1
|
Cuéllar-Pérez R, Jauregui-Huerta F, Ruvalcaba-Delgadillo Y, Montero S, Lemus M, Roces de Álvarez-Buylla E, García-Estrada J, Luquín S. K252a Prevents Microglial Activation Induced by Anoxic Stimulation of Carotid Bodies in Rats. TOXICS 2023; 11:871. [PMID: 37888721 PMCID: PMC10610815 DOI: 10.3390/toxics11100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Inducing carotid body anoxia through the administration of cyanide can result in oxygen deprivation. The lack of oxygen activates cellular responses in specific regions of the central nervous system, including the Nucleus Tractus Solitarius, hypothalamus, hippocampus, and amygdala, which are regulated by afferent pathways from chemosensitive receptors. These receptors are modulated by the brain-derived neurotrophic factor receptor TrkB. Oxygen deprivation can cause neuroinflammation in the brain regions that are activated by the afferent pathways from the chemosensitive carotid body. To investigate how microglia, a type of immune cell in the brain, respond to an anoxic environment resulting from the administration of NaCN, we studied the effects of blocking the TrkB receptor on this cell-type response. Male Wistar rats were anesthetized, and a dose of NaCN was injected into their carotid sinus to induce anoxia. Prior to the anoxic stimulus, the rats were given an intracerebroventricular (icv) infusion of either K252a, a TrkB receptor inhibitor, BDNF, or an artificial cerebrospinal fluid (aCSF). After the anoxic stimulus, the rats were perfused with paraformaldehyde, and their brains were processed for microglia immunohistochemistry. The results indicated that the anoxic stimulation caused an increase in the number of reactive microglial cells in the hypothalamic arcuate, basolateral amygdala, and dentate gyrus of the hippocampus. However, the infusion of the K252a TrkB receptor inhibitor prevented microglial activation in these regions.
Collapse
Affiliation(s)
- Ricardo Cuéllar-Pérez
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Fernando Jauregui-Huerta
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Yaveth Ruvalcaba-Delgadillo
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Sergio Montero
- Facultad de Medicina, Universidad de Colima, Colima 28040, Mexico
| | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28040, Mexico
| | | | - Joaquín García-Estrada
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Sonia Luquín
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| |
Collapse
|
2
|
Islam MS, Shin HY, Yoo YJ, Lee EY, Kim R, Jang YJ, Akanda MR, Tae HJ, Kim IS, Ahn D, Park BY. Fermented Mentha arvensis administration provides neuroprotection against transient global cerebral ischemia in gerbils and SH-SY5Y cells via downregulation of the MAPK signaling pathway. BMC Complement Med Ther 2022; 22:172. [PMID: 35752797 PMCID: PMC9233811 DOI: 10.1186/s12906-022-03653-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background Globally, ischemic stroke is a major health threat to humans that causes lifelong disability and death. Mentha arvensis (MA) has been used in traditional medicine to alleviate oxidative stress and inflammation-related disorders. In the present study, the neuroprotective properties of fermented MA (FMA) extract were investigated in the gerbil and SH-SY5Y cells. model of transient global cerebral ischemia. Methods Bilateral common carotid artery occlusion-induced transient global cerebral ischemia in gerbil and hydrogen peroxide (H2O2)-mediated neurotoxic effects in human neuroblastoma cells (SH-SY5Y) were investigated. FMA (400 mg/kg) was orally administered for 7 days before induction of ischemic stroke. To evaluate the neuroprotective activity of FMA, we implemented various assays such as cell viability assay (MTT), lactate dehydrogenase (LDH) assay, histopathology, immunohistochemistry (IHC), histofluorescence, and western blot. Results FMA pretreatment effectively decreased transient ischemia (TI) induced neuronal cell death as well as activation of microglia and astrocytes in the hippocampal region. The protective effects of FMA extract against H2O2-induced cytotoxicity of SH-SY5Y cells were observed by MTT and LDH assay. However, FMA pretreatment significantly increased the expression of the antioxidant marker proteins such as superoxide dismutase-1 (SOD-1) and superoxide dismutase-2 (SOD-2) in the hippocampus and SH-SY5Y cells. Furthermore, the activation of mitogen-activated protein kinase (MAPK) further activated a cascade of outcomes such as neuroinflammation and apoptosis. FMA pretreatment notably decreased TI and H2O2 induced activation of MAPK (c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38) proteins in hippocampus and SH-SY5Y cells respectively. Besides, pretreatment with FMA markedly reduced H2O2 mediated Bax/Bcl2 expression in SH-SY5Y cells. Conclusion Thus, these results demonstrated that neuroprotective activities of FMA might contribute to regulating the MAPK signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03653-7.
