1
|
Meregalli C, Monza L, Chiorazzi A, Scali C, Guarnieri C, Fumagalli G, Alberti P, Pozzi E, Canta A, Ballarini E, Rodriguez-Menendez V, Oggioni N, Cavaletti G, Marmiroli P. Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity. Int J Mol Sci 2021; 22:ijms22031058. [PMID: 33494384 PMCID: PMC7865319 DOI: 10.3390/ijms22031058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors' quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation.
Collapse
Affiliation(s)
- Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Carla Scali
- Global Medical and R&D Department, Kedrion S.p.A., Località Ai Conti, Castelvecchio Pascoli, 55051 Lucca, Italy; (C.S.); (C.G.)
| | - Chiara Guarnieri
- Global Medical and R&D Department, Kedrion S.p.A., Località Ai Conti, Castelvecchio Pascoli, 55051 Lucca, Italy; (C.S.); (C.G.)
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
- Correspondence:
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, and NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (L.M.); (A.C.); (G.F.); (P.A.); (E.P.); (A.C.); (E.B.); (V.R.-M.); (N.O.); (P.M.)
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
2
|
Nandoskar A, Raffel J, Scalfari AS, Friede T, Nicholas RS. Pharmacological Approaches to the Management of Secondary Progressive Multiple Sclerosis. Drugs 2017; 77:885-910. [PMID: 28429241 DOI: 10.1007/s40265-017-0726-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is well recognised that the majority of the impact of multiple sclerosis (MS), both personal and societal, arises in the progressive phase where disability accumulates inexorably. As such, progressive MS (PMS) has been the target of pharmacological therapies for many years. However, there are no current licensed treatments for PMS. This stands in marked contrast to relapsing remitting MS (RRMS) where trials have resulted in numerous licensed therapies. PMS has proven to be a more difficult challenge compared to RRMS and this review focuses on secondary progressive MS (SPMS), where relapses occur before the onset of gradual, irreversible disability, and not primary progressive MS where disability accumulation occurs without prior relapses. Although there are similarities between the two forms, in both cases pinpointing when PMS starts is difficult in a condition in which disability can vary from day to day. There is also an overlap between the pathology of relapsing and progressive MS and this has contributed to the lack of well-defined outcomes, both surrogates and clinically relevant outcomes in PMS. In this review, we used the search term 'randomised controlled clinical drug trials in secondary progressive MS' in publications since 1988 together with recently completed trials where results were available. We found 34 trials involving 21 different molecules, of which 38% were successful in reaching their primary outcome. In general, the trials were well designed (e.g. double blind) with sample sizes ranging from 35 to 1949 subjects. The majority were parallel group, but there were also multi-arm and multidose trials as well as the more recent use of adaptive designs. The disability outcome most commonly used was the Expanded Disability Status Scale (EDSS) in all phases, but also magnetic resonance imaging (MRI)-measured brain atrophy has been utilised as a surrogate endpoint in phase II studies. The majority of the treatments tested in SPMS over the years were initially successful in RRMS. This has a number of implications in terms of targeting SPMS, but principally implies that the optimal strategy to target SPMS is to utilise the prodrome of relapses to initiate a therapy that will aim to both prevent progression and slow its accumulation. This approach is in agreement with the early targeting of MS but requires treatments that are both effective and safe if it is to be used before disability is a major problem. Recent successes will hopefully result in the first licensed therapy for PMS and enable us to test this approach.
Collapse
Affiliation(s)
- A Nandoskar
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - J Raffel
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - A S Scalfari
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - T Friede
- Department of Medical Statistics, University Medical Center Göttingen, Humboltallee 32, 37073, Göttingen, Germany
| | - R S Nicholas
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
3
|
Collin M, Björck L. Toward Clinical use of the IgG Specific Enzymes IdeS and EndoS against Antibody-Mediated Diseases. Methods Mol Biol 2017; 1535:339-351. [PMID: 27914091 DOI: 10.1007/978-1-4939-6673-8_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endoglycosidase EndoS and the protease IdeS from the human pathogen Streptococcus pyogenes are immunomodulating enzymes hydrolyzing human IgG. IdeS cleaves IgG in the lower hinge region, while EndoS hydrolyzes the conserved N-linked glycan in the Fc region. Both enzymes are remarkably specific for human IgG that after hydrolysis loses most of its effector functions, such as binding to leukocytes and complement activation, all contributing to bacterial evasion of adaptive immunity. However, taken out of their infectious context, we and others have shown that IdeS and EndoS can alleviate autoimmune disease in a number of animal models of antibody-mediated disorders. In this chapter, we will briefly describe the discovery and characterization of these unique enzymes, present the findings from a number of animal models of autoimmunity where the enzymes have been tested, and outline the ongoing clinical testing of IdeS. Furthermore, we will discuss the rationale for further development of IdeS and EndoS into novel pharmaceuticals against diseases where IgG antibodies contribute to the pathology, including, but not restricted to, chronic and acute autoimmunity, transplant rejection, and antidrug antibody reactions.
Collapse
Affiliation(s)
- Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center B14, SE-221 84, Lund, Sweden.
