1
|
Yaqubi S, Karimian M. Stem cell therapy as a promising approach for ischemic stroke treatment. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100183. [PMID: 38831867 PMCID: PMC11144755 DOI: 10.1016/j.crphar.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Ischemia as the most common type of stroke is the main cause of death and disability in the world. However, there are few therapeutic approaches to treat ischemic stroke. The common approach to the treatment of ischemia includes surgery-cum-chemical drugs. Surgery and chemical drugs are used to remove blood clots to prevent the deterioration of the nervous system. Given the surgical hazards and the challenges associated with chemical drugs, these cannot be considered safe approaches to the treatment of brain ischemia. Besides surgery-cum-chemical drugs, different types of stem cells including mesenchymal stem cells and neurological stem cells have been considered to treat ischemic stroke. Therapeutic approaches utilizing stem cells to treat strokes are promising because of their neuroprotective and regenerative benefits. However, the mechanisms by which the transplanted stem cells perform their precisely actions are unknown. The purpose of this study is to critically review stem cell-based therapeutic approaches for ischemia along with related challenges.
Collapse
Affiliation(s)
- Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
2
|
Li H, Gan X, Pan L, Zhang Y, Hu X, Wang Z. EGF/bFGF promotes survival, migration and differentiation into neurons of GFP-labeled rhesus monkey neural stem cells xenografted into the rat brain. Biochem Biophys Res Commun 2022; 620:76-82. [DOI: 10.1016/j.bbrc.2022.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
3
|
Ricca A, Cascino F, Gritti A. Isolation and Culture of Neural Stem/Progenitor Cells from the Postnatal Periventricular Region. Methods Mol Biol 2022; 2389:11-31. [PMID: 34557998 DOI: 10.1007/978-1-0716-1783-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the complexity of the neural stem cell (NSC) niche organization, the lack of specific NSC markers, and the difficulty of long-term tracking these cells and their progeny in vivo, the functional properties of the endogenous NSCs remain largely unexplored. These limitations have led to the development of methodologies to efficiently isolate, expand, and differentiate NSCs ex vivo. We describe here the peculiarities of the neurosphere assay (NSA) as a methodology that allows to efficiently isolate, expand, and differentiate somatic NSCs derived from the postnatal and adult forebrain periventricular region while preserving proliferation, self-renewal, and multipotency, the main attributes that provide their functional identification.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cascino
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Stem Cells: Innovative Therapeutic Options for Neurodegenerative Diseases? Cells 2021; 10:cells10081992. [PMID: 34440761 PMCID: PMC8391848 DOI: 10.3390/cells10081992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure and/or function of both neurons and glial cells, leading to different degrees of pathology and loss of cognition. The hypothesis of circuit reconstruction in the damaged brain via direct cell replacement has been pursued extensively so far. In this context, stem cells represent a useful option since they provide tissue restoration through the substitution of damaged neuronal cells with exogenous stem cells and create a neuro-protective environment through the release of bioactive molecules for healthy neurons, as well. These peculiar properties of stem cells are opening to potential therapeutic strategies for the treatment of severe neurodegenerative disorders, for which the absence of effective treatment options leads to an increasingly socio-economic burden. Currently, the introduction of new technologies in the field of stem cells and the implementation of alternative cell tissues sources are pointing to exciting frontiers in this area of research. Here, we provide an update of the current knowledge about source and administration routes of stem cells, and review light and shadows of cells replacement therapy for the treatment of the three main neurodegenerative disorders (Amyotrophic lateral sclerosis, Parkinson’s, and Alzheimer’s disease).
Collapse
|
5
|
Shaikh F, Shaikh FH, Chandio SA. Frequency of Hypoalbuminemia and In-Hospital Mortality in Acute Ischemic Stroke Patients Presenting at a Tertiary Care Hospital, Hyderabad. Cureus 2021; 13:e14256. [PMID: 33959442 PMCID: PMC8093105 DOI: 10.7759/cureus.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background The aim of this study was to determine the frequency of hypoalbuminemia and in-hospital mortality in acute ischemic stroke patients at a tertiary care hospital in Hyderabad. Methodology This was a prospective observational study conducted at the Department of Medicine, Isra University Hospital, Hyderabad, from February 17, 2017 to August 18, 2017. A total of 196 consecutive cases of acute ischemic stroke were included. Hypoalbuminemia was defined as serum albumin of <3.5 mg/dL. In-hospital outcome in terms of survival or death within seven days of admission was assessed and recorded. Data were analyzed using SPSS, version 20.0. (IBM Corp., Armonk, NY, US). Chi-square test was applied, and p-value of ≤0.05 was considered significant. Results Out of the 196 acute ischemic stroke cases, 146 (74.5%) were males and 50 (25.5%) were females. The mean age was 49.31 ± 10.46 years. A total of 90 (45.9%) cases had hypoalbuminemia. Out of these 196 cases, 22 (11.2%) expired within seven days of presentation of acute ischemic stroke, and out of these 22 expired cases, 18 (81.8%) had hypoalbuminemia. In-hospital mortality was found to be strongly associated with hypoalbuminemia (p < 0.001). Conclusions Frequency of hypoalbuminemia was significantly higher in ischemic stroke patients and was found to be associated with in-hospital mortality, warranting monitoring at regular intervals, as well as recognizing and treating it early for risk stratification.
Collapse
Affiliation(s)
| | | | - Sultan A Chandio
- Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, PAK
| |
Collapse
|
6
|
Liu Q, Zhang L, Zhang J. Induced pluripotent stem cell-derived neural progenitor cell transplantation promotes regeneration and functional recovery after post-traumatic stress disorder in rats. Biomed Pharmacother 2021; 133:110981. [PMID: 33186796 DOI: 10.1016/j.biopha.2020.110981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental disorder characterized by hippocampal neuron loss and cognitive dysfunction. The aim of the present study was to investigate the potential functional outcomes of transplantation of induced pluripotent stem cell-derived neural progenitor cells (iPSC-NPCs) for treating PTSD. Human induced pluripotent stem cell (iPSCs), differentiated into neural progenitor cells (NPCs) in vitro, were transplanted into the brain of rat. Following iPSC-NPCs transplantation, cognitive function was determined. The open field test and fear condition test indicated that long-term iPSC-NPCs transplantation ameliorated cognitive dysfunction and reduced freezing time in PTSD rats. Following testing, the brain of rat was analyzed using immunocytochemistry and immunofluorescence. The results revealed that iPSC-NPCs differentiated into neurons replacing the loss of hippocampus neurons, and iPSC-NPCs transplantation showed higher expression of glial fibrillary acidic protein (GFAP) and increased number of NeuN compared with the control group. Moreover, western blot analysis suggested enhanced expression of brain-derived neurotrophic factor (BDNF) in hippocampus tissue of iPSC-NPCs transplanted rats in comparison to the PBS group. Collectively, these findings showed that iPSC-NPCs could promote regeneration and motor function recovery in PTSD model.
Collapse
Affiliation(s)
- Qingzhen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, China; Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Lidong Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China.
