A functional, transcriptome, and long noncoding RNAs (lncRNAs) expression analysis in the spinal cord of mice after hyperbaric oxygen (HBO) treatment. OBJECTIVE We aimed to explore the mechanism by which HBO treats spinal cord injury (SCI) at the level of lncRNAs. SUMMARY OF BACKGROUND DATA Immense amounts of research have established that HBO treatment promotes the recovery of neurological function after SCI. The mechanism of action remains to be clarified. METHODS High-throughput RNA sequencing, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to profile lncRNA expression and analyze biological function in the spinal cords of mice from sham-operated, SCI, and HBO-treated groups. The differential expression of lncRNA between the groups was assessed using real-time quantitative polymerase chain reaction. RESULTS Differential expression across 577 lncRNAs was identified among the three groups. GO analysis showed that free ubiquitin chain polymerization, ubiquitin homeostasis, DNA replication, synthesis of RNA primer, single-stranded telomeric DNA binding, and alpha-amylase activity were significantly enriched. Kyoto Encyclopedia of Genes and Genomes enrichment analysis displayed that vitamin B6 metabolism, one carbon pool by folate, DNA replication, lysine degradation, beta-alanine metabolism, fanconi anemia pathway, and Notch signal pathway were the main pathways with enrichment significance. LncRNAs NONMMUT 092674.1, NONMMUT042986.2, and NONMMUT018850.2 showed significantly different expression between the SCI and the other two groups (P<0.05, <0.01). CONCLUSIONS This study is the first to determine the expression profiles of lncRNAs in the injured spinal cord after HBO treatment. We identified several important dysregulated lncRNAs in this setting. These results help us better understand the mechanism by which HBO treats SCI and provide new potential therapeutic targets for SCI.
Collapse
|
17
|
Rao Y, Li J, Qiao R, Luo J, Liu Y. Tetramethylpyrazine and Astragaloside IV have synergistic effects against spinal cord injury-induced neuropathic pain via the OIP5-AS1/miR-34a/Sirt1/NF-κB axis. Int Immunopharmacol 2023; 115:109546. [PMID: 36577153 DOI: 10.1016/j.intimp.2022.109546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/09/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Both Tetramethylpyrazine (TMPZ) and Astragaloside IV (AGS-IV) can ameliorate neuronal apoptosis and neuroinflammation in CNS diseases. This study revolves around the underlying mechanism of TMPZ and AGS-IV in spinal cord injury (SCI)-associated neuropathic pain (NP). MATERIALS AND METHODS An in-vivo NP model was constructed in Sprague-Dawley (SD) rats via SCI. qRT-PCR was employed to detect OIP5-AS1 and miR-34a. The paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of the rats were evaluated. Neuronal apoptosis in the spinal cord of rats was examined by Nissl staining and TUNEL staining. The interactions between OIP5-AS1 and miR-34a as well as miR-34a and Sirt1 were investigated through dual luciferase assay and RIP assay. The protein expressions of Bad, Bax, Caspase-3, iNOS, COX2, NF-κB, and Sirt1 were examined by western blot. RESULTS TMPZ and AGS-IV combination relieved behavioral symptoms of neuropathic pain in the SCI rat model, enhanced the levels of OIP5-AS1 and Sirt1, and lowered the profile of miR-34a. OIP5-AS1 downregulation weakened the neuroprotective function of TMPZ and AGS-IV in SCI rats and reversed their anti-inflammatory and anti-apoptotic effects on LPS-elicited primary spinal cord neurons. miR-34a was identified as a target of OIP5-AS1. Upregulated miR-34a partly abated the protective functions of TMPZ and AGS-IV in primary spinal cord neurons. Additionally, miR-34a targeted and repressed Sirt1, thus activating the NF-κB pathway and inflammatory reactions. Sirt1 inhibition reduced the protective effects mediated by OIP5-AS1. CONCLUSION TMPZ and AGS-IV ameliorate SCI-elicited NP via the OIP5-AS1/miR-34a/Sirt1/NF-κB pathway.