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center B14, SE-221 84, Lund, Sweden
| |
Collapse
|
4
|
Quast I, Keller CW, Weber P, Schneider C, von Gunten S, Lünemann JD. Protection from experimental autoimmune encephalomyelitis by polyclonal IgG requires adjuvant-induced inflammation. J Neuroinflammation 2016; 13:42. [PMID: 26893156 PMCID: PMC4758141 DOI: 10.1186/s12974-016-0506-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/08/2016] [Indexed: 11/11/2022] Open
Abstract
Background Intravenous immunoglobulin (IVIG) proved to be an efficient anti-inflammatory treatment for a growing number of neuroinflammatory diseases and protects against the development of experimental autoimmune encephalomyelitis (EAE), a widely used animal model for multiple sclerosis (MS). Methods The clinical efficacy of IVIG and IVIG-derived F(ab’)2 fragments, generated using the streptococcal cysteine proteinase Ide-S, was evaluated in EAE induced by active immunization and by adoptive transfer of myelin-specific T cells. Frequency, phenotype, and functional characteristics of T cell subsets and myeloid cells were determined by flow cytometry. Antibody binding to microbial antigen and cytokine production by innate immune cells was assessed by ELISA. Results We report that the protective effect of IVIG is lost in the adoptive transfer model of EAE and requires prophylactic administration during disease induction. IVIG-derived Fc fragments are not required for protection against EAE, since administration of F(ab’)2 fragments fully recapitulated the clinical efficacy of IVIG. F(ab’)2-treated mice showed a substantial decrease in splenic effector T cell expansion and cytokine production (GM-CSF, IFN-γ, IL-17A) 9 days after immunization. Inhibition of effector T cell responses was not associated with an increase in total numbers of Tregs but with decreased activation of innate myeloid cells such as neutrophils, monocytes, and dendritic cells. Therapeutically effective IVIG-derived F(ab’)2 fragments inhibited adjuvant-induced innate immune cell activation as determined by IL-12/23 p40 production and recognized mycobacterial antigens contained in Freund’s complete adjuvant which is required for induction of active EAE. Conclusions Our data indicate that F(ab’)2-mediated neutralization of adjuvant contributes to the therapeutic efficacy of anti-inflammatory IgG. These findings might partly explain the discrepancy of IVIG efficacy in EAE and MS.
Collapse
Affiliation(s)
- Isaak Quast
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland.
| | - Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland.
| | - Patrick Weber
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland.
| | | | | | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Qu L. Neuronal Fc gamma receptor I as a novel mediator for IgG immune complex-induced peripheral sensitization. Neural Regen Res 2015; 7:2075-9. [PMID: 25624839 PMCID: PMC4296428 DOI: 10.3969/j.issn.1673-5374.2012.26.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/30/2012] [Indexed: 12/23/2022] Open
Abstract
Chronic pain often accompanies immune-related diseases with an elevated level of IgG immune complex (IgG-IC) in the serum and/or the affected tissues though the underlying mechanisms are largely unknown. Fc gamma receptors (FcγRs), known as the receptors for the Fc domain of immunoglobulin G (IgG), are typically expressed on immune cells. A general consensus is that the activation of FcγRs by IgG-IC in such immune cells induces the release of proinflammatory cytokines from the immune cells, which may contribute to the IgG-IC-mediated peripheral sensitization. In addition to the immune cells, recent studies have revealed that FcγRI, but not FcγRII and FcγRIII, is also expressed in a subpopulation of primary sensory neurons. Moreover, IgG-IC directly excites the primary sensory neurons through neuronal FcγRI. These findings indicate that neuronal FcγRI provides a novel direct linkage between immunoglobulin and primary sensory neurons, which may be a novel target for the treatment of pain in the immune-related disorders. In this review, we summarize the expression pattern, functions, and the associated cellular signaling of FcγRs in the primary sensory neurons.
