1
|
Kumar K, Aggarwal S, Kandpal A, Kaur R, Jaggi AS, Yadav HN, Singh D, Chopra D, Singh N. Unraveling the role of brain renin angiotensin system in vascular dementia: mechanisms and therapeutic perspectives. Exp Brain Res 2025; 243:130. [PMID: 40285869 DOI: 10.1007/s00221-025-07072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Dementia is a heterogeneous syndrome characterized by the progressive deterioration of various brain functions, severely impacting cognitive, emotional, and social abilities. According to a World Health Organization (WHO) report, dementia represents a pressing global health concern, with the number of affected individuals projected to triple by 2050. Among its various subtypes, vascular dementia (VD) stands as the second most common form, following Alzheimer's disease (AD). Despite ongoing efforts in drug development, no pharmaceutical entity has yet received approval from the U.S. Food and Drug Administration (FDA) for the treatment of VD. Emerging evidence underscores the critical involvement of the brain's Renin-Angiotensin System (RAS) in the pathogenesis of multiple neurodegenerative disorders, including VD. The intricate roles of RAS components include regulating vascular tone, neuronal growth and survival, regulating cerebral blood flow and endothelial dysfunction, increasing neuroinflammation (by increasing release of IL-1, IL-6, TNF-α, microglial activation), oxidative stress and destruction of BBB integrity, mainly through Angiotensin II type 1 (AT1) and type 2 (AT2) receptors, are of significant interest in the pathophysiology of VD. However, disruptions in these signaling pathways are believed to contribute substantially to the progression of VD. This review addresses the limitations of current therapeutic approaches for VD while emphasizing the untapped potential of RAS-targeted interventions. We systematically explore the neurophysiological mechanisms of brain RAS, their role in promoting neuronal health, and the factors that compromise these pathways, ultimately leading to cognitive decline. By elucidating these mechanisms and challenges, the review offers novel insights into designing innovative RAS-based therapeutic strategies, paving the way for effective clinical management of VD. This work aspires to stimulate further research and development in this underexplored yet promising domain.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Sonal Aggarwal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Ayush Kandpal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Amteshwar S Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
2
|
Mostafa M, Disouky A, Lazarov O. Therapeutic modulation of neurogenesis to improve hippocampal plasticity and cognition in aging and Alzheimer's disease. Neurotherapeutics 2025; 22:e00580. [PMID: 40180804 DOI: 10.1016/j.neurot.2025.e00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss and cognitive decline. The hippocampal formation is the most vulnerable brain area in Alzheimer's disease. Neurons in layer II of the entorhinal cortex and the CA1 region of the hippocampus are lost at early stages of the disease. A unique feature of the hippocampus is the formation of new neurons that incorporate in the dentate gyrus of the hippocampus. New neurons form synapses with neurons in layer II of the entorhinal cortex and with the CA3 region. Immature and new neurons are characterized by high level of plasticity. They play important roles in learning and memory. Hippocampal neurogenesis is impaired early in mouse models of Alzheimer's disease and in human patients. In fact, neurogenesis is compromised in mild cognitive impairment (MCI), suggesting that rescuing neurogenesis may restore hippocampal plasticity and attenuate neuronal vulnerability and memory loss. This review will discuss the current understanding of therapies that target neurogenesis or modulate it, for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mostafa Mostafa
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ahmed Disouky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
dos Santos Ono RM, dos Santos Moreira NC, Carvalho I, Passos GA, Sakamoto-Hojo ET. Novel donepezil-tacrine hybrid (TAHB3) induces neurodifferentiation, neuroprotective effects, and activates the PI3K/AKT pathway on PC12 cells. J Alzheimers Dis Rep 2025; 9:25424823241309268. [PMID: 40034521 PMCID: PMC11864261 DOI: 10.1177/25424823241309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by the impairment of cognitive functions and neuronal loss. AD has no cure; current treatments like acetylcholinesterase inhibitors (AChEI) alleviate symptoms but do not halt disease progression. Objective We aimed to evaluate the effects and mechanisms of two novel AChEI hybrid compounds (TAHB3 and TA8Amino), regarding cytotoxicity, neuroprotection and neurodifferentiation in PC12 cells. Methods The effects of TAHB3 and TA8Amino on neurodifferentiation were analyzed on PC12 cells which were treated with AChEI compounds for seven days, following morphological, and quantitative analyses to calculate the differentiation percentages, neurite length, and protein expression. Regarding cytotoxicity and neuroprotection assays, PC12 cells were differentiated into mature neurons, then treated with TAHB3 or TA8Amino, following a posttreatment with H2O2 (an inducer of oxidative damage); the analyses were performed using the XTT assay and flow cytometry. Results The hybrid compound TAHB3 induced differentiation of PC12 cells, but TA8Amino did not cause the same effect. Both compounds did not show cytotoxic effects to PC12 cells and did not change the cell cycle progression, nor induce cell death. Only TAHB3 showed neuroprotective potential against induced-oxidative damage, and TAHB3 increased the levels of p-AKT, suggesting its action through the activation of the PI3K/AKT pathway. Conclusions Our results showed that TAHB3 can induce neurodifferentiation, besides a neuroprotective activity, indicating the potential of AChEI hybrid compounds as novel candidates to be explored for the establishment of novel therapeutic strategies for patients with AD.
Collapse
Affiliation(s)
| | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo-USP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo-USP, Brazil
| |
Collapse
|
4
|
Rawat K, Tewari D, Bisht A, Chandra S, Tiruneh YK, Hassan HM, Al-Emam A, Sindi ER, Al-Dies AAM. Identification of AChE targeted therapeutic compounds for Alzheimer's disease: an in-silico study with DFT integration. Sci Rep 2024; 14:30356. [PMID: 39638823 PMCID: PMC11621528 DOI: 10.1038/s41598-024-81285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by cognitive deterioration and changes in behavior. Acetylcholinesterase (AChE), which hydrolyzes acetylcholine, is a key drug target for treating AD. This research aimed to identify new AChE inhibitors using the IMPPAT database. We used known drugs as a basis to search for similar chemicals in the IMPPAT database and created a library of 127 plant-based compounds. Initial screening of these compounds was performed using molecular docking, followed by an analysis of their drug-likeness and ADMET properties. Compounds with favorable properties underwent density functional theory (DFT) calculations to assess their electronic properties such as HOMO-LUMO gap, electron density, and molecular orbital distribution. These descriptors provided insights into each compound's reactivity, stability, and binding potential with AChE. Promising candidates were further evaluated through molecular dynamics (MD) simulations over 100 ns and MMPBSA analysis for the last 30 ns. Two compounds, Biflavanone (IMPHY013027) with a binding free energy of - 130.394 kcal/mol and Calomelanol J (IMPHY007737) with - 107.908 kcal/mol, demonstrated strong binding affinities compared to the reference molecule HOR, which has a binding free energy of - 105.132 kcal/mol. These compounds exhibited promising drug-ability profiles in both molecular docking and MD simulations, indicating their potential as novel AChE inhibitors for AD treatment. However, further experimental validation is necessary to verify their effectiveness and safety.
Collapse
Affiliation(s)
- Kalpana Rawat
- Computational Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Disha Tewari
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Amisha Bisht
- Department of Botany, Soban Singh Jeena University, Pt. Badridutt Pandey Campus Bageshwar, Almora, Uttarakhand, 263601, India
| | - Subhash Chandra
- Computational Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India.
| | - Yewulsew Kebede Tiruneh
- Department of Biology, Biomedical Sciences stream, Bahir Dar University, P.O.Box=79, Bahir, Ethiopia.
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, 61421, Asir, Saudi Arabia
- Department of pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, 61421, Asir, Saudi Arabia
| | - Emad Rashad Sindi
- Division of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, 23890, Jeddah, Saudi Arabia
| | - Al-Anood M Al-Dies
- Chemistry Department, Umm Al-Qura University, Al-Qunfudah University College, Mecca, Saudi Arabia
| |
Collapse
|
5
|
Wu CC, Lee YK, Tsai JK, Su YT, Ho YC, Chu TH, Chen KT, Chang CL, Chen JS. Cholinesterase Inhibitor Reveals Synergistic Potential for Neural Stem Cell-Based Therapy in the 5xFAD Mouse Model of Alzheimer's Disease. Biologics 2024; 18:363-375. [PMID: 39649074 PMCID: PMC11625195 DOI: 10.2147/btt.s489683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Background and Objectives Stem cell therapy shows great promise for treating Alzheimer's disease (AD). Cholinesterase inhibitors (ChEIs) like donepezil are well-established for alleviating AD symptoms. This study aimed to determine if combining ChEI treatment with stem cell therapy could improve therapeutic outcomes. Methods Neural stem cells (NSCs) were injected into the hippocampus of the 5xFAD AD mice using a stereotactic technique. Following this, donepezil or a placebo was administered for one month. We assessed behavioral improvements, survival and health of the grafts, and changes in synaptic density. Results The AD mice demonstrated cognitive impairment in both the Morris water maze and novel object recognition tests. In groups receiving stem cell therapy, donepezil enhanced the survival and neuronal differentiation of grafted NSCs, promoting the establishment of synaptic connections with the host brain. The combined treatment with donepezil and NSC transplantation more effectively increased synaptic density and improved behavioral performance in AD mice compared to NSC transplantation alone. Conclusion Combining ChEIs with NSC transplantation produces synergistic effects in AD treatment. This approach highlights the potential of integrating these therapies to develop more effective strategies for managing Alzheimer's disease.
Collapse
Affiliation(s)
- Cheng-Chun Wu
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Jui-Kang Tsai
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Kuang-Ti Chen
- School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
- Department of Veterinary Medicine, Nation Chung-Hsing University, Taichung City, Taiwan
| | - Chen-Lin Chang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Jui-Shen Chen
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
6
|
Wang H, Liu Y, Cui M, Guo Z, Zhao Y, Yang J, Wu C. Pseudoginsenoside-F11 reduces cognitive impairment and white matter injury in vascular dementia by alleviating autophagy-lysosomal pathway deficiency. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155883. [PMID: 39059268 DOI: 10.1016/j.phymed.2024.155883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Vascular dementia (VaD) resulting from chronic cerebral hypoperfusion (CCH) induces cognitive impairment and white matter injury (WMI). We previously found that CCH induces dysfunction of the autophagy-lysosomal pathway (ALP) in white matter (WM) of rats. Enhancing oligodendrocyte autophagy to counteract ALP deficiency is beneficial for cognitive recovery. Pseudogenoside-F11 (PF11), a saponin extracted from Panax quinquefolium l., provides neuroprotective benefits in many animal models of cerebral ischemia and dementia. PURPOSE To investigate how PF11 affects cognitive deterioration in rats with VaD induced by two vessel occlusion (2VO), and to determine if PF11 regulates ALP dysfunction in WM. METHODS CCH-related VaD was induced in rats using the 2VO method. PF11 (6, 12, 24 mg/kg, intragastric administration) was given continuously for 4 weeks postoperatively. Behavioral tests related to cognitive function were performed on the 28th day following 2VO. Transmission electron microscopy, immunofluorescence, western blotting and Luxol fast blue staining were used to assess the WMI and the mechanism of action of PF11 in 2VO-induced VaD. RESULTS PF11 (12 mg/kg) ameliorated 2VO-induced cognitive impairment. PF11 also alleviated WMI on the 28th day following 2VO, as characterized by reduction of neuronal axonal demyelination and axonal loss. Furthermore, PF11 prevented mature oligodendrocytes death by attenuating ALP deficiency in WM on the 14th day following 2VO, as manifested by enhancement of mechanistic target of rapamycin-mediated autophagy and lysosomal function, thereby reducing the aberrant accumulation of autophagy substrates and increasing the level of autophagosomes in WM. In addition, PF11 also prevented microglia and astrocytes from activating in WM on the 28th day following 2VO. CONCLUSION PF11 significantly ameliorates cognitive impairment and WMI, and the mechanism is at least partly related to lessening ALP dysfunction in WM by enhancing autophagy and reducing lysosomal defects in oligodendrocytes.