Collapse
Affiliation(s)
- Yaojian Rao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Junjie Li
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Ruofei Qiao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinxin Luo
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yan Liu
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
18
|
Upregulation of LncRNA71132 in the spinal cord regulates hypersensitivity in a rat model of bone cancer pain. Pain 2023; 164:180-196. [PMID: 35543644 DOI: 10.1097/j.pain.0000000000002678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Bone cancer pain (BCP) is a pervasive clinical symptom which impairs the quality life. Long noncoding RNAs (lncRNAs) are enriched in the central nervous system and play indispensable roles in numerous biological processes, while its regulatory function in nociceptive information processing remains elusive. Here, we reported that functional modulatory role of ENSRNOT00000071132 (lncRNA71132) in the BCP process and sponging with miR-143 and its downstream GPR85-dependent signaling cascade. Spinal lncRNA71132 was remarkably increased in the rat model of bone cancer pain. The knockdown of spinal lncRNA71132 reverted BCP behaviors and spinal c-Fos neuronal sensitization. Overexpression of spinal lncRNA71132 in naive rat generated pain behaviors, which were accompanied by increased spinal c-Fos neuronal sensitization. Furthermore, it was found that lncRNA71132 participates in the modulation of BCP by inversely regulating the processing of miR-143-5p. In addition, an increase in expression of spinal lncRNA71132 resulted in the decrease in expression of miR-143 under the BCP state. Finally, it was found that miR-143-5p regulates pain behaviors by targeting GPR85. Overexpression of miR-143-5p in the spinal cord reverted the nociceptive behaviors triggered by BCP, accompanied by a decrease in expression of spinal GPR85 protein, but no influence on expression of gpr85 mRNA. The findings of this study indicate that lncRNA71132 works as a miRNA sponge in miR-143-5p-mediated posttranscriptional modulation of GPR85 expression in BCP. Therefore, epigenetic interventions against lncRNA71132 may potentially work as novel treatment avenues in treating nociceptive hypersensitivity triggered by bone cancer.
Collapse
|
19
|
Zhang C, Gao R, Zhou R, Chen H, Liu C, Zhu T, Chen C. The emerging power and promise of non-coding RNAs in chronic pain. Front Mol Neurosci 2022; 15:1037929. [PMID: 36407760 PMCID: PMC9668864 DOI: 10.3389/fnmol.2022.1037929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 08/26/2023] Open
Abstract
Chronic pain (CP) is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage lasting longer than 3 months. CP is the main reason why people seek medical care and exerts an enormous economic burden. Genome-wide expression analysis has revealed that diverse essential genetic elements are altered in CP patients. Although many possible mechanisms of CP have been revealed, we are still unable to meet all the analgesic needs of patients. In recent years, non-coding RNAs (ncRNAs) have been shown to play essential roles in peripheral neuropathy and axon regeneration, which is associated with CP occurrence and development. Multiple key ncRNAs have been identified in animal models of CP, such as microRNA-30c-5p, ciRS-7, and lncRNA MRAK009713. This review highlights different kinds of ncRNAs in the regulation of CP, which provides a more comprehensive understanding of the pathogenesis of the disease. It mainly focuses on the contributions of miRNAs, circRNAs, and lncRNAs to CP, specifically peripheral neuropathic pain (NP), diabetic NP, central NP associated with spinal cord injury, complex regional pain syndrome, inflammatory pain, and cancer-induced pain. In addition, we summarize some potential ncRNAs as novel biomarkers for CP and its complications. With an in-depth understanding of the mechanism of CP, ncRNAs may provide novel insight into CP and could become new therapeutic targets in the future.
Collapse
Affiliation(s)
- Changteng Zhang
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruihao Zhou
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changliang Liu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Xie Y, Zheng Z, He H, Chang Z. LncRNA NEAT1 induces autophagy through the miR-128-3p/ADAM28 axis to suppress apoptosis of nonsmall-cell lung cancer. Kaohsiung J Med Sci 2022; 38:933-949. [PMID: 36054559 PMCID: PMC11896139 DOI: 10.1002/kjm2.12582] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 05/28/2025] Open
Abstract
This study aimed to identify the molecular mechanism underlying NEAT1 regulation of non-small-cell lung cancer (NSCLC) autophagy and apoptosis. The expression levels of NEAT1, miR-128-3p, and ADAM28 in NSCLC tissues and cells were examined using qRT-PCR. The relationships between NEAT1, miR-128-3p, and ADAM28 expression levels and prognosis of NSCLC patients were investigated using the Kaplan-Meier analysis method. The interactions between NEAT1, miR-128-3p, and ADAM28 were confirmed by dual-luciferase reporter assay or FISH assay. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry assays, respectively. Apoptosis and autophagy-related proteins Bax, cleaved caspase-3, cleaved caspase-9, Bcl-2, LC3, Beclin-1, and p62 were analyzed by western blotting. Finally, an in vivo NSCLC mouse xenograft model was established to confirm the in vitro data. We showed NEAT1 and ADAM28 expression levels were upregulated, while the miR-128-3p level was downregulated in NSCLC tissues and cells. NSCLC patients with high NEAT1 expression levels, low miR-128-3p levels, or high ADAM28 levels had significantly reduced overall survival times. Silencing of NEAT1 inhibited NSCLC cell autophagy and promoted apoptosis by sponging miR-128-3p. MiR-128-3p directly targeted ADAM28 and suppressed ADAM28 expression, which led to deactivation of the JAK2/STAT3 signaling pathway. Furthermore, ADAM28 overexpression attenuated miR-128-3p overexpression-induced apoptosis and autophagy inhibition in NSCLC by increasing the phosphorylation of JAK2 and STAT3. NEAT1 depletion or miR-128-3p overexpression inhibited autophagy and promoted apoptosis in vivo by suppressing ADAM28. In other word, silencing NEAT1 inhibited autophagy and then promoted NSCLC cell apoptosis by deactivating the JAK2/STAT3 signaling pathway through regulation of miR-128-3p/ADAM28 axis.