Collapse
Affiliation(s)
- Lintao Qu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Crow AR, Amash A, Lazarus AH. CD44 antibody-mediated amelioration of murine immune thrombocytopenia (ITP): mouse background determines the effect of FcγRIIb genetic disruption. Transfusion 2014; 55:1492-500. [DOI: 10.1111/trf.12957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 10/01/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Andrew R. Crow
- Canadian Blood Services Centre for Innovation; Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science; St Michael's Hospital; Toronto Ontario Canada
- Department of Laboratory Medicine; Laboratory Medicine & Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Alaa Amash
- Keenan Research Centre for Biomedical Science; St Michael's Hospital; Toronto Ontario Canada
- Department of Laboratory Medicine; Laboratory Medicine & Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Alan H. Lazarus
- Canadian Blood Services Centre for Innovation; Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science; St Michael's Hospital; Toronto Ontario Canada
- Department of Laboratory Medicine; Laboratory Medicine & Pathobiology; University of Toronto; Toronto Ontario Canada
- Departments of Medicine; Laboratory Medicine & Pathobiology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
7
|
Optimal attenuation of experimental autoimmune encephalomyelitis by intravenous immunoglobulin requires an intact interleukin-11 receptor. PLoS One 2014; 9:e101947. [PMID: 25078447 PMCID: PMC4117465 DOI: 10.1371/journal.pone.0101947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 06/12/2014] [Indexed: 01/29/2023] Open
Abstract
Background Intravenous immunoglobulin (IVIg) has been used to treat a variety of autoimmune disorders including multiple sclerosis (MS); however its mechanism of action remains elusive. Recent work has shown that interleukin-11 (IL-11) mRNAs are upregulated by IVIg in MS patient T cells. Both IVIg and IL-11 have been shown to ameliorate experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The objective of this study was to determine whether the protective effects of IVIg in EAE occur through an IL-11 and IL-11 receptor (IL-11R)-dependent mechanism. Methods We measured IL-11 in the circulation of mice and IL-11 mRNA expression in various organs after IVIg treatment. We then followed with EAE studies to test the efficacy of IVIg in wild-type (WT) mice and in mice deficient for the IL-11 receptor (IL-11Rα−/−). Furthermore, we evaluated myelin-specific Th1 and Th17 responses and assessed spinal cord inflammation and demyelination in WT and IL-11Rα−/− mice, with and without IVIg treatment. We also examined the direct effects of mouse recombinant IL-11 on the production of IL-17 by lymph node mononuclear cells. Results IVIg treatment induced a dramatic surge (>1000-fold increase) in the levels of IL-11 in the circulation and a prominent increase of IL-11 mRNA expression in the liver. Furthermore, we found that IL-11Rα−/− mice, unlike WT mice, although initially protected, were resistant to full protection by IVIg during EAE and developed disease with a similar incidence and severity as control-treated IL-11Rα−/− mice, despite initially showing protection. We observed that Th17 cytokine production by myelin-reactive T cells in the draining lymph nodes was unaffected by IVIg in IL-11Rα−/− mice, yet was downregulated in WT mice. Finally, IL-11 was shown to directly inhibit IL-17 production of lymph node cells in culture. Conclusion These results implicate IL-11 as an important immune effector of IVIg in the prevention of Th17-mediated autoimmune inflammation during EAE.
Collapse
|
8
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disease of the central nervous system (CNS). Although the etiology of MS is unknown, genetic and environmental factors play a role. Infectious pathogens are the likely environmental factors involved in the development of MS. Pathogens associated with the development or exacerbation of MS include bacteria, such as Mycoplasma pneumoniae and Chlamydia pneumoniae, the Staphylococcus aureus-produced enterotoxins that function as superantigens, viruses of the herpes virus (Epstein-Barr virus and human herpesvirus 6) and human endogenous retrovirus (HERV) families and the protozoa Acanthamoeba castellanii. Evidence, from studies with humans and animal models, supporting the association of these various pathogens with the development and/or exacerbation of MS will be discussed along with the potential mechanisms including molecular mimicry, epitope spreading and bystander activation. In contrast, infection with certain parasites such as helminthes (Schistosoma mansoni, Fasciola hepatica, Hymenolepis nana, Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercolaris, Enterobius vermicularis) appears to protect against the development or exacerbation of MS. Evidence supporting the ability of parasitic infections to protect against disease will be discussed along with a brief summary of a recent Phase I clinical trial testing the ability of Trichuris suis ova treatment to improve the clinical course of MS. A complex interaction between the CNS (including the blood-brain barrier), multiple infections with various infectious agents (occurring in the periphery or within the CNS), and the immune response to those various infections may have to be deciphered before the etiology of MS can be fully understood.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine , Salt Lake City, UT , USAxs
| | | | | |
Collapse
|
9
|
Abstract
When human microglia are co-cultured with activated human T lymphocytes, several cytokines become up-regulated in significant quantities. This condition can also occur at sites of inflammation in autoimmune inflammatory diseases of the central nervous system (CNS), including multiple sclerosis (MS), where T cells infiltrate the brain tissue and come in proximity to microglia. Therefore, T cell-microglia interaction is a potential avenue of drug therapy to decrease neuroinflammation. An immunomodulator used in autoimmune disorders is intravenous immunoglobulins (IVIg). The mechanisms of IVIg activity in diseases such as MS remain unclear. Here, we report that the application of IVIg to activated T cells leads to their decreased ability to engage microglia. As a result of IVIg treatment of T cells, there were reduced levels of tumor necrosis factor-alpha a and interleukin-10 in T cell-microglia co-culture. Our results add to the understanding of how IVIg may affect inflammation of the CNS.
