1
|
Tang H, Wen J, Wang L, Yang Q, Qin T, Ren Y, Zhao Y, Li C, Li J, Cao H, Xu J, Yang Q. Vagus nerve stimulation inhibits PANoptosis and promotes neurofunctional recovery of cerebral ischemic stroke in a Sirt1-dependent manner. Neurochem Int 2025; 184:105950. [PMID: 39971240 DOI: 10.1016/j.neuint.2025.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Vagus nerve stimulation (VNS) can promote neurofunctional recovery following cerebral ischemic stroke (CIS), but the underlying mechanism remains unclear. PANoptosis, a novel form of inflammatory programmed cell death, may play a role in the progression of CIS. Our previous studies have indicated that Sirt1 exerts neuroprotection against CIS by modulating various programmed cell death pathways. It needs to be clarified whether and how VNS regulates PANoptosis through Sirt1, thereby affecting the recovery of CIS. This study aims to clarify the role of VNS in modulating neuronal PANoptosis following CIS, and elucidate its underlying mechanisms. Models of middle cerebral artery occlusion/reperfusion (MCAO/R) in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) in primary neurons were established to assess the occurrence of neuronal PANoptosis following CIS. Circulating Sirt1 levels were measured in two independent cohorts of acute ischemic stroke (AIS) patients. VNS was administered to activate Sirt1, and its effects on PANoptosis and neurological recovery were evaluated. We found that neuronal PANoptosis was induced following CIS, which was reversed via VNS intervention. Sirt1 levels in serum of AIS patients were significantly increased, and positively correlated with infarct volume and National Institutes of Health Stroke Scale scores. In contrast, Sirt1 was downregulated in brain tissue from rodent models and AIS patients. This discrepancy in expression levels can be attributed to the increased generation of Sirt1 by peripheral macrophages. VNS upregulated Sirt1 expression, while the Sirt1 inhibitor EX527 negated the effects of VNS on PANoptosis, infarct volume, and neurofunctional recovery. These findings indicate that VNS may inhibit PANoptosis and promote neurofunctional recovery following CIS in a Sirt1-dependent manner, which may be a new potential target for stroke therapy. Sirt1 may also serve as a blood biomarker for patient stratification with independent prognostic value in AIS patients.
Collapse
Affiliation(s)
- Hao Tang
- Department of Neurology, The Frist Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The Frist Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The Frist Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The Frist Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Qin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Ren
- Department of Neurology, The Frist Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Neurology, The Frist Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Neurosurgery, The Third Hospital of Mianyang, Sichuan, China
| | - Jianfeng Xu
- Department of Neurosurgery, The Third Hospital of Mianyang, Sichuan, China
| | - Qin Yang
- Department of Neurology, The Frist Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Shi S, Sun Y, Zan G, Zhao M. The interaction between central and peripheral immune systems in methamphetamine use disorder: current status and future directions. J Neuroinflammation 2025; 22:40. [PMID: 39955589 PMCID: PMC11829452 DOI: 10.1186/s12974-025-03372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Methamphetamine (METH) use disorder (MUD) is characterized by compulsive drug-seeking behavior and substantial neurotoxicity, posing a considerable burden on individuals and society. Traditionally perceived as a localized central nervous system disorder, recent preclinical and clinical studies have elucidated that MUD is a multifaceted disorder influenced by various biological systems, particularly the immune system. Emerging evidence suggests that both central and peripheral immune responses play a crucial role in the initiation and persistence of MUD. Conceptualizing it as a systemic immune process prompts significant inquiries regarding the mechanisms of communication between peripheral and central compartments. Also, whether this intercommunication could serve as diagnostic biomarkers or therapeutic targets. This review begins by offering an overview of mechanistic studies pertaining to the neuroimmune and peripheral immune systems. Finally, future directions are suggested through the integration of innovative technologies and multidimensional data to promote the translation of basic mechanistic research into clinical diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiying Zan
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.
| |
Collapse
|
3
|
Chen Z, Liu K. Mechanism and Applications of Vagus Nerve Stimulation. Curr Issues Mol Biol 2025; 47:122. [PMID: 39996843 PMCID: PMC11854789 DOI: 10.3390/cimb47020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past three decades, vagus nerve stimulation (VNS) has emerged as a promising rehabilitation therapy for a diverse range of conditions, demonstrating substantial clinical potential. This review summarizes the in vivo biological mechanisms activated by VNS and their corresponding clinical applications. Furthermore, it outlines the selection of parameters and equipment for VNS implementation. VNS exhibits anti-inflammatory effects, modulates neurotransmitter release, enhances neural plasticity, inhibits apoptosis and autophagy, maintains blood-brain barrier integrity, and promotes angiogenesis. Clinically, VNS has been utilized in the treatment of epilepsy, depression, headache, stroke, and obesity. Its potential applications extend to anti-inflammatory treatment and the management of cardiovascular and cerebrovascular diseases and various brain disorders. However, further experiments are required to definitively establish the efficacy of VNS's various mechanisms. Additionally, there is a need to explore and identify optimal rehabilitation treatment parameters for different diseases.