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, China.
| |
Collapse
|
7
|
Kang MK, Kim TJ, Kim YJ, Kang L, Kim J, Lee N, Hyeon T, Lim MS, Mo HJ, Shin JH, Ko SB, Yoon BW. Targeted Delivery of Iron Oxide Nanoparticle-Loaded Human Embryonic Stem Cell-Derived Spherical Neural Masses for Treating Intracerebral Hemorrhage. Int J Mol Sci 2020; 21:ijms21103658. [PMID: 32455909 PMCID: PMC7279437 DOI: 10.3390/ijms21103658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the potential of iron oxide nanoparticle-loaded human embryonic stem cell (ESC)-derived spherical neural masses (SNMs) to improve the transportation of stem cells to the brain, ameliorate brain damage from intracerebral hemorrhage (ICH), and recover the functional status after ICH under an external magnetic field of a magnet attached to a helmet. At 24 h after induction of ICH, rats were randomly separated into three experimental groups: ICH with injection of phosphate-buffered saline (PBS group), ICH with intravenous injection of magnetosome-like ferrimagnetic iron oxide nanocubes (FION)-labeled SNMs (SNMs* group), and ICH with intravenous injection of FION-labeled SNMs followed by three days of external magnetic field exposure for targeted delivery by a magnet-embedded helmet (SNMs*+Helmet group). On day 3 after ICH induction, an increased Prussian blue-stained area and decreased swelling volume were observed in the SNMs*+Helmet group compared with that of the other groups. A significantly decreased recruitment of macrophages and neutrophils and a downregulation of pro-inflammatory cytokines followed by improved neurological function three days after ICH were observed in the SNMs*+Helmet group. Hemispheric atrophy at six weeks after ICH was significantly decreased in the SNMs*+Helmet group compared with that of the PBS group. In conclusion, we have developed a targeted delivery system using FION tagged to stem cells and a magnet-embedded helmet. The targeted delivery of SNMs might have the potential for developing novel therapeutic strategies for ICH.
Collapse
Affiliation(s)
- Min Kyoung Kang
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Tae Jung Kim
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Young-Ju Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.-J.K.); (L.K.)
| | - Lamie Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.-J.K.); (L.K.)
| | - Jonghoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Korea; (J.K.); (T.H.)
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea;
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Korea; (J.K.); (T.H.)
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Mi-sun Lim
- Research and Development Center, Jeil Pharmaceutical Co. Ltd., Yongin-si, Gyeonggi-do 17172, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 08826, Korea
| | - Hee Jung Mo
- Department of Neurology, Hallym University Dongtan Sacred Heart Hospital, Gyeonggi-do 14068, Korea;
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Byung-Woo Yoon
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (M.K.K.); (T.J.K.); (J.H.S.); (S.-B.K.)
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-2875; Fax: +82-2-3673-1990
| |
Collapse
|
8
|
Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729:146615. [DOI: 10.1016/j.brainres.2019.146615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
|
9
|
Vonderwalde I, Azimi A, Rolvink G, Ahlfors JE, Shoichet MS, Morshead CM. Transplantation of Directly Reprogrammed Human Neural Precursor Cells Following Stroke Promotes Synaptogenesis and Functional Recovery. Transl Stroke Res 2020; 11:93-107. [PMID: 30747366 PMCID: PMC6957566 DOI: 10.1007/s12975-019-0691-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke is one of the leading causes of long-term disability. Cell transplantation is a promising strategy to treat stroke. We explored the efficacy of directly reprogrammed human neural precursor cell (drNPC) transplants to promote functional recovery in a model of focal ischemic stroke in the mouse sensorimotor cortex. We show that drNPCs express neural precursor cell markers and are neurally committed at the time of transplantation. Mice that received drNPC transplants recovered motor function, irrespective of transplant vehicle or recipient sex, and with no correlation to lesion volume or glial scarring. The majority of drNPCs found in vivo, at the time of functional recovery, remained undifferentiated. Notably, no correlation between functional recovery and long-term xenograft survival was observed, indicating that drNPCs provide therapeutic benefits beyond their survival. Furthermore, increased synaptophysin expression in transplanted brains suggests that drNPCs promote neuroplasticity through enhanced synaptogenesis. Our findings provide insight into the mechanistic underpinnings of drNPC-mediated recovery for stroke and support the notion that drNPCs may have clinical applications for stroke therapy.
Collapse
Affiliation(s)
- Ilan Vonderwalde
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Ashkan Azimi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Gabrielle Rolvink
- Department of Surgery, Division of Anatomy, Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | | | - Molly S Shoichet
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Cindi M Morshead
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.
- Department of Surgery, Division of Anatomy, Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.
| |
Collapse
|
10
|
Li C, Fei K, Tian F, Gao C, Yang S. Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating miR-21-3p/MAT2B signaling transduction. Croat Med J 2020. [PMID: 31686458 PMCID: PMC6852138 DOI: 10.3325/cmj.2019.60.439] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim To explore the mechanism underlying the protective effect of adipose-derived mesenchymal stem cells (ADMSCs) against ischemic stroke by focusing on miR-21-3p/MAT2B axis. Methods Ischemic brain injury was induced in 126 rats by middle cerebral artery occlusion (MCAO). The effect of ADMSC administration on blood-brain barrier (BBB) condition, apoptosis, inflammation, and the activity of miR-21-3p/MAT2B axis was assessed. The role of miR-21-3p inhibition in the function of ADMSCs was further validated in in vitro neural cells. Results ADMSCs administration improved BBB condition, inhibited apoptosis, and suppressed inflammation. It also reduced the abnormally high level of miR-21-3p in MCAO rats. Dual luciferase assays showed that miR-21-3p directly inhibited the MAT2B expression in neural cells, and miR-21-3p inhibition by inhibitor or ADMSC-derived exosomes in neurons attenuated hypoxia/reoxygenation-induced impairments similarly to that of ADMSCs in vivo. Conclusion This study confirmed the protective effect of ADMSCs against ischemic brain injury exerted by suppressing miR-21-3p level and up-regulating MAT2B level.
Collapse
Affiliation(s)
| | | | | | | | - Song Yang
- Song Yang, Department of Emergency, Longnan Hospital of Daqing, No.35 Aiguo Road, Ranghulu District, 163453 Daqing City, China,
| |
Collapse
|
11
|
Yu Y, Zhou H, Xiong Y, Liu J. Exosomal miR-199a-5p derived from endothelial cells attenuates apoptosis and inflammation in neural cells by inhibiting endoplasmic reticulum stress. Brain Res 2019; 1726:146515. [PMID: 31634452 DOI: 10.1016/j.brainres.2019.146515] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Remote ischemic post-conditioning (RIPostC) is a technique that can protect vital organs in an indirect manner, the effects of which are exerted by the long-distance exosome-mediated transfer of functional factors. In the current study, the possible mechanism driving the function of RIPostC was explored using an in vitro system by focusing on miR-199a-5p and its downstream effectors involved in endoplasmic reticulum (ER) stress. Human umbilical vein endothelial cells (HUVECs) were administrated with hypoxia/re-oxygenation (H/R) process and exosomes were collected from the H/R-treated HUVECs. The levels of miR-199a-5p in HUVECs and exosomes were detected. Afterwards, H/R-treated SH-SY5Y neural cells was incubated with H/R HUVEC-derived exosomes, and the effect on cell apoptosis, inflammation, and miR-199a-5p-mediated ER stress was assessed. Furthermore, the key role of miR-199a-5p suppression in the protection effect of HUVEC-derived exosomes was validated by transfecting neural cells with specific inhibitor. The results showed that H/R administration increased miR-199a-5p levels both in HUVECs and exosomes. The incubation of neural cells with exosomes suppressed cell apoptosis and inflammation, and induced the level of miR-199a-5p, which led to suppressed ER stress. Moreover, the transfection of miR-199a-5p inhibitor blocked the anti-H/R function of exosomes. Taken together, the findings outlined in the current study showed that the protection effect of HUVEC derived miR-199a-5p on neural cells was exerted via exosome transfer, which then suppressed the ER stress-induced apoptosis and inflammation by targeting BIP.
Collapse
Affiliation(s)
- Yunhu Yu
- Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, China.
| | - Hang Zhou
- Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, China
| | - Yanquan Xiong
- Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, China
| | - Jigang Liu
- Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, China
| |
Collapse
|
12
|
Bruggeman KF, Moriarty N, Dowd E, Nisbet DR, Parish CL. Harnessing stem cells and biomaterials to promote neural repair. Br J Pharmacol 2019; 176:355-368. [PMID: 30444942 PMCID: PMC6329623 DOI: 10.1111/bph.14545] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
With the limited capacity for self-repair in the adult CNS, efforts to stimulate quiescent stem cell populations within discrete brain regions, as well as harness the potential of stem cell transplants, offer significant hope for neural repair. These new cells are capable of providing trophic cues to support residual host populations and/or replace those cells lost to the primary insult. However, issues with low-level adult neurogenesis, cell survival, directed differentiation and inadequate reinnervation of host tissue have impeded the full potential of these therapeutic approaches and their clinical advancement. Biomaterials offer novel approaches to stimulate endogenous neurogenesis, as well as for the delivery and support of neural progenitor transplants, providing a tissue-appropriate physical and trophic milieu for the newly integrating cells. In this review, we will discuss the various approaches by which bioengineered scaffolds may improve stem cell-based therapies for repair of the CNS.