Collapse
|
3
|
Ahmad-Molaei L, Pourhamzeh M, Ahadi R, Khodagholi F, Hassanian-Moghaddam H, Haghparast A. Time-Dependent Changes in the Serum Levels of Neurobiochemical Factors After Acute Methadone Overdose in Adolescent Male Rat. Cell Mol Neurobiol 2021; 41:1635-1649. [PMID: 32712727 PMCID: PMC11444013 DOI: 10.1007/s10571-020-00931-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
Acute methadone toxicity is a major public health concern which has adverse effects on brain tissue and results in recurrent or delayed respiratory arrest. Our study aimed to investigate the time-dependent changes in several serum biochemical markers of brain damage, spatial working memory, and the brain tissue following acute methadone overdose. Adolescent male rats underwent an intraperitoneal (i.p.) injection of 15 mg/kg methadone. In case of apnea occurrence, resuscitation was performed by a ventilatory pump and administrating naloxone (2 mg/kg; i.p.). The animals were classified into groups of treated rats; methadone and naloxone-Apnea (M/N-Apnea), M/N-Sedate, Methadone, Naloxone, and control (saline) groups. The serum levels of S100B, neuron-specific enolase (NSE), myelin basic protein factors, and (Lactate/Pyruvate) L/P ratio were evaluated at the time-points of 6, 24, and 48 h (h). We found that the alterations of S100B and L/P ratio were considerable in the M/N-Apnea and Methadone groups from the early hours post-methadone overdose, while NSE serum levels elevation was observed only in M/N-Apnea group with a delay at 48 h. Further, we assessed the spatial working memory (Y-maze test), morphological changes, and neuronal loss. The impaired spontaneous alternation behavior was detected in the M/N-Apnea groups on days 5 and 10 post-methadone overdose. The morphological changes of neurons and the neuronal loss were detectable in the CA1, striatum, and cerebellum regions, which were pronounced in both M/N-Apnea and Methadone groups. Together, our findings suggest that alterations in the serum levels of S100B and NSE factors as well as L/P ratio could be induced by methadone overdose with the presence or absence of apnea before the memory impairment and tissue injury in adolescent male rats.
Collapse
Affiliation(s)
- Leila Ahmad-Molaei
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- Department of Clinical Toxicology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
4
|
Increased Calbindin D28k Expression via Long-Term Alternate-Day Fasting Does Not Protect against Ischemia-Reperfusion Injury: A Focus on Delayed Neuronal Death, Gliosis and Immunoglobulin G Leakage. Int J Mol Sci 2021; 22:ijms22020644. [PMID: 33440708 PMCID: PMC7827208 DOI: 10.3390/ijms22020644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood–brain barrier, which triggers gliosis after ischemic insults.
Collapse
|
5
|
Ahn JH, Lee TK, Tae HJ, Kim B, Sim H, Lee JC, Kim DW, Kim YS, Shin MC, Park Y, Cho JH, Park JH, Lee CH, Choi SY, Won MH. Neuronal Death in the CNS Autonomic Control Center Comes Very Early after Cardiac Arrest and Is Not Significantly Attenuated by Prompt Hypothermic Treatment in Rats. Cells 2021; 10:E60. [PMID: 33401719 PMCID: PMC7824613 DOI: 10.3390/cells10010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Autonomic dysfunction in the central nervous system (CNS) can cause death after recovery from a cardiac arrest (CA). However, few studies on histopathological changes in animal models of CA have been reported. In this study, we investigated the prevalence of neuronal death and damage in various brain regions and the spinal cord at early times after asphyxial CA and we studied the relationship between the mortality rate and neuronal damage following hypothermic treatment after CA. Rats were subjected to 7-8 min of asphyxial CA, followed by resuscitation and prompt hypothermic treatment. Eight regions related to autonomic control (the cingulate cortex, hippocampus, thalamus, hypothalamus, myelencephalon, and spinal cord) were examined using cresyl violet (a marker for Nissl substance) and Fluoro-Jade B (a marker for neuronal death). The survival rate was 44.5% 1 day post-CA, 18.2% 2 days post-CA and 0% 5 days post-CA. Neuronal death started 12 h post-CA in the gigantocellular reticular nucleus and caudoventrolateral reticular nucleus in the myelencephalon and lamina VII in the cervical, thoracic, lumbar, and sacral spinal cord, of which neurons are related to autonomic lower motor neurons. In these regions, Iba-1 immunoreactivity indicating microglial activation (microgliosis) was gradually increased with time after CA. Prompt hypothermic treatment increased the survival rate at 5 days after CA with an attenuation of neuronal damages and death in the damaged regions. However, the survival rate was 0% at 12 days after CA. Taken together, our study suggests that the early damage and death of neurons related to autonomic lower motor neurons was significantly related to the high mortality rate after CA and that prompt hypothermic therapy could increase the survival rate temporarily after CA, but could not ultimately save the animal.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea;
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea;
| | - Yoon Sung Kim
- Department of Emergency Medicine, Samcheok Medical Center, Samcheok 25920, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| |
Collapse
|
6
|
Park JH, Lee TK, Kim DW, Park CW, Park YE, Kim B, Lee JC, Lee HA, Won MH, Ahn JH. RbAp48 expression and neuronal damage in the gerbil hippocampus following 5 min of transient ischemia. Lab Anim Res 2020; 35:12. [PMID: 32257900 PMCID: PMC7081550 DOI: 10.1186/s42826-019-0011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/14/2019] [Indexed: 11/10/2022] Open
Abstract