Collapse
Affiliation(s)
- Huiyang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Minghui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhenkun Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yang Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
7
|
Chang Z, Hu Y, Liang X, Miao L, Chi X, Wang X, Chen H, Liu H, Liu L, Zhang Y, Han Z. Exploring the causal role of immune cells in vascular dementia: A bidirectional mendelian randomization study. J Neuroimmunol 2024; 394:578409. [PMID: 39088909 DOI: 10.1016/j.jneuroim.2024.578409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND The aim of this study was to explore the causal association between immune cells and VaD based on a two-sample bidirectional Mendelian randomization study. METHODS Bidirectional two-sample MR analyses based on pooled datasets from publicly available genome-wide association studies were performed using inverse variance weighted (IVW), weighted median (WE), and MR-Egger regressions to evaluate the causal relationships between immune cells and vascular dementia. Heterogeneity was assessed using Cochran's Q statistic. The reliability of the MR analysis results was verified by using the MR-PRESSO method for outlier detection, the MR-Egger method for horizontal multivariate analysis, and the leave-one-out method for sensitivity analysis. RESULTS Specifically, 27 immunophenotypes were associated with VaD pathogenesis, including Sw mem %lymphocyte (P = 0.043), CD38 on CD20- (P = 0.039), CD11c+ monocyte AC (P = 0.024), DC AC (P = 0.002), CCR2 on CD62L+ myeloid DC (P = 0.039), Resting Treg %CD4 (P = 0.042), Activated & resting Treg %CD4+ (P = 0.038), CD28+ CD45RA- CD8br %CD8br (P = 0.047), NK %CD3- lymphocyte (P = 0.042), CD45 on B cell (P = 0.029), FSC-A on NKT (P = 0.033), CD45 on CD33br HLA DR+ CD14- (P = 0.039) were significantly correlated with increased VaD risk. Additionally, four immune phenotypes, namely, CD19 on CD20-, Resting Treg %CD4, Activated & resting Treg %CD4+, and CD11c+ monocyte AC, showed bidirectional effects on VaD. CONCLUSIONS MR analysis revealed potential causal relationships between certain immune cells and VaD. Our preliminary exploration through immune cell infiltration analysis highlights the significant value of immune cells in VaD. Therefore, this study may provide a new perspective for the prevention and treatment of VaD.
Collapse
Affiliation(s)
- Ze Chang
- Xiyuan Hospital of China Academy of Traditional Chinese Medicine, Beijing 100091, China
| | - Yuli Hu
- Zhejiang Provincial People's Hospital, 310006 Hangzhou, China
| | - Xiao Liang
- Xiyuan Hospital of China Academy of Traditional Chinese Medicine, Beijing 100091, China
| | - Lina Miao
- Xiyuan Hospital of China Academy of Traditional Chinese Medicine, Beijing 100091, China
| | - Xiansu Chi
- Xiyuan Hospital of China Academy of Traditional Chinese Medicine, Beijing 100091, China
| | - Xie Wang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Hong Chen
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Hongxi Liu
- Xiyuan Hospital of China Academy of Traditional Chinese Medicine, Beijing 100091, China
| | - Longtao Liu
- Xiyuan Hospital of China Academy of Traditional Chinese Medicine, Beijing 100091, China
| | - Yunling Zhang
- Xiyuan Hospital of China Academy of Traditional Chinese Medicine, Beijing 100091, China.
| | - Zhenyun Han
- Shenzhen Hospital of Beijing University of Chinese Medicine, Shenzhen 518000, Guangdong, China.
| |
Collapse
|
8
|
Dhaliwal N, Dhaliwal J, Chopra K. 7, 8-dihydroxyflavone Ameliorates Cholinergic Dysfunction, Inflammation, Oxidative Stress, and Apoptosis in a Rat Model of Vascular Dementia. Neurochem Res 2024; 49:1137-1149. [PMID: 38300457 DOI: 10.1007/s11064-023-04090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Vascular dementia (VD) is a degenerative cerebrovascular disorder associated with progressive cognitive decline. Previous reports have shown that 7,8-dihydroxyflavone (7,8-DHF), a well-known TrkB agonist, effectively ameliorates cognitive deficits in several disease models. Therefore, this study investigated the protective effects of 7,8-DHF against 2-VO-induced VD. VD was established in rats using the permanent bilateral carotid arteries occlusion (two-vessel occlusion, 2-VO) model. 7,8-DHF (5, 10, and 20 mg/kg) and Donepezil (10 mg/kg) were administered for 4 weeks. Memory function was assessed by the novel objective recognition task (NOR) and Morris water maze (MWM) tests. Inflammatory (TNF-α, IL-1β, and NF-kβ), oxidative stress, and apoptotic (BAX, BCL-2, caspase-3) markers, along with the activity of choline acetylcholinesterase (AChE) was assessed. p-AKT, p-CREB, BDNF, and neurotransmitter (NT) (GLU, GABA, and ACh) levels were also analyzed in the hippocampus of 2-VO rats. Our results show that 7,8-DHF effectively improved memory performance and cholinergic dysfunction in 2-VO model rats. Furthermore, 7,8-DHF treatment also increased p-AKT, p-CREB, and BDNF levels, suppressed oxidative, inflammatory, and apoptotic markers, and restored altered NT levels in the hippocampus. These findings imply that 7, 8-DHF may act via multiple mechanisms and as such serve as a promising neuroprotective agent in the context of VD.
Collapse
Affiliation(s)
- Navneet Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
- Pharmacology Research Laboratory, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
9
|
Liu R, Li L, Wang Z, Zhu J, Ji Y. Acetylated Histone Modifications: Intersection of Diabetes and Atherosclerosis. J Cardiovasc Pharmacol 2024; 83:207-219. [PMID: 37989137 DOI: 10.1097/fjc.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT Worldwide, type 2 diabetes is predominant form of diabetes, and it is mainly affected by the environment. Furthermore, the offspring of patients with type 2 diabetes and metabolic disorder syndrome may have a higher risk of diabetes and cardiovascular disease, which indicates that the environmental impact on diabetes prevalence can be transmitted across generations. In the process of diabetes onset and intergenerational transmission, the genetic structure of the individual is not directly changed but is regulated by epigenetics. In this process, genes or histones are modified, resulting in selective expression of proteins. This modification will affect not only the onset of diabetes but also the related onset of atherosclerosis. Acetylation and deacetylation may be important regulatory factors for the above lesions. Therefore, in this review, based on the whole process of atherosclerosis evolution, we explored the possible existence of acetylation/deacetylation caused by diabetes. However, because of the lack of atherosclerosis-related acetylation studies directly based on diabetic models, we also used a small number of experiments involving nondiabetic models of related molecular mechanisms.
Collapse
Affiliation(s)
| | | | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; and
| | - Jie Zhu
- Department of Cardiology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu' an People's Hospital, Lu'an, China
| | | |
Collapse
|
10
|
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. Pentoxifylline as Add-On Treatment to Donepezil in Copper Sulphate-Induced Alzheimer's Disease-Like Neurodegeneration in Rats. Neurotox Res 2023; 41:546-558. [PMID: 37821782 PMCID: PMC10682165 DOI: 10.1007/s12640-023-00672-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by behavioral, cognitive, and progressive memory impairments. Extensive neuronal loss, extracellular accumulation of insoluble senile amyloid-β (Aβ) plaques, and intracellular neurofibrillary tangles (NFTs) are the major pathological features. The present study aimed to investigate the therapeutic effect of donepezil (DON) and pentoxifylline (PTX) in combination to combat the neurodegenerative disorders (experimental AD) induced by CuSO4 intake in experimental rats. Thirty adult male Wistar rats (140-160 g) were used in this study. AD was first induced in rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. The AD group received no further treatment. Oral treatment with DON (10 mg/kg/day), PTX (100 mg/kg/day), or DON + PTX for the other three groups was started from the 10th week of CuSO4 intake for 4 weeks. Cortex markers like acetylcholine (ACh), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) and hippocampus markers like β-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), Clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 were measured. The histopathology studies were done by using hematoxylin and eosin and Congo red stains as well as immunohistochemistry for neurofilament. CuSO4 induced adverse histological and biochemical changes. The histological injury in the hippocampus was inhibited following the administration of the DON and PTX. The brain tissue levels of AChE, MDA, BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α were significantly increased, while brain tissue levels of ACh, TAC, and Bcl-2 were significantly decreased in CuSO4-treated rats as compared with the untreated control group. The effects induced by either DON or PTX on most studied parameters were comparable. Combined treatment of DON and PTX induced remarkable results compared with their individual use. However, more clinical and preclinical studies are still required to further confirm and prove the long-term efficacy of such combination.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed Mahrous
- Department of Biochemistry, Faculty of Pharmacy, Port-Said University, Port-Said, 42526, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
11
|
Karoglu-Eravsar ET, Tuz-Sasik MU, Karaduman A, Keskus AG, Arslan-Ergul A, Konu O, Kafaligonul H, Adams MM. Long-Term Acetylcholinesterase Depletion Alters the Levels of Key Synaptic Proteins while Maintaining Neuronal Markers in the Aging Zebrafish (Danio rerio) Brain. Gerontology 2023; 69:1424-1436. [PMID: 37793352 PMCID: PMC10711754 DOI: 10.1159/000534343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Interventions targeting cholinergic neurotransmission like acetylcholinesterase (AChE) inhibition distinguish potential mechanisms to delay age-related impairments and attenuate deficits related to neurodegenerative diseases. However, the chronic effects of these interventions are not well described. METHODS In the current study, global levels of cholinergic, cellular, synaptic, and inflammation-mediating proteins were assessed within the context of aging and chronic reduction of AChE activity. Long-term depletion of AChE activity was induced by using a mutant zebrafish line, and they were compared with the wildtype group at young and old ages. RESULTS Results demonstrated that AChE activity was lower in both young and old mutants, and this decrease coincided with a reduction in ACh content. Additionally, an overall age-related reduction in AChE activity and the AChE/ACh ratio was observed, and this decline was more prominent in wildtype groups. The levels of an immature neuronal marker were upregulated in mutants, while a glial marker showed an overall reduction. Mutants had preserved levels of inhibitory and presynaptic elements with aging, whereas glutamate receptor subunit levels declined. CONCLUSION Long-term AChE activity depletion induces synaptic and cellular alterations. These data provide further insights into molecular targets and adaptive responses following the long-term reduction of AChE activity that was also targeted pharmacologically to treat neurodegenerative diseases in human subjects.