Collapse
Affiliation(s)
- Yue Xie
- Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University)HangzhouZhejiang ProvinceChina
| | - Zhao‐Wei Zheng
- Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University)HangzhouZhejiang ProvinceChina
| | - Hao‐Ting He
- Department of SurgeryTonglu Hospital of Traditional Chinese MedicineHangzhouZhejiang ProvinceChina
| | - Zhi‐Bo Chang
- Department of Thoracic SurgerySecond Affiliated Hospital of Zhejiang University, School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
21
|
Karri J, Doan J, Vangeison C, Catalanotto M, Nagpal AS, Li S. Emerging Evidence for Intrathecal Management of Neuropathic Pain Following Spinal Cord Injury. FRONTIERS IN PAIN RESEARCH 2022; 3:933422. [PMID: 35965596 PMCID: PMC9371595 DOI: 10.3389/fpain.2022.933422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
A high prevalence of patients with spinal cord injury (SCI) suffer from chronic neuropathic pain. Unfortunately, the precise pathophysiological mechanisms underlying this phenomenon have yet to be clearly elucidated and targeted treatments are largely lacking. As an unfortunate consequence, neuropathic pain in the population with SCI is refractory to standard of care treatments and represents a significant contributor to morbidity and suffering. In recent years, advances from SCI-specific animal studies and translational models have furthered our understanding of the neuronal excitability, glial dysregulation, and chronic inflammation processes that facilitate neuropathic pain. These developments have served advantageously to facilitate exploration into the use of neuromodulation as a treatment modality. The use of intrathecal drug delivery (IDD), with novel pharmacotherapies, to treat chronic neuropathic pain has gained particular attention in both pre-clinical and clinical contexts. In this evidence-based narrative review, we provide a comprehensive exploration into the emerging evidence for the pathogenesis of neuropathic pain following SCI, the evidence basis for IDD as a therapeutic strategy, and novel pharmacologics across impactful animal and clinical studies.
Collapse
Affiliation(s)
- Jay Karri
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Jay Karri
| | - James Doan
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Veterans Affairs Boston Healthcare System—West Roxbury Division, Spinal Cord Injury Service, Boston, MA, United States
| | - Christian Vangeison
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Marissa Catalanotto
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Ameet S. Nagpal
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas HSC at Houston, Houston, TX, United States
| |
Collapse
|
22
|
Jiang M, Wang Y, Wang J, Feng S, Wang X. The etiological roles of miRNAs, lncRNAs, and circRNAs in neuropathic pain: A narrative review. J Clin Lab Anal 2022; 36:e24592. [PMID: 35808924 PMCID: PMC9396192 DOI: 10.1002/jcla.24592] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background Non‐coding RNAs (ncRNAs) are involved in neuropathic pain development. Herein, we systematically searched for neuropathic pain‐related ncRNAs expression changes, including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs), and circular non‐coding RNAs (circRNAs). Methods We searched two databases, PubMed and GeenMedical, for relevant studies. Results Peripheral nerve injury or noxious stimuli can induce extensive changes in the expression of ncRNAs. For example, higher serum miR‐132‐3p, ‐146b‐5p, and ‐384 was observed in neuropathic pain patients. Either sciatic nerve ligation, dorsal root ganglion (DRG) transaction, or ventral root transection (VRT) could upregulate miR‐21 and miR‐31 while downregulating miR‐668 and miR‐672 in the injured DRG. lncRNAs, such as