Histone-binding protein RbAp48 has been known to be involved in histone acetylation, and epigenetic alterations of histone modifications are closely associated with the pathogenesis of ischemic reperfusion injury. In the current study, we investigated chronological change of RbAp48 expression in the hippocampus following 5 min of transient ischemia in gerbils. RbAp48 expression was examined 1, 2, 5, and 10 days after transient ischemia using immunohistochemistry. In sham operated gerbils, RbAp48 immunoreactivity was strong in pyramidal and non-pyramidal cells in the hippocampus. After transient ischemia, RbAp48 immunoreactivity was changed in the cornu ammonis 1 subfield (CA1), not in CA2/3. RbAp48 immunoreactivity in CA1 pyramidal neurons was gradually decreased and not detected at 5 and 10 days after ischemia. RbAp48 immunoreactivity in non-pyramidal cells was maintained until 2 days post-ischemia and significantly increased from 5 days post-ischemia. Double immunohistofluorescence staining revealed that RbAp48 immunoreactive non-pyramidal cells were astrocytes. At 5 days post-ischemia, death of pyramidal neurons occurred only in the CA1. These results showed that RbAp48 immunoreactivity was distinctively altered in pyramidal neurons and astrocytes in the hippocampal CA1 following 5 mins of transient ischemia. Ischemia-induced change in RbAp48 expression may be closely associated with neuronal death and astrocyte activation following 5 min of transient ischemia.
Collapse
Affiliation(s)
- Joon Ha Park
- 1Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
| | - Tae-Kyeong Lee
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457 Republic of Korea
| | - Cheol Woo Park
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Young Eun Park
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Bora Kim
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Jae-Chul Lee
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Hyang-Ah Lee
- 4Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Moo-Ho Won
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Ji Hyeon Ahn
- 1Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
| |
Collapse
|
7
|
Qin Y, Zhang Q, Liu Y. Analysis of knowledge bases and research focuses of cerebral ischemia-reperfusion from the perspective of mapping knowledge domain. Brain Res Bull 2019; 156:15-24. [PMID: 31843561 DOI: 10.1016/j.brainresbull.2019.12.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022]
Abstract
Cerebral ischemia-reperfusion (IR) has attracted wide attention as a serious clinical problem. So far, the field has accumulated a large amount of scientific research literature. To clarify the temporal and spatial distribution characteristics of research resources, knowledge bases and research focuses, a visual analysis was performed on 5814 articles cited in the WoS databases from 2004 to 2019. This analysis was based on bibliometrics and mapping knowledge domain (MKD) analysis with VOSviewer, and CiteSpace 5.4.R4. The results can be elaborated from four aspects. First, the volume of publications in this area is on the rise. Second, the United States and China are the active regions. The USA is the central region of cerebral ischemia-reperfusion research. Third, the knowledge bases of IR have focused on five major areas of "Suitable small-animal models", "A framework with further study", "Molecular signaling targets by oxidative stress", "Finding new potential targets for therapy" and "Protective effect of multiple transient ischemia". Fourth, the research focuses consist of three representative areas: "Oxidative stress closelyd with cerebral ischemia-reperfusion", "Neuronal apoptosis and neuronal protection", and "Neuroprotective effect of the blood-brain barrier".
Collapse
Affiliation(s)
- Yi Qin
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qing Zhang
- No.4 Hospital Beijing University of Chinese Medicine, Zaozhuang, Shandong 277000
| | - Yaru Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
8
|
Ahn JH, Shin BN, Park JH, Lee TK, Park YE, Lee JC, Yang GE, Shin MC, Cho JH, Lee KC, Won MH, Kim H. Pre- and Post-Treatment with Novel Antiepileptic Drug Oxcarbazepine Exerts Neuroprotective Effect in the Hippocampus in a Gerbil Model of Transient Global Cerebral Ischemia. Brain Sci 2019; 9:brainsci9100279. [PMID: 31627311 PMCID: PMC6826395 DOI: 10.3390/brainsci9100279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
Oxcarbazepine, an antiepileptic drug, has been reported to modulate voltage-dependent sodium channels, and it is commonly used in epilepsy treatment. In this study, we investigated the neuroprotective effect of oxcarbazepine in the hippocampus after transient ischemia in gerbils. Gerbils randomly received oxcarbazepine 100 or 200 mg/kg before and after transient ischemia. We examined its neuroprotective effect in the cornu ammonis 1 subfield of the gerbil hippocampus at 5 days after transient ischemia by using cresyl violet staining, neuronal nuclei immunohistochemistry and Fluoro-Jade B histofluorescence staining for neuroprotection, and by using glial fibrillary protein and ionized calcium-binding adapter molecule 1 immunohistochemistry for reaction of astrocytes and microglia, respectively. Pre- and post-treatment with 200 mg/kg of oxcarbazepine, but not 100 mg/kg of oxcarbazepine, protected pyramidal neurons of the cornu ammonis 1 subfield from transient ischemic damage. In addition, pre- and post-treatment with oxcarbazepine (200 mg/kg) significantly ameliorated astrocytes and microglia activation in the ischemic cornu ammonis 1 subfield. In brief, our current results indicate that post-treatment as well as pre-treatment with 200 mg/kg of oxcarbazepine can protect neurons from ischemic insults via attenuation of the glia reaction.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Bich Na Shin
- Department of Physiology, School of Medicine, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea.