Collapse
Affiliation(s)
- Angela D Janke
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, Alta, Canada
| | | |
Collapse
|
10
|
Uzawa A, Mori M, Taniguchi J, Masuda S, Muto M, Kuwabara S. Anti-high mobility group box 1 monoclonal antibody ameliorates experimental autoimmune encephalomyelitis. Clin Exp Immunol 2013; 172:37-43. [PMID: 23480183 DOI: 10.1111/cei.12036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2012] [Indexed: 12/31/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an established inflammatory mediator when released from cells. Recent studies have implicated extracellular HMGB1 in the pathogenesis of various autoimmune diseases. The objective of this study was to determine whether HMGB1 could be a therapeutic target for experimental autoimmune encephalomyelitis (EAE). In this study, an anti-HMGB1 monoclonal antibody was injected intraperitoneally into a mouse model of EAE. We also measured serum cytokines levels in EAE and anti-HMGB1 monoclonal antibody-treated EAE. As a result, intraperitoneal injection of an anti-HMGB1 monoclonal antibody ameliorated the clinical and pathological severity of EAE and attenuated interleukin-17 up-regulation in serum. In conclusion, HMGB1 is involved in EAE pathogenesis and could trigger inflammation in the central nervous system. The novel aspect of this study is the demonstration that anti-HMGB1 ameliorates EAE. HMGB1 may be a novel therapeutic strategy for multiple sclerosis.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Othy S, Hegde P, Topçu S, Sharma M, Maddur MS, Lacroix-Desmazes S, Bayry J, Kaveri SV. Intravenous Gammaglobulin Inhibits Encephalitogenic Potential of Pathogenic T Cells and Interferes with their Trafficking to the Central Nervous System, Implicating Sphingosine-1 Phosphate Receptor 1–Mammalian Target of Rapamycin Axis. THE JOURNAL OF IMMUNOLOGY 2013; 190:4535-41. [DOI: 10.4049/jimmunol.1201965] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Kitsos DK, Tsiodras S, Stamboulis E, Voumvourakis KI. Rituximab and multiple sclerosis. Clin Neuropharmacol 2012; 35:90-6. [PMID: 22421587 DOI: 10.1097/wnf.0b013e31824523c9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
B lymphocytes seem to have a fundamental role in multiple sclerosis, acting as sensors, coordinators, and regulators of the immune response. Furthermore, they are important in activating T cells and they can mediate tissue injury through diverse mechanisms. Such findings have important therapeutic implications in autoimmune central nervous system diseases in a fashion similar to other autoimmune processes. The best known monoclonal antibody targeting B cells that has been used as a novel therapy for various autoimmune conditions, as well as multiple sclerosis, is rituximab. This review summarizes the available data on the role of B cell in multiple sclerosis and further reports on current knowledge on the B-cell-depleting monoclonal antibody rituximab, its mechanism of action, and its efficacy on multiple sclerosis. Data presented were categorized in 3 groups based on the nature of data presented (radiological, clinical, and immunological data). Both case-control studies and case reports were included, while table classification was in chronological order.
Collapse
Affiliation(s)
- Dimitrios K Kitsos
- Second Department of Neurology, Attikon University Hospital, University of Athens, Medical School, Athens, Greece
| | | | | | | |
Collapse
|
13
|
Xu W, Li X, Yuan Z, Gao X. Immunoproteomic analysis of the antibody response obtained in mouse following vaccination with a T-cell vaccine. Proteomics 2011; 11:4368-75. [PMID: 21919206 DOI: 10.1002/pmic.201100276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/10/2011] [Accepted: 08/22/2011] [Indexed: 11/10/2022]
Abstract
T-cell vaccination (TCV), the application of irradiated activated T cells, has been shown to prevent effectively and treat experimental autoimmune diseases. It has been reported that anti-lymphocytic antibodies induced by TCV were capable of strongly inhibiting T-cell proliferation and of ameliorating experimental autoimmune disease. The present study was undertaken to characterize the antigen specificity of these Abs. We used activated mouse ovalbumin (OVA)-specific T cells (OVA-T) as vaccine immunized mice. By combination of 2-DE, 2-D Western blot and Q-TOF mass spectrometry we have identified 11 antigens in activated T cells that were recognized by the anti-T-cell Abs. The resulting antigenic molecules included calreticulin (CRT), ERp57, Vimentin, HSP70-4, tubulin β5 chain, coronin-1A, pyruvate kinase, ATP synthase β chain and transketolase most of which belong to so-called damage-associated molecular pattern molecules (DAMPs). CRT, ERp57 and vementin were further examined by Western blot and cellular ELISA to identify molecular targets which may be involved in the TCV immunotherapy. On the basis of our results, γ-radiation induced the activated T cells "immunogenic apoptosis" and exposed/secreted DAMPs (CRT, ERp57 and Vementin) played an important role in TCV therapy.
Collapse
Affiliation(s)
- Wen Xu
- Department of Immunology, Peking University Health Science Center, Beijing, [corrected] China.
| | | | | | | |
Collapse
|
14
|
Qu L, Zhang P, LaMotte RH, Ma C. Neuronal Fc-gamma receptor I mediated excitatory effects of IgG immune complex on rat dorsal root ganglion neurons. Brain Behav Immun 2011; 25:1399-407. [PMID: 21521651 PMCID: PMC3150223 DOI: 10.1016/j.bbi.2011.04.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 04/10/2011] [Accepted: 04/12/2011] [Indexed: 01/09/2023] Open
Abstract
Pain often accompanies antigen-specific immune-related disorders though little is known of the underlying neural mechanisms. A common feature among these disorders is the elevated level of antigen-specific immunoglobulin (Ig) G in the serum and the presence of IgG immune complex (IC) in the affected tissue. We hypothesize that IC may directly activate the Fc-gamma receptor type I (FcγRI) expressed in nociceptive dorsal root ganglion (DRG) neurons and increase neuronal excitability thus potentially contributing to pain. Immunofluorescent labeling indicated that FcγRI, but not FcγRIIB or FcγRIII, was expressed in a subpopulation of rat DRG neurons including those expressing nociceptive markers. Calcium imaging revealed that the IC, but neither of the antibody (IgG) or antigen alone, produced an increase in intracellular calcium. This effect was abolished by the removal of the IgG Fc portion in the IC or the application of an anti-FcγRI antibody, suggesting a key role of the FcγRI receptor. Removal of extracellular calcium or depletion of intracellular calcium stores prevented the IC-induced calcium response. In whole-cell current-clamp recordings, IC depolarized the resting membrane potential, decreased the rheobase, and increased the number of action potentials evoked by a depolarizing current at 2× rheobase. In about half of the responsive neurons, IC evoked action potential discharges. These results suggest that a subpopulation of nociceptive neurons expresses functional FcγRI and that the activation of this receptor by IC increases neuronal excitability.