early growth response 2‐antisense‐RNA (Egr2‐AS‐RNA) and Kcna2‐AS‐RNA, were upregulated in Schwann cells and inflicted DRG after nerve injury, respectively. Dysregulated circRNA homeodomain‐interacting protein kinase 3 (circHIPK3) in serum and the DRG, abnormally expressed lncRNAs X‐inactive specific transcript (XIST), nuclear enriched abundant transcript 1 (NEAT1), small nucleolar RNA host gene 1 (SNHG1), as well as ciRS‐7, zinc finger protein 609 (cirZNF609), circ_0005075, and circAnks1a in the spinal cord were suggested to participate in neuropathic pain development. Dysregulated miRNAs contribute to neuropathic pain via neuroinflammation, autophagy, abnormal ion channel expression, regulating pain‐related mediators, protein kinases, structural proteins, neurotransmission excitatory–inhibitory imbalances, or exosome miRNA‐mediated neuron–glia communication. In addition, lncRNAs and circRNAs are essential in neuropathic pain by acting as antisense RNA and miRNA sponges, epigenetically regulating pain‐related molecules expression, or modulating miRNA processing. Conclusions Numerous dysregulated ncRNAs have been suggested to participate in neuropathic pain development. However, there is much work to be done before ncRNA‐based analgesics can be clinically used for various reasons such as conservation among species, proper delivery, stability, and off‐target effects.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yelong Wang
- Department of Anesthesiology, Gaochun People's Hospital, Nanjing, China
| | - Jing Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Shanwu Feng
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Identifying a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in Spare Nerve Injury-induced neuropathic pain. Cell Death Dis 2022; 8:272. [PMID: 35624111 PMCID: PMC9142504 DOI: 10.1038/s41420-022-01060-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition for patients, affecting nearly 2.5 million people globally. Multiple side effects of SCI have resulted in a terrible life experience for SCI patients, of which neuropathic pain has attracted the most scientific interest. Even though many efforts have been made to attenuate or eliminate neuropathic pain induced by SCI, the outcomes for patients are still poor. Therefore, identifying novel diagnosis or therapeutic targets of SCI-induced neuropathic pain is urgently needed. Recently, multiple functions of long non-coding RNA (lncRNA) have been elucidated, including those in SCI-induced neuropathic pain. In this study, lncRNA small nucleolar RNA host gene 12 (SNHG12) was found to be upregulated in the dorsal root ganglion (DRGs) of rats with spare nerve injury (SNI). By constructing SCI rat models, we found that lncRNA SNHG12 expression was increased in the DRGs, and mainly distributed in the cytoplasm of PC12 cells. Paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and enzyme linked immunosorbent assay (ELISA) results indicated that lncRNA SNHG12 knockdown attenuated SNI-induced neuropathic pain, and decreased the expression levels of interleukin (IL)−1β, IL-6, and tumour necrosis factor α (TNF-α) in the DRGs. Bioinformatics analysis, RNA pull-down, chromatin immunoprecipitation (ChIP), and luciferase reporter gene assays showed that lncRNA SNHG12 regulates the RAD23 homologue B, nucleotide excision repair protein (RAD23B) expression, through targeting micro RNA (miR)−494-3p. Furthermore, the study indicated that Kruppel-Like Factor 2 (KLF2) could regulate lncRNA SNHG12 expression in PC12 cells. This study identified a novel KLF2/lncRNA SNHG12/miR-494-3p/RAD23B axis in SNI-induced neuropathic pain, which might provide a new insight for developing novel diagnosis, or therapeutic targets of SCI-induced neuropathic pain in the future.