Collapse
Affiliation(s)
- K F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of EngineeringThe Australian National UniversityCanberraACTAustralia
| | - N Moriarty
- Pharmacology and Therapeutics and Galway Neuroscience CentreNational University of Ireland GalwayGalwayIreland
| | - E Dowd
- Pharmacology and Therapeutics and Galway Neuroscience CentreNational University of Ireland GalwayGalwayIreland
| | - D R Nisbet
- Laboratory of Advanced Biomaterials, Research School of EngineeringThe Australian National UniversityCanberraACTAustralia
| | - C L Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
13
|
Liao LY, Lau BWM, Sánchez-Vidaña DI, Gao Q. Exogenous neural stem cell transplantation for cerebral ischemia. Neural Regen Res 2019; 14:1129-1137. [PMID: 30804235 PMCID: PMC6425845 DOI: 10.4103/1673-5374.251188] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cerebral ischemic injury is the main manifestation of stroke, and its incidence in stroke patients is 70–80%. Although ischemic stroke can be treated with tissue-type plasminogen activator, its time window of effectiveness is narrow. Therefore, the incidence of paralysis, hypoesthesia, aphasia, dysphagia, and cognitive impairment caused by cerebral ischemia is high. Nerve tissue regeneration can promote the recovery of the aforementioned dysfunction. Neural stem cells can participate in the reconstruction of the damaged nervous system and promote the recovery of nervous function during self-repair of damaged brain tissue. Neural stem cell transplantation for ischemic stroke has been a hot topic for more than 10 years. This review discusses the treatment of ischemic stroke with neural stem cells, as well as the mechanisms of their involvement in stroke treatment.
Collapse
Affiliation(s)
- Ling-Yi Liao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Dalinda Isabel Sánchez-Vidaña
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
14
|
Namestnikova DD, Tairova RT, Sukhinich KK, Cherkashova EA, Gubskiy IL, Gubskiy LV, Yarygin KN. [Cell therapy for ischemic stroke. Stem cell types and results of pre-clinical trials]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:69-75. [PMID: 30499563 DOI: 10.17116/jnevro201811809269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The literature review addresses the use of stem cells (SC) in ischemic stroke (IS). Part 1 of the paper overviews the results of experimental animal studies. Characteristics of different SC types and results of their studies in experimental models of IS are presented in the first section, the second section considers pros and cons of the methods of SC injection.
Collapse
Affiliation(s)
- D D Namestnikova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - R T Tairova
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - K K Sukhinich
- Kol'tsov Institute of Development Biology, Moscow, Russia
| | - E A Cherkashova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I L Gubskiy
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - L V Gubskiy
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - K N Yarygin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
15
|
He Q, Li S, Li L, Hu F, Weng N, Fan X, Kuang S. Total Flavonoids in Caragana (TFC) Promotes Angiogenesis and Enhances Cerebral Perfusion in a Rat Model of Ischemic Stroke. Front Neurosci 2018; 12:635. [PMID: 30258350 PMCID: PMC6143657 DOI: 10.3389/fnins.2018.00635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/23/2018] [Indexed: 02/02/2023] Open
Abstract
Previous studies have demonstrated that total flavonoid extracts from Caragana sinica (TFC) exert multiple therapeutic effects, promote blood flow, and exhibit anti-inflammatory and antioxidant properties. The present study aimed to investigate whether TFC promotes angiogenesis and exerts neuroprotective effects in a rat model of transient middle cerebral artery occlusion (tMCAO). Male Wistar rats were subjected to tMCAO for 1.5 h, followed by 24 h of reperfusion. TFC (15, 30, 60 mg/kg) was administered for 14 days. Evaluations of neurological function were performed following reperfusion, and infarct volumes were assessed in brain slices stained with 2,3,5-triphenyltetrazolium chloride (TTC). Our results indicated that TFC significantly attenuated cerebral infarct volume and neurological deficits following tMCAO. Laser Doppler, micro-PET/CT, and MRI analyses further demonstrated that TFC reduced infarct volume and enhanced cerebral blood flow in a dose-dependent manner, with the most significant effects occurring at a concentration of 60 mg/kg. Significant up-regulation of CD31, VEGF, Ang-1, HIF-1α, delta-like 4 (Dll4), and Notch1 expression was also observed in the experimental groups, relative to that in the vehicle group. In summary, the results of the present study indicate that TFC (15, 30, 60 mg/kg) attenuates neurological deficits, reduces infarct volume, and promotes angiogenesis following MCAO in a concentration-dependent manner, likely via increases in the expression of CD31, VEGF, Ang-1, HIF-1α, Dll4, and Notch1. Further studies are required to determine the clinical usefulness and potential mechanisms of TFC in patients with cerebral focal ischemic stroke.
Collapse
Affiliation(s)
- Qiansong He
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Shirong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lailai Li
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Feiran Hu
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Ning Weng
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Xiaodi Fan
- Department of Experimental Research Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shixiang Kuang
- Guiyang College of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
16
|
Chi L, Huang Y, Mao Y, Wu K, Zhang L, Nan G. Tail Vein Infusion of Adipose-Derived Mesenchymal Stem Cell Alleviated Inflammatory Response and Improved Blood Brain Barrier Condition by Suppressing Endoplasmic Reticulum Stress in a Middle Cerebral Artery Occlusion Rat Model. Med Sci Monit 2018; 24:3946-3957. [PMID: 29888735 PMCID: PMC6026597 DOI: 10.12659/msm.907096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The current study was designed to explore the pathway through which adipose-derived mesenchymal stem cells (ADMSCs) affect brain ischemic injury. MATERIAL AND METHODS The improving effect of ADMSCs on the brain function and structure was evaluated in a middle cerebral artery occlusion (MCAO) rat model. The permeability of the brain-blood barrier (BBB), inflammatory response, and endoplasmic reticulum (ER) stress-related signaling induced by ischemia were determined. RESULTS The administration of ADMSCs decreased neurological severity score when compared with that in the MCAO group and also restricted the brain infarction area as well as cell apoptosis. ADMSCs suppressed the inflammation in brains by decreasing the expressions of IL-1β, IL-6, and TNF-α, contributing to the decreased permeability of the BBB. The expressions of pro-apoptosis factors in ER stress were inhibited while that of anti-apoptosis factors were induced. CONCLUSIONS ADMSCs affected brain injury in multiple ways, not only by suppressing inflammation in the brain infarction area, but also by blocking ER stress-induced apoptosis.