Collapse
Affiliation(s)
| | - Kezhou Liu
- Department of Biomedical Engineering, School of Automation (Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
4
|
Hu Y, Xiong R, Pan S, Huang K. A narrative review of vagus nerve stimulation in stroke. J Cent Nerv Syst Dis 2024; 16:11795735241303069. [PMID: 39677973 PMCID: PMC11645777 DOI: 10.1177/11795735241303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Stroke is a significant health concern impacting society and the health care system. Reperfusion therapy for acute ischemic stroke and standard rehabilitative therapies may not always be effective at improving post-stroke neurological function, and developing alternative strategies is particularly important. Vagus nerve stimulation (VNS) is a treatment option currently approved by the Food and Drug Administration (FDA) for intractable epilepsy, refractory depression, primary headache disorders, obesity, and moderate to severe upper-limb motor dysfunction in chronic ischemic stroke patients. Moreover, VNS has demonstrated potential efficacy in various conditions, including autoimmune diseases, disorders of consciousness, Alzheimer's disease, Parkinson's disease, traumatic brain injury, stroke, and other diseases. Although the popularity and application of VNS continue to increase rapidly, the field generally lacks a consensus on the optimal stimulation parameters. The stimulation parameters for VNS are directly related to the clinical outcome, and determining the optimal stimulation conditions for VNS has become an essential concern in its clinical application. This review summarizes the current evidence on VNS for stroke in preclinical models and clinical trials in humans, paying attention to the current types and stimulation parameters of VNS, highlighting the mechanistic pathways involved in the beneficial effects of VNS, critically evaluating clinical implementation challenges and proposing some suggestions for its future research directions. Achieving safe and effective clinical transformation of VNS requires further animal and clinical studies to determine the optimal stimulation parameters and therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanhong Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiqi Xiong
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Liu M, Liu M, Zhang B, Fang M, Chen K, Zhang Y, Wang Q, Tian C, Wu L, Li Z. Research hotspots and frontiers of vagus nerve stimulation in stroke: a bibliometric analysis. Front Neurosci 2024; 18:1510658. [PMID: 39723424 PMCID: PMC11668697 DOI: 10.3389/fnins.2024.1510658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Vagus nerve stimulation (VNS) has emerged as a promising therapeutic approach for stroke treatment, drawing significant attention due to its potential benefits. However, despite this growing interest, a systematic bibliometric analysis of the research landscape is yet to be conducted. Methods We performed a comprehensive search of the Web of Science Core Collection (WoSCC) database for literature published between January 1, 2005, and August 31, 2024. CiteSpace and the Bibliometrix package in R software were used to generate knowledge maps and conduct a bibliometric analysis. This analysis focused on publication output, geographic distribution, institutional involvement, author and co-cited author networks, journal and co-cited journal relationships, co-cited references, and keyword trends. Results During the study period, 316 publications on VNS in stroke were identified, authored by 1,631 researchers from 1,124 institutions across 172 countries or regions. The number of publications showed steady growth, with the United States of America (USA) leading as the primary contributor. The University of Texas System emerged as the most active research institution. Frontiers in Neuroscience published the highest number of articles, while Stroke had the most citations. Professor Michael P. Kilgard authored the largest number of papers and was also the most frequently cited researcher. The main research trends focus on investigating VNS mechanisms via animal models and exploring its application in improving post-stroke sensorimotor function in the upper limbs. Moreover, VNS is showing promise in enhancing non-motor functions, such as swallowing, speech, and cognition, while addressing complications like post-stroke insomnia, depression, and disruptions in gut microbiota. Conclusion This bibliometric study offers a comprehensive overview of the research landscape and emerging trends in VNS for stroke rehabilitation, providing a solid foundation and reference point for future research directions in this field.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohan Zhang
- School of Nursing, Centre for Smart Health, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mingzhu Fang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Chen
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yishen Zhang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunyan Tian
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Rehabilitation Clinical Medicine Research Center, Zhengzhou, China
| |
Collapse
|
6
|
Chen L, Gao H, Wang Z, Gu B, Zhou W, Pang M, Zhang K, Liu X, Ming D. Vagus nerve electrical stimulation in the recovery of upper limb motor functional impairment after ischemic stroke. Cogn Neurodyn 2024; 18:3107-3124. [PMID: 39555282 PMCID: PMC11564590 DOI: 10.1007/s11571-024-10143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/15/2024] [Indexed: 11/19/2024] Open
Abstract
Ischemic stroke (IS) is characterized by high mortality, disability rates, and a high risk of recurrence. Motor dysfunction, such as limb hemiparesis, dysphagia, auditory disorders, and speech disorders, usually persists after stroke, which imposes a heavy burden on society and the health care system. Traditional rehabilitation therapies may be ineffective in promoting functional recovery after stroke, and alternative strategies are urgently needed. The Food and Drug Administration (FDA) has approved invasive vagus nerve stimulation (iVNS) for the improvement of refractory epilepsy, treatment-resistant depression, obesity, and moderate to severe upper limb motor impairment following chronic ischemic stroke. Additionally, the FDA has approved transcutaneous vagus nerve stimulation (tVNS) for the improvement of cluster headaches and acute migraines. Recent studies have demonstrated that vagus nerve stimulation (VNS) has neuroprotective effects in both transient and permanent cerebral ischemia animal models, significantly improving upper limb motor impairments, auditory deficits, and swallowing difficulties. Firstly, this article reviews two potential neuronal death pathways following IS, including autophagy and inflammatory responses. Then delves into the current status of preclinical and clinical research on the functional recovery following IS with VNS, as well as the potential mechanisms mediating its neuroprotective effects. Finally, the optimal parameters and timing of VNS application are summarized, and the future challenges and directions of VNS in the treatment of IS are discussed. The application of VNS in stroke rehabilitation research has reached a critical stage, and determining how to safely and effectively translate this technology into clinical practice is of utmost importance. Further preclinical and clinical studies are needed to elucidate the therapeutic mechanisms of VNS.
Collapse
Affiliation(s)
- Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Huixin Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Bin Gu
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Wanqi Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| |
Collapse
|
7
|
Du L, He X, Xiong X, Zhang X, Jian Z, Yang Z. Vagus nerve stimulation in cerebral stroke: biological mechanisms, therapeutic modalities, clinical applications, and future directions. Neural Regen Res 2024; 19:1707-1717. [PMID: 38103236 PMCID: PMC10960277 DOI: 10.4103/1673-5374.389365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 12/18/2023] Open
Abstract
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life. Many stroke victims are left with long-term neurological dysfunction, which adversely affects the well-being of the individual and the broader socioeconomic impact. Currently, post-stroke brain dysfunction is a major and difficult area of treatment. Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autism, refractory depression, epilepsy, and Alzheimer's disease. It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as altering neurotransmitters and the plasticity of central neurons. In animal models of acute ischemic stroke, vagus nerve stimulation has been shown to reduce infarct size, reduce post-stroke neurological damage, and improve learning and memory capacity in rats with stroke by reducing the inflammatory response, regulating blood-brain barrier permeability, and promoting angiogenesis and neurogenesis. At present, vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation. Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in improving upper limb motor and cognitive abilities in stroke patients. Further clinical studies have shown that non-invasive vagus nerve stimulation, including ear/cervical vagus nerve stimulation, can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect. In this paper, we first describe the multiple effects of vagus nerve stimulation in stroke, and then discuss in depth its neuroprotective mechanisms in ischemic stroke. We go on to outline the results of the current major clinical applications of invasive and non-invasive vagus nerve stimulation. Finally, we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends. We believe that vagus nerve stimulation, as an effective treatment for stroke, will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability.
Collapse
Affiliation(s)
- Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuan He
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Xie L, Zhang B, Chen Q, Ji H, Chen J, Jiang Z, Zhu L, Wu X. Effect of Electrical Stimulation of the Vagus Nerve on Inflammation in Rats With Spinal Cord Injury. J Manipulative Physiol Ther 2024; 47:166-174. [PMID: 39466207 DOI: 10.1016/j.jmpt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE The purpose of this study was to assess the effect of electroacupuncture stimulation (EAS) of the vagus nerve on the inflammatory response in rat models of spinal cord injury (SCI). METHODS The T10 SCI model in adult male Sprague Dawley rats was established using the modified Allen's method. The EAS group was treated with the therapy on the vagus nerve of rat ear nails, while the SCI group did not receive any EAS treatment. The degree of inflammatory infiltration was reflected by hematoxylin-eosin staining. The inflammatory cytokines in spinal cord tissues, cerebrospinal fluid inflammation, and peripheral blood were detected by enzyme-linked immunosorbent assay. Changes in astrocytes and microglia were assessed using an immunofluorescence assay. RESULTS Electroacupuncture stimulation treatment inhibited inflammatory infiltration, as well as the concentrations of interleukin-6, interleukin-1β, tumor necrosis factor-α, astrocytes, and microglia at 1, 6, and 24 hours after 1 EAS treatment. Multiple EAS treatments had an obvious effect on SCI inflammation. CONCLUSION A single EAS treatment had a limited effect on inflammation, but multiple treatments had a significant inhibitory effect on inflammation.