Collapse
|
24
|
Yu Y, Wang M, Yu X, Yan Y, Yu B, Zhang D. Targeting Forkhead box O1-aquaporin 5 axis mitigates neuropathic pain in a CCI rat model through inhibiting astrocytic and microglial activation. Bioengineered 2022; 13:8567-8580. [PMID: 35324416 PMCID: PMC9161847 DOI: 10.1080/21655979.2022.2053032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Forkhead box O1 (FoxO1) is a critical molecule in modulating cell growth, differentiation and metabolism, acting as a vital transcription factor. This study explored the role of FoxO1 in chronic constriction injury (CCI)-induced neuropathic pain (NP). Microglial and astrocyte activation was achieved with lipopolysaccharide (LPS, 100 ng/mL) to establish an in-vitro NP model. Morphological alterations in LPS-induced microglia and astrocytes were assayed by light microscopy. The levels of inflammatory cytokines and proteins in microglia and astrocytes were gauged by enzyme-linked immunosorbent assay (ELISA), and Western blot (WB). The CCI-induced NP rat model was constructed for investigating the FoxO1-AQP5 axis in NP. LPS markedly expanded the expression of inflammatory factors and boosted the expression of FoxO1 and AQP5 in microglia and astrocytes. Inhibition of FoxO1 or AQP5 dramatically decreased the LPS-induced inflammation in microglia and astrocytes. In vivo, CCI exacerbated the inflammatory response and NP symptoms and substantially raised the contents of FoxO1 and AQP5 in rats' spinal cord tissues. Intrathecal administration of the Sirt1 agonist Resveratrol abated CCI-induced activation of FoxO1 and AQP5, abrogated CCI-induced mechanical hyperalgesia and thermal hyperalgesia, depressed microglial and astrocyte activation, and declined the generation of pro-inflammatory mediators in spinal cord tissues. Mechanistically, blocking the FoxO1-AQP5 pathway inactivated the ERK and p38 MAPK pathways. Suppressing the FoxO1-AQP5 axis alleviated CCI-induced NP and inflammatory responses by modulating the ERK and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Yaoping Yu
- Department of Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng Wang
- Department of Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Yu
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yi Yan
- Department of Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Yu
- Department of Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dayin Zhang
- Department of Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Zhou ZW, Ren X, Zheng LJ, Li AP, Zhou WS. LncRNA NEAT1 ameliorate ischemic stroke via promoting Mfn2 expression through binding to Nova and activates Sirt3. Metab Brain Dis 2022; 37:653-664. [PMID: 35067795 DOI: 10.1007/s11011-021-00895-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recent studies revealed that long non-coding RNAs (lncRNAs) have significant roles in regulating the pathogenesis of ischemia stroke, and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cell apoptosis. Aberrant expression of NEAT1 was found after the injury of ischemia-reperfusion, but the mechanism was not fully understood. METHODS The expression of NEAT1 and Mfn2 were detected in BV-2 and N2a cell with or without OGD/R-induced by qRT-PCR. Inflammatory cytokines secretion was detected by enzyme-linked immunosorbent assay (ELISA). The oxidative stress was evaluated by the examination of ROS, MDA and SOD levels. Flow cytometry and apoptosis marker detection by western blot were performed to examined apoptosis. RESULTS The expression of NEAT1 and Mfn2 were decreased in OGD/R-induced cell model. Overexpression of NEAT1 or Mfn2 reduced oxidative stress and apoptosis by OGD/R-induced in neuronal cells, while knockdown of Sirt3 reversed the protective effect of NEAT1 and Mfn2. NEAT1 stabilized Mfn2 mRNA via recruiting Nova. NEAT1 alleviates the oxidative stress and apoptosis by OGD/R-induced via activating Sirt3. CONCLUSION LncRNA NEAT1 stabilizes Mfn2 mRNA via recruiting Nova, therefore increase the expression of Mfn2 and alleviates ischemia-reperfusion induced oxidative stress and apoptosis via Mfn2/Sirt3 pathway.
Collapse
Affiliation(s)
- Zhi-Wen Zhou
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, No.89, Guhan Road, Changsha, 410016, Hunan Province, People's Republic of China
| | - Xiang Ren
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, No.89, Guhan Road, Changsha, 410016, Hunan Province, People's Republic of China
| | - Li-Jun Zheng
- Department of Rehabilitation Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan Province, People's Republic of China
| | - Ai-Ping Li
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, No.89, Guhan Road, Changsha, 410016, Hunan Province, People's Republic of China
| | - Wen-Sheng Zhou
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, No.89, Guhan Road, Changsha, 410016, Hunan Province, People's Republic of China.
| |
Collapse
|
26
|
Irfan J, Febrianto MR, Sharma A, Rose T, Mahmudzade Y, Di Giovanni S, Nagy I, Torres-Perez JV. DNA Methylation and Non-Coding RNAs during Tissue-Injury Associated Pain. Int J Mol Sci 2022; 23:ijms23020752. [PMID: 35054943 PMCID: PMC8775747 DOI: 10.3390/ijms23020752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
While about half of the population experience persistent pain associated with tissue damages during their lifetime, current symptom-based approaches often fail to reduce such pain to a satisfactory level. To provide better patient care, mechanism-based analgesic approaches must be developed, which necessitates a comprehensive understanding of the nociceptive mechanism leading to tissue injury-associated persistent pain. Epigenetic events leading the altered transcription in the nervous system are pivotal in the maintenance of pain in tissue injury. However, the mechanisms through which those events contribute to the persistence of pain are not fully understood. This review provides a summary and critical evaluation of two epigenetic mechanisms, DNA methylation and non-coding RNA expression, on transcriptional modulation in nociceptive pathways during the development of tissue injury-associated pain. We assess the pre-clinical data and their translational implication and evaluate the potential of controlling DNA methylation and non-coding RNA expression as novel analgesic approaches and/or biomarkers of persistent pain.