Collapse
|
17
|
Zhao K, Li R, Bi S, Li Y, Liu L, Jia YL, Han P, Gu CC, Guo XZ, Zhang WP, Wang C, Pei CY, Tian LL, Li LX. Combination of mild therapeutic hypothermia and adipose-derived stem cells for ischemic brain injury. Neural Regen Res 2018; 13:1759-1770. [PMID: 30136691 PMCID: PMC6128055 DOI: 10.4103/1673-5374.238617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mild therapeutic hypothermia has been shown to mitigate cerebral ischemia, reduce cerebral edema, and improve the prognosis of patients with cerebral ischemia. Adipose-derived stem cell-based therapy can decrease neuronal death and infiltration of inflammatory cells, exerting a neuroprotective effect. We hypothesized that the combination of mild therapeutic hypothermia and adipose-derived stem cells would be neuroprotective for treatment of stroke. A rat model of transient middle cerebral artery occlusion was established using the nylon monofilament method. Mild therapeutic hypothermia (33°C) was induced after 2 hours of ischemia. Adipose-derived stem cells were administered through the femoral vein during reperfusion. The severity of neurological dysfunction was measured by a modified Neurological Severity Score Scaling System. The area of the infarct lesion was determined by 2,3,5-triphenyltetrazolium chloride staining. Apoptotic neurons were detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The regeneration of microvessels and changes in the glial scar were detected by immunofluorescence staining. The inflammatory responses after ischemic brain injury were evaluated by in situ staining using markers of inflammatory cells. The expression of inflammatory cytokines was measured by reverse transcription-polymerase chain reaction. Compared with mild therapeutic hypothermia or adipose-derived stem cell treatment alone, their combination substantially improved neurological deficits and decreased infarct size. They synergistically reduced the number of TUNEL-positive cells and glial fibrillary acidic protein expression, increased vascular endothelial growth factor levels, effectively reduced inflammatory cell infiltration and down-regulated the mRNA expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α and interleukin-6. Our findings indicate that combined treatment is a better approach for treating stroke compared with mild therapeutic hypothermia or adipose-derived stem cells alone.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Rui Li
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheng Bi
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Long Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu-Long Jia
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Peng Han
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chang-Cong Gu
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xi-Ze Guo
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan-Ping Zhang
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chun Wang
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chun-Ying Pei
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lin-Lu Tian
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Li-Xian Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
18
|
Doeppner TR, Bähr M, Hermann DM, Giebel B. Concise Review: Extracellular Vesicles Overcoming Limitations of Cell Therapies in Ischemic Stroke. Stem Cells Transl Med 2017; 6:2044-2052. [PMID: 28941317 PMCID: PMC6430061 DOI: 10.1002/sctm.17-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in stroke therapy, current therapeutic concepts are still limited. Thus, additional therapeutic strategies are in order. In this sense, the transplantation of stem cells has appeared to be an attractive adjuvant tool to help boost the endogenous regenerative capacities of the brain. Although transplantation of stem cells is known to induce beneficial outcome in (preclinical) stroke research, grafted cells do not replace lost tissue directly. Rather, these transplanted cells like neural progenitor cells or mesenchymal stem cells act in an indirect manner, among which the secretion of extracellular vesicles (EVs) appears to be one key factor. Indeed, the application of EVs in preclinical stroke studies suggests a therapeutic role, which appears to be noninferior in comparison to the transplantation of stem cells themselves. In this short review, we highlight some of the recent advances in the field of EVs as a therapeutic means to counter stroke. Stem Cells Translational Medicine2017;6:2044–2052
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
19
|
Huang B, Jiang XC, Zhang TY, Hu YL, Tabata Y, Chen Z, Pluchino S, Gao JQ. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int J Pharm 2017; 531:90-100. [PMID: 28827201 DOI: 10.1016/j.ijpharm.2017.08.073] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/12/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have been regarded as potential targeting vehicles and demonstrated to exert therapeutic benefits for brain diseases. Direct homing to diseased tissue is crucial for stem cell-based therapy. In this study, a peptide-based targeting approach was established to enhance cell homing to cerebral ischemic lesion. Palmitic acid-peptide painted onto the cell membrane was able to direct MSCs to ischemic tissues without any observed cell cytotoxicity and influence on differentiation, thus reducing accumulation of cells in peripheral organs and increasing engraftment of cells in the targeted tissues. With enhanced cell homing, MSCs were used to deliver miR-133b to increase the expression level of miR-133b in an ischemic lesion and further improve therapeutic effects. This study is the first to develop MSCs co-modified with targeting peptide and microRNAs as potential targeting therapeutic agents. This targeting delivery system is expected to be applicable to other cell types and other diseases aside from stroke.
Collapse
Affiliation(s)
- Bing Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Xin-Chi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Tian-Yuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yu-Lan Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridgeshire, UK
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
20
|
Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes. J Neurosci 2017; 36:10529-10544. [PMID: 27733606 DOI: 10.1523/jneurosci.1643-16.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/09/2016] [Indexed: 01/10/2023] Open
Abstract
Ischemic stroke is the leading cause of disability, but effective therapies are currently widely lacking. Recovery from stroke is very much dependent on the possibility to develop treatments able to both halt the neurodegenerative process as well as to foster adaptive tissue plasticity. Here we show that ischemic mice treated with neural precursor cell (NPC) transplantation had on neurophysiological analysis, early after treatment, reduced presynaptic release of glutamate within the ipsilesional corticospinal tract (CST), and an enhanced NMDA-mediated excitatory transmission in the contralesional CST. Concurrently, NPC-treated mice displayed a reduced CST degeneration, increased axonal rewiring, and augmented dendritic arborization, resulting in long-term functional amelioration persisting up to 60 d after ischemia. The enhanced functional and structural plasticity relied on the capacity of transplanted NPCs to localize in the peri-ischemic and ischemic area, to promote the upregulation of the glial glutamate transporter 1 (GLT-1) on astrocytes and to reduce peri-ischemic extracellular glutamate. The upregulation of GLT-1 induced by transplanted NPCs was found to rely on the secretion of VEGF by NPCs. Blocking VEGF during the first week after stroke reduced GLT-1 upregulation as well as long-term behavioral recovery in NPC-treated mice. Our results show that NPC transplantation, by modulating the excitatory-inhibitory balance and stroke microenvironment, is a promising therapy to ameliorate disability, to promote tissue recovery and plasticity processes after stroke. SIGNIFICANCE STATEMENT Tissue damage and loss of function occurring after stroke can be constrained by fostering plasticity processes of the brain. Over the past years, stem cell transplantation for repair of the CNS has received increasing interest, although underlying mechanism remain elusive. We here show that neural stem/precursor cell transplantation after ischemic stroke is able to foster axonal rewiring and dendritic plasticity and to induce long-term functional recovery. The observed therapeutic effect of neural precursor cells seems to underlie their capacity to upregulate the glial glutamate transporter on astrocytes through the vascular endothelial growth factor inducing favorable changes in the electrical and molecular stroke microenvironment. Cell-based approaches able to influence plasticity seem particularly suited to favor poststroke recovery.
Collapse
|
21
|
Doeppner TR, Kaltwasser B, Sanchez-Mendoza EH, Caglayan AB, Bähr M, Hermann DM. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways. J Cereb Blood Flow Metab 2017; 37:914-926. [PMID: 27126323 PMCID: PMC5363471 DOI: 10.1177/0271678x16647738] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lithium promotes acute poststroke neuronal survival, which includes mechanisms that are not limited to GSK3β inhibition. However, whether lithium induces long-term neuroprotection and enhanced brain remodeling is unclear. Therefore, mice were exposed to transient middle cerebral artery occlusion and lithium (1 mg/kg bolus followed by 2 mg/kg/day over up to 7 days) was intraperitoneally administered starting 0-9 h after reperfusion onset. Delivery of lithium no later than 6 h reduced infarct volume on day 2 and decreased brain edema, leukocyte infiltration, and microglial activation, as shown by histochemistry and flow cytometry. Lithium-induced neuroprotection persisted throughout the observation period of 56 days and was associated with enhanced neurological recovery. Poststroke angioneurogenesis and axonal plasticity were also enhanced by lithium. On the molecular level, lithium increased miR-124 expression, reduced RE1-silencing transcription factor abundance, and decreased protein deubiquitination in cultivated cortical neurons exposed to oxygen-glucose deprivation and in brains of mice exposed to cerebral ischemia. Notably, this effect was not mimicked by pharmacological GSK3β inhibition. This study for the first time provides efficacy data for lithium in the postacute ischemic phase, reporting a novel mechanism of action, i.e. increased miR-124 expression facilitating REST degradation by which lithium promotes postischemic neuroplasticity and angiogenesis.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany.,2 Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey.,3 Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Britta Kaltwasser
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | | | - Ahmet B Caglayan
- 2 Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Mathias Bähr
- 3 Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Dirk M Hermann
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Wang Y, Ji X, Leak RK, Chen F, Cao G. Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Res Rev 2017; 34:39-50. [PMID: 27876573 PMCID: PMC5250574 DOI: 10.1016/j.arr.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Aging, a complex process associated with various structural, functional and metabolic changes in the brain, is an important risk factor for neurodegenerative diseases and stroke. These diseases share similar neuropathological changes, such as the formation of misfolded proteins, oxidative stress, loss of neurons and synapses, dysfunction of the neurovascular unit (NVU), reduction of self-repair capacity, and motor and/or cognitive deficiencies. In addition to gray matter dysfunction, the plasticity and repair capacity of white matter also decrease with aging and contribute to neurodegenerative diseases. Aging not only renders patients more susceptible to these disorders, but also attenuates their self-repair capabilities. In addition, low drug responsiveness and intolerable side effects are major challenges in the prevention and treatment of senile diseases. Thus, stem cell therapies-characterized by cellular plasticity and the ability to self-renew-may be a promising strategy for aging-related brain disorders. Here, we review the common pathophysiological changes, treatments, and the promises and limitations of stem cell therapies in age-related neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Yuan Wang
- Departments of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Xunming Ji
- Departments of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
23
|
Shiromoto T, Okabe N, Lu F, Maruyama-Nakamura E, Himi N, Narita K, Yagita Y, Kimura K, Miyamoto O. The Role of Endogenous Neurogenesis in Functional Recovery and Motor Map Reorganization Induced by Rehabilitative Therapy after Stroke in Rats. J Stroke Cerebrovasc Dis 2016; 26:260-272. [PMID: 27743923 DOI: 10.1016/j.jstrokecerebrovasdis.2016.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). METHODS Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-β-d-arabinofuranoside (Ara-C). RESULTS Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. CONCLUSIONS After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out.