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Korea.
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Kyu Chang Lee
- Department of Anesthesiology and Pain Medicine, Chungju Hospital, Konkuk University School of Medicine, Chungju, Chungbuk 27376, Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Hyeyoung Kim
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
- Department of Anesthesiology and Pain Medicine, Chungju Hospital, Konkuk University School of Medicine, Chungju, Chungbuk 27376, Korea.
| |
Collapse
|
9
|
Ahn JH, Kim DW, Park JH, Lee TK, Lee HA, Won MH, Lee CH. Expression changes of CX3CL1 and CX3CR1 proteins in the hippocampal CA1 field of the gerbil following transient global cerebral ischemia. Int J Mol Med 2019; 44:939-948. [PMID: 31524247 PMCID: PMC6658004 DOI: 10.3892/ijmm.2019.4273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
Chemokine C-X3-C motif ligand 1 (CX3CL1) and its sole receptor, CX3CR1, are known to be involved in neuronal damage/death following brain ischemia. In the present study, time-dependent expression changes of CX3CL1 and CX3CR1 proteins were investigated in the hippocampal CA1 field following 5 min of transient global cerebral ischemia (tgCI) in gerbils. To induce tgCI in gerbils, bilateral common carotid arteries were occluded for 5 min using aneurysm clips. Expression changes of CX3CL1 and CX3CR1 proteins were assessed at 1, 2 and 5 days after tgCI using western blotting and immunohistochemistry. CX3CL1 immunoreactivity was strong in the CA1 pyramidal cells of animals in the sham operation group. Weak CX3CL1 immunoreactivity was detected at 6 h after tgCI, recovered at 1 day after tgCI and disappeared from 5 days after tgCI. CX3CR1 immunoreactivity was very weak in CA1 pyramidal cells of the sham animals. CX3CR1 immunoreactivity in CA1 pyramidal cells was significantly increased at 1 days after tgCI and gradually decreased thereafter. On the other hand, CX3CR1 immunoreactivity was significantly increased in microglia from 5 days after tgCI. These results showed that CX3CL1 and CX3CR1 protein expression levels in pyramidal cells and microglia in the hippocampal CA1 field following tgCI were changed, indicating that tgCI-induced expression changes of CX3CL1 and CX3CR1 proteins might be closely associated with tgCI-induced delayed neuronal death and microglial activation.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| |
Collapse
|
10
|
Ahn JH, Ohk TG, Kim DW, Kim H, Song M, Lee TK, Lee JC, Yang GE, Shin MC, Cho JH, Choi SY, Won MH, Park JH. Fluoro-Jade B histofluorescence staining detects dentate granule cell death after repeated five-minute transient global cerebral ischemia. Metab Brain Dis 2019; 34:951-956. [PMID: 30830598 DOI: 10.1007/s11011-019-00404-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
Transient global cerebral ischemia (tGCI)-induced neuronal damage is variable according to its duration and degree. There are many studies on the damage or death of pyramidal cells of the hippocampus proper (CA1-3) in rodent models of tGCI. However, studies on the death of granule cells in the hippocampal dentate gyrus (DG) following tGCI have not yet been addressed. In this study, we examined the damage/death of granule cells in the gerbil DG at 5 days after various durations (5, 10, and 15 min) of single tGCI and repeated tGCI (two 5-min tGCI with 1-h interval) using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B (F-J B) histofluorescence staining. Neuronal death was observed only in the polymorphic layer in all single tGCI-operated groups. However, in the repeated tGCI-operated group, massive neuronal death was observed in the granule cell layer as well as in the polymorphic layer by using F-J B histofluorescence staining. In addition, microgliosis in the DG was significantly increased in the repeated tGCI-operated group compared to the 15-min tGCI-operated group. Taken together, these findings indicate that repeated brief tGCI causes granule cell death in the DG which could not occur by a longer duration of single tGCI.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, 1 Hallimdaehak-gil, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon, 25457, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon, 24289, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, 1 Hallimdaehak-gil, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, 1 Hallimdaehak-gil, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
11
|
Her Y, Shin BN, Lee YL, Park JH, Kim DW, Kim KS, Kim H, Song M, Kim JD, Won MH, Ahn JH. Oenanthe Javanica Extract Protects Mouse Skin from UVB Radiation via Attenuating Collagen Disruption and Inflammation. Int J Mol Sci 2019; 20:E1435. [PMID: 30901885 PMCID: PMC6470913 DOI: 10.3390/ijms20061435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
In recent years, the use of botanical agents to prevent skin damage from solar ultraviolet (UV) irradiation has received considerable attention. Oenanthe javanica is known to exert anti-inflammatory and antioxidant activities. This study investigated photoprotective properties of an Oenanthe javanica extract (OJE) against UVB-induced skin damage in ICR mice. The extent of skin damage was evaluated in three groups: control mice with no UVB, UVB-exposed mice treated with vehicle (saline), and UVB-exposed mice treated with 1% extract. Photoprotective properties were assessed in the dorsal skin using hematoxylin and eosin staining, Masson trichrome staining, immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blotting to analyze the epidermal thickness, collagen expression, and mRNA and protein levels of type I collagen, type III collagen, and interstitial collagenases, including matrix metalloproteinase (MMP)-1 and MMP-3. In addition, tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 protein levels were also assessed. In the UVB-exposed mice treated with extract, UV-induced epidermal damage was significantly ameliorated. In this group, productions of collagen types I and III were increased, and expressions of MMP-1 and MMP-3 were decreased. In addition, TNF-α and COX-2 expressions were reduced. Based on these findings, we conclude that OJE displays photoprotective effects against UVB-induced collagen disruption and inflammation and suggest that Oenanthe javanica can be used as a natural product for the treatment of photodamaged skin.