Collapse
Affiliation(s)
- Jahanzaib Irfan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Muhammad Rizki Febrianto
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Anju Sharma
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Thomas Rose
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Yasamin Mahmudzade
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Simone Di Giovanni
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, E505, Burlington Danes, Du Cane Road, London W12 ONN, UK;
| | - Istvan Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
- Correspondence: (I.N.); (J.V.T.-P.)
| | - Jose Vicente Torres-Perez
- Department of Brain Sciences, Dementia Research Institute, Imperial College London, 86 Wood Ln, London W12 0BZ, UK
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain
- Correspondence: (I.N.); (J.V.T.-P.)
| |
Collapse
|
27
|
Hu C, He M, Xu Q, Tian W. Advances With Non-coding RNAs in Neuropathic Pain. Front Neurosci 2022; 15:760936. [PMID: 35002601 PMCID: PMC8733285 DOI: 10.3389/fnins.2021.760936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain (NP) is one of the most common types of clinical pain. The common causes of this syndrome include injury to the central or peripheral nervous systems and pathological changes. NP is characterized by spontaneous pain, hyperalgesia, abnormal pain, and paresthesia. Because of its diverse etiology, the pathogenesis of NP has not been fully elucidated and has become one of the most challenging problems in clinical medicine. This kind of pain is extremely resistant to conventional treatment and is accompanied by serious complications. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), contribute to diverse biological processes by regulating the expression of various mRNAs involved in pain-related pathways, at the posttranscriptional level. Abnormal regulation of ncRNAs is closely related to the occurrence and development of NP. In this review, we summarize the current state of understanding of the roles of different ncRNAs in the development of NP. Understanding these mechanisms can help develop novel therapeutic strategies to prevent or treat chronic pain.
Collapse
Affiliation(s)
- Cheng Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Menglin He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qian Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Weiqian Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Chen JN, Zhang YN, Tian LG, Zhang Y, Li XY, Ning B. Down-regulating Circular RNA Prkcsh suppresses the inflammatory response after spinal cord injury. Neural Regen Res 2022; 17:144-151. [PMID: 34100450 PMCID: PMC8451560 DOI: 10.4103/1673-5374.314114] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of conserved, endogenous non-coding RNAs that are involved in transcriptional and post-transcriptional gene regulation and are highly enriched in the nervous system. They participate in the survival and differentiation of multiple nerve cells, and may even promote the recovery of neurological function after stroke. However, their role in the inflammatory response after spinal cord injury remains unclear. In the present study, we established a mouse model of T9 spinal cord injury using the modified Allen’s impact method, and identified 16,013 circRNAs and 960 miRNAs that were differentially expressed after spinal cord injury. Of these, the expression levels of circPrkcsh were significantly different between injured and sham-treated mice. We then treated astrocytes with tumor necrosis factor-α in vitro to simulate the inflammatory response after spinal cord injury. Our results revealed an elevated expression of circPrkcsh with a concurrent decrease in miR-488 expression in injured cells. We also found that circPrkcsh regulated the expression of the inflammation-related gene Ccl2. Furthermore, in tumor necrosis factor-α-treated astrocytes, circPrkcsh knockdown decreased the expression of Ccl2 by upregulating miR-488 expression, and reduced the secretion of inflammatory cytokines in vitro. These findings suggest that differentially expressed circRNAs participate in the inflammatory response after spinal cord injury and act as the regulators of certain microRNAs. Furthermore, circPrkcsh may be used as an miR-488 sponge to regulate Ccl2 expression, which might provide a new potential therapy for SCI. The study was approved by the Animal Ethics Committee of Shandong University of China (approval No. KYLL-20170303) on March 3, 2017.