Collapse
Affiliation(s)
- Elif Tugce Karoglu-Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- Department of Psychology, Selcuk University, Konya, Turkey
| | - Melek Umay Tuz-Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Aysenur Karaduman
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Ayca Arslan-Ergul
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Michelle M. Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Department of Psychology, Bilkent University, Ankara, Turkey
| |
Collapse
|
12
|
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. Vitamin D alleviates cognitive dysfunction and brain damage induced by copper sulfate intake in experimental rats: focus on its combination with donepezil. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1931-1942. [PMID: 36864348 PMCID: PMC10409850 DOI: 10.1007/s00210-023-02449-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
This study aimed to demonstrate the potential benefits of donepezil (DPZ) and vitamin D (Vit D) in combination to counteract the neurodegenerative disorders induced by CuSO4 intake in experimental rats. Neurodegeneration (Alzheimer-like) was induced in twenty-four male Wistar albino rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. AD rats were divided into four groups: untreated AD group (Cu-AD) and three treated AD groups; orally treated for 4 weeks with either DPZ (10 mg/kg/day), Vit D (500 IU/kg/day), or DPZ + Vit D starting from the 10th week of CuSO4 intake. Another six rats were used as normal control (NC) group. The hippocampal tissue content of β-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 and the cortical content of acetylcholine (Ach), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured. Cognitive function tests (Y-maze) and histopathology studies (hematoxylin and eosin and Congo red stains) and immunohistochemistry for neurofilament. Vit D supplementation alleviated CuSO4-induced memory deficits including significant reduction hippocampal BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α and cortical AChE and MDA. Vit D remarkably increased cortical Ach, TAC, and hippocampal Bcl-2. It also improved neurobehavioral and histological abnormalities. The effects attained by Vit D treatment were better than those attained by DPZ. Furthermore, Vit D boosted the therapeutic potential of DPZ in almost all AD associated behavioral and pathological changes. Vit D is suggested as a potential therapy to retard neurodegeneration.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed Mahrous
- Department of Biochemistry, Faculty of Pharmacy, Port-Said University, Port-Said, 42526, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
13
|
Kim MS, Kim BY, Kim JI, Lee J, Jeon WK. Mumefural Improves Recognition Memory and Alters ERK-CREB-BDNF Signaling in a Mouse Model of Chronic Cerebral Hypoperfusion. Nutrients 2023; 15:3271. [PMID: 37513692 PMCID: PMC10383324 DOI: 10.3390/nu15143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cognitive impairment resulting from chronic cerebral hypoperfusion (CCH) is known as vascular dementia (VaD) and is associated with cerebral atrophy and cholinergic deficiencies. Mumefural (MF), a bioactive compound found in a heated fruit of Prunus mume Sieb. et Zucc, was recently found to improve cognitive impairment in a rat CCH model. However, additional evidence is necessary to validate the efficacy of MF administration for treating VaD. Therefore, we evaluated MF effects in a mouse CCH model using unilateral common carotid artery occlusion (UCCAO). Mice were subjected to UCCAO or sham surgery and orally treated with MF daily for 8 weeks. Behavioral tests were used to investigate cognitive function and locomotor activity. Changes in body and brain weights were measured, and levels of hippocampal proteins (brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase (ERK), cyclic AMP-response element-binding protein (CREB), and acetylcholinesterase (AChE)) were assessed. Additionally, proteomic analysis was conducted to examine the alterations in protein profiles induced by MF treatment. Our study showed that MF administration significantly improved cognitive deficits. Brain atrophy was attenuated and MF treatment reversed the increase in AChE levels. Furthermore, MF significantly upregulated p-ERK/ERK, p-CREB/CREB, and BDNF levels after UCCAO. Thus, MF treatment ameliorates CCH-induced cognitive impairment by regulating ERK/CREB/BDNF signaling, suggesting that MF is a therapeutic candidate for treating CCH.
Collapse
Affiliation(s)
- Min-Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jung Im Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | | | - Won Kyung Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
14
|
Vergil Andrews JF, Selvaraj DB, Kumar A, Roshan SA, Anusuyadevi M, Kandasamy M. A Mild Dose of Aspirin Promotes Hippocampal Neurogenesis and Working Memory in Experimental Ageing Mice. Brain Sci 2023; 13:1108. [PMID: 37509038 PMCID: PMC10376986 DOI: 10.3390/brainsci13071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Aspirin has been reported to prevent memory decline in the elderly population. Adult neurogenesis in the hippocampus has been recognized as an underlying basis of learning and memory. This study investigated the effect of aspirin on spatial memory in correlation with the regulation of hippocampal neurogenesis and microglia in the brains of ageing experimental mice. Results from the novel object recognition (NOR) test, Morris water maze (MWM), and cued radial arm maze (cued RAM) revealed that aspirin treatment enhances working memory in experimental mice. Further, the co-immunohistochemical assessments on the brain sections indicated an increased number of doublecortin (DCX)-positive immature neurons and bromodeoxyuridine (BrdU)/neuronal nuclei (NeuN) double-positive newly generated neurons in the hippocampi of mice in the aspirin-treated group compared to the control group. Moreover, a reduced number of ionized calcium-binding adaptor molecule (Iba)-1-positive microglial cells was evident in the hippocampus of aspirin-treated animals. Recently, enhanced activity of acetylcholinesterase (AChE) in circulation has been identified as an indicative biomarker of dementia. The biochemical assessment in the blood of aspirin-treated mice showed decreased activity of AChE in comparison with that of the control group. Results from this study revealed that aspirin facilitates hippocampal neurogenesis which might be linked to enhanced working memory.
Collapse
Affiliation(s)
- Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (J.F.V.A.); (D.B.S.); (A.K.)
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (J.F.V.A.); (D.B.S.); (A.K.)
| | - Akshay Kumar
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (J.F.V.A.); (D.B.S.); (A.K.)
| | - Syed Aasish Roshan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (S.A.R.); (M.A.)
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (S.A.R.); (M.A.)
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (J.F.V.A.); (D.B.S.); (A.K.)
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
15
|
Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA. Review of Alzheimer's disease drugs and their relationship with neuron-glia interaction. IBRO Neurosci Rep 2023; 14:64-76. [PMID: 36593897 PMCID: PMC9803919 DOI: 10.1016/j.ibneur.2022.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Because Alzheimer's disease has no known treatment, sufferers and their caregivers must concentrate on symptom management. Astrocytes and microglia are now known to play distinct physiological roles in synaptic function, the blood-brain barrier, and neurovascular coupling. Consequently, the search for drugs that can slow the degenerative process in dementia sufferers continues because existing drugs are designed to alleviate the symptoms of Alzheimer's disease. Drugs that address pathological changes without interfering with the normal function of glia, such as eliminating amyloid-beta deposits, are prospective treatments for neuroinflammatory illnesses. Because neuron-astrocytes-microglia interactions are so complex, developing effective, preventive, and therapeutic medications for AD will necessitate novel methodologies and strategic targets. This review focused on existing medications used in treating AD amongst which include Donepezil, Choline Alphoscerate, Galantamine, Dextromethorphan, palmitoylethanolamide, citalopram, resveratrol, and solanezumab. This review summarizes the effects of these drugs on neurons, astrocytes, and microglia interactions based on their pharmacokinetic properties, mechanism of action, dosing, and clinical presentations.
Collapse
Affiliation(s)
- Michael Kunle Ajenikoko
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Abayomi Oyeyemi Ajagbe
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Oluwanisola Akanji Onigbinde
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Akeem Ayodeji Okesina
- Department of Clinical Medicine and Community Health, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Ahmad Adekilekun Tijani
- Department of Anatomy, Faculty of Basic Medical Sciences, Modibbo Adama University, Yola, Nigeria
| |
Collapse
|
16
|
Effects of 3 R, 16 S-2-hydroxyethyl apovincaminate (HEAPO), donepezil and galantamine on learning and memory retention in naïve Wistar rats. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:91-105. [PMID: 36692469 DOI: 10.2478/acph-2023-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/25/2023]
Abstract
The effects of 3R,16S-2-hydroxyethyl apovincaminate (HEAPO, RGH-10885) compared with those of two cholinesterase inhibitors, donepezil and galantamine, were examined in naïve Wistar rats using standard active and passive avoidance tests. The active avoidance test (shuttle box) and two passive avoidance tests (step-through and step-down) were performed according to the experimental design. There were 10 groups of rats (n = 8) and the substances studied were applied orally before each testing session. In the active avoidance test, the number of conditioned stimuli (avoidances), unconditioned stimuli (escapes) and intertrial crossings were observed. In step-down and step-through passive avoidance tests, the latencies of reactions were observed. All the studied compounds showed positive effects in the learning and memory tests, compared to the controls. It was concluded that HEAPO, donepezil and galantamine had a memory-enhancing effect in active and passive avoidance tests.