Collapse
Affiliation(s)
- Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea.
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| | - Ki Seob Kim
- Da Rum & Bio Inc., Chuncheon, Gangwon 24232, Korea.
| | | | - Minah Song
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea.
| |
Collapse
|
12
|
Fate of Astrocytes in The Gerbil Hippocampus After Transient Global Cerebral Ischemia. Int J Mol Sci 2019; 20:ijms20040845. [PMID: 30781368 PMCID: PMC6412566 DOI: 10.3390/ijms20040845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 01/13/2023] Open
Abstract
Neuronal death and reactive gliosis are major features of brain tissue damage following transient global cerebral ischemia (tgCI). This study investigated long-term changes in neuronal death and astrogliosis in the gerbil hippocampus for 180 days after 5 min of tgCI. A massive loss of pyramidal neurons was found in the hippocampal CA1 area (CA1) area between 5 and 30 days after tgCI by Fluoro-Jade B (FJB, a marker for neuronal degeneration) histofluorescence staining, but pyramidal neurons in the CA2/3 area did not die. The reaction of astrocytes (astrogliosis) was examined by glial fibrillary acidic protein (GFAP) immunohistochemistry. Morphological change or degeneration (death) of the astrocytes was found in the CA1 area after tgCI, but, in the CA2/3 area, astrogliosis was hardly shown. GFAP immunoreactive astrocytes in the CA1 area was significantly increased in number with time and peaked at 30 days after tgCI, and they began to be degenerated or dead from 40 days after tgCI. The effect was examined by double immunofluorescence staining for FJB and GFAP. The number of FJB/GFAP⁺ cells (degenerating astrocytes) was gradually increased with time after tgCI. At 180 days after tgCI, FJB/GFAP⁺ cells were significantly decreased, but FJB⁺ cells (dead astrocytes) were significantly increased. In brief, 5 min of tgCI induced a progressive degeneration of CA1 pyramidal neurons from 5 until 30 days with an increase of reactive astrocytes, and, thereafter, astrocytes were degenerated with time and dead at later times. This phenomenon might be shown due to the death of neurons.