Collapse
Affiliation(s)
- Takashi Shiromoto
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan; Department of Stroke Medicine, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Naohiko Okabe
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan.
| | - Feng Lu
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Emi Maruyama-Nakamura
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Naoyuki Himi
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Kazuhiko Narita
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Yoshiki Yagita
- Department of Stroke Medicine, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Osamu Miyamoto
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| |
Collapse
|
24
|
Liang J, Wang Y, Liang B. Zhoubo plus uncaria tincture in the treatment of cerebral concussion sequelae. J Phys Ther Sci 2016; 28:2027-30. [PMID: 27512257 PMCID: PMC4968499 DOI: 10.1589/jpts.28.2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/07/2016] [Indexed: 12/03/2022] Open
Abstract
[Purpose] This study investigated the clinical efficacy of the compound gouteng tincture
combined with Zhoubo (GT-ZB) in treating the sequelae of cerebral concussion (CC) in
children. [Subjects and Methods] Sixty children with CC-sequelae were randomily divided
into a treatment group and a control group, with 30 cases in each group. The treatment
group was treated using GT-ZB, and the control group was treated using the standard method
of venoruton, dibazol, and Vitamin B6. The efficacies of the two treatments were compared.
[Results] Compared with the control group, the clinical symptoms and signs in the
treatment group were significantly mitigated. [Conclusion] GT-ZB demonstrated efficacy in
treating the sequelae of CC in children, and it is worthy of further studies and possible
clinical recommendations.
Collapse
Affiliation(s)
- Jianjun Liang
- Department of Physical Therapy, Xuzhou Cancer Hospital, China
| | - Ying Wang
- Department of Pediatrics, Xuzhou Cancer Hospital, China
| | | |
Collapse
|
25
|
Rodríguez-Frutos B, Otero-Ortega L, Gutiérrez-Fernández M, Fuentes B, Ramos-Cejudo J, Díez-Tejedor E. Stem Cell Therapy and Administration Routes After Stroke. Transl Stroke Res 2016; 7:378-87. [PMID: 27384771 DOI: 10.1007/s12975-016-0482-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022]
Abstract
Cell-based therapy has demonstrated safety and efficacy in experimental animal models of stroke, as well as safety in stroke patients. However, various questions remain regarding the therapeutic window, dosage, route of administration, and the most appropriate cell type and source, as well as mechanisms of action and immune-modulation to optimize treatment based on stem cell therapy. Various delivery routes have been used in experimental stroke models, including intracerebral, intraventricular, subarachnoid, intra-arterial, intraperitoneal, intravenous, and intranasal routes. From a clinical point of view, it is necessary to demonstrate which is the most feasible, safest, and most effective for use with stroke patients. Therefore, further experimental studies concerning the safety, efficacy, and mechanisms of action involved in these therapeutic effects are required to determine their optimal clinical use.
Collapse
Affiliation(s)
- Berta Rodríguez-Frutos
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Otero-Ortega
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Blanca Fuentes
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Jaime Ramos-Cejudo
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, Neuroscience Area of IdiPAZ (Health Research Institute), Autonomous University of Madrid, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
26
|
Ren WQ, Yin F, Zhang JN, Lu WS, Liang YK, Adlerberth J, Tian ZM. Neural stem cell transplantation for the treatment of primary torsion dystonia: A case report. Exp Ther Med 2016; 12:661-666. [PMID: 27446258 PMCID: PMC4950735 DOI: 10.3892/etm.2016.3392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
Primary torsion dystonia (PTD) occurs due to a genetic mutation and often advances gradually. Currently, there is no therapy available that is able to inhibit progression. Neural stem cells (NSCs) are being investigated as potential therapies for neurodegenerative diseases, such as stroke and trauma. The present study evaluated the clinical effectiveness of NSC transplantation in an 18-year-old male patient with PTD, to assess the ability of this therapy to inhibit PTD progression. Genetic testing of the patient revealed a mutation in the torsion dystonia-1 (DYT1) gene (907–909 delGAG). NSCs were bilaterally implanted in the globus pallidus of the patient through stereotactic surgery. Prior to surgery, the patient's Burke-Fahn-Marsden dystonia movement score (BFMDMS) was 21, which progressively decreased after surgery to 18, 17, 15 and 13 at 1, 2, 3 and 4 postoperative years, respectively. BFMDMS was improved by 38.1% over the 4 postoperative years. Although computed tomography and magnetic resonance imaging examinations showed no significant changes prior to and following surgery, postoperative brain positron emission tomography scans revealed increased glucose metabolism in the transplanted region. The clinical efficacy of NSC transplantation in this patient suggests its potential for the treatment of DYT1-positive patients with PTD.
Collapse
Affiliation(s)
- Wen-Qing Ren
- Institute of Neurosurgery, The PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Feng Yin
- Institute of Neurosurgery, The PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Jian-Ning Zhang
- Institute of Neurosurgery, The PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Wang-Sheng Lu
- Institute of Neurosurgery, The PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Ying-Kui Liang
- PET Center, The PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Josefin Adlerberth
- Department of Pure and Applied Biochemistry, Lund University, Lund, 22100 Scania, Sweden
| | - Zeng-Min Tian
- Institute of Neurosurgery, The PLA Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
27
|
HU JUNZHENG, GU YANQING, FAN WEIMIN. Rg1 protects rat bone marrow stem cells against hydrogen peroxide-induced cell apoptosis through the PI3K/Akt pathway. Mol Med Rep 2016; 14:406-12. [DOI: 10.3892/mmr.2016.5238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/01/2016] [Indexed: 11/05/2022] Open
|
28
|
Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway. Biomed Pharmacother 2016; 78:257-263. [PMID: 26898450 DOI: 10.1016/j.biopha.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/03/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert potent anti-oxidative activities. In the present study, we aimed to investigate the effects of carvedilol against hydrogen peroxide (H2O2)-induced bone marrow-derived mesenchymal stem cells (BMSCs) death, which imitate the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. Carvedilol significantly reduced H2O2-induced reactive oxygen species production, apoptosis and subsequent cell death. LY294002, the PI3K inhibitor, blocked the protective effects and up-regulation of Akt phosphorylation of carvedilol. Together, our results showed that carvedilol protects H2O2-induced BMSCs cell death partly through PI3K-Akt pathway, suggesting carvedilol could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments.