Collapse
|
17
|
Kumaran KR, Wahab HA, Hassan Z. Nootropic effect of Syzygium polyanthum (Wight) Walp leaf extract in chronic cerebral hypoperfusion rat model via cholinergic restoration: a potential therapeutic agent for dementia. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Yin YL, Liu YH, Zhu ML, Wang HH, Qiu Y, Wan GR, Li P. Floralozone improves cognitive impairment in vascular dementia rats via regulation of TRPM2 and NMDAR signaling pathway. Physiol Behav 2022; 249:113777. [PMID: 35276121 DOI: 10.1016/j.physbeh.2022.113777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Vascular dementia (VD) is the second largest type of dementia after Alzheimer's disease. At present, the pathogenesis is complex and there is no effective treatment. Floralozone has been shown to reduce atherosclerosis in rats caused by a high-fat diet. However, whether it plays a role in VD remains elusive. In the present study, the protective activities and relevant mechanisms of Floralozone were evaluated in rats with cognitive impairment, which were induced by bilateral occlusion of the common carotid arteries (BCCAO) in rats. Cognitive function, pathological changes and oxidative stress condition in the brains of VD rats were assessed using Neurobehavioral tests, Morris water maze tests, hematoxylin-eosin staining, Neu N staining, TUNEL staining, Golgi staining, Western blot assay and antioxidant assays (MDA, SOD, GSH), respectively. The results indicated that VD model was established successfully and BCCAO caused a decline in spatial learning and memory and hippocampal histopathological abnormalities of rats. Floralozone (50, 100, 150 mg/kg) dose-dependently alleviated the pathological changes, decreased oxidative stress injury, which eventually reduced cognitive impairment in BCCAO rats. The same results were shown in further experiments with neurobehavioral tests. At the molecular biological level, Floralozone decreased the protein level of transient receptor potential melastatin-related 2 (TRPM2) in VD and normal rats, and increased the protein level of NR2B in hippocampus of N-methyl-D-aspartate receptor (NMDAR). Notably, Floralozone could markedly improved learning and memory function of BCCAO rats in Morris water maze (MWM) and improved neuronal cell loss, synaptic structural plasticity. In conclusion, Floralozone has therapeutic potential for VD, increased synaptic structural plasticity and alleviating neuronal cell apoptosis, which may be related to the TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Ya-Ling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yan-Hua Liu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Mo-Li Zhu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Huan-Huan Wang
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yue Qiu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Guang-Rui Wan
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Peng Li
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| |
Collapse
|
19
|
Culmone L, Powell B, Landschoot-Ward J, Zacharek A, Gao H, Findeis EL, Malik A, Lu M, Chopp M, Venkat P. Treatment With an Angiopoietin-1 Mimetic Peptide Improves Cognitive Outcome in Rats With Vascular Dementia. Front Cell Neurosci 2022; 16:869710. [PMID: 35602559 PMCID: PMC9120946 DOI: 10.3389/fncel.2022.869710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Purpose Vascular dementia (VaD) is a complex neurodegenerative disease affecting cognition and memory. There is a lack of approved pharmacological treatments specifically for VaD. In this study, we investigate the therapeutic effects of AV-001, a Tie2 receptor agonist, in middle-aged rats subjected to a multiple microinfarct (MMI) model of VaD. Methods Male, 10-12 month-old, Wistar rats were employed. The following experimental groups were used: Sham, MMI, MMI+1 μg/Kg AV-001, MMI+3 μg/Kg AV-001, MMI+6 μg/Kg AV-001. AV-001 treatment was initiated at 1 day after MMI and administered once daily via intraperitoneal injection. An investigator blinded to the experimental groups conducted a battery of neuro-cognitive tests including modified neurological severity score (mNSS) test, novel object recognition test, novel odor recognition test, three chamber social interaction test, and Morris water maze test. Rats were sacrificed at 6 weeks after MMI. Results There was no mortality observed after 1, 3, or 6 μg/Kg AV-001 treatment in middle-aged rats subjected to MMI. AV-001 treatment (1, 3, or 6 μg/Kg) does not significantly alter blood pressure or heart rate at 6 weeks after MMI compared to baseline values or the MMI control group. Treatment of MMI with 1 or 3 μg/Kg AV-001 treatment does not significantly alter body weight compared to Sham or MMI control group. While 6 μg/Kg AV-001 treated group exhibit significantly lower body weight compared to Sham and MMI control group, the weight loss is evident starting at 1 day after MMI when treatment was initiated and is not significantly different compared to its baseline values at day 0 or day 1 after MMI. AV-001 treatment significantly decreases serum alanine aminotransferase, serum creatinine, and serum troponin I levels compared to the MMI control group; however, all values are within normal range. MMI induces mild neurological deficits in middle-aged rats indicated by low mNSS scores (<6 on a scale of 0-18). Compared to control MMI group, 1 μg/Kg AV-001 treatment group did not exhibit significantly different mNSS scores, while 3 and 6 μg/Kg AV-001 treatment induced significantly worse mNSS scores on days 21-42 and 14-42 after MMI, respectively. MMI in middle-aged rats induces significant cognitive impairment including short-term memory loss, long-term memory loss, reduced preference for social novelty and impaired spatial learning and memory compared to sham control rats. Rats treated with 1 μg/Kg AV-001 exhibit significantly improved short-term and long-term memory, increased preference for social novelty, and improved spatial learning and memory compared to MMI rats. Treatment with 3 μg/Kg AV-001 improves short-term memory and preference for social novelty but does not improve long-term memory or spatial learning and memory compared to MMI rats. Treatment with 6 μg/Kg AV-001 improves only long-term memory compared to MMI rats. Thus, 1 μg/Kg AV-001 treatment was selected as an optimal dose. Treatment of middle-aged rats subjected to MMI with 1 μg/Kg AV-001 significantly increases axon density, myelin density and myelin thickness in the corpus callosum, as well as increases synaptic protein expression, neuronal branching and dendritic spine density in the cortex, oligodendrocytes and oligodendrocyte progenitor cell number in the cortex and striatum and promotes neurogenesis in the subventricular zone compared to control MMI rats. Conclusions In this study, we present AV-001 as a novel therapeutic agent to improve cognitive function and reduce white matter injury in middle aged-rats subjected to a MMI model of VaD. Treatment of MMI with 1 μg/Kg AV-001 significantly improves cognitive function, and increases axon density, remyelination and neuroplasticity in the brain of middle-aged rats.
Collapse
Affiliation(s)
- Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Ayesha Malik
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
20
|
Zhang J, Zhu Q, Wang X, Wang J. Effect of Donepezil on Vascular Dementia in Rats via PI3K/AKT Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Previous studies have shown that Donepezil has therapeutic effects on vascular dementia (VD). PI3K/AKT involves in oxidative stress injury and cell apoptosis. This study investigated whether Donepezil affects the neurological function and apoptosis of VD mice via
PI3K/AKT signaling. Methods: Mice were assigned into Sham group, VD group, VD+Donepezil groupfollowed by analysis of mice learning and memory ability by Water maze test, p-AKT expression by Western blot, Caspase-3 activity, MDA content, SOD activity and GSH-Px in hippocampus. HT22 cells
were cultured and separated into control group, I-R group and I-R+Donepezil group followed by measuring p-AKT level, ROS content and apoptosis. Results: Learning and memory abilities of VD group mice were significantly decreased, Caspase-3 activity and MDA in brain tissue were significantly
increased, along with decreased SOD activity, GSH-Px and p-AKT level. Donepezil treatment can significantly improve VD mice learning and memory ability, reduce Caspase-3 activity and MDA in brain tissue, increase SOD activity, GSH-Px and p-AKT level. In vitro, I-R treatment significantly
induced apoptosis of HT22 cells, increased ROS production and decreased p-AKT level. Donepezil treatment could up-regulate p-AKT in HT22 cells and reduce apoptosis and ROS production in HT22 cells. Conclusion: Donepezil improves the function of brain nerve in VD mice through regulating
PI3K/AKT pathway, thus reducing oxidative stress injury and apoptosis of brain nerve cells.
Collapse
Affiliation(s)
- Jianmin Zhang
- Department of Neurology, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Qianwen Zhu
- Department of Neurology, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Xingnan Wang
- Department of Neurology, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Jian Wang
- Department of Neurology, The First People’s Hospital of Fuyang District, Hangzhou, 311400, Zhejiang, China
| |
Collapse
|
21
|
Silva NCBS, Bracko O, Nelson AR, de Oliveira FF, Robison LS, Shaaban CE, Hainsworth AH, Price BR. Vascular cognitive impairment and dementia: An early career researcher perspective. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12310. [PMID: 35496373 PMCID: PMC9043906 DOI: 10.1002/dad2.12310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023]
Abstract
The field of vascular contributions to cognitive impairment and dementia (VCID) is evolving rapidly. Research in VCID encompasses topics aiming to understand, prevent, and treat the detrimental effects of vascular disease burden in the human brain. In this perspective piece, early career researchers (ECRs) in the field provide an overview of VCID, discuss past and present efforts, and highlight priorities for future research. We emphasize the following critical points as the field progresses: (a) consolidate existing neuroimaging and fluid biomarkers, and establish their utility for pharmacological and non-pharmacological interventions; (b) develop new biomarkers, and new non-clinical models that better recapitulate vascular pathologies; (c) amplify access to emerging biomarker and imaging techniques; (d) validate findings from previous investigations in diverse populations, including those at higher risk of cognitive impairment (e.g., Black, Hispanic, and Indigenous populations); and (e) conduct randomized controlled trials within diverse populations with well-characterized vascular pathologies emphasizing clinically meaningful outcomes.
Collapse
Affiliation(s)
- Nárlon C. Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain HealthDepartment of Physical TherapyFaculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Oliver Bracko
- Department of BiologyThe University of MiamiCoral GablesFloridaUSA
| | - Amy R. Nelson
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileAlabamaUSA
| | | | - Lisa S. Robison
- Department of Psychology and NeuroscienceNova Southeastern UniversityFort LauderdaleFloridaUSA
| | | | - Atticus H. Hainsworth
- Molecular & Clinical Sciences Research InstituteSt George's University of London, UKDepartment of NeurologySt George's University Hospitals NHS Foundation Trust LondonLondonUK
| | - Brittani R. Price
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
22
|
Hosseini MJ, Mahmoodi N, Eskandari J, Bijani S, Yazdinezhad AR, Anoush M. Protective effects of Vinca herbaceous extract against scopolamine-induced behavioral disturbances and brain oxidative stress in rats. Heliyon 2022; 8:e09295. [PMID: 35520614 PMCID: PMC9061637 DOI: 10.1016/j.heliyon.2022.e09295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ethnopharmacological relevance Alzheimer's disease (AD) as the most common type of dementia, is affecting the life of many senior individuals around the world. Vinca herbacea Waldst. & Kit. (V. herbacea) as a middle east originated plant demonstrated antioxidant and antitumor effects. This plant traditionally used to treat diabetes and hypertension, but its mechanism remains unclear. Aim of the study In the present study, post-treatment effects of V. herbacea on learning and memory functions, antioxidant cellular defense and oxidative stress were investigated using the scopolamine rat model of AD. Materials and methods Wistar male rats (170-190 g) were administered Scopolamine, an anti-muscarinic drug, (2 mg/kg) for 10 days followed by V. herbacea extract (200, 300 and 400 mg/kg) and/or donepezil (DON; 1 mg/kg, which were administered before behavioral studies for 10 consecutive days. All the rats were then subjected to Morris water maze (MWM) task. Biochemical parameters of oxidative stress were quantified using the whole brain. Results Our data showed significant decrease performance in target quadrant in water maze task following administration of scopolamine (SCOP). Also, V. herbacea and DON, did not induce any neurotoxicity and hepatotoxic effects at the highest utilized doses in healthy rats. Treatment with V. herbacea extract (200&400 mg/kg) and DON improved memory performance significantly in comparison with AD rats. In addition, V. herbacea extract in AD rats exhibited a decrease in malondialdehyde (MDA) and protein carbonyl (PCO) levels and an increase in total antioxidant capacity (FRAP) and glutathione (GSH) amounts in brain and liver. Conclusion It seems that cholinergic deficits and oxidative stress are consistently associated with Alzheimer's disease (AD). The richness of V. herbacea in case of indole alkaloids and flavonoids confirms the potentials of this herb in management of oxidative stress, resorting synaptic acetylcholine level and improving cellular antioxidant resources.