Collapse
|
13
|
Ahn JH, Song M, Kim H, Lee TK, Park CW, Park YE, Lee JC, Cho JH, Kim YM, Hwang IK, Won MH, Park JH. Differential regional infarction, neuronal loss and gliosis in the gerbil cerebral hemisphere following 30 min of unilateral common carotid artery occlusion. Metab Brain Dis 2019; 34:223-233. [PMID: 30443768 DOI: 10.1007/s11011-018-0345-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The degree of transient ischemic damage in the cerebral hemisphere is different according to duration of transient ischemia and cerebral regions. Mongolian gerbils show various lesions in the hemisphere after transient unilateral occlusion of the common carotid artery (UOCCA) because they have different types of patterns of anterior and posterior communicating arteries. We examined differential regional damage in the ipsilateral hemisphere of the gerbil after 30 min of UOCCA by using 2,3,5-triphenyltetrazolium chloride (TTC) staining, cresyl violet (CV) Nissl staining, Fluoro-Jade B (F-J B) fluorescence staining, and NeuN immunohistochemistry 5 days after UOCCA. In addition, regional differences in reactions of astrocytes and microglia were examined using GFAP and Iba-1 immunohistochemistry. After right UOCCA, neurological signs were assessed to define ischemic symptomatic animals. Moderate symptomatic gerbils showed several infarcts, while mild symptomatic gerbils showed selective neuronal death/loss in the primary motor and sensory cortex, striatum, thalamus, and hippocampus 5 days after UOCCA. In the areas, morphologically changed GFAP immunoreactive astrocytes and Iba-1 immunoreactive microglia were found, and their numbers were increased or decreased according to the damaged areas. In brief, our results demonstrate that 30 min of UOCCA in gerbils produced infarcts or selective neuronal death depending on ischemic severity in the ipsilateral cerebral cortex, striatum, thalamus and hippocampus, showing that astrocytes and microglia were differently reacted 5 days after UOCCA. Taken together, a gerbil model of 30 min of UOCCA can be used to study mechanisms of infarction and/or regional selective neuronal death/loss as well as neurological dysfunction following UOCCA.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Gangwon, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
14
|
Ahn JH, Shin BN, Song M, Kim H, Park JH, Lee TK, Park CW, Park YE, Lee JC, Yong JH, Lee CH, Hwang IK, Won MH, Lee YL. Intermittent fasting increases the expressions of SODs and catalase in granule and polymorphic cells and enhances neuroblast dendrite complexity and maturation in the adult gerbil dentate gyrus. Mol Med Rep 2019; 19:1721-1727. [PMID: 30628688 PMCID: PMC6390044 DOI: 10.3892/mmr.2019.9822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/31/2018] [Indexed: 11/06/2022] Open
Abstract
Intermittent fasting (ImF) is known to reduce oxidative stress and affects adult neurogenesis in the hippocampal dentate gyrus. However, it is unknown how ImF affects endogenous antioxidants expressions, cell proliferation, and neuroblast differentiation and their dendrite remodeling over 3 months in the dentate gyrus of adult gerbils. The present study subjected 6‑month old male gerbils to a normal diet or alternate‑day ImF for 1, 2 and 3 months. Changes in body weight were not significantly different between gerbils fed a normal diet and on ImF. The present study also investigated the effects of ImF on antioxidant enzymes [superoxide dismutase (SOD)‑1, SOD2 and catalase] using immunohistochemistry, and endogenous cell proliferation, neuroblast differentiation and neuroblast dendrite complexity by using Ki67 (a cell proliferation marker) and doublecortin (neuroblast differentiation marker) immunohistochemistry in the dentate gyrus. SOD1, SOD2 and CAT immunoreactivities were shown in cells in the granule cell and polymorphic layers. SOD1, SOD2 and catalase immunoreactivity in the cells peaked at 2, 1 and 1 month, respectively, following ImF. Cell proliferation was ~250, 129 and 186% of the control, at 1, 2 and 3 months of ImF, respectively. Neuroblast differentiation was ~41, 32 and 12% of the control, at 1, 2 and 3 months of ImF, respectively, indicating that dendrites of neuroblasts were more arborized and developed at 3 months of ImF. Taken together, these results indicate that ImF for 3 months improves endogenous SOD1, SOD2 and catalase expressions and enhances cell proliferation, and neuroblast dendrites complexity and maturation in the adult gerbil dentate gyrus.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Bich Na Shin
- Danchunok Company, Chuncheon, Gangwon 24210, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun-Hwan Yong
- Department of Occupational Therapy, Dongnam Health University, Suwon, Gyeonggi 16238, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
15
|
Lee TK, Kim H, Song M, Lee JC, Park JH, Ahn JH, Yang GE, Kim H, Ohk TG, Shin MC, Cho JH, Won MH. Time-course pattern of neuronal loss and gliosis in gerbil hippocampi following mild, severe, or lethal transient global cerebral ischemia. Neural Regen Res 2019; 14:1394-1403. [PMID: 30964065 PMCID: PMC6524495 DOI: 10.4103/1673-5374.253524] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transient ischemia in the whole brain leads to neuronal loss/death in vulnerable brain regions. The striatum, neocortex and hippocampus selectively loose specific neurons after transient ischemia. Just 5 minutes of transient ischemia can cause pyramidal neuronal death in the hippocampal cornu ammonis (CA) 1 field at 4 days after transient ischemia. In this study, we investigated the effects of 5-minute (mild), 15-minute (severe), and 20-minute (lethal) transient ischemia by bilateral common carotid artery occlusion (BCCAO) on behavioral change and neuronal death and gliosis (astrocytosis and microgliosis) in gerbil