Collapse
Affiliation(s)
- Linghan Xie
- School of Medicine, Southeast University, Nanjing, China; Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hangyu Ji
- Spinal Surgery Center, Zhongda Hospital Southeast University, Nanjing, China
| | - Ji Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zanli Jiang
- Spinal Surgery Center, Zhongda Hospital Southeast University, Nanjing, China
| | - Lei Zhu
- Spinal Surgery Center, Zhongda Hospital Southeast University, Nanjing, China
| | - Xiaotao Wu
- Spinal Surgery Center, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Zhang Q, Zhang L, Lin G, Luo F. The protective role of vagus nerve stimulation in ischemia-reperfusion injury. Heliyon 2024; 10:e30952. [PMID: 38770302 PMCID: PMC11103530 DOI: 10.1016/j.heliyon.2024.e30952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) encompasses the damage resulting from the restoration of blood supply following tissue ischemia. This phenomenon commonly occurs in clinical scenarios such as hemorrhagic shock, severe trauma, organ transplantation, and thrombolytic therapy. Despite its prevalence, existing treatments exhibit limited efficacy against IRI. Vagus nerve stimulation (VNS) is a widely utilized technique for modulating the autonomic nervous system. Numerous studies have demonstrated that VNS significantly reduces IRI in various organs, including the heart, brain, and liver. This article reviews the pathological processes during IRI and summarizes the role and possible mechanisms of VNS in IRI of different organs. Furthermore, this review addresses the current challenges of VNS clinical applications, providing a novel perspective on IRI treatment.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guoqiang Lin
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanyan Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
10
|
Jin X, Guan W. Progress in the relationship between GDF11 and depression. Life Sci 2024; 341:122507. [PMID: 38378101 DOI: 10.1016/j.lfs.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Annually, the frequency of morbidity in depression has increased progressively in response to life stressors, and there is an increasing trend toward younger morbidity. The pathogenesis of depression is complicated and includes factors such as genetic inheritance and variations in physiological functions induced by various environmental factors. Currently, drug therapy has wide adaptability in clinical practice and plays an important role in the treatment of patients with mild depression. However, the therapeutic effects of most antidepressants are typically not significant and are associated with considerable adverse effects and addiction. Therefore, it is imperative to identify the deeper mechanisms of depression and search for alternative drug targets. Growth differentiation factor 11 (GDF11) is described as an anti-ageing molecule that belongs to a member of the transforming growth factor β family. Additionally, the latest research findings suggested that GDF11 positively regulates neurogenesis and enhances neuronal activity, thereby attenuating depression-like behaviours. Although an increasing number of studies have focused on the multiple functions of GDF11 in skeletal dysplasia and carcinogenesis, its precise mechanism of action in depression remains unknown. Thus, in this review, we discuss the role of GDF11 and its mechanistic pathways in the pathogenesis of depression to develop novel therapies for depression.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Pharmacy, The Second People's Hospital of Nantong, Nantong, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
11
|
Jelinek M, Lipkova J, Duris K. Vagus nerve stimulation as immunomodulatory therapy for stroke: A comprehensive review. Exp Neurol 2024; 372:114628. [PMID: 38042360 DOI: 10.1016/j.expneurol.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Stroke is a devastating cerebrovascular pathology with high morbidity and mortality. Inflammation plays a central role in the pathophysiology of stroke. Vagus nerve stimulation (VNS) is a promising immunomodulatory method that has shown positive effects in stroke treatment, including neuroprotection, anti-apoptosis, anti-inflammation, antioxidation, reduced infarct volume, improved neurological scores, and promotion of M2 microglial polarization. In this review, we summarize the current knowledge about the vagus nerve's immunomodulatory effects through the cholinergic anti-inflammatory pathway (CAP) and provide a comprehensive assessment of the available experimental literature focusing on the use of VNS in stroke treatment.
Collapse
Affiliation(s)
- Matyas Jelinek
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jolana Lipkova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamil Duris
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurosurgery, The University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
12
|
Andalib S, Divani AA, Ayata C, Baig S, Arsava EM, Topcuoglu MA, Cáceres EL, Parikh V, Desai MJ, Majid A, Girolami S, Di Napoli M. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 2023; 23:947-962. [PMID: 38008851 PMCID: PMC10841711 DOI: 10.1007/s11910-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms. RECENT FINDINGS Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery. The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.
Collapse
Affiliation(s)
- Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Afshin A Divani
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sheharyar Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Masoom J Desai
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| |
Collapse
|
13
|
Jin Z, Dong J, Wang Y, Liu Y. Exploring the potential of vagus nerve stimulation in treating brain diseases: a review of immunologic benefits and neuroprotective efficacy. Eur J Med Res 2023; 28:444. [PMID: 37853458 PMCID: PMC10585738 DOI: 10.1186/s40001-023-01439-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
The vagus nerve serves as a critical connection between the central nervous system and internal organs. Originally known for its effectiveness in treating refractory epilepsy, vagus nerve stimulation (VNS) has shown potential for managing other brain diseases, including ischaemic stroke, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. However, the precise mechanisms of VNS and its benefits for brain diseases are not yet fully understood. Recent studies have found that VNS can inhibit inflammation, promote neuroprotection, help maintain the integrity of the blood-brain barrier, have multisystemic modulatory effects, and even transmit signals from the gut flora to the brain. In this article, we will review several essential studies that summarize the current theories of VNS and its immunomodulatory effects, as well as the therapeutic value of VNS for brain disorders. By doing so, we aim to provide a better understanding of how the neuroimmune network operates and inspire future research in this field.
Collapse
Affiliation(s)
- Zeping Jin
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing, People's Republic of China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Baig SS, Kamarova M, Bell SM, Ali AN, Su L, Dimairo M, Dawson J, Redgrave JN, Majid A. tVNS in Stroke: A Narrative Review on the Current State and the Future. Stroke 2023; 54:2676-2687. [PMID: 37646161 DOI: 10.1161/strokeaha.123.043414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Ischemic stroke is a leading cause of disability and there is a paucity of therapeutic strategies that promote functional recovery after stroke. Transcutaneous vagus nerve stimulation (tVNS) has shown promising evidence as a tool to reduce infarct size in animal models of hyperacute stroke. In chronic stroke, tVNS paired with limb movements has been shown to enhance neurological recovery. In this review, we summarize the current evidence for tVNS in preclinical models and clinical trials in humans. We highlight the mechanistic pathways involved in the beneficial effects of tVNS. We critically evaluate the current gaps in knowledge and recommend the key areas of research required to translate tVNS into clinical practice in acute and chronic stroke.
Collapse
Affiliation(s)
- Sheharyar S Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Marharyta Kamarova
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Simon M Bell
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Ali N Ali
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Li Su
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Munya Dimairo
- School of Health and Related Research, University of Sheffield, United Kingdom (M.D.)