Collapse
Affiliation(s)
- Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloofar Mahmoodi
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Reza Yazdinezhad
- Department of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdieh Anoush
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
23
|
Khodir SA, Faried MA, Abd-Elhafiz HI, Sweed EM. Sitagliptin Attenuates the Cognitive Deficits in L-Methionine-Induced Vascular Dementia in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7222590. [PMID: 35265716 PMCID: PMC8898801 DOI: 10.1155/2022/7222590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/29/2022] [Indexed: 02/05/2023]
Abstract
Vascular dementia (VaD) is the second most prevalent type of dementia characterized by progressive cognitive deficits and is a major risk factor for the development of Alzheimer's disease and other neurodegenerative disorders. This study is aimed at determining the potential neuroprotective effect of sitagliptin (STG) on cognitive deficits in L-methionine-induced VaD in rats and the possible underlying mechanisms. 30 adult male Wistar albino rats were divided equally (n = 10) into three groups: control, VaD, and VaD + STG groups. The cognitive performance of the animals was conducted by open field, elevated plus maze, Y-maze, novel object recognition, and Morris water maze tests. Serum homocysteine, TNF-α, IL-6, IL-10, total cholesterol, and triglycerides levels were assessed together with hippocampal MDA, SOD, and BDNF. Histopathological and immunohistochemical assessments of the thoracic aorta and hippocampus (CA1 region) were also performed. Chronic L-methionine administration impaired memory and learning and induced anxiety. On the other hand, STG protected against cognitive deficits through improving oxidative stress biomarkers, inflammatory mediators, lipid profiles, and hippocampus level of BDNF as well as decreasing caspase-3 and GFAP and increasing Ki-67 immunoreactions in the hippocampus. Also, STG improved the endothelial dysfunction via upregulation of aortic eNOS immunoreaction. STG improved the cognitive deficits of L-methionine-induced VaD by its antioxidant, anti-inflammatory, antiapoptotic, and neurotrophic effects. These findings suggest that STG may be a promising future agent for protection against VaD.
Collapse
Affiliation(s)
- Suzan A. Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Manar A. Faried
- Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Huda I. Abd-Elhafiz
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Eman M. Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| |
Collapse
|
24
|
Fan Y, Zhang L, Kong X, Liu K, Wu H. Different Exercise Time on 5-HT and Anxiety-like Behavior in the Rat With Vascular Dementia. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082743. [PMID: 35344444 PMCID: PMC10581105 DOI: 10.1177/15333175221082743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies have demonstrated that pre-exercise suppresses anxiety-like behavior, but the effects of different exercise times on vascular dementia induced anxiety-like behavior have not been well investigated. OBJECTIVE The present study aims to investigate the underlying neurochemical mechanism of different pre-vascular-dementia exercise times on 5-HT and anxiety-like behavior in rats with vascular dementia. METHODS 32 Sprague-Dawley (SD) rats were randomly divided into 4 groups: sham group (S group, n = 8), vascular dementia group (VD group, n = 8), 1-week physical exercise and vascular dementia group (1WVD group, n = 8), and 4 weeks physical exercise and vascular dementia group (4WVD group, n = 8). 1 week and 4 weeks of voluntary wheel running were used as pre-exercise training. The vascular dementia model was established by bilateral common carotid arteries occlusion (BCCAo) for 1 week. But bilateral common carotid arteries were not ligated in the sham group. The level of hippocampal 5-HT was detected with in vivo microdialysis coupled with high-performance liquid chromatography (MD-HPLC). Elevated plus maze (EPM), open field (OF), and light/dark box test were used to test anxiety-like behavior. RESULTS Compared with the C group, the hippocampal 5-HT was significantly decreased in the VD group after 1 week of ligated operation. The hippocampal 5-HT levels in 1WVD and 4WVD groups were substantially higher than the level in the VD group. The hippocampal 5-HT level has no significant difference among C, 1WVD, and 4WVD. Behavioral data suggested that the rats in the VD group developed obvious anxiety-like behavior after 1 week of ligation surgery. Still, the rats in 1WVD and 4WVD groups did not show significant anxiety-like behavior. CONCLUSION Both 1 week and 4 weeks of voluntary running wheel exercise can inhibit the anxiety-like behavior in rats with vascular dementia by upregulating 5-HT levels in the hippocampus in the VD model.
Collapse
Affiliation(s)
- Yongzhao Fan
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| | - Linlin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaoyang Kong
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| | - Kun Liu
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Brain Peace Science Foundation, New Haven, CT, USA
| | - Hao Wu
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| |
Collapse
|
25
|
Ren H, Zhang Z, Zhang J. Physical Exercise Exerts Neuroprotective Effect on Memory Impairment by Mitigate the Decline of Striatum Catecholamine and Spine Density in a Vascular Dementia Rat Model. Am J Alzheimers Dis Other Demen 2022; 37:15333175221144367. [PMID: 36515911 PMCID: PMC10581139 DOI: 10.1177/15333175221144367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study aims to investigate the underlying neurochemical mechanism of physical exercise on striatum synapsis and memory function in vascular dementia model. METHODS 32 Sprague-Dawley (SD) rats were randomly divided into 4 groups: control group (C group, n = 6), vascular dementia group (Vascular dementia group, n = 7), physical exercise and vascular dementia group (Exe-VD group, n = 6), physical exercise and black group (Exe group, n = 6). 4 weeks of voluntary wheel running were used as pre-exercise training. Vascular dementia model was established by bilateral common carotid arteries occlusion (BCCAo) for 1 week. Passive avoidance test (PAT) were used to test memory function. The level of striatum catecholamine in the microdialysate were detected by enzyme linked immunosorbent assy (ELISA). Golgi staining was used to analyze striatum neuronal spine density. RESULTS Behavioral data indicated that 4 weeks of physical exercise ameliorated memory impairment in vascular dementia model. Striatum catecholamine level significantly decreased in VD group when compared with C group (P < .001). But this phenomenon can be rescue by physical exercise (P < .001). In addition, compared with C group, neuronal spine density significantly decreased in VD group (P < .01), but 4 weeks of physical exercise can rescue this phenomenon (P < .05). CONCLUSION 4 weeks of physical exercise improves memory function by mitigate the decline of striatum catecholamine and spine density in VD model.
Collapse
Affiliation(s)
- Hangzhou Ren
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| | - Zhongyuan Zhang
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| | - Jianwei Zhang
- College of Art and Design, Zhengzhou University of Economics and Business, Zhengzhou, China
| |
Collapse
|
26
|
Cheng CY, Huang HC, Kao ST, Lee YC. Angelica sinensis extract promotes neuronal survival by enhancing p38 MAPK-mediated hippocampal neurogenesis and dendritic growth in the chronic phase of transient global cerebral ischemia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114301. [PMID: 34090910 DOI: 10.1016/j.jep.2021.114301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels (ASD), commonly known as Dang Gui, is a popular Chinese herb that has long been used to treat ischemic stroke. However, the effects of ASD in chronic cerebral ischemia and its underlying mechanisms still remain unclear. AIM OF THE STUDY This study aimed to determine the effects of the ASD extract on hippocampal neuronal survival at 28 d after transient global cerebral ischemia (GCI) and to investigate the precise mechanisms underlying the p38 mitogen-activated protein kinase (MAPK)-related signaling pathway's involvement in hippocampal neurogenesis. MATERIALS AND METHODS Rats underwent 25 min of four-vessel occlusion. The ASD extract was intragastrically administered at doses of 0.25 g/kg (ASD-0.25 g), 0.5 g/kg (ASD-0.5 g), 1 g/kg (ASD-1 g), 1 g/kg after dimethyl sulfoxide administration (D + ASD-1 g), or 1 g/kg after SB203580 (a p38 MAPK inhibitor) administration (SB + ASD-1 g) at 1, 3, 7, 10, 14, 17, 21, and 24 d after transient GCI. RESULTS ASD-0.5 g, ASD-1 g, and D + ASD-1 g treatments had the following effects: upregulation of bromodeoxyuridine (BrdU) and Ki67 expression, and BrdU/neuronal nuclei (NeuN) and Ki67/nestin co-expression in the hippocampal dentate gyrus (DG); upregulation of microtubule-associated protein 2/NeuN co-expression, and NeuN and glial fibrillary acidic protein (GFAP) expression, and downregulation of tumor necrosis factor-α/GFAP co-expression in the hippocampal CA1 region; upregulation of phospho-p38 MAPK (p-p38 MAPK), phospho-cAMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor A (VEGF-A) expression in the hippocampus. SB + ASD-1 g treatment abrogated the effects of ASD-1 g on the expression of these proteins. CONCLUSIONS ASD-0.5 g and ASD-1 g treatments promotes neuronal survival by enhancing hippocampal neurogenesis. The effects of the ASD extract on astrocyte-associated hippocampal neurogenesis and dendritic growth are caused by the activation of p38 MAPK-mediated CREB/BDNF, GDNF, and VEGF-A signaling pathways in the hippocampus at 28 d after transient GCI.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, 42056, Taiwan.
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 42056, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, 40402, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
27
|
Ocimum sanctum Linn. Extract Improves Cognitive Deficits in Olfactory Bulbectomized Mice via the Enhancement of Central Cholinergic Systems and VEGF Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6627648. [PMID: 34306149 PMCID: PMC8266455 DOI: 10.1155/2021/6627648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/19/2021] [Indexed: 01/17/2023]
Abstract
This study aimed to clarify the antidementia effects of ethanolic extract of Ocimum sanctum Linn. (OS) and its underlying mechanisms using olfactory bulbectomized (OBX) mice. OBX mice were treated daily with OS or a reference drug, donepezil (DNP). Spatial and nonspatial working memory performance was measured using a modified Y maze test and a novel object recognition test, respectively. Brain tissues of the animals were subjected to histochemical and neurochemical analysis. OS treatment attenuated OBX-induced impairment of spatial and nonspatial working memories. OBX induced degeneration of septal cholinergic neurons, enlargement of the lateral ventricles, and suppression of hippocampal neurogenesis. OS and DNP treatment also depressed these histological damages. OS administration reduced ex vivo activity of acetylcholinesterase in the brain. OBX diminished the expression levels of genes coding vascular endothelial growth factor (VEGF) and VEGF receptor type 2 (VEGFR2). Treatment with OS and DNP reversed OBX-induced decrease in VEGF gene and protein expression levels without affecting the expression of the VEGFR2 gene. These results demonstrate that the administration of OS can lessen the cognitive deficits and neurohistological damages of OBX and that these actions are, at least in part, mediated by the enhancement of central cholinergic systems and VEGF expression.
Collapse
|
28
|
The next step of neurogenesis in the context of Alzheimer's disease. Mol Biol Rep 2021; 48:5647-5660. [PMID: 34232464 DOI: 10.1007/s11033-021-06520-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Among different pathological mechanisms, neuronal loss and neurogenesis impairment in the hippocampus play important roles in cognitive decline in Alzheimer's disease (AD). AD is a progressive and complex neurodegenerative diseases, which is very debilitating. The purpose of this paper is to review recent research into neurogenesis and AD and discuss how pharmacological drugs and herbal active components have impacts on neurogenesis and consequently improve cognitive functions. To date, despite huge research, no effective treatment has been approved for AD. Therefore, an avenue for future research and drug discovery is stimulating adult hippocampal neurogenesis (AHN). Evidence suggests that neurogenesis is regulated by the pharmacological treatment that may be recommended as a part of prophylaxis and therapeutic options for AD. However, the underlying mechanisms of regulating neurogenesis in AD are not well understood. To this point, we highlight to achieve an efficient treatment in AD by manipulating neurogenesis, it's necessary to target all steps of neurogenesis.