Collapse
|
15
|
Intravenous immunoglobulins are a therapeutic option in the treatment of multiple sclerosis relapse. Clin Neuropharmacol 2011; 34:84-9. [PMID: 21301327 DOI: 10.1097/wnf.0b013e31820a17f3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of the study is to evaluate the efficacy and tolerability of intravenous immunoglobulin (IVIG) monotherapy in the treatment of multiple sclerosis (MS) relapse. BACKGROUND High-dose intravenous methylprednisolone (IVMP) and plasmapheresis have been shown to shorten the recovery period of an MS relapse. Options for those who have contraindications for or are unresponsive to these treatments are very limited. Intravenous immunoglobulin has been used experimentally in these situations, even though there are no previous studies on its efficacy as monotherapy in MS relapse. SUBJECTS AND METHODS Twelve consecutive MS patients with acute MS relapse were treated with IVIG 0.4 g/kg per day for 5 days, and the next 5 patients received IVMP 1000 mg/d for 3 days. Volumetric brain magnetic resonance imaging (MRI) and clinical evaluation using expanded disability status scale (EDSS) were performed at baseline and at 3 weeks after treatment. EDSS score after 1 year of the treatment was collected from the patient records. MRI evaluation was performed blindly but not the clinical examination and EDSS scoring. RESULTS A significant reduction in the volumes of T2-, fluid-attenuated inversion recovery-, and gadolinium-enhanced lesions was detected in the IVIG-treated group, but not in the IVMP-treated patients. The difference between the groups did not reach statistical significance. The EDSS score improved equally in both groups. CONCLUSIONS Intravenous immunoglobulin did not show inferiority compared with IVMP in the treatment of an acute MS relapse evaluated clinically and radiologically. Therefore, we suggest that IVIG may be tried as a therapy in acute MS relapse, especially in case of contraindications to IVMP and plasmapheresis.
Collapse
|
16
|
Boster A, Ankeny DP, Racke MK. The Potential Role of B Cell-Targeted Therapies in Multiple Sclerosis. Drugs 2010; 70:2343-2356. [DOI: 10.2165/11585230-000000000-00000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
17
|
Hu X, Wohler JE, Dugger KJ, Barnum SR. beta2-integrins in demyelinating disease: not adhering to the paradigm. J Leukoc Biol 2009; 87:397-403. [PMID: 20007244 DOI: 10.1189/jlb.1009654] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The beta(2)-integrins are a subfamily of integrins expressed on leukocytes that play an essential role in leukocyte trafficking, activation, and many other functions. Studies in EAE, the animal model for multiple sclerosis, show differential requirements for beta(2)-integrins in this disease model, ranging from critical in the case of LFA-1 (CD11a/CD18) to unimportant in the case of CD11d/CD18. Importantly, expression of beta(2)-integrins on T cell subsets provides some clues as to the function(s) these adhesion molecules play in disease development. For example, transferred EAE studies have shown that Mac-1 (CD11b/CD18) expression on alphabeta T cells is critical for disease development, and the absence of LFA-1 on Tregs in recipient mice results in exacerbated disease. In this review, we summarize recent findings regarding the role of beta(2)-integrins in demyelinating disease and new information about the role of beta(2)-integrins with respect to alterations in Treg numbers and function. In addition, we discuss the potential for targeting beta(2)-integrins in human demyelinating disease in light of the recent animal model studies.
Collapse
Affiliation(s)
- Xianzhen Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
18
|
Pul R, Kopadze T, Skripuletz T, Voss E, Kieseier B, Stangel M. Polyclonal immunoglobulins (IVIg) induce expression of MMP-9 in microglia. J Neuroimmunol 2009; 217:46-50. [DOI: 10.1016/j.jneuroim.2009.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/31/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
19
|
Hawker K. B cells as a target of immune modulation. Ann Indian Acad Neurol 2009; 12:221-5. [PMID: 20182568 PMCID: PMC2824948 DOI: 10.4103/0972-2327.58275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 03/30/2009] [Accepted: 07/06/2009] [Indexed: 01/03/2023] Open
Abstract
B cells have recently been identified as an integral component of the immune system; they play a part in autoimmunity through antigen presentation, antibody secretion, and complement activation. Animal models of multiple sclerosis (MS) suggest that myelin destruction is partly mediated through B cell activation (and plasmablasts). MS patients with evidence of B cell involvement, as compared to those without, tend to have a worse prognosis. Finally, the significant decrease in new gadolinium-enhancing lesions, new T2 lesions, and relapses in MS patients treated with rituximab (a monoclonal antibody against CD20 on B cells) leads us to the conclusion that B cells play an important role in MS and that immune modulation of these cells may ameliorate the disease. This article will explore the role of B cells in MS and the rationale for the development of B cell-targeted therapeutics. MS is an immune-mediated disease that affects over 2 million people worldwide and is the number one cause of disability in young patients. Most therapeutic targets have focused on T cells; however, recently, the focus has shifted to the role of B cells in the pathogenesis of MS and the potential of B cells as a therapeutic target.