Collapse
|
29
|
Lu H, Liu X, Zhang N, Zhu X, Liang H, Sun L, Cheng Y. Neuroprotective Effects of Brain-Derived Neurotrophic Factor and Noggin-Modified Bone Mesenchymal Stem Cells in Focal Cerebral Ischemia in Rats. J Stroke Cerebrovasc Dis 2016; 25:410-8. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/09/2015] [Accepted: 10/17/2015] [Indexed: 11/24/2022] Open
|
30
|
Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways. Stem Cells Int 2015; 2016:9394150. [PMID: 27022401 PMCID: PMC4684894 DOI: 10.1155/2016/9394150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/20/2015] [Accepted: 08/02/2015] [Indexed: 01/14/2023] Open
Abstract
Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments.
Collapse
|
31
|
Ottoboni L, De Feo D, Merlini A, Martino G. Commonalities in immune modulation between mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs). Immunol Lett 2015; 168:228-39. [DOI: 10.1016/j.imlet.2015.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
|
32
|
Hosseini SM, Samimi N, Farahmandnia M, Shakibajahromi B, Sarvestani FS, Sani M, Mohamadpour M. The Preventive Effects of Neural Stem Cells and Mesenchymal Stem Cells Intra-ventricular Injection on Brain Stroke in Rats. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 7:390-6. [PMID: 26605202 PMCID: PMC4630731 DOI: 10.4103/1947-2714.166216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Stroke is one of the most important causes of disability in developed countries and, unfortunately, there is no effective treatment for this major problem of central nervous system (CNS); cell therapy may be helpful to recover this disease. In some conditions such as cardiac surgeries and neurosurgeries, there are some possibilities of happening brain stroke. Inflammation of CNS plays an important role in stroke pathogenesis, in addition, apoptosis and neural death could be the other reasons of poor neurological out come after stroke. In this study, we examined the preventive effects of the neural stem cells (NSCs) and mesenchymal stem cells (MSCs) intra-ventricular injected on stroke in rats. Aim: The aim of this study was to investigate the preventive effects of neural and MSCs for stroke in rats. Materials and Methods: The MSCs were isolated by flashing the femurs and tibias of the male rats with appropriate media. The NSCs were isolated from rat embryo ganglion eminence and they cultured NSCs media till the neurospheres formed. Both NSCs and MSCs were labeled with PKH26-GL. One day before stroke, the cells were injected into lateral ventricle stereotactically. Results: During following for 28 days, the neurological scores indicated that there are better recoveries in the groups received stem cells and they had less lesion volume in their brain measured by hematoxylin and eosin staining. Furthermore, the activities of caspase-3 were lower in the stem cell received groups than control group and the florescent microscopy images showed that the stem cells migrated to various zones of the brains. Conclusion: Both NSCs and MSCs are capable of protecting the CNS against ischemia and they may be good ways to prevent brain stroke consequences situations.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Samimi
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Farahmandnia
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benafshe Shakibajahromi
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sabet Sarvestani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Mohamadpour
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Zomer HD, Vidane AS, Gonçalves NN, Ambrósio CE. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:125-34. [PMID: 26451119 PMCID: PMC4592031 DOI: 10.2147/sccaa.s88036] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS) cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Atanásio S Vidane
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Natalia N Gonçalves
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos E Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
34
|
Doeppner TR, Kaltwasser B, Teli MK, Sanchez-Mendoza EH, Kilic E, Bähr M, Hermann DM. Post-stroke transplantation of adult subventricular zone derived neural progenitor cells--A comprehensive analysis of cell delivery routes and their underlying mechanisms. Exp Neurol 2015; 273:45-56. [PMID: 26253224 DOI: 10.1016/j.expneurol.2015.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/06/2015] [Accepted: 07/28/2015] [Indexed: 12/17/2022]
Abstract
With neuroprotective approaches having failed until recently, current focus on experimental stroke research has switched towards manipulation of post-ischemic neuroregeneration. Transplantation of subventricular zone (SVZ) derived neural progenitor cells (NPCs) is a promising strategy for promotion of neurological recovery. Yet, fundamental questions including the optimal cell delivery route still have to be addressed. Consequently, male C57BL6 mice were exposed to transient focal cerebral ischemia and allowed to survive for as long as 84 days post-stroke. At 6h post-stroke, NPCs were grafted using six different cell delivery routes, i.e., intravenous, intraarterial, ipsilateral intrastriatal, contralateral intrastriatal, ipsilateral intraventricular and ipsilateral intracortical injection. Control mice received PBS only using the aforementioned delivery routes. Intralesional numbers of GFP(+) NPCs were high only after ipsilateral intrastriatal transplantation, whereas other injection paradigms only yielded comparatively small numbers of grafted cells. However, acute neuroprotection and improved functional outcome were observed after both systemic (i.e., intraarterial and intravenous) and ipsilateral intrastriatal transplantation only. Whereas systemic cell delivery induced acute and long-term neuroprotection, reduction of brain injury after ipsilateral intrastriatal cell grafting was only temporary, in line with the loss of transplanted NPCs in the brain. Both systemic and ipsilateral intrastriatal NPC delivery reduced microglial activation and leukocyte invasion, thus reducing free radical formation within the ischemic brain. On the contrary, only systemic NPC administration stabilized the blood-brain-barrier and reduced leukocytosis in the blood. Although intraarterial NPC transplantation was as effective as intravenous cell grafting, mortality of stroke mice was high using the intraarterial delivery route. Consequently, intravenous delivery of native NPCs in our experimental model is an attractive and effective strategy for stroke therapy that deserves further proof-of-concept studies.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany; Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey.
| | - Britta Kaltwasser
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Mahesh K Teli
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany; National Institute of Technology Calicut, Calicut, Kerala, India
| | | | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Mathias Bähr
- University of Goettingen Medical School, Department of Neurology, Goettingen, Germany
| | - Dirk M Hermann
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| |
Collapse
|
35
|
Wu Y, Wu J, Ju R, Chen Z, Xu Q. Comparison of intracerebral transplantation effects of different stem cells on rodent stroke models. Cell Biochem Funct 2015; 33:174-82. [PMID: 25914321 PMCID: PMC4687466 DOI: 10.1002/cbf.3083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 12/28/2022]
Abstract
In the present study, induced pluripotent stem cells (iPSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs) and an immortalized cell line (RMNE6), representing different characteristics of stem cells, were transplanted into normal and/or injured brain areas of rodent stroke models, and their effects were compared to select suitable stem cells for cell replacement stroke therapy. The rat and mice ischaemic models were constructed using the middle cerebral artery occlusion technique. Both electrocoagulation of the artery and the intraluminal filament technique were used. The behaviour changes and fates of grafted stem cells were determined mainly by behaviour testing and immunocytochemistry. Following iPSC transplantation into the corpora striata of normal mice, a tumour developed in the brain. The iNSCs survived well and migrated towards the injured area without differentiation. Although there was no tumourigenesis in the brain of normal or ischaemic mice after the iNSCs were transplanted in the cortices, the behaviour in ischaemic mice was not improved. Upon transplanting MSC and RMNE6 cells into ischaemic rat brains, results similar to iNSCs in mice were seen. However, transplantation of RMNE6 caused a brain tumour. Thus, tumourigenesis and indeterminate improvement of behaviour are challenging problems encountered in stem cell therapy for stroke, and the intrinsic characteristics of stem cells should be remodelled before transplantation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yun Wu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Neurobiology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory for Neural Regeneration and Repairing, Capital Medical University, Beijing, China
| | - Jianyu Wu
- Department of Cell Biology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongkai Ju
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Neurobiology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory for Neural Regeneration and Repairing, Capital Medical University, Beijing, China
| | - Zhiguo Chen
- Department of Cell Biology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qunyuan Xu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Center of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Neurobiology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory for Neural Regeneration and Repairing, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Wen Z, Wang P. Recombinant human erythropoietin increases cerebral cortical width index and neurogenesis following ischemic stroke. Neural Regen Res 2015; 7:578-82. [PMID: 25745447 PMCID: PMC4346980 DOI: 10.3969/j.issn.1673-5374.2012.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/18/2012] [Indexed: 12/27/2022] Open
Abstract
The cerebral cortical expansion index refers to the ratio between left and right cortex width and is recognized as an indicator for cortical hyperplasia. Cerebral ischemia was established in CB-17 mice in the present study, and the mice were subsequently treated with recombinant human erythropoietin via subcutaneous injection. Results demonstrated that cerebral cortical width index significantly increased. Immunofluorescence detection showed that the number of nuclear antigen antibody/5-bromodeoxyuridine-positive cells at the infarction edge significantly increased. Correlation analysis revealed a negative correlation between neurological scores and cortical width indices in rats following ischemic stroke. These experimental findings suggested that recombinant human erythropoietin promoted cerebral cortical hyperplasia, increased cortical neurogenesis, and enhanced functional recovery following ischemic stroke.