hippocampal subregions (CA1–3 region and dentate gyrus). We performed spontaneous motor activity test to evaluate gerbil locomotor activity, cresyl violet staining to detect cellular distribution, neuronal nuclei immunohistochemistry to detect neuronal distribution, and Fluoro-Jade B histofluorescence to evaluate neuronal death. We also conducted immunohistochemical staining for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 (Iba1) to evaluate astrocytosis and microgliosis, respectively. Animals subjected to 20-minute BCCAO died in at least 2 days. BCCAO for 15 minutes led to pyramidal cell death in hippocampal CA1–3 region 2 days later and granule cell death in hippocampal dentate gyrus 5 days later. Similar results were not found in animals subjected to 5-minute BCCAO. Gliosis was much more rapidly and severely progressed in animals subjected to 15-minute BCCAO than in those subjected to 5-minute BCCAO. Our results indicate that neuronal loss in the hippocampal formation following transient ischemia is significantly different according to regions and severity of transient ischemia. The experimental protocol was approved by Institutional Animal Care and Use Committee (AICUC) of Kangwon National University (approval No. KW-180124-1) on May 22, 2018.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon, Republic of Korea
| | - Hyeyoung Kim
- Department of Anesthesiology and Pain Medicine, Chungju Hospital, Konkuk University School of Medicine, Chungju Chungcheongbuk; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| |
Collapse
|
16
|
Ahn JH, Chen BH, Park JH, Shin BN, Lee TK, Cho JH, Lee JC, Park JR, Yang SR, Ryoo S, Shin MC, Cho JH, Kang IJ, Lee CH, Hwang IK, Kim YM, Won MH. Early IV-injected human dermis-derived mesenchymal stem cells after transient global cerebral ischemia do not pass through damaged blood-brain barrier. J Tissue Eng Regen Med 2018; 12:1646-1657. [PMID: 29763986 DOI: 10.1002/term.2692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
There is lack of researches on effects of intravenously injected mesenchymal stem cells (MSCs) against transient cerebral ischemia (TCI). We investigated the disruption of the neurovascular unit (NVU), which comprises the blood-brain barrier and examined entry of human dermis-derived MSCs (hDMSCs) into the damaged hippocampal CA1 area in a gerbil model of TCI and their subsequent effects on neuroprotection and cognitive function. Impairments of neurons and blood-brain barrier were examined by immunohistochemistry, electron microscopy, and Evans blue and immunoglobulin G leakage. Neuronal death was observed in pyramidal neurons 5-day postischemia. NVU were structurally damaged; in particular, astrocyte end-feet were severely damaged from 2-day post-TCI and immunoglobulin G leaked out of the CA1 area 2 days after 5 min of TCI; however, Evans blue extravasation was not observed. On the basis of the results of NVU damages, ischemic gerbils received PKH2-transfected hDMSCs 3 times at early times (3 hr, 2, and 5 days) after TCI, and fluorescence imaging was used to detect hDMSCs in the tissue. PKH2-transfected hDMSCs were not found in the CA1 from immediate time to 8 days after injection, although they were detected in the liver. Furthermore, hDMSCs transplantation did not protect CA1 pyramidal neurons and did not improve cognitive impairment. Intravenously transplanted hDMSCs did not migrate to the damaged CA1 area induced by TCI. These findings suggest no neuroprotection and cognitive improvement by intravenous hDMSCs transplantation after 5 min of TCI.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Bich Na Shin
- Department of Neurobiology, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jae Chul Lee
- Department of Neurobiology, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jeong-Ran Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, and Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, and Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| |
Collapse
|
17
|
Ahn JH, Lee JS, Cho JH, Park JH, Lee TK, Song M, Kim H, Kang SH, Won MH, Lee CH. Age-dependent decrease of Nurr1 protein expression in the gerbil hippocampus. Biomed Rep 2018; 8:517-522. [PMID: 29904610 PMCID: PMC5996841 DOI: 10.3892/br.2018.1094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear receptor related-1 protein (Nurr1) serves important roles in hippocampal-dependent cognitive process. In the present study, the protein expression of Nurr1 was compared in the hippocampi of young [postnatal month 3 (PM 3)], adult (PM 12) and aged (PM 24) gerbils using western blot analysis and immunohistochemistry. Results indicated that the protein level of Nurr1 was significantly and gradually decreased in the gerbil hippocampus with increasing age. In addition, strong Nurr1 immunoreactivity was primarily observed in pyramidal neurons and granule cells of the hippocampus in the young group, which was determined to be reduced in the adult group and to a greater extent in the aged group. Collectively the data demonstrated that Nurr1 immunoreactivity was gradually and markedly decreased during normal aging. These results indicate that gradual decrease of Nurr1 expression in the hippocampus may be associated with the normal aging process and a decline in hippocampus-dependent cognitive function.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Seok Lee
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seok Hoon Kang
- Department of Medical Education, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| |
Collapse
|
18
|
Seong KJ, Kim HJ, Cai B, Kook MS, Jung JY, Kim WJ. Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:145-153. [PMID: 29520167 PMCID: PMC5840073 DOI: 10.4196/kjpp.2018.22.2.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 01/27/2023]
Abstract
The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.