Collapse
Affiliation(s)
- Kathleen Hawker
- The Ohio State University Medical Center, 2050 Kenny Road, Suite 2250, Columbus, Ohio 43221, USA
| |
Collapse
|
20
|
|
21
|
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system with no clear etiology. Until recently, most studies have emphasized the role of T cells in the pathogenesis of multiple sclerosis. Data suggesting that B cells play a role in the pathogenesis of multiple sclerosis have been accumulating for the past five decades, demonstrating that the cerebrospinal fluid and central nervous system tissues of multiple sclerosis patients contain B cells, plasma cells, antibodies, and immunoglobulins. Data suggest that B cells are involved in antigen capture and presentation to T cells, cytokine production, antibody secretion, demyelination, tissue damage, and remyelination in multiple sclerosis. These advances in the understanding of B-cell and antibody roles in the pathophysiology of multiple sclerosis provide a strong rationale for B-cell-targeted therapies.
Collapse
|
22
|
Fuchs S, Feferman T, Meidler R, Margalit R, Sicsic C, Brenner T, Laub O, Souroujon MC. Immunosuppression of EAMG by IVIG Is Mediated by a Disease-specific Anti-immunoglobulin Fraction. Ann N Y Acad Sci 2008; 1132:244-8. [DOI: 10.1196/annals.1405.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Soelberg Sorensen P. Intravenous polyclonal human immunoglobulins in multiple sclerosis. NEURODEGENER DIS 2008; 5:8-15. [PMID: 18075269 DOI: 10.1159/000109932] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 05/14/2007] [Indexed: 11/19/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is an established therapy for demyelinating diseases of the peripheral nervous system. IVIG exerts a number of effects that may be beneficial in multiple sclerosis (MS). Four double-blind IVIG trials have been performed in relapsing-remitting MS. A meta-analysis of the four trials has shown that IVIG reduces the relapse rate and, possibly, disease progression. In patients with a first episode of demyelinating disease, IVIG delays the time to the second relapse and thereby to the diagnosis of definite MS. In patients with an acute MS relapse, IVIG as add-on therapy to methylprednisolone does not make remission of symptoms faster or more complete. IVIG does not seem to be of any benefit to chronic visual or motor symptoms in MS. In secondary progressive MS, IVIG has not shown any effect on disease progression, relapses or new magnetic resonance imaging lesions. Experimental studies in the MS model experimental autoimmune encephalomyelitis in rats demonstrate that IVIG has to be administered at the time of induction of a relapse in order to be effective. In conclusion, IVIG can be considered as a second-line treatment to approved therapies for relapsing-remitting MS, but the ideal dosage of IVIG still needs to be determined. In order to be a first-line treatment for MS, the beneficial effect should be confirmed in a large-scale placebo-controlled survey, or in a study comparing the effect with approved therapies for relapsing-remitting MS using appropriate clinical and magnetic resonance imaging outcome measures.
Collapse
Affiliation(s)
- Per Soelberg Sorensen
- Danish MS Research Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
24
|
A disease-specific fraction isolated from IVIG is essential for the immunosuppressive effect of IVIG in experimental autoimmune myasthenia gravis. J Neuroimmunol 2008; 194:89-96. [PMID: 18178258 DOI: 10.1016/j.jneuroim.2007.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 12/14/2022]
Abstract
Intravenous immunoglobulin (IVIG) treatment is beneficially used in autoimmune disorders including myasthenia gravis (MG) although its mode of action and active components are still not fully identified. In an attempt to isolate from IVIG a disease-specific suppressive fraction, IVIG was passed on columns of IgG from rats with experimental autoimmune MG (EAMG) or from MG patients. These chromatographies resulted in depletion of the suppressive activity of IVIG on rat EAMG whereas the minute amounts of IgG fractions eluted from the EAMG- or MG-specific columns retained the immunosuppressive activity of IVIG. These results demonstrate that a minor disease-specific immunoglobulin fraction present in IVIG is essential for its suppressive activity.
Collapse
|
25
|
Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 2008; 111:715-22. [DOI: 10.1182/blood-2007-03-079947] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The clinical use of intravenous immunoglobulin (IVIg) based on its immunomodulatory and anti-inflammatory potential remains an ongoing challenge. Fcγ receptor-mediated effects of IVIg, although well elucidated in certain pathologies, cannot entirely account for its proven benefit in several autoimmune disorders mediated by autoreactive T cells. In this study, we show that prophylactic infusion of IVIg prevents the development of experimental autoimmune encephalomyelitis (EAE), an accepted animal model for multiple sclerosis (MS). The protection was associated with peripheral increase in CD4+CD25+Foxp3+ regulatory T cell (Treg) numbers and function. The protection was Treg-mediated because IVIg failed to protect against EAE in mice that were depleted of the Treg population. Rather than inducing de novo generation from conventional T cells, IVIg had a direct effect on proliferation of natural Treg. In conclusion, our results highlight a novel mechanism of action of IVIg and provide a rationale to test the use of IVIg as an immunomodulatory tool to enhance Treg in early onset MS and other autoimmune and inflammatory conditions.