Collapse
|
29
|
Mirza FJ, Amber S, Sumera, Hassan D, Ahmed T, Zahid S. Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ 1-42-induced mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153490. [PMID: 33601255 DOI: 10.1016/j.phymed.2021.153490] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rosmarinus officinalis, commonly known as rosemary, is a medicinal herb that presents significant biological properties such as antimicrobial, antioxidant, anti-inflammatory, anti-diabetic and anti-depressant activities. Recent findings correlate impaired adult neurogenesis, which is crucial for the maintenance of synaptic plasticity and hippocampal functioning, synaptic regulation with the pathological hallmarks of Alzheimer's disease (AD). These observations call for the need to developing compounds that promote neurogenesis and alleviates deficits in cognition and synaptic regulation. PURPOSE AND STUDY DESIGN The present study was conducted to determine the proneurogenic effects of R. officinalis and its active compounds (ursolic acid and rosmarinic acid) in comparison to Donepezil in an Aβ1-42-induced mouse model of AD. METHODS BALB/c mice were divided into ten groups. Half were injected with Aβ1-42 in the hippocampus through stereotaxic surgery to generate the disease groups. The other half received control injections. Each set of five groups were administered orally with vehicle, an ethanolic extract of R. officinalis, ursolic acid, rosmarinic acid or donepezil. Behavior analysis included the Morris water maze test, the novel object recognition test and the Elevated plus maze. The mice were then sacrificed and the hippocampal tissue was processed for immunohistochemistry and gene expression analysis. RESULTS The results show a protective effect by rosmarinic acid and ursolic acid in reversing the deficits in spatial and recognition memory as well as changes in anxiety induced by Aβ1-42. The neuronal density and the expression levels of neurogenic (Ki67, NeuN and DCX) and synaptic (Syn I, II, III, Synaptophysin and PSD-95) markers were also normalized upon treatment with rosmarinic and ursolic acid. CONCLUSION Our findings indicate the potential of R. officinalis and its active compounds as therapeutic agents against Aβ1-42-induced neurotoxicity in AD.
Collapse
Affiliation(s)
- Fatima Javed Mirza
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sanila Amber
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sumera
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Deeba Hassan
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
30
|
Kapoor T, Mehan S. Neuroprotective Methodologies in the Treatment of Multiple Sclerosis Current Status of Clinical and Pre-clinical Findings. Curr Drug Discov Technol 2021; 18:31-46. [PMID: 32031075 DOI: 10.2174/1570163817666200207100903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis is an idiopathic and autoimmune associated motor neuron disorder that affects myelinated neurons in specific brain regions of young people, especially females. MS is characterized by oligodendrocytes destruction further responsible for demyelination, neuroinflammation, mitochondrial abnormalities, oxidative stress and neurotransmitter deficits associated with motor and cognitive dysfunctions, vertigo and muscle weakness. The limited intervention of pharmacologically active compounds like interferon-β, mitoxantrone, fingolimod and monoclonal antibodies used clinically are majorly associated with adverse drug reactions. Pre-clinically, gliotoxin ethidium bromide mimics the behavioral and neurochemical alterations in multiple sclerosis- like in experimental animals associated with the down-regulation of adenyl cyclase/cAMP/CREB, which is further responsible for a variety of neuropathogenic factors. Despite the considerable investigation of neuroprotection in curing multiple sclerosis, some complications still remain. The available medications only provide symptomatic relief but do not stop the disease progression. In this way, the development of unused beneficial methods tends to be ignored. The limitations of the current steady treatment may be because of their activity at one of the many neurotransmitters included or their failure to up direct signaling flag bearers detailed to have a vital part in neuronal sensitivity, biosynthesis of neurotransmitters and its discharge, development, and separation of the neuron, synaptic versatility and cognitive working. Therefore, the current review strictly focused on the exploration of various clinical and pre-clinical features available for multiple sclerosis to understand the pathogenic mechanisms and to introduce pharmacological interventions associated with the upregulation of intracellular adenyl cyclase/cAMP/CREB activation to ameliorate multiple sclerosis-like features.
Collapse
Affiliation(s)
- Tarun Kapoor
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
31
|
Dhaliwal N, Dhaliwal J, Singh A, Chopra K. Dimethyl fumarate attenuates 2-VO-induced vascular dementia via activating the Nrf2 signaling pathway in rats. Inflammopharmacology 2021; 29:537-547. [PMID: 33459879 DOI: 10.1007/s10787-020-00785-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) induced oxidative stress and inflammation is known to be implicated in the pathogenesis of vascular dementia. The nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a potential therapeutic target for neuroprotection. In the present study, we investigated the beneficial effects of dimethyl fumarate (DMF), an Nrf2 activator in an experimental model of vascular dementia. METHODS Permanent occlusion of the bilateral common carotid arteries (2-VO) was performed to induce CCH in adult male Sprague-Dawley rats. DMF (15, 30, and 60 mg/kg) was administered for 4 weeks. Cognitive performance was assessed using the Morris water maze (MWM) and novel object (NOR) tests. After behavior tests, various oxidative and inflammatory markers were assessed in the hippocampus. RESULTS The obtained results indicate that treatment with DMF significantly improved 2 VO-induced cognitive deficits. DMF decreased MDA (p < 0.001), protein carbonyl (PCO) contents (p < 0.001), and acetylcholinesterase (p < 0.01) activities, and inhibited inflammatory markers (TNF-α, IL-1β, NF-κβ, and COX-2) levels. Furthermore, our results showed that DMF augmented GSH (p < 0.001) levels and SOD (p < 0.05), CAT, and GSH-Px (p < 0.001) activities in the hippocampus. Nrf2 (p < 0.05) and its downstream targets HO-1 levels (p < 0.01) and NQO1 (p < 0.05) levels were also up-regulated after DMF treatment. CONCLUSION Taken together, the results demonstrate that DMF could serve as a promising neuroprotective agent for treating vascular dementia.
Collapse
Affiliation(s)
- Navneet Dhaliwal
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Aagamjit Singh
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
32
|
Lin Y, Xu Y, Feng H, You L, Dong J, Gao Z, Peng S, Deng Y, Wu P. Involuntary, forced or voluntary exercise can ameliorate the cognitive deficits by enhancing levels of hippocampal NMDAR1, pAMPAR1 and pCaMKII in a model of vascular dementia. Neurol Res 2021; 43:349-357. [PMID: 33393454 DOI: 10.1080/01616412.2020.1866351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objectives: To investigate the effect on vascular dementia of involuntary exercise induced by functional electrical stimulation and of forced and voluntary exercise, focusing on the recovery of cognitive function and using a rat model of dementia.Methods: A demential model was created in Wistar rats who were then given forced exercise, allowed voluntary exercise (wheel running) or had exercise induced through functional electrical stimulation. Their responses were quantified using a Morris water maze and by measuring long-term potentiation in the hippocampus. Immunohistochemical staining was used to evaluate neurogenesis in the hippocampus and Nissl staining was applied to visualize viable neuron loss in the DG sector. In addition, the levels of NMDAR1, AMPAR1, pAMPAR1, pCaMKII, CaMKII, Bcl-2 and Bax in the hippocampus were assessed by western blotting.Results: All of the exercise groups showed a recovery of cognitive performance and improved long-term potentiation. The three modes of exercise all increased the number of DCX immunopositive cells and reduced losses of intact-appearing neurons in the hippocampal DG zones roughly equally. All proved about equally effective in increasing the levels of NMDAR1, pAMPAR1 and pCaMKII and increasing the Bcl-2/Bax ratio to protect neurons from apoptosis.Conclusion: Exercise induced by electrical stimulation has beneficial effects comparable to those of other types of exercise for alleviating the cognitive deficits of vascular dementia.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangfan Xu
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiting Feng
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longfei You
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juntao Dong
- Department of Rehabilitation, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zunlin Gao
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Suiying Peng
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Deng
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peihui Wu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer's disease. Int J Biol Macromol 2020; 162:246-261. [DOI: 10.1016/j.ijbiomac.2020.06.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
|
34
|
Tuo QZ, Zou JJ, Lei P. Rodent Models of Vascular Cognitive Impairment. J Mol Neurosci 2020; 71:1-12. [DOI: 10.1007/s12031-020-01733-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
|
35
|
Moreira NCDS, Lima JEBDF, Chierrito TPC, Carvalho I, Sakamoto-Hojo ET. Novel Hybrid Acetylcholinesterase Inhibitors Induce Differentiation and Neuritogenesis in Neuronal Cells in vitro Through Activation of the AKT Pathway. J Alzheimers Dis 2020; 78:353-370. [PMID: 32986667 DOI: 10.3233/jad-200425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive loss of episodic memory associated with amyloid-β peptide aggregation and the abnormal phosphorylation of the tau protein, leading to the loss of cholinergic function. Acetylcholinesterase (AChE) inhibitors are the main class of drugs used in AD therapy. OBJECTIVE The aim of the current study was to evaluate the potential of two tacrine-donepezil hybrid molecules (TA8Amino and TAHB3), which are AChE inhibitors, to induce neurodifferentiation and neuritogenesis in SH-SY5Y cells. METHODS The experiments were carried out to characterize neurodifferentiation, cellular changes related to responses to oxidative stress and pathways of cell survival in response to drug treatments. RESULTS The results indicated that the compounds did not present cytotoxic effects in SH-SY5Y or HepG2 cells. TA8Amino and TAHB3 induced neurodifferentiation and neuritogenesis in SH-SY5Y cells. These cells showed increased levels of intracellular and mitochondrial reactive oxygen species; the induction of oxidative stress was also demonstrated by an increase in SOD1 expression in TA8Amino and TAHB3-treated cells. Cells treated with the compounds showed an increase in PTEN(Ser380/Thr382/383) and AKT(Ser473) expression, suggesting the involvement of the AKT pathway. CONCLUSION Our results demonstrated that TA8Amino and TAHB3 present advantages as potential drugs for AD therapy and that they are capable of inducing neurodifferentiation and neuritogenesis.
Collapse
Affiliation(s)
| | | | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
36
|
Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis 2020; 11:828-850. [PMID: 32765949 PMCID: PMC7390515 DOI: 10.14336/ad.2020.0222] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VaD) is the second leading form of memory loss after Alzheimer's disease (AD). Currently, there is no cure available. The etiology, pathophysiology and clinical manifestations of VaD are extremely heterogeneous, but the impaired cerebral blood flow (CBF) represents a common denominator of VaD. The latter might be the result of atherosclerosis, amyloid angiopathy, microbleeding and micro-strokes, together causing blood-brain barrier (BBB) dysfunction and vessel leakage, collectively originating from the consequence of hypertension, one of the main risk factors for VaD. At the histopathological level, VaD displays abnormal vascular remodeling, endothelial cell death, string vessel formation, pericyte responses, fibrosis, astrogliosis, sclerosis, microglia activation, neuroinflammation, demyelination, white matter lesions, deprivation of synapses and neuronal loss. The transforming growth factor (TGF) β has been identified as one of the key molecular factors involved in the aforementioned various pathological aspects. Thus, targeting TGF-β signaling in the brain might be a promising therapeutic strategy to mitigate vascular pathology and improve cognitive functions in patients with VaD. This review revisits the recent understanding of the role of TGF-β in VaD and associated pathological hallmarks. It further explores the potential to modulate certain aspects of VaD pathology by targeting TGF-β signaling.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Group, Department of Biochemistry, School of Life Sciences, Bharathidhasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Kiera M Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Kathrin M Kniewallner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Diana M Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Ulrich Bogdahn
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Velvio GmbH, Regensburg, Germany.