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Queen Elizabeth University Hospital, United Kingdom (J.D.)
| | - Jessica N Redgrave
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (S.S.B., M.K., S.M.B., A.N.A., L.S., J.N.R., A.M.)
| |
Collapse
|
15
|
Gail MW, Sims-Robinson C, Boger H, Ergul A, Mukherjee R, Jenkins DD, George MS. Transcutaneous auricular vagus nerve stimulation (taVNS) decreases heart rate acutely in neonatal rats. Brain Stimul 2023; 16:1240-1242. [PMID: 37619892 DOI: 10.1016/j.brs.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023] Open
Affiliation(s)
- Melanie W Gail
- Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA.
| | - Catrina Sims-Robinson
- Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA; Medical University of South Carolina, Department of Neurology, Charleston, SC, 29425, USA; Ralph H Johnson VA Health Care System (VAHCS), Charleston, SC, 29401, USA
| | - Heather Boger
- Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA
| | - Adviye Ergul
- Ralph H Johnson VA Health Care System (VAHCS), Charleston, SC, 29401, USA; Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC, 29425, USA
| | - Rupak Mukherjee
- Medical University of South Carolina, Department of Neuroscience, Charleston, SC, 29425, USA; Medical University of South Carolina, Department of Surgery, Charleston, SC, 29425, USA; Medical University of South Carolina, Department of Pediatrics, Charleston, SC, 29425, USA
| | - Dorothea D Jenkins
- Medical University of South Carolina, Department of Pediatrics, Charleston, SC, 29425, USA
| | - Mark S George
- Ralph H Johnson VA Health Care System (VAHCS), Charleston, SC, 29401, USA; Medical University of South Carolina, Department of Psychiatry, Charleston, SC, 29425, USA
| |
Collapse
|
16
|
de Melo PS, Parente J, Rebello-Sanchez I, Marduy A, Gianlorenco AC, Kyung Kim C, Choi H, Song JJ, Fregni F. Understanding the Neuroplastic Effects of Auricular Vagus Nerve Stimulation in Animal Models of Stroke: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2023; 37:564-576. [PMID: 37272448 DOI: 10.1177/15459683231177595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Transauricular vagus nerve stimulation (taVNS) is being studied as a feasible intervention for stroke, but the mechanisms by which this non-invasive technique acts in the cortex are still broadly unknown. OBJECTIVES This study aimed to systematically review the current pre-clinical evidence in the auricular vagus nerve stimulation (aVNS) neuroplastic effects in stroke. METHODS We searched, in December of 2022, in Medline, Cochrane, Embase, and Lilacs databases. The authors executed the extraction of the data on Excel. The risk of bias was evaluated by adapted Cochrane Collaboration's tool for animal studies (SYRCLES's RoB tool). RESULTS A total of 8 studies published between 2015 and 2022 were included in this review, including 391 animal models. In general, aVNS demonstrated a reduction in neurological deficits (SMD = -1.97, 95% CI -2.57 to -1.36, I2 = 44%), in time to perform the adhesive removal test (SMD = -2.26, 95% CI -4.45 to -0.08, I2 = 81%), and infarct size (SMD = -1.51, 95% CI -2.42 to -0.60, I2 = 58%). Regarding the neuroplasticity markers, aVNS showed to increase microcapillary density, CD31 proliferation, and BDNF protein levels and RNA expression. CONCLUSIONS The studies analyzed show a trend of results that demonstrate a significant effect of the auricular vagal nerve stimulation in stroke animal models. Although the aggregated results show high heterogeneity and high risk of bias. More studies are needed to create solid conclusions.
Collapse
Affiliation(s)
- Paulo S de Melo
- Department of Medicine, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - João Parente
- Department of Medicine, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ingrid Rebello-Sanchez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- União Metropolitana de Ensino e Cultura (UNIME) Salvador, Bahia, Brazil
| | - Anna Carolyna Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- Neurive Co., Ltd., Gimhae, Republic of Korea
| | - Jae-Jun Song
- Neurive Co., Ltd., Gimhae, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Shao Y, Wang Y, Xu J, Yuan Y, Xing D. Growth differentiation factor 11: A new hope for the treatment of cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:82-93. [PMID: 37414617 DOI: 10.1016/j.cytogfr.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11's structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Salm DC, Horewicz VV, Tanaka F, Ferreira JK, de Oliveira BH, Maio JMB, Donatello NN, Ludtke DD, Mazzardo-Martins L, Dutra AR, Mack JM, de C H Kunzler D, Cargnin-Ferreira E, Salgado ASI, Bittencourt EB, Bianco G, Piovezan AP, Bobinski F, Moré AOO, Martins DF. Electrical Stimulation of the Auricular Branch Vagus Nerve Using Random and Alternating Frequencies Triggers a Rapid Onset and Pronounced Antihyperalgesia via Peripheral Annexin A1-Formyl Peptide Receptor 2/ALX Pathway in a Mouse Model of Persistent Inflammatory Pain. Mol Neurobiol 2023; 60:2889-2909. [PMID: 36745336 DOI: 10.1007/s12035-023-03237-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) by comparing the effects of alternating and random frequencies in an animal model of persistent inflammatory hyperalgesia. The model was induced by Freund's complete adjuvant (CFA) intraplantar (i.pl.) injection. Mice were treated with different protocols of time (10, 20, or 30 min), ear laterality (right, left or both), and frequency (alternating or random). Mechanical hyperalgesia was evaluated, and some groups received i.pl. WRW4 (FPR2/ALX antagonist) to determine the involvement. Edema, paw surface temperature, and spontaneous locomotor activity were evaluated. Interleukin-1β, IL-6, IL-10, and IL4 levels were verified by enzyme-linked immunosorbent assay. AnxA1, FPR2/ALX, neutrophil, M1 and M2 phenotype macrophage, and apoptotic cells markers were identified using western blotting. The antihyperalgesic effect pVNS with alternating and random frequency effect is depending on the type of frequency, time, and ear treated. The pVNS random frequency in the left ear for 10 min had a longer lasting antihyperalgesic effect, superior to classical stimulation using alternating frequency and the FPR2/ALX receptor was involved in this effect. There was a reduction in the levels of pro-inflammatory cytokines and an increase in the immunocontent of AnxA1 and CD86 in mice paw. pVNS with a random frequency in the left ear for 10 min showed to be optimal for inducing an antihyperalgesic effect. Thus, the random frequency was more effective than the alternating frequency. Therefore, pVNS may be an important adjunctive treatment for persistent inflammatory pain.
Collapse
Affiliation(s)
- Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fernanda Tanaka
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia K Ferreira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Julia Maria Batista Maio
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aline R Dutra
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Josiel M Mack
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Deborah de C H Kunzler
- Department of Physiotherapy, State University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy
- Istituto Di Formazione in Agopuntura E Neuromodulazione IFAN, Rome, Italy
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Ari O O Moré
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
19
|
Hasan MY, Siran R, Mahadi MK. The Effects of Vagus Nerve Stimulation on Animal Models of Stroke-Induced Injury: A Systematic Review. BIOLOGY 2023; 12:biology12040555. [PMID: 37106754 PMCID: PMC10136363 DOI: 10.3390/biology12040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Ischemic stroke is one of the leading causes of death worldwide, and poses a great burden to society and the healthcare system. There have been many recent advances in the treatment of ischemic stroke, which usually results from the interruption of blood flow to a particular part of the brain. Current treatments for ischemic stroke mainly focus on revascularization or reperfusion of cerebral blood flow to the infarcted tissue. Nevertheless, reperfusion injury may exacerbate ischemic injury in patients with stroke. In recent decades, vagus nerve stimulation (VNS) has emerged as an optimistic therapeutic intervention. Accumulating evidence has demonstrated that VNS is a promising treatment for ischemic stroke in various rat models through improved neural function, cognition, and neuronal deficit scores. We thoroughly examined previous evidence from stroke-induced animal studies using VNS as an intervention until June 2022. We concluded that VNS yields stroke treatment potential by improving neurological deficit score, infarct volume, forelimb strength, inflammation, apoptosis, and angiogenesis. This review also discusses potential molecular mechanisms underlying VNS-mediated neuroprotection. This review could help researchers conduct additional translational research on patients with stroke.