Collapse
Affiliation(s)
- Jia-Nan Chen
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yi-Ning Zhang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Li-Ge Tian
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ying Zhang
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xin-Yu Li
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Bin Ning
- Department of Orthopedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
29
|
Xu S, Dong H, Zhao Y, Feng W. Differential Expression of Long Non-Coding RNAs and Their Role in Rodent Neuropathic Pain Models. J Pain Res 2021; 14:3935-3950. [PMID: 35002313 PMCID: PMC8722684 DOI: 10.2147/jpr.s344339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain, which is accompanied by an unpleasant sensation, affects the patient's quality of life severely. Considering the complexity of the neuropathic pain, there are huge unmet medical needs for it while current effective therapeutics remain far from satisfactory. Accordingly, exploration of mechanisms of neuropathic pain could provide new therapeutic insights. While numerous researches have pointed out the contribution of sensory neuron-immune cell interactions, other mechanisms of action, such as long non-coding RNAs (lncRNAs), also could contribute to the neuropathic pain observed in vivo. LncRNAs have more than 200 nucleotides and were originally considered as transcriptional byproducts. However, recent studies have suggested that lncRNAs played a significant role in gene regulation and disease pathogenesis. A substantial number of long non-coding RNAs were expressed differentially in neuropathic pain models. Besides, therapies targeting specific lncRNAs can significantly ameliorate the development of neuropathic pain, which reveals the contribution of lncRNAs in the generation and maintenance of neuropathic pain and provides a new therapeutic strategy. The primary purpose of this review is to introduce recent studies of lncRNAs on different neuropathic pain models.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Wei Feng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
30
|
Li Z, Li X, Jian W, Xue Q, Liu Z. Roles of Long Non-coding RNAs in the Development of Chronic Pain. Front Mol Neurosci 2021; 14:760964. [PMID: 34887726 PMCID: PMC8649923 DOI: 10.3389/fnmol.2021.760964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic pain, a severe public health issue, affects the quality of life of patients and results in a major socioeconomic burden. Only limited drug treatments for chronic pain are available, and they have insufficient efficacy. Recent studies have found that the expression of long non-coding RNAs (lncRNAs) is dysregulated in various chronic pain models, including chronic neuropathic pain, chronic inflammatory pain, and chronic cancer-related pain. Studies have also explored the effect of these dysregulated lncRNAs on the activation of microRNAs, inflammatory cytokines, and so on. These mechanisms have been widely demonstrated to play a critical role in the development of chronic pain. The findings of these studies indicate the significant roles of dysregulated lncRNAs in chronic pain in the dorsal root ganglion and spinal cord, following peripheral or central nerve lesions. This review summarizes the mechanism underlying the abnormal expression of lncRNAs in the development of chronic pain induced by peripheral nerve injury, diabetic neuropathy, inflammatory response, trigeminal neuralgia, spinal cord injury, cancer metastasis, and other conditions. Understanding the effect of lncRNAs may provide a novel insight that targeting lncRNAs could be a potential candidate for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
31
|
Xu R, Yu SS, Yao RR, Tang RC, Liang JW, Pang X, Zhang J. Interferon-Inducible LINC02605 Promotes Antiviral Innate Responses by Strengthening IRF3 Nuclear Translocation. Front Immunol 2021; 12:755512. [PMID: 34804040 PMCID: PMC8602795 DOI: 10.3389/fimmu.2021.755512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs represent a class of important regulators in immune response. Previously, LINC02605 was identified as a candidate regulator in innate immune response by lncRNA microarray assays. In this study, we systematically analyzed the functions and the acting mechanisms of LINC02605 in antiviral innate immune response. LINC02605 was up-regulated by RNA virus, DNA virus, and type I IFNs in NF-κB and Jak-stat dependent manner. Overexpression of LINC02605 promotes RNA virus-induced type I interferon production and inhibited viral replication. Consistently, knockdown of LINC02605 resulted in reduced antiviral immune response and increased viral replication. Mechanistically, LINC02605 released the inhibition of hsa-miR-107 on the expression of phosphatase and tensin homolog (PTEN). By microRNA mimics and inhibitors, hsa-miR-107 was demonstrated to not only inhibit PTEN’s expression but also negatively regulate the antiviral immune response. Knockdown of LINC02605 led to the reduction of PTEN expression both in mRNA and protein levels. Overexpression of LINC02605 had an opposite impact. Moreover, LINC02605 attenuated the serine 97 phosphorylation level of interferon regulatory factor 3 (IRF3) by promoting PTEN expression. Nucleoplasmic fragmentation assay showed that knocking down LINC02605 inhibited the nuclear translocation of IRF3, rendering the host cells more susceptible to viral invasion, while overexpression showed opposite effects. Therefore, LINC02605 is an induced lncRNA by viral infection and plays a positive feedback in antiviral immune response through modulating the nuclear translocation of IRF3.