Collapse
|
26
|
Fuchs S, Feferman T, Zhu KY, Meidler R, Margalit R, Wang N, Laub O, Souroujon MC. Suppression of Experimental Autoimmune Myasthenia Gravis by Intravenous Immunoglobulin and Isolation of a Disease-Specific IgG Fraction. Ann N Y Acad Sci 2007; 1110:550-8. [PMID: 17911471 DOI: 10.1196/annals.1423.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intravenous immunoglobulin (IVIG) administration has been beneficially used for the treatment of a variety of autoimmune diseases including myasthenia gravis (MG). We have demonstrated that IVIG administration in experimental autoimmune MG (EAMG) results in suppression of disease that is accompanied by decreased Th1 cell and B cell proliferation. Chromatography of pooled human immunoglobulins (IVIGs) on immobilized IgG, isolated from rats with EAMG, results in a complete depletion of the suppressive activity of the IVIG. Moreover, the eluate from this EAMG-specific antibody column retains the immunosuppressive activity of IVIG. This study supports the notion that the therapeutic effect of IVIGs is mediated by an antigen-specific anti-immunoglobulin (anti-idiotypic) activity that is essential for its suppressive activity.
Collapse
Affiliation(s)
- Sara Fuchs
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fazekas F, Strasser-Fuchs S, Hommes OR. Intravenous immunoglobulin in MS: Promise or failure? J Neurol Sci 2007; 259:61-6. [PMID: 17449063 DOI: 10.1016/j.jns.2006.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 12/15/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
There is an established role for intravenous immunoglobulin (IVIG) in the treatment of certain neurologic autoimmune disorders which affect the peripheral nervous system and a variety of immunomodulatory properties of IVIG have been proposed. This prompted an intense research into the efficacy of IVIG in central nervous system autoimmune disorders and until now several well-controlled clinical trials have been performed in different stages and phenotypes of multiple sclerosis (MS). The results were mixed. Speculations that IVIG might be able to reverse fixed neurologic deficits from MS could not be confirmed. Adding IVIG to the conventional treatment of MS relapses with high-dose IVMP also did not provide any additional benefits. Similarly, trials failed to establish a role for IVIG in the treatment of secondary or primary progressive MS. Most consistent beneficial results with a reduction of relapse rates and a slowing of disability have been obtained in relapsing-remitting MS including clinically isolated syndromes although a most recent study did not confirm a reduction of disease activity based on clinical and MRI findings. Trial results also suggest that IVIG might serve to suppress an increased recurrence of relapses immediately after delivery. Consequently, IVIG treatment may be considered as second line option for these indications although there is still uncertainty regarding the actual mechanism(s) of action and optimal dosage of this treatment.
Collapse
Affiliation(s)
- Franz Fazekas
- Department of Neurology, Medical University Graz, Auenbruggerplatz 22, A-8036 Graz, Austria.
| | | | | |
Collapse
|
28
|
Jorgensen SH, Storm N, Jensen PEH, Laursen H, Sorensen PS. IVIG enters the central nervous system during treatment of experimental autoimmune encephalomyelitis and is localised to inflammatory lesions. Exp Brain Res 2006; 178:462-9. [PMID: 17091295 DOI: 10.1007/s00221-006-0752-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 10/06/2006] [Indexed: 11/25/2022]
Abstract
Intravenous immunoglobulin (IVIG) treatment reduces the relapse rate in relapsing-remitting multiple sclerosis (MS) and may interfere with MS pathology through its various anti-inflammatory and immunomodulatory properties. It is presently unknown whether IVIG enters the central nervous system (CNS) in sufficient amounts to influence the local immune response within the brain and spinal cord, or if the treatment effects are entirely due to peripheral actions of IVIG. The purpose of the present study was to evaluate if IVIG radiolabeled with 99mTc enters the CNS during treatment of experimental autoimmune encephalomyelitis (EAE) in the susceptible rat strain Dark Agouti. After in vivo administration of 99mTc-IVIG we observed significantly increased accumulation in the brain and spinal cord from rats with EAE. Accumulation of 99mTc-IVIG was not detectable in CNS tissue from control animals. In peripheral tissue samples minor increases in 99mTc-IVIG organ binding were observed in the liver and kidney during EAE. Localisation of 99mTc-IVIG in the brain tissue was visualised by autoradiography and revealed significant accumulation of IVIG only in areas also affected by perivascular inflammation and leakage of serum proteins. In conclusion, the results indicate that significant extravasation of IVIG to the CNS only occurs when blood-brain barrier function is compromised during EAE.