Collapse
Affiliation(s)
- Mohammad Yusuf Hasan
- Centre for Drug Herbal and Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Rosfaiizah Siran
- Neuroscience Research Group (NRG), Faculty of Medicine, Jalan Hospital, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Malaysia
| | - Mohd Kaisan Mahadi
- Centre for Drug Herbal and Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
20
|
Xia H, Hu Q, Yang Y, Yuan H, Cai Y, Liu Z, Xu Z, Xiong Y, Zhou J, Ye Q, Zhong Z. Effect of Matrix Metalloproteinase 23 Accelerating Wound Healing Induced by Hydroxybutyl Chitosan. ACS APPLIED BIO MATERIALS 2023; 6:1460-1470. [PMID: 36921248 DOI: 10.1021/acsabm.2c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Skin wounds may cause severe financial and social burden due to the difficulties in wound healing. Original inert dressings cannot meet multiple needs in the process of wound healing. Therefore, the development of materials to accelerate healing progress is essential and urgent. In the previous study, we found that the homogeneously synthesized hydroxybutyl chitosan (HBCS) had an effective performance in promoting wound healing. Proteomic analysis of the same specimen suggested that matrix metalloproteinase 23 (MMP23) may play a key role in HBCS expediting the progress of wound healing. In this work, we aim to reveal the underlying mechanism of MMP23 in the dynamic process of cutaneous proliferation and repair period. In order to regulate the expression level of MMP23 in the local wound area, we leaded in adeno-associated virus (AAV) to specifically decreased expression quantity of MMP23 in rat skin. In contrast to the negative control groups, we found that the wound closed faster and the collagen fibers and neovascularization were significantly increased in AAV groups. These findings highlighted that MMP23 was involved in wound healing after traumatic injury, and managing the expression of MMP23 could be a potential intervention target to accelerate wound healing.
Collapse
Affiliation(s)
- Haoyang Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Qianchao Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Haoran Yuan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yan Cai
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Zhigao Xu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Jinping Zhou
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China.,Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| |
Collapse
|
21
|
Spermidine inhibits high glucose-induced endoplasmic reticulum stress in HT22 cells by upregulation of growth differentiation factor 11. Neuroreport 2022; 33:819-827. [PMID: 36367791 DOI: 10.1097/wnr.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hyperglycemia-induced neuronal endoplasmic reticulum (ER) stress is particularly important for the pathogenesis of diabetic encephalopathy. Spermidine (Spd) has neuroprotection in several nervous system diseases. Our current study to explore the potential protective role of Spd in hyperglycemia-induced neuronal ER stress and the underlying mechanisms. HT22 cells were treated with high glucose (HG) to establish an in-vitro model of hyperglycemia toxicity. The HT22 cells' activity was tested by cell counting kit-8 assay. RNA interference technology was used to silence the expression of growth differentiation factor 11 (GDF11) in HT22 cells. The GDF11 expression levels of mRNA were assessed using reverse transcription-PCR (RT-PCR). Western blotting analysis was applied to evaluate the expressions of GRP78 and cleaved caspase-12. Spd markedly abolished HG-exerted decline in cell viability as well as upregulations of GRP78 and cleaved caspase-12 in HT22 cells, indicating the protection of Spd against HG-induced neurotoxicity and ER stress. Furthermore, we showed that Spd upregulated the expression of GDF11 in HG-exposed HT22 cells. While, silenced GDF11 expression by RNA interference reversed the protective effects of Spd on HG-elicited neurotoxicity and ER stress in HT22 cells. These results indicated that Spd prevents HG-induced neurotoxicity and ER stress through upregulation of GDF11. Our findings identify Spd as a potential treatment for diabetic encephalopathy as well as ER stress-related neurologic diseases.
Collapse
|
22
|
Cheng K, Wang Z, Bai J, Xiong J, Chen J, Ni J. Research advances in the application of vagus nerve electrical stimulation in ischemic stroke. Front Neurosci 2022; 16:1043446. [PMID: 36389255 PMCID: PMC9650138 DOI: 10.3389/fnins.2022.1043446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Stroke seriously endangers human well-being and brings a severe burden to family and society. Different post-stroke dysfunctions result in an impaired ability to perform activities of daily living. Standard rehabilitative therapies may not meet the requirements for functional improvement after a stroke; thus, alternative approaches need to be proposed. Currently, vagus nerve stimulation (VNS) is clinically applied for the treatment of epilepsy, depression, cluster headache and migraine, while its treatment of various dysfunctions after an ischemic stroke is still in the clinical research stage. Recent studies have confirmed that VNS has neuroprotective effects in animal models of transient and permanent focal cerebral ischemia, and that its combination with rehabilitative training significantly improves upper limb motor dysfunction and dysphagia. In addition, vagus-related anatomical structures and neurotransmitters are closely implicated in memory–cognition enhancement processes, suggesting that VNS is promising as a potential treatment for cognitive dysfunction after an ischemic stroke. In this review, we outline the current status of the application of VNS (invasive and non-invasive) in diverse functional impairments after an ischemic stroke, followed by an in-depth discussion of the underlying mechanisms of its mediated neuroprotective effects. Finally, we summarize the current clinical implementation challenges and adverse events of VNS and put forward some suggestions for its future research direction. Research on VNS for ischemic stroke has reached a critical stage. Determining how to achieve the clinical transformation of this technology safely and effectively is important, and more animal and clinical studies are needed to clarify its therapeutic mechanism.
Collapse
|
23
|
Ramos-Castaneda JA, Barreto-Cortes CF, Losada-Floriano D, Sanabria-Barrera SM, Silva-Sieger FA, Garcia RG. Efficacy and Safety of Vagus Nerve Stimulation on Upper Limb Motor Recovery After Stroke. A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:889953. [PMID: 35847207 PMCID: PMC9283777 DOI: 10.3389/fneur.2022.889953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Background Upper limb motor impairment is one of the main complications of stroke, affecting quality of life both for the patient and their family. The aim of this systematic review was to summarize the scientific evidence on the safety and efficacy of Vagus Nerve Stimulation (VNS) on upper limb motor recovery after stroke. Methods A systematic review and meta-analysis of studies that have evaluated the efficacy or safety of VNS in stroke patients was performed. The primary outcome was upper limb motor recovery. A search of articles published on MEDLINE, CENTRAL, EBSCO and LILACS up to December 2021 was performed, and a meta-analysis was developed to calculate the overall effects. Results Eight studies evaluating VNS effects on motor function in stroke patients were included, of which 4 used implanted and 4 transcutaneous VNS. It was demonstrated that VNS, together with physical rehabilitation, increased upper limb motor function on average 7.06 points (95%CI 4.96; 9.16) as assessed by the Fugl-Meyer scale. Likewise, this improvement was significantly greater when compared to a control intervention (mean difference 2.48, 95%CI 0.98; 3.98). No deaths or serious adverse events related to the intervention were reported. The most frequent adverse events were dysphonia, dysphagia, nausea, skin redness, dysgeusia and pain related to device implantation. Conclusion VNS, together with physical rehabilitation, improves upper limb motor function in stroke patients. Additionally, VNS is a safe intervention.