Collapse
Affiliation(s)
- Rui Xu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Shuang-Shuang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Ran-Ran Yao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Rong-Chun Tang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jia-Wei Liang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
32
|
Stat3-Induced lncRNA Kcnq1ot1 Regulates the Apoptosis of Neuronal Cells in Spinal Cord Injury. J Mol Neurosci 2021; 72:610-617. [PMID: 34731364 DOI: 10.1007/s12031-021-01932-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023]
Abstract
Emerging evidence validates the vital roles of long noncoding RNAs (lncRNAs) in spinal cord injury (SCI), which attracts great attention. In the present study, our study investigated the function and in-depth mechanism of lncRNA Kcnq1 overlapping transcript 1 (Kcnq1ot1) in SCI. Results indicated that lncRNA Kcnq1ot1 expression upregulated in the hypoxia-administered neuronal cells (PC12 cells) and SCI rat models. Moreover, transcription factor signal transducer and activator of transcription 3 (Stat3) accelerated the transcriptional enrichment of Kcnq1ot1 in SCI cellular model. Functional experiments demonstrated that Kcnq1ot1 knockdown repressed the apoptosis of neuronal cells. Mechanistically, Kcnq1ot1 recruited EZH2 to the promoter region of p27 to repress its transcription. Taken together, our results indicate that Stat3-induced lncRNA Kcnq1ot1 regulates the apoptosis in SCI through epigenetically silencing p27, contributing to novel therapeutic target for SCI.
Collapse
|
33
|
Xu D, Ma X, Sun C, Han J, Zhou C, Chan MTV, Wu WKK. Emerging roles of circular RNAs in neuropathic pain. Cell Prolif 2021; 54:e13139. [PMID: 34623006 PMCID: PMC8666284 DOI: 10.1111/cpr.13139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is a major type of chronic pain caused by the disease or injury of the somatosensory nervous system. It afflicts about 10% of the general population with a significant proportion of patients’ refractory to conventional medical treatment. This highlights the importance of a better understanding of the molecular pathogenesis of neuropathic pain so as to drive the development of novel mechanism‐driven therapy. Circular RNAs (circRNAs) are a type of non‐coding, regulatory RNAs that exhibit tissue‐ and disease‐specific expression. An increasing number of studies reported that circRNAs may play pivotal roles in the development of neuropathic pain. In this review, we first summarize circRNA expression profiling studies on neuropathic pain. We also highlight the molecular mechanisms of specific circRNAs (circHIPK3, circAnks1a, ciRS‐7, cZRANB1, circZNF609 and circ_0005075) that play key functional roles in the pathogenesis of neuropathic pain and discuss their potential diagnostic, prognostic, and therapeutic utilization in the clinical management of neuropathic pain.
Collapse
Affiliation(s)
- Derong Xu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuexiao Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chong Sun
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jialuo Han
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuanli Zhou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Spinal cord injury in mice impacts central and peripheral pathology in a severity-dependent manner. Pain 2021; 163:1172-1185. [PMID: 34490852 DOI: 10.1097/j.pain.0000000000002471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is a common medical complication experienced by those living with spinal cord injury (SCI) and leads to worsened quality of life. The pathophysiology of SCI pain is poorly understood, hampering the development of safe and efficacious therapeutics. We therefore sought to develop a clinically relevant model of SCI with a strong pain phenotype and characterize the central and peripheral pathology after injury. A contusion (50 kdyn) injury, with and without sustained compression (60 seconds) of the spinal cord, was carried out on female C57BL/6J mice. Mice with compression of the spinal cord exhibited significantly greater heat and mechanical hypersensitivity starting at 7 days post-injury, concomitant with reduced locomotor function, compared to those without compression. Immunohistochemical analysis of spinal cord tissue revealed significantly less myelin sparing and increased macrophage activation in mice with compression compared to those without. As measured by flow cytometry, immune cell infiltration and activation were significantly greater in the spinal cord (phagocytic myeloid cells and microglia) and dorsal root ganglia (Ly6C+ monocytes) following compression injury. We also decided to investigate the gastrointestinal microbiome, as it has been shown to be altered in SCI patients and has recently been shown to play a role in immune system maturation and pain. We found increased dysbiosis of the gastrointestinal microbiome in an injury severity-dependent manner. The use of this contusion-compression model of SCI may help advance the preclinical assessment of acute and chronic SCI pain and lead to a better understanding of mechanisms contributing to this pain.
Collapse
|