Collapse
Affiliation(s)
- Zhongmin Wen
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Peiji Wang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| |
Collapse
|
37
|
Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther 2015; 21:337-47. [PMID: 25676164 DOI: 10.1111/cns.12386] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell-based therapy for ischemic stroke has been widely explored in animal models and provides strong evidence of benefits. In this review, we summarize the types of stem cells, various delivery routes, and tracking tools for stem cell therapy of ischemic stroke. MSCs, EPCs, and NSCs are the most explored cell types for ischemic stroke treatment. Although the mechanisms of stem cell-based therapies are not fully understood, the most possible functions of the transplanted cells are releasing growth factors and regulating microenvironment through paracrine mechanism. Clinical application of stem cell-based therapy is still in its infancy. The next decade of stem cell research in stroke field needs to focus on combining different stem cells and different imaging modalities to fully explore the potential of this therapeutic avenue: from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Yao-Hui Tang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
38
|
Nam H, Lee KH, Nam DH, Joo KM. Adult human neural stem cell therapeutics: Current developmental status and prospect. World J Stem Cells 2015; 7:126-136. [PMID: 25621112 PMCID: PMC4300923 DOI: 10.4252/wjsc.v7.i1.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.
Collapse
|
39
|
Chang KA, Lee JH, Suh YH. Therapeutic potential of human adipose-derived stem cells in neurological disorders. J Pharmacol Sci 2014; 126:293-301. [PMID: 25409785 DOI: 10.1254/jphs.14r10cp] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Stem cell therapy has been noted as a novel strategy to various diseases including neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and Huntington's disease that have no effective treatment available to date. The adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency with the ability to differentiate into various types of cells and immuno-modulatory property. These biological features make ASCs a promising source for regenerative cell therapy in neurological disorders. Here we discuss the recent progress of regenerative therapies in various neurological disorders utilizing ASCs.
Collapse
Affiliation(s)
- Keun-A Chang
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, Gachon University, Korea
| | | | | |
Collapse
|
40
|
Doeppner TR, Hermann DM. Stem cell-based treatments against stroke: observations from human proof-of-concept studies and considerations regarding clinical applicability. Front Cell Neurosci 2014; 8:357. [PMID: 25400548 PMCID: PMC4212679 DOI: 10.3389/fncel.2014.00357] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/12/2014] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke remains a heavy burden for industrialized countries. The only causal therapy is the recanalization of occluded vessels via thrombolysis, which due to a narrow time window still can be offered only to a minority of patients. Since the majority of patients continues to exhibit neurological deficits even following successful thrombolysis, restorative therapies are urgently needed that promote brain remodeling and repair once stroke injury has occurred. Due to their unique properties of action, stem cell-based strategies gained increasing interest during recent years. Using various stroke models in both rodents and primates, the transplantation of stem cells, namely of bone marrow derived mesenchymal stem cells (MSCs) or neural progenitor cells (NPCs), has been shown to promote neurological recovery most likely via indirect bystander actions. In view of promising observations, clinical proof-of-concept studies are currently under way, in which effects of stem and precursor cells are evaluated in human stroke patients. In this review we summarize already published studies, which due to the broad experience in other medical contexts mostly employed bone marrow-derived MSCs by means of intravenous transplantation. With the overall number of clinical trials limited in number, only a fraction of these studies used non-treated control groups, and only single studies were adequately blinded. Despite these limitations, first promising results justify the need for more elaborate clinical trials in order to make stem cell transplantation a success for stroke treatment in the future.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| |
Collapse
|
41
|
Doeppner TR, Kaltwasser B, Bähr M, Hermann DM. Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests. Front Cell Neurosci 2014; 8:338. [PMID: 25374509 PMCID: PMC4205824 DOI: 10.3389/fncel.2014.00338] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/02/2014] [Indexed: 11/16/2022] Open
Abstract
Systemic transplantation of neural progenitor cells (NPCs) in rodents reduces functional impairment after cerebral ischemia. In light of upcoming stroke trials regarding safety and feasibility of NPC transplantation, experimental studies have to successfully analyze the extent of NPC-induced neurorestoration on the functional level. However, appropriate behavioral tests for analysis of post-stroke motor coordination deficits and cognitive impairment after NPC grafting are not fully established. We therefore exposed male C57BL6 mice to either 45 min (mild) or 90 min (severe) of cerebral ischemia, using the thread occlusion model followed by intravenous injection of PBS or NPCs 6 h post-stroke with an observation period of three months. Post-stroke motor coordination was assessed by means of the rota rod, tight rope, corner turn, inclined plane, grip strength, foot fault, adhesive removal, pole test and balance beam test, whereas cognitive impairment was analyzed using the water maze, the open field and the passive avoidance test. Significant motor coordination differences after both mild and severe cerebral ischemia in favor of NPC-treated mice were observed for each motor coordination test except for the inclined plane and the grip strength test, which only showed significant differences after severe cerebral ischemia. Cognitive impairment after mild cerebral ischemia was successfully assessed using the water maze test, the open field and the passive avoidance test. On the contrary, the water maze test was not suitable in the severe cerebral ischemia paradigm, as it too much depends on motor coordination capabilities of test mice. In terms of both reliability and cost-effectiveness considerations, we thus recommend the corner turn, foot fault, balance beam, and open field test, which do not depend on durations of cerebral ischemia.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University of Goettingen Medical School Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| |
Collapse
|
42
|
Effects of acute versus post-acute systemic delivery of neural progenitor cells on neurological recovery and brain remodeling after focal cerebral ischemia in mice. Cell Death Dis 2014; 5:e1386. [PMID: 25144721 PMCID: PMC4454329 DOI: 10.1038/cddis.2014.359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
Abstract
Intravenous transplantation of neural progenitor cells (NPCs) induces functional recovery after stroke, albeit grafted cells are not integrated into residing neural networks. However, a systematic analysis of intravenous NPC delivery at acute and post-acute time points and their long-term consequences does not exist. Male C57BL6 mice were exposed to cerebral ischemia, and NPCs were intravenously grafted on day 0, on day 1 or on day 28. Animals were allowed to survive for up to 84 days. Mice and tissues were used for immunohistochemical analysis, flow cytometry, ELISA and behavioral tests. Density of grafted NPCs within the ischemic hemisphere was increased when cells were transplanted on day 28 as compared with transplantation on days 0 or 1. Likewise, transplantation on day 28 yielded enhanced neuronal differentiation rates of grafted cells. Post-ischemic brain injury, however, was only reduced when NPCs were grafted at acute time points. On the contrary, reduced post-ischemic functional deficits due to NPC delivery were independent of transplantation paradigms. NPC-induced neuroprotection after acute cell delivery was due to stabilization of the blood–brain barrier (BBB), reduction in microglial activation and modulation of both peripheral and central immune responses. On the other hand, post-acute NPC transplantation stimulated post-ischemic regeneration via enhanced angioneurogenesis and increased axonal plasticity. Acute NPC delivery yields long-term neuroprotection via enhanced BBB integrity and modulation of post-ischemic immune responses, whereas post-acute NPC delivery increases post-ischemic angioneurogenesis and axonal plasticity. Post-ischemic functional recovery, however, is independent of NPC delivery timing, which offers a broad therapeutic time window for stroke treatment.