Collapse
Affiliation(s)
- Jorge A. Ramos-Castaneda
- Fundación Cardiovascular de Colombia, Bucaramanga, Colombia
- Research Group Innovación y Cuidado, Faculty of Nursing, Universidad Antonio Nariño, Neiva, Colombia
- *Correspondence: Jorge A. Ramos-Castaneda
| | | | | | | | | | - Ronald G. Garcia
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| |
Collapse
|
24
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
25
|
Long L, Zang Q, Jia G, Fan M, Zhang L, Qi Y, Liu Y, Yu L, Wang S. Transcutaneous Auricular Vagus Nerve Stimulation Promotes White Matter Repair and Improves Dysphagia Symptoms in Cerebral Ischemia Model Rats. Front Behav Neurosci 2022; 16:811419. [PMID: 35493949 PMCID: PMC9051615 DOI: 10.3389/fnbeh.2022.811419] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background Clinical and animal studies have shown that transcutaneous auricular vagus nerve stimulation (ta-VNS) exerts neuroprotection following cerebral ischemia. Studies have revealed that white matter damage after ischemia is related to swallowing defects, and the degree of white matter damage is related to the severity of dysphagia. However, the effect of ta-VNS on dysphagia symptoms and white matter damage in dysphagic animals after an ischemic stroke has not been investigated. Methods Middle cerebral artery occlusion (MCAO) rats were randomly divided into the sham, control and vagus nerve stimulation (VNS) group, which subsequently received ta-VNS for 3 weeks. The swallowing reflex was measured once weekly by electromyography (EMG). White matter remyelination, volume, angiogenesis and the inflammatory response in the white matter were assessed by electron microscopy, immunohistochemistry, stereology, enzyme-linked immunosorbent assay (ELISA) and Western blotting. Results ta-VNS significantly increased the number of swallows within 20 s and reduced the onset latency to the first swallow. ta-VNS significantly improved remyelination but did not alleviate white matter shrinkage after MCAO. Stereology revealed that ta-VNS significantly increased the density of capillaries and increased vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2) expression in the white matter. ta-VNS significantly alleviated the increase inTLR4, MyD88, phosphorylated MAPK and NF-κB protein levels and suppressed the expression of the proinflammatory factors IL-1β and TNF-α. Conclusion These results indicated ta-VNS slightly improved dysphagia symptoms after ischemic stroke, possibly by increasing remyelination, inducing angiogenesis, and inhibiting the inflammatory response in the white matter of cerebral ischaemia model rats, implying that ta-VNS may be an effective therapeutic strategy for the treatment of dysphagia after ischemic stroke.
Collapse
Affiliation(s)
- Lu Long
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianwen Zang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gongwei Jia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Fan
- Department of Traditional Chinese Medicine, Weinan Central Hospital, Weinan, China
| | - Liping Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingqiang Qi
- Center of Electron Microscope, Institute of Life Science of Chongqing Medical University, Chongqing, China
| | - Yilin Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sanrong Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Sanrong Wang
| |
Collapse
|
26
|
Wang Y, Li L, Li S, Fang J, Zhang J, Wang J, Zhang Z, Wang Y, He J, Zhang Y, Rong P. Toward Diverse or Standardized: A Systematic Review Identifying Transcutaneous Stimulation of Auricular Branch of the Vagus Nerve in Nomenclature. Neuromodulation 2022; 25:366-379. [PMID: 35396069 DOI: 10.1111/ner.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES After 20 years of development, there is confusion in the nomenclature of transcutaneous stimulation of the auricular branch of the vagus nerve (ABVN). We performed a systematic review of transcutaneous stimulation of ABVN in nomenclature. MATERIALS AND METHODS A systematic search of the literature was carried out, using the bibliographic search engine PubMed. The search covered articles published up until June 11, 2020. We recorded the full nomenclature and abbreviated nomenclature same or similar to transcutaneous stimulation of ABVN in the selected eligible studies, as well as the time and author information of this nomenclature. RESULTS From 261 studies, 67 full nomenclatures and 27 abbreviated nomenclatures were finally screened out, transcutaneous vagus nerve stimulation and tVNS are the most common nomenclature, accounting for 38.38% and 42.06%, respectively. In a total of 97 combinations of full nomenclatures and abbreviations, the most commonly used nomenclature for the combination of transcutaneous vagus nerve stimulation and tVNS, accounting for 30.28%. Interestingly, the combination of full nomenclatures and abbreviations is not always a one-to-one relationship, there are ten abbreviated nomenclatures corresponding to transcutaneous vagus nerve stimulation, and five full nomenclatures corresponding to tVNS. In addition, based on the analysis of the usage habits of nomenclature in 21 teams, it is found that only three teams have fixed habits, while other different teams or the same team do not always use the same nomenclature in their paper. CONCLUSIONS The phenomenon of confusion in the nomenclature of transcutaneous stimulation of ABVN is obvious and shows a trend of diversity. The nomenclature of transcutaneous stimulation of ABVN needs to become more standardized in the future.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
27
|
Li L, Wang D, Pan H, Huang L, Sun X, He C, Wei Q. Non-invasive Vagus Nerve Stimulation in Cerebral Stroke: Current Status and Future Perspectives. Front Neurosci 2022; 16:820665. [PMID: 35250458 PMCID: PMC8888683 DOI: 10.3389/fnins.2022.820665] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke poses a serious threat to human health and burdens both society and the healthcare system. Standard rehabilitative therapies may not be effective in improving functions after stroke, so alternative strategies are needed. The FDA has approved vagus nerve stimulation (VNS) for the treatment of epilepsy, migraines, and depression. Recent studies have demonstrated that VNS can facilitate the benefits of rehabilitation interventions. VNS coupled with upper limb rehabilitation enhances the recovery of upper limb function in patients with chronic stroke. However, its invasive nature limits its clinical application. Researchers have developed a non-invasive method to stimulate the vagus nerve (non-invasive vagus nerve stimulation, nVNS). It has been suggested that nVNS coupled with rehabilitation could be a promising alternative for improving muscle function in chronic stroke patients. In this article, we review the current researches in preclinical and clinical studies as well as the potential applications of nVNS in stroke. We summarize the parameters, advantages, potential mechanisms, and adverse effects of current nVNS applications, as well as the future challenges and directions for nVNS in cerebral stroke treatment. These studies indicate that nVNS has promising efficacy in reducing stroke volume and attenuating neurological deficits in ischemic stroke models. While more basic and clinical research is required to fully understand its mechanisms of efficacy, especially Phase III trials with a large number of patients, these data suggest that nVNS can be applied easily not only as a possible secondary prophylactic treatment in chronic cerebral stroke, but also as a promising adjunctive treatment in acute cerebral stroke in the near future.