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
37
|
Korabecny J, Spilovska K, Mezeiova E, Benek O, Juza R, Kaping D, Soukup O. A Systematic Review on Donepezil-based Derivatives as Potential Cholinesterase Inhibitors for Alzheimer’s Disease. Curr Med Chem 2019; 26:5625-5648. [DOI: 10.2174/0929867325666180517094023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023]
Abstract
:
Alzheimer’s Disease (AD) is a multifactorial progressive neurodegenerative disorder
characterized by memory loss, disorientation, and gradual deterioration of intellectual capacity.
Its etiology has not been elucidated yet. To date, only one therapeutic approach has
been approved for the treatment of AD. The pharmacotherapy of AD has relied on noncompetitive
N-methyl-D-aspartate (NMDA) receptor antagonist - memantine, and acetylcholinesterase
(AChE) inhibitors (AChEIs) - tacrine, donepezil, rivastigmine and galantamine.
Donepezil was able to ameliorate the symptoms related to AD mainly via AChE, but also
through reduction of β-amyloid burden. This review presents the overview of donepezilrelated
compounds as potential anti-AD drugs developed on the basis of cholinergic hypothesis
to act as solely AChE and butyrylcholinesterase (BChE) inhibitors.
Collapse
Affiliation(s)
- Jan Korabecny
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Katarina Spilovska
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Eva Mezeiova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Benek
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Radomir Juza
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Soukup
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
38
|
Denver P, D’Adamo H, Hu S, Zuo X, Zhu C, Okuma C, Kim P, Castro D, Jones MR, Leal C, Mekkittikul M, Ghadishah E, Teter B, Vinters HV, Cole GM, Frautschy SA. A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease. Front Physiol 2019; 10:1269. [PMID: 31708792 PMCID: PMC6821690 DOI: 10.3389/fphys.2019.01269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics.
Collapse
Affiliation(s)
- Paul Denver
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather D’Adamo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuxin Hu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Xiaohong Zuo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Cansheng Zhu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Chihiro Okuma
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Peter Kim
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Daniel Castro
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mychica R. Jones
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Carmen Leal
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Marisa Mekkittikul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Elham Ghadishah
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Harry V. Vinters
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Gregory Michael Cole
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Sally A. Frautschy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
39
|
Kim W, Yoo DY, Jung HY, Kim JW, Hahn KR, Kwon HJ, Yoo M, Lee S, Nam SM, Yoon YS, Kim DW, Hwang IK. Leaf extracts from Dendropanax morbifera Léveille mitigate mercury-induced reduction of spatial memory, as well as cell proliferation, and neuroblast differentiation in rat dentate gyrus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:94. [PMID: 31046739 PMCID: PMC6498467 DOI: 10.1186/s12906-019-2508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/17/2019] [Indexed: 01/09/2023]
Abstract
Background The brain is susceptible to methylmercury toxicity, which causes irreversible damage to neurons and glia and the leaf extract Dendropanax morbifera Léveille (DML) has various biological functions in the nervous system. In this study, we examined the effects of DML on mercury-induced proliferating cells and differentiated neuroblasts. Methods Dimethylmercury (5 μg/kg) and galantamine (5 mg/kg) was administered intraperitoneally and/or DML (100 mg/kg) was orally to 7-week-old rats every day for 36 days. One hour after the treatment, novel object recognition test was examined. In addition, spatial probe tests were conducted on the 6th day after 5 days of continuous training in the Morris swim maze. Thereafter, the rats were euthanized for immunohistochemical staining analysis with Ki67 and doublecortin and measurement for acetylcholinesterase (AChE) activity. Results Dimethylmercury-treated rats showed reduced discrimination index in novel object recognition test and took longer to find the platform than did control group. Compared with dimethylmercury treatment alone, supplementation with DML or galatamine significantly ameliorated the reduction of discrimination index and reduced the time spent to find the platform. In addition, the number of platform crossings was lower in the dimethylmercury-treated group than in controls, while the administration of DML or galantamine significantly increased the number of crossings than did dimethylmercury treatment alone. Proliferating cells and differentiated neuroblasts, assessed by Ki67 and doublecortin immunohistochemical staining was significantly decreased in the dimethylmercury treated group versus controls. Supplementation with DML or galantamine significantly increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus. In addition, treatment with dimethylmercury significantly increased AChE activity in hippocampal homogenates, while treatment with dimethylmercury+DML or dimethylmercury+galantamine significantly ameliorated this increase. Conclusions These results suggest that DML may be a functional food that improves dimethylmercury-induced memory impairment and ameliorates dimethylmercury-induced reduction in proliferating cells and differentiated neuroblasts, and demonstrates corresponding activation of AChE activity in the dentate gyrus.
Collapse
|
40
|
Auti ST, Kulkarni YA. Neuroprotective Effect of Cardamom Oil Against Aluminum Induced Neurotoxicity in Rats. Front Neurol 2019; 10:399. [PMID: 31114535 PMCID: PMC6502995 DOI: 10.3389/fneur.2019.00399] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase (AChE) is an enzyme involved in the progression of Alzheimer's disease (AD). Cardamom oil (CO) has been reported to have acetylcholinesterase inhibitory, antioxidant and anti-anxiety effects. Hence, we studied the effect of cardamom oil in aluminum chloride induced neurotoxicity in rats. AD like symptoms were induced in Wistar rats with aluminum chloride (100 mg/kg, p.o.). Cardamom oil was administered concomitantly by oral route at doses of 100 and 200 mg/kg for 42 days. Behavioral parameters like Morris water maze, elevated plus maze, passive avoidance test and locomotor activity were evaluated on day 21 and 42. AChE activity, oxidative stress parameters, histopathological studies and immunohistochemistry studies were carried out in hippocampus and cortex. Cardamom oil treatment showed significant improvement in behavioral parameters, inhibition of AChE activity (p < 0.001) and reduction in oxidative stress in the brain. Histopathological studies of hippocampus and cortex by hematoxylin & eosin (H. & E.) and congo red stain showed inhibition of neuronal damage and amyloid β plaque formation with cardamom oil treatment. Immunohistochemistry showed, CO treatment inhibited amyloid β expression and upregulated brain-derived neurotrophic factor (BDNF). The present study showed that, cardamom oil has neuroprotective effect in aluminum chloride induced neurotoxicity linked with inhibition of AChE activity and reduction in oxidative damage. This effect of cardamom oil may be useful in management of Alzheimer's disease.
Collapse
Affiliation(s)
- Sandip T Auti
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
41
|
Yin S, Bai W, Li P, Jian X, Shan T, Tang Z, Jing X, Ping S, Li Q, Miao Z, Wang S, Ou W, Fei J, Guo T. Berberine suppresses the ectopic expression of miR-133a in endothelial cells to improve vascular dementia in diabetic rats. Clin Exp Hypertens 2018; 41:708-716. [PMID: 30472896 DOI: 10.1080/10641963.2018.1545846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sen Yin
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenwu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tichao Shan
- Department of Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Zhenyu Tang
- Department of Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Xuejiao Jing
- Department of Healthcare, Qilu Hospital, Shandong University, Jinan, China
| | - Song Ping
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Shuangxi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wensheng Ou
- Department of Liver Disease, Chenzhou NO. 1 People’s Hospital, Chenzhou, China
| | - Jianchun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
42
|
Nyitrai G, Spisák T, Spisák Z, Gajári D, Diószegi P, Kincses TZ, Czurkó A. Stepwise occlusion of the carotid arteries of the rat: MRI assessment of the effect of donepezil and hypoperfusion-induced brain atrophy and white matter microstructural changes. PLoS One 2018; 13:e0198265. [PMID: 29851990 PMCID: PMC5979036 DOI: 10.1371/journal.pone.0198265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
Bilateral common carotid artery occlusion (BCCAo) in the rat is a widely used animal model of vascular dementia and a valuable tool for preclinical pharmacological drug testing, although the varying degrees of acute focal ischemic lesions it induces could interfere with its translational value. Recently, a modification to the BCCAo model, the stepwise occlusion of the two carotid arteries, has been introduced. To acquire objective translatable measures, we used longitudinal multimodal magnetic resonance imaging (MRI) to assess the effects of semi-chronic (8 days) donepezil treatment in this model, with half of the Wistar rats receiving the treatment one week after the stepwise BCCAo. With an ultrahigh field MRI, we measured high-resolution anatomy, diffusion tensor imaging, cerebral blood flow measurements and functional MRI in response to whisker stimulation, to evaluate both the structural and functional effects of the donepezil treatment and stepwise BCCAo up to 5 weeks post-occlusion. While no large ischemic lesions were detected, atrophy in the striatum and in the neocortex, along with widespread white matter microstructural changes, were found. Donepezil ameliorated the transient drop in the somatosensory BOLD response in distant cortical areas, as detected 2 weeks after the occlusion but the drug had no effect on the long term structural changes. Our results demonstrate a measurable functional MRI effect of the donepezil treatment and the importance of diffusion MRI and voxel based morphometry (VBM) analysis in the translational evaluation of the rat BCCAo model.