Collapse
MESH Headings
- Animals
- Body Weight/drug effects
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Disease Models, Animal
- Drug Administration Routes
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Immunoglobulins, Intravenous/pharmacokinetics
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Factors/pharmacokinetics
- Immunologic Factors/therapeutic use
- Inflammation/etiology
- Inflammation/prevention & control
- Male
- Radiopharmaceuticals/pharmacokinetics
- Rats
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- Signe Humle Jorgensen
- Danish MS Research Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet sect. 6311, 2100 Copenhagen, Denmar.
| | | | | | | | | |
Collapse
|
29
|
Nakahara J, Aiso S. Fc receptor-positive cells in remyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 2006; 65:582-91. [PMID: 16783168 DOI: 10.1097/00005072-200606000-00006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The capacity for spontaneous remyelination in cases of multiple sclerosis (MS) is limited and lesions are not fully repaired. Recent evidence has shown that oligodendrocyte precursor cells and immature oligodendrocytes (OPC/iOligs) are preserved in MS lesions. Induced differentiation of these cells into myelinating cells may ultimately lead to a novel remyelination therapy. A previous study showed that the gamma chain of immunoglobulin Fc receptors (FcRgamma), expressed in OPC/iOligs, is essential for their differentiation. Whether FcRgamma is expressed in preserved OPC/iOligs within MS lesions, however, remains uncertain. In the present study, we examined 10 autopsy cases of MS for the expression of FcRgamma both in remyelinating areas and demyelinated plaques. The expression of FcRgamma was confirmed in both OPC/iOligs and microglia in MS lesions. Statistical analysis showed that the density of FcRgamma-positive OPC/iOligs was approximately 3 times greater in remyelinating areas compared with demyelinated plaques; the opposite was true of FcRgamma-positive microglia. The distribution of FcRgamma-negative OPC/iOligs did not differ between the 2 types of lesions. Thus, an increase in FcRgamma-positive OPC/iOligs and a decrease in FcRgamma-positive microglia, but not in FcRgamma-negative OPC/iOligs, are associated with spontaneous remyelination in MS brains, suggesting a possible role for FcRgamma in the induction of remyelination.
Collapse
Affiliation(s)
- Jin Nakahara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
30
|
Janke AD, Giuliani F, Yong VW. IVIg attenuates T cell-mediated killing of human neurons. J Neuroimmunol 2006; 177:181-8. [PMID: 16766045 DOI: 10.1016/j.jneuroim.2006.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/05/2006] [Accepted: 04/20/2006] [Indexed: 01/02/2023]
Abstract
Beneficial effects of intravenous immunoglobulin (IVIg) in relapsing-remitting multiple sclerosis (MS) have been described, including a decrease of brain atrophy. We have previously shown that activated T cells kill neurons in culture. In this manuscript, we show that the pretreatment of activated T cells with IVIg attenuates T cell neurotoxicity. This is attributed to the ability of IVIg to decrease the adhesion of T cells onto neurons, possibly through an effect on LFA-1, and by lowering the levels of Fas and FasL on T cells. Our results are relevant to understanding how therapies affect the MS disease process.
Collapse
Affiliation(s)
- Angela D Janke
- Department of Oncology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
31
|
Frederick TJ, Miller SD. Future of multiple sclerosis therapy: combining antigen-specific immunotherapy with strategies to promote myelin repair. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.4.489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Persistent CNS inflammation and the failure of myelin repair during multiple sclerosis (MS) trigger a progressive deterioration in neurophysiological function and permanent clinical debilitation. Current treatment consists of immunosuppressive therapies targeted against the immune response, which have only been moderately successful in ameliorating disease relapses and have little or no benefit in slowing disease progression or enhancing remyelination. Recent breakthroughs have revealed new targets and more selective techniques for inhibiting autoreactive T-cell responses and promoting lesion repair in animal models of MS. In light of these new findings and the limitations of current treatments, the authors hypothesize that the future of MS therapy will progress towards the development of a combinatorial therapeutic strategy that consists of specific tolerance of autoreactive T cells, myelin repair and axonal protection.
Collapse
Affiliation(s)
- Terra J Frederick
- Northwestern University, Department of Microbiology–Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, IL, USA
| | - Stephen D Miller
- Northwestern University, 6–713 Tarry Building, 303 East Chicago Avenue, IL 60611, USA
| |
Collapse
|
32
|
Zhu KY, Feferman T, Maiti PK, Souroujon MC, Fuchs S. Intravenous immunoglobulin suppresses experimental myasthenia gravis: Immunological mechanisms. J Neuroimmunol 2006; 176:187-97. [PMID: 16730380 DOI: 10.1016/j.jneuroim.2006.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/21/2006] [Accepted: 04/10/2006] [Indexed: 11/16/2022]
Abstract
Intravenous immunoglobulin (IVIG) administration has been beneficially used in the treatment of several autoimmune disorders including myasthenia gravis (MG), although its mechanism of action is still not clear. To study the optimal conditions of IVIG treatment and delineate its mechanism of action we established a suitable model in rat experimental autoimmune MG (EAMG). We show that IVIG has a suppressive effect on the clinical symptoms of ongoing EAMG that is associated with decreased AChR-specific cellular and humoral immune reactivity. Costimulatory factors and cytokine profile analyses suggest that IVIG immunomodulation in EAMG involves suppression of B and Th1-type T cell responses with no generation of T-regulatory cells. Our data contribute to the understanding of the immunological mechanisms underlying IVIG treatment in MG and in other autoimmune disorders.
Collapse
Affiliation(s)
- Kai-Yun Zhu
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|