Collapse
Affiliation(s)
- Lijuan Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Dong Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Hongxia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Liyi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
- *Correspondence: Quan Wei,
| |
Collapse
|
28
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
29
|
Tynan A, Brines M, Chavan SS. Control of inflammation using non-invasive neuromodulation: past, present and promise. Int Immunol 2022; 34:119-128. [PMID: 34558623 PMCID: PMC8783606 DOI: 10.1093/intimm/dxab073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The nervous system has been increasingly recognized as a novel and accessible target in the regulation of inflammation. The use of implantable and invasive devices targeting neural circuits has yielded successful results in clinical settings but does have some risk or adverse effects. Recent advances in technology and understanding of mechanistic pathways have opened new avenues of non-invasive neuromodulation. Through this review we discuss the novel research and outcomes of major modalities of non-invasive neuromodulation in the context of inflammation including transcutaneous electrical, magnetic and ultrasound neuromodulation. In addition to highlighting the scientific observations and breakthroughs, we discuss the underlying mechanisms and pathways for neural regulation of inflammation.
Collapse
Affiliation(s)
- Aisling Tynan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Michael Brines
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY, USA
| |
Collapse
|
30
|
Yan L, Qian Y, Li H. Transcutaneous Vagus Nerve Stimulation Combined with Rehabilitation Training in the Intervention of Upper Limb Movement Disorders After Stroke: A Systematic Review. Neuropsychiatr Dis Treat 2022; 18:2095-2106. [PMID: 36147448 PMCID: PMC9488604 DOI: 10.2147/ndt.s376399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Stroke often leaves behind a wide range of functional impairments, of which limb movement disorders are more common. Approximately 85% of patients have varying degrees of upper limb motor impairment. In recent years, transcutaneous vagus nerve stimulation combined with rehabilitation training has been gradually used in the rehabilitation of upper limb motor dysfunction after stroke and appears to have some therapeutic benefits. PURPOSE We conducted the systematic review to evaluate the efficacy and safety of transcutaneous vagus nerve stimulation combined with rehabilitation training in the rehabilitation of upper limb motor dysfunction after stroke. METHODS Six databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure Database (CNKI), Wanfang Database, and China Science and Technology Journal Database (VIP), were searched for January 1, 2016 to January 30, 2022. Randomized controlled trials using TVNS combined with rehabilitation training to intervene in upper limb motor dysfunction after stroke were included, and meta-analysis was performed using Review Manager 5.4.1 software. RESULTS Total of 101 participants from 4 studies were included in this systematic review. These studies were evaluated using the Cochrane Review's Handbook 5.1 evaluation criteria and PEDro scores, and meta-analysis was performed on the collected data. The systematic review shows a significant effect of TVNS combined with rehabilitation training on the Upper Extremity Fugl-Meyer Score (MD=3.58, 95% CI [2.34, 4.82], P<0.00001, I2=0%), Function Independent Measure Score (MD=3.86, 95% CI [0.45, 7.27], P=0.03, I2=0%) and the Wolf Motor Function Test Score (MD=3.58, 95% CI [1.97, 5.18], P<0.0001, I2=0%). CONCLUSION Based on UE-FM, FIM, and WMFT scores, TVNS combined with rehabilitation training showed some improvement in upper limb motor dysfunction in post-stroke patients, but its long-term effects, stimulation sites, stimulation parameters, combined mode with rehabilitation training, and adverse effects still need further observation. REGISTRATION PROSPERO: CRD42022312453 (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022312453).
Collapse
Affiliation(s)
- Long Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Yulin Qian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Hong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| |
Collapse
|
31
|
Baig SS, Kamarova M, Ali A, Su L, Dawson J, Redgrave JN, Majid A. Transcutaneous vagus nerve stimulation (tVNS) in stroke: the evidence, challenges and future directions. Auton Neurosci 2022; 237:102909. [PMID: 34861612 DOI: 10.1016/j.autneu.2021.102909] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022]
Abstract
Stroke is one of the leading causes of death and disability globally. A significant proportion of stroke survivors are left with long term neurological deficits that have a detrimental effect on personal wellbeing and wider socioeconomic impacts. As such, there is an unmet need for novel therapies that improve neurological recovery after stroke. Invasive vagus nerve stimulation (VNS) paired with rehabilitation has been shown to improve upper limb motor function in chronic stroke. However, invasive VNS requires a surgical procedure and therefore may not be suitable for all stroke patients. Non-invasive, transcutaneous VNS (tVNS) via auricular vagus nerve stimulation in the ear (taVNS) and cervical vagus nerve stimulation in the neck (tcVNS) have been shown to activate similar vagal nerve projections in the central nervous system to invasive VNS. A number of pre-clinical studies indicate that tVNS delivered in acute middle cerebral artery occlusion reduces infarct size through anti-inflammatory effects, reduced excitotoxicity and increased blood-brain barrier integrity. Longer term effects of tVNS in stroke that may mediate neuroplasticity include microglial polarisation, angiogenesis and neurogenesis. Pilot clinical trials of taVNS indicate that taVNS paired with rehabilitation may improve upper limb motor and sensory function in patients with chronic stroke. In this review, we summarise and critically appraise the current pre-clinical and clinical evidence, outline the major ongoing clinical trials and detail the challenges and future directions regarding tVNS in acute and chronic stroke.
Collapse
Affiliation(s)
- Sheharyar S Baig
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.
| | - Marharyta Kamarova
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.
| | - Ali Ali
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.
| | - Li Su
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, United Kingdom.