Collapse
Affiliation(s)
- Gabriella Nyitrai
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
- * E-mail:
| | - Tamás Spisák
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsófia Spisák
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Dávid Gajári
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Pálma Diószegi
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Tamás Zsigmond Kincses
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - András Czurkó
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
43
|
Tiwari N, Bhatia P, Kumar A, Jaggi AS, Singh N. Potential of carnosine, a histamine precursor in rat model of bilateral common carotid artery occlusion-induced vascular dementia. Fundam Clin Pharmacol 2018; 32:516-531. [DOI: 10.1111/fcp.12376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Nidhi Tiwari
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Pankaj Bhatia
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Amit Kumar
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
- Pharmacology Division; Maharaja Agrasen School of Pharmacy; Maharaja Agrasen University; Baddi 174103 Himachal Pradesh India
| | - Amteshwar S. Jaggi
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Nirmal Singh
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| |
Collapse
|
44
|
Huang Y, Li Z, Nan G. Effect of hippocampal L-NBP on BDNF and TrkB expression and neurological function of vascular dementia rats. Mol Med Rep 2017; 16:7673-7678. [DOI: 10.3892/mmr.2017.7539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
|
45
|
Zhang N, Song C, Zhao B, Xing M, Luo L, Gordon ML, Cheng Y. Neovascularization and Synaptic Function Regulation with Memantine and Rosuvastatin in a Rat Model of Chronic Cerebral Hypoperfusion. J Mol Neurosci 2017; 63:223-232. [PMID: 28920182 DOI: 10.1007/s12031-017-0974-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022]
Abstract
Cerebral hypoperfusion is an important factor in the pathogenesis of cerebrovascular diseases and neurodegenerative disorders. We investigated the effects of memantine and rosuvastatin on both neovascularization and synaptic function in a rat model of chronic cerebral hypoperfusion, which was established by the bilateral common carotid occlusion (2VO) method. We tested learning and memory ability, synaptic function, circulating endothelial progenitor cell (EPC) number, expression of neurotrophic factors, and markers of neovasculogenesis and cell proliferation after memantine and/or rosuvastatin treatment. Rats treated with memantine and/or rosuvastatin showed significant improvement in Morris water maze task and long-term potentiation (LTP) in the hippocampus, compared with untreated 2VO model rats. Circulating EPCs, expression of brain-derived neurotrophic factor, and vascular endothelial growth factor, markers of microvessel density were increased by each of the three interventions. Rosuvastatin also increased cell proliferation in the hippocampus. Combined treatment with memantine and rosuvastatin showed greater effect on enhancement of LTP and expression of neurotrophic factors than either single medication treatment alone. Both memantine and rosuvastatin improved learning and memory, enhanced neovascularization and synaptic function, and upregulated neurotrophic factors in a rat model of chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China.
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Chenchen Song
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
- Department of Neurology, No.254 Hospital of the PLA, Tianjin, China
| | - Baomin Zhao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
- Department of Neurology, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Mengya Xing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| | - Lanlan Luo
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| |
Collapse
|
46
|
Li P, Zhu ML, Pan GP, Lu JX, Zhao FR, Jian X, Liu LY, Wan GR, Chen Y, Ping S, Wang SX, Hu CP. Vitamin B6 prevents isocarbophos-induced vascular dementia in rats through N-methyl-D-aspartate receptor signaling. Clin Exp Hypertens 2017; 40:192-201. [PMID: 28872356 DOI: 10.1080/10641963.2017.1356844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND We have previously reported that the long-term exposure of organophosphorus induces vascular dementia (VD) in rats. As a coenzyme, vitamin B6 is mainly involved in the regulation of metabolisms. Whether vitamin B6 improves VD remains unknown. METHODS The model of VD was induced by feeding rats with isocarbophos (0.5 mg/kg per two day, 12 weeks). The blood flow of the posterior cerebral artery (PCA) in rat was assessed by transcranial Doppler (TCD). The learning and memory were evaluated by the Morris Water Maze (MWM) test. RESULTS Administration of vitamin B6 increased the blood flow in the right and left posterior cerebral arteries and improved the functions of learning and memory in isocarbophos-treated rats. Vitamin B6 increased the protein levels of N-methyl-D-aspartate receptor (NMDAR) 2B, postsynaptic densities (PSDs) protein 95, and calmodulin-dependent protein kinase II (CaMK-II) in the hippocampus, which were decreased by isocarbophos in rats. Morphological analysis by light microscope and electronic microscope indicated disruptions of the hippocampus caused by isocarbophos were normalized by vitamin B6. Importantly, the antagonist of NMDAR signaling by eliprodil abolished these beneficial effects produced by vitamin B6 on PCA blood flow, learning, memory, and hippocampus structure in rats, as well as the protein expression of NMDAR 2B, PSDs protein 95, and CaMK-II in the hippocampus. CONCLUSION Vitamin B6 activates NMDAR signaling to prevent isocarbophos-induced VD in rats.
Collapse
Affiliation(s)
- Peng Li
- a Department of Pharmacology , Xiangya School of Pharmaceutical Sciences, Central South University , Changsha , China
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Mo-Li Zhu
- c The Key Laboratory of Cardiovascular Remodeling and Function Research , Qilu Hospital, Shandong University , Jinan , China
| | - Guo-Pin Pan
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Jun-Xiu Lu
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Fan-Rong Zhao
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Xu Jian
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Li-Ying Liu
- a Department of Pharmacology , Xiangya School of Pharmaceutical Sciences, Central South University , Changsha , China
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Guang-Rui Wan
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Yuan Chen
- c The Key Laboratory of Cardiovascular Remodeling and Function Research , Qilu Hospital, Shandong University , Jinan , China
| | - Song Ping
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
| | - Shuang-Xi Wang
- b College of Pharmacy , School of Basic Medicine and Sanquan Medical College, Xinxiang Medical University , Xinxiang , China
- c The Key Laboratory of Cardiovascular Remodeling and Function Research , Qilu Hospital, Shandong University , Jinan , China
| | - Chang-Ping Hu
- a Department of Pharmacology , Xiangya School of Pharmaceutical Sciences, Central South University , Changsha , China
| |
Collapse
|
47
|
Ramagiri S, Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/ BDNF pathway. Eur J Pharmacol 2017; 803:84-93. [DOI: 10.1016/j.ejphar.2017.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 01/07/2023]
|
48
|
Ahmed S, Mahmood Z, Javed A, Hashmi SN, Zerr I, Zafar S, Zahid S. Effect of Metformin on Adult Hippocampal Neurogenesis: Comparison with Donepezil and Links to Cognition. J Mol Neurosci 2017; 62:88-98. [PMID: 28378260 DOI: 10.1007/s12031-017-0915-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/29/2017] [Indexed: 01/02/2023]
Abstract
Recent studies have uncovered evidence suggesting that interference with hippocampal adult neurogenesis contributes to neurodegeneration in Alzheimer's disease (AD). Evidence supporting that AD is a metabolic disease with derangements in brain glucose utilization implies the use of anti-diabetics as an alternate therapeutic strategy. The present study drew comparison between the pro-neurogenic potential of metformin and donepezil in AlCl3-induced mouse model of neurodegeneration. Morris water maze task and subsequent immunohistochemical evaluation for NeuN was conducted. Expression of neurogenesis markers and hippocampal proteome analysis was determined by qRT-PCR and SDS-PAGE, respectively, followed by ESI-QTOFF MS/MS identification. The results demonstrated impaired spatial memory and differential expression of eight proteins in the AlCl3 group as compared to the controls. Interestingly, treatment with metformin normalized the proteome profile and expression levels of neurogenesis markers along with improvement in the spatial memory. Moreover, as compared to donepezil, metformin-treated mice exhibited an enhanced number of post-mitotic NeuN-positive neurons. It is suggested that underlying molecular mechanisms of metformin-mediated adult hippocampal neurogenesis may have implications in treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sara Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zahra Mahmood
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aneela Javed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Shoaib Naiyer Hashmi
- Department of Histopathology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
49
|
Yu H, Chen T, Zhou L, Tang J. Effect of Selective 5-HT6R Agonist on Expression of 5-HT Receptor and Neurotransmitter in Vascular Dementia Rats. Med Sci Monit 2017; 23:818-825. [PMID: 28196966 PMCID: PMC5322869 DOI: 10.12659/msm.899067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background 5-HT6 receptor (5-HT6R) has pluripotent roles regulating secretion of neurotransmitters. However, whether 5-HT6R is involved in the development of vascular dementia (VD) remains unclear. To evaluate the role and mechanism of 5-HT6R in VD, this study established a rat VD model to evaluate the effect of selective 5-HT6R agonist on the expression of 5-HT6R mRNA and neurotransmitter. Material/Methods Eighty healthy male SD rats (7 weeks old) were randomly assigned to sham, model, 5-HT6R agonist, and placebo groups (N=20 each). A rat VD model was generated by permeant bilateral ligation of the common carotid artery. 5-HT6R agonist, placebo, or saline were given intraperitoneally for 4 weeks. The Morris water maze was utilized to test learning and memory function. Brains were extracted to separate the cortex and hippocampal tissues, in which glutamate and γ-aminobutyric acid (GABA) levels were analyzed. mRNA and protein levels of 5-HT6R were determined by RT-PCR and immunohistochemistry (IHC), respectively. Results Model rats had longer escape latency and fewer crossing platform times. Contents of DA, Glu, GABA, and Ach were lowered in cortical and hippocampal tissues, and 5-HT6R expression was suppressed (p<0.05). The application of 5-HT6R agonist shortened escape latency and increased the number of passing through the platform. It also improved hippocampal CA1 neuronal damage and elevated DA, Glu, GABA, and Ach contents and expression of 5-HT6R. Expression of 5-HT6R was not different from the placebo group. Conclusions Selective 5-HT6R agonist can alleviate learning deficit of VD rats, possibly via improving neurotransmitter levels in brain regions.
Collapse
Affiliation(s)
- Haining Yu
- Department of Neurology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland).,Brain Hospital, People's Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Tao Chen
- Brain Hospital, People's Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Li Zhou
- Brain Hospital, People's Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Jiyou Tang
- Department of Neurology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
50
|
Wang XJ, Gao YP, Lu NN, Li WS, Xu JF, Ying XY, Wu G, Liao MH, Tan C, Shao LX, Lu YM, Zhang C, Fukunaga K, Han F, Du YZ. Endogenous Polysialic Acid Based Micelles for Calmodulin Antagonist Delivery against Vascular Dementia. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35045-35058. [PMID: 27750011 DOI: 10.1021/acsami.6b13052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clinical treatment for vascular dementia still remains a challenge mainly due to the blood-brain barrier (BBB). Here, a micelle based on polysialic acid (PSA), which is a hydrophilic and endogenous carbohydrate polymer, was designed to deliver calmodulin antagonist for therapy of vascular dementia. PSA was first chemically conjugated with octadecylamine (ODA), and the obtained PSA-ODA copolymer could self-assemble into micelle in aqueous solution with a 120.0 μg/mL critical micelle concentration. The calmodulin antagonist loaded PSA-ODA micelle, featuring sustained drug release behavior over a period of 72 h with a 3.6% (w/w) drug content and a 107.0 ± 4.0 nm size was then fabricated. The PSA-ODA micelle could cross the BBB mainly via active endocytosis by brain endothelial cells followed by transcytosis. In a water maze test for spatial learning, calmodulin antagonist loaded PSA-ODA micelle significantly reduced the escape latencies of right unilateral common carotid arteries occlusion (rUCCAO) mice with dosage significantly reduced versus free drug. The decrease of hippocampal phospho-CaMKII (Thr286/287) and phospho-synapsin I (Ser603) was partially restored in rUCCAO mice following calmodulin antagonist loaded PSA-ODA micelle treatment. Consistent with the restored CaMKII phosphorylation, the elevation of BrdU/NeuN double-positive cells in the same context was also observed. Overall, the PSA-ODA micelle developed from the endogenous material might promote the development of therapeutic approaches for improving the efficacy of brain-targeted drug delivery and have great potential for vascular dementia treatment.
Collapse
Affiliation(s)
| | - Yin-Ping Gao
- School of Medicine, Zhejiang University City College , Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College , Hangzhou 310058, China
| | | | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai 980-8574, Japan
| | | | | |
Collapse
|