Collapse
|
43
|
Jiang W, Liang G, Li X, Li Z, Gao X, Feng S, Wang X, Liu M, Liu Y. Intracarotid transplantation of autologous adipose-derived mesenchymal stem cells significantly improves neurological deficits in rats after MCAo. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1357-1366. [PMID: 24469290 DOI: 10.1007/s10856-014-5157-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/12/2014] [Indexed: 06/03/2023]
Abstract
We aimed to evaluate whether adipose-derived mesenchymal stem cells (ADMSCs) that were transplanted via internal carotid can improve the neurological function after acute ischemic stroke and explore the underlying mechanisms. Total 40 adult Sprague-Dawley rats were subjected to transient (1.5 h) middle cerebral artery occlusion (MCAo) to induce ischemia/reperfusion injury. These rats were randomly divided into two groups with 20 ones in each group, which were intracarotid-injected with autologous ADMSCs (2.0 × 10(6)) and saline (control) at day 3 after MCAo, respectively. Behavioral tests (adhesive-removal and modified neurological severity score) were performed before and after MCAo. Histology was used to evaluate the ischemia lesion volume and pathological changes. The apoptosis and astroglial reactivity were determined by TUNEL and glial fibrillary acidic protein (GFAP) staining, respectively. Besides, we applied immunofluorescence to identify the distribution of ADMSCs and the neural makers (NeuN and GFAP) expressed by them under confocal microscope. Significant improvement of neurological deficits was observed in rats transplanted with ADMSCs when compared to controls. But there was no obvious difference on ischemia lesion volume between these two groups. The injected ADMSCs migrated to the brain infarct region and mainly localized in the ischemic core and boundary zone of the lesion, which can express NeuN and GFAP in the brain. In addition, autologous transplantation of ADMSCs significantly attenuated astroglial reactivity, inhibited cellular apoptosis and promoted cellular proliferation. Our data indicated that intracarotid transplantation of autologous ADMSCs had the potential therapeutic application for ischemic stroke.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurosurgery, The General Hospital of Shenyang Military Region, No. 83 Wenhua Road, Shenyang, 110840, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pluchino S, Peruzzotti-Jametti L. Rewiring the ischaemic brain with human-induced pluripotent stem cell-derived cortical neurons. ACTA ACUST UNITED AC 2014; 136:3525-7. [PMID: 24335051 DOI: 10.1093/brain/awt330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Stefano Pluchino
- John van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, UK
| | | |
Collapse
|
45
|
Yang Z, Chen P, Yu H, Luo W, Pi M, Wu Y, Wang L, Yang F, Gou Y. Combinatorial effects of conception and governor vessel electroacupuncture and human umbilical cord blood-derived mesenchymal stem cells on pathomorphologic lesion and cellular apoptosis in rats with cerebral ischemia/reperfusion. J TRADIT CHIN MED 2013; 33:779-86. [DOI: 10.1016/s0254-6272(14)60012-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Liang Y, Ågren L, Lyczek A, Walczak P, Bulte JW. Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bFGF under doxycycline control. Exp Neurol 2013; 247:73-9. [PMID: 23570903 PMCID: PMC3742733 DOI: 10.1016/j.expneurol.2013.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 01/08/2023]
Abstract
Cell-based therapy of neurological disorders is hampered by poor survival of grafted neural progenitor cells (NPCs). We hypothesized that it is possible to enhance the survival of human NPCs (ReNcells) by co-transplantation of helper cells expressing basic fibroblast growth factor (bFGF) under control of doxycycline (Dox). 293 cells or C17.2 cells were transduced with a lentiviral vector encoding the fluorescent reporter mCherry and bFGF under tetracycline-regulated transgene expression (Tet-ON). The bFGF secretion level in the engineered helper cells was positively correlated with the dose of Dox (Pearson correlation test; r=0.95 and 0.99 for 293 and C17.2 cells, respectively). Using bioluminescence imaging (BLI) as readout for firefly luciferase-transduced NPC survival, the addition of both 293-bFGF and C17.2-bFGF helper cells was found to significantly improve cell survival up to 6-fold in vitro, while wild-type (WT, non-transduced) helper cells had no effect. Following co-transplantation of 293-bFGF or C17.2-bFGF cells in the striatum of Rag2(-/-) immunodeficient mice, in vivo human NPC survival could be significantly improved as compared to no helper cells or co-transplantation of WT cells for the first two days after co-transplantation. This enhancement of survival in C17.2-bFGF group was not achieved without Dox administration, indicating that the neuroprotective effect was specific for bFGF. The present results warrant further studies on the use of engineered helper cells, including those expressing other growth factors injected as mixed cell populations.
Collapse
Affiliation(s)
- Yajie Liang
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Louise Ågren
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Agatha Lyczek
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Piotr Walczak
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeff W.M. Bulte
- Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Dept. of Chemical &Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Dept. of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Dept. of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Pluchino S, Cossetti C. How stem cells speak with host immune cells in inflammatory brain diseases. Glia 2013; 61:1379-401. [PMID: 23633288 DOI: 10.1002/glia.22500] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases.
Collapse
Affiliation(s)
- Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Cambridge Centre for Brain Repair and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom.
| | | |
Collapse
|
48
|
Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials. Exp Neurol 2013; 260:19-32. [PMID: 23507035 DOI: 10.1016/j.expneurol.2013.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022]
Abstract
Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuro-immune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines.
Collapse
|
49
|
Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdán S, Díez-Tejedor E. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther 2013; 4:11. [PMID: 23356495 PMCID: PMC3706777 DOI: 10.1186/scrt159] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Stem cell therapy can promote good recovery from stroke. Several studies have demonstrated that mesenchymal stem cells (MSC) are safe and effective. However, more information regarding appropriate cell type is needed from animal model. This study was targeted at analyzing the effects in ischemic stroke of acute intravenous (i.v.) administration of allogenic bone marrow- (BM-MSC) and adipose-derived-stem cells (AD-MSC) on functional evaluation results and brain repair markers. METHODS Allogenic MSC (2 × 106 cells) were administered intravenously 30 minutes after permanent middle cerebral artery occlusion (pMCAO) to rats. Infarct volume and cell migration and implantation were analyzed by magnetic resonance imaging (MRI) and immunohistochemistry. Function was evaluated by the Rogers and rotarod tests, and cell proliferation and cell-death were also determined. Brain repair markers were analyzed by confocal microscopy and confirmed by western blot. RESULTS Compared to infarct group, function had significantly improved at 24 h and continued at 14 d after i.v. administration of either BM-MSC or AD-MSC. No reduction in infarct volume or any migration/implantation of cells into the damaged brain were observed. Nevertheless, cell death was reduced and cellular proliferation significantly increased in both treatment groups with respect to the infarct group. At 14 d after MSC administration vascular endothelial growth factor (VEGF), synaptophysin (SYP), oligodendrocyte (Olig-2) and neurofilament (NF) levels were significantly increased while those of glial fiibrillary acid protein (GFAP) were decreased. CONCLUSIONS i.v. administration of allogenic MSC - whether BM-MSC or AD-MSC, in pMCAO infarct was associated with good functional recovery, and reductions in cell death as well as increases in cellular proliferation, neurogenesis, oligodendrogenesis, synaptogenesis and angiogenesis markers at 14 days post-infarct.
Collapse
|
50
|
Treatment Efficacy with Bone Marrow Derived Mesenchymal Stem Cells and Minocycline in Rats After Cerebral Ischemic Injury. Stem Cell Rev Rep 2012; 9:219-25. [DOI: 10.1007/s12015-012-9422-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|