Collapse
Affiliation(s)
- Kyung-Joo Seong
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Hyeong-Jun Kim
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Bangrong Cai
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Min-Suk Kook
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Won-Jae Kim
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
19
|
Long-term treadmill exercise improves memory impairment through restoration of decreased synaptic adhesion molecule 1/2/3 induced by transient cerebral ischemia in the aged gerbil hippocampus. Exp Gerontol 2018; 103:124-131. [DOI: 10.1016/j.exger.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 01/13/2023]
|
20
|
Ahn JH, Park JH, Choi SY, Lee TK, Cho JH, Kim IH, Lee JC, Choi JH, Hwang IK, Lee E, Park S, Lim J, Lee YJ, Seo K, Won MH. The distribution of calbindinD-28k and parvalbumin immunoreactive neurons in the somatosensory area of the pigeon pallium. Anat Histol Embryol 2017; 47:64-70. [DOI: 10.1111/ahe.12325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/21/2017] [Indexed: 12/15/2022]
Affiliation(s)
- J. H. Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - J. H. Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - S. Y. Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - T.-K. Lee
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J. H. Cho
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - I. H. Kim
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J.-C. Lee
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J. H. Choi
- Department of Anatomy; College of Veterinary Medicine; Kangwon National University; Chuncheon South Korea
| | - I. K. Hwang
- Department of Anatomy and Cell Biology; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - E. Lee
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - S. Park
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - J. Lim
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - Y. J. Lee
- Department of Emergency Medicine; Seoul Hospital; College of Medicine; Sooncheonhyang University; Seoul South Korea
| | - K. Seo
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - M.-H. Won
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| |
Collapse
|
21
|
Ahn JH, Shin MC, Park JH, Kim IH, Cho JH, Lee TK, Lee JC, Chen BH, Shin BN, Tae HJ, Park J, Choi SY, Lee YL, Kim DW, Kim YH, Won MH, Cho JH. Effects of long‑term post‑ischemic treadmill exercise on gliosis in the aged gerbil hippocampus induced by transient cerebral ischemia. Mol Med Rep 2017; 15:3623-3630. [PMID: 28440411 PMCID: PMC5436201 DOI: 10.3892/mmr.2017.6485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/02/2017] [Indexed: 01/19/2023] Open
Abstract
Therapeutic exercise is an integral component of the rehabilitation of patients who have suffered a stroke. The objective of the present study was to use immunohistochemistry to investigate the effects of post-ischemic exercise on neuronal damage or death and gliosis in the aged gerbil hippocampus following transient cerebral ischemia. Aged gerbils (male; age, 22–24 months) underwent ischemia and were subjected to treadmill exercise for 1 or 4 weeks. Neuronal death was detected in the stratum pyramidale of the hippocampal CA1 region and in the polymorphic layer of the dentate gyrus using cresyl violet and Fluoro-Jade B histofluorescence staining. No significant difference in neuronal death was identified following 1 or 4 weeks of post-ischemic treadmill exercise. However, post-ischemic treadmill exercise affected gliosis (the activation of astrocytes and microglia). Glial fibrillary acidic protein-immunoreactive astrocytes and ionized calcium binding adaptor molecule 1-immunoreactive microglia were activated in the CA1 and polymorphic layer of the dentate gyrus of the group without treadmill exercise. Conversely, 4 weeks of treadmill exercise significantly alleviated ischemia-induced astrocyte and microglial activation; however, 1 week of treadmill exercise did not alleviate gliosis. These findings suggest that long-term post-ischemic treadmill exercise following transient cerebral ischemia does not influence neuronal protection; however, it may effectively alleviate transient cerebral ischemia-induced astrocyte and microglial activation in the aged hippocampus.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
22
|
Methylene blue improves streptozotocin-induced memory deficit by restoring mitochondrial function in rats. Brain Res 2016; 1657:208-214. [PMID: 28034723 DOI: 10.1016/j.brainres.2016.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/14/2016] [Accepted: 12/26/2016] [Indexed: 12/25/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is well documented to involve mitochondrial dysfunction which causes subsequent oxidative stress and energy metabolic failure in hippocampus. Methylene blue (MB) has been implicated to be neuroprotective in a variety of neurodegenerative diseases by restoring mitochondrial function. The present work was to examine if MB was able to improve streptozotocin (STZ)-induced Alzheimer's type dementia in a rat model by attenuating mitochondrial dysfunction-derived oxidative stress and ATP synthesis decline. MB was administrated at a dose of 0.5mg/kg/day for consecutive 7days after bilateral STZ intracerebroventricular (ICV) injection (2.5mg/kg). We first demonstrated that MB treatment significantly ameliorated STZ-induced hippocampus-dependent memory loss in passive avoidance test. We also found that MB has the properties to preserve neuron survival and attenuate neuronal degeneration in hippocampus CA1 region after STZ injection. In addition, oxidative stress was subsequently evaluated by measuring the content of lipid peroxidation products malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Importantly, results from our study showed a remarkable suppression of MB treatment on both MDA production and 4-HNE immunoactivity. Finally, energy metabolism in CA1 region was examined by detecting mitochondrial cytochrome c oxidase (CCO) activity and the resultant ATP production. Of significant interest, our result displayed a robust facilitation of MB on CCO activity and the consequent ATP synthesis. The current study indicates that MB may be a promising therapeutic agent targeting oxidative damage and ATP synthesis failure during AD progression.
Collapse
|