| | - Jessica N Redgrave
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
32
|
Guo ZP, Sörös P, Zhang ZQ, Yang MH, Liao D, Liu CH. Use of Transcutaneous Auricular Vagus Nerve Stimulation as an Adjuvant Therapy for the Depressive Symptoms of COVID-19: A Literature Review. Front Psychiatry 2021; 12:765106. [PMID: 34975571 PMCID: PMC8714783 DOI: 10.3389/fpsyt.2021.765106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) comprises more than just severe acute respiratory syndrome. It also interacts with the cardiovascular, nervous, renal, and immune systems at multiple levels, increasing morbidity in patients with underlying cardiometabolic conditions and inducing myocardial injury or dysfunction. Transcutaneous auricular vagus nerve stimulation (taVNS), which is derived from auricular acupuncture, has become a popular therapy that is increasingly accessible to the general public in modern China. Here, we begin by outlining the historical background of taVNS, and then describe important links between dysfunction in proinflammatory cytokine release and related multiorgan damage in COVID-19. Furthermore, we emphasize the important relationships between proinflammatory cytokines and depressive symptoms. Finally, we discuss how taVNS improves immune function via the cholinergic anti-inflammatory pathway and modulates brain circuits via the hypothalamic-pituitary-adrenal axis, making taVNS an important treatment for depressive symptoms on post-COVID-19 sequelae. Our review suggests that the link between anti-inflammatory processes and brain circuits could be a potential target for treating COVID-19-related multiorgan damage, as well as depressive symptoms using taVNS.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dan Liao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
De Martino ML, De Bartolo M, Leemhuis E, Pazzaglia M. Rebuilding Body-Brain Interaction from the Vagal Network in Spinal Cord Injuries. Brain Sci 2021; 11:brainsci11081084. [PMID: 34439702 PMCID: PMC8391959 DOI: 10.3390/brainsci11081084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) exert devastating effects on body awareness, leading to the disruption of the transmission of sensory and motor inputs. Researchers have attempted to improve perceived body awareness post-SCI by intervening at the multisensory level, with the integration of somatic sensory and motor signals. However, the contributions of interoceptive-visceral inputs, particularly the potential interaction of motor and interoceptive signals, remain largely unaddressed. The present perspective aims to shed light on the use of interoceptive signals as a significant resource for patients with SCI to experience a complete sense of body awareness. First, we describe interoceptive signals as a significant obstacle preventing such patients from experiencing body awareness. Second, we discuss the multi-level mechanisms associated with the homeostatic stability of the body, which creates a unified, coherent experience of one's self and one's body, including real-time updates. Body awareness can be enhanced by targeting the vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation. This perspective offers a potentially useful insight for researchers and healthcare professionals, allowing them to be better equipped in SCI therapy. This will lead to improved sensory motor and interoceptive signals, a decreased likelihood of developing deafferentation pain, and the successful implementation of modern robotic technologies.
Collapse
Affiliation(s)
- Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mina De Bartolo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
| | - Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: ; Tel.: +39-6-49917633
| |
Collapse
|
34
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Targeting the Autonomic Nervous System for Risk Stratification, Outcome Prediction and Neuromodulation in Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22052357. [PMID: 33652990 PMCID: PMC7956667 DOI: 10.3390/ijms22052357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is a worldwide major cause of mortality and disability and has high costs in terms of health-related quality of life and expectancy as well as of social healthcare resources. In recent years, starting from the bidirectional relationship between autonomic nervous system (ANS) dysfunction and acute ischemic stroke (AIS), researchers have identified prognostic factors for risk stratification, prognosis of mid-term outcomes and response to recanalization therapy. In particular, the evaluation of the ANS function through the analysis of heart rate variability (HRV) appears to be a promising non-invasive and reliable tool for the management of patients with AIS. Furthermore, preclinical molecular studies on the pathophysiological mechanisms underlying the onset and progression of stroke damage have shown an extensive overlap with the activity of the vagus nerve. Evidence from the application of vagus nerve stimulation (VNS) on animal models of AIS and on patients with chronic ischemic stroke has highlighted the surprising therapeutic possibilities of neuromodulation. Preclinical molecular studies highlighted that the neuroprotective action of VNS results from anti-inflammatory, antioxidant and antiapoptotic mechanisms mediated by α7 nicotinic acetylcholine receptor. Given the proven safety of non-invasive VNS in the subacute phase, the ease of its use and its possible beneficial effect in hemorrhagic stroke as well, human studies with transcutaneous VNS should be less challenging than protocols that involve invasive VNS and could be the proof of concept that neuromodulation represents the very first therapeutic approach in the ultra-early management of stroke.
Collapse
|
36
|
Chen W, Wang H, Feng J, Chen L. Overexpression of circRNA circUCK2 Attenuates Cell Apoptosis in Cerebral Ischemia-Reperfusion Injury via miR-125b-5p/GDF11 Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:673-683. [PMID: 33230465 PMCID: PMC7585838 DOI: 10.1016/j.omtn.2020.09.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are expressed at high levels in the brain and are involved in various central nervous system diseases. However, the potential role of circRNAs in ischemic stroke-associated neuronal injury remains largely unknown. Herein, we uncovered the function and underlying mechanism of the circRNA UCK2 (circUCK2) in ischemia stroke. The oxygen-glucose deprivation model in HT-22 cells was used to mimic ischemia stroke in vitro. Neuronal viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assays and TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling) staining, respectively. Middle cerebral artery occlusion was conducted to evaluate the function of circUCK2 in mice. The levels of circUCK2 were significantly decreased in brain tissues from a mouse model of focal cerebral ischemia and reperfusion. Upregulated circUCK2 levels significantly decreased infarct volumes, attenuated neuronal injury, and improved neurological deficits. circUCK2 reduced oxygen glucose deprivation (OGD)-induced cell apoptosis by regulating transforming growth factor β (TGF-β)/mothers against decapentaplegic homolog 3 (Smad3) signaling. Furthermore, circUCK2 functioned as an endogenous miR-125b-5p sponge to inhibit miR-125b-5p activity, resulting in an increase in growth differentiation factor 11 (GDF11) expression and a subsequent amelioration of neuronal injury. Consequently, these findings showed that the circUCK2/miR-125b-5p/GDF11 axis is an essential signaling pathway during ischemia stroke. Thus, the circRNA circUCK2 may serve as a potential target for novel treatment in patients with ischemic stroke.
Collapse
Affiliation(s)
- Wanghao Chen
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Hong Wang
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Jia Feng
- Medical School of Southeast University, Nanjing 210009, P.R. China
| | - Lukui Chen
- Medical School of Southeast University, Nanjing 210009, P.R. China
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
37
|
Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study. Neural Plast 2020; 2020:8841752. [PMID: 32802039 PMCID: PMC7416299 DOI: 10.1155/2020/8841752] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) is regarded as a potential method for recovery in stroke. The effectiveness of taVNS in acute and subacute stroke should be further discussed as previously, only a few small-scale trials have focused on chronic stroke patients. The objective of this study is to investigate the effect and safety of taVNS on upper limb motor function in subacute ischemic stroke patients. Methods Twenty-one subacute ischemia stroke patients with single upper limb motor function impairment were enrolled and randomly assigned to conventional rehabilitation training with real or sham taVNS, delivered for 15 consecutive days. Electrodes were fixed to the cymba conchae of the left ear with or without electrical stimulation. Conventional rehabilitation training was performed immediately after the end of real or sham taVNS by the same therapists. Baseline assessments were performed on day 0 of enrollment, and posttreatment evaluations were performed at 15 days, 4 weeks, and 12 weeks after the first intervention. The assessment included the upper limb Fugl-Meyer assessment (FMA-U), the Wolf motor function test (WMFT), the Functional Independence Measurement (FIM), and Brunnstrom stage. Heart rate (HR) and blood pressure (BP) were measured before and after each taVNS intervention. At the same time, any adverse effects were observed during the procedure. Outcomes were assessed by a blind evaluator. Results There were no significant differences in FMA-U, WMFT, FIM, and Brunnstrom scores between the two groups at baseline (P > 0.05). At the endpoint, the FMA-U, WMFT, and FIM scores were significantly higher than before treatment (P < 0.05), and there was a significantly greater improvement of those measurements in taVNS group compared with sham-taVNS group (P < 0.05). Significant improvements in FMA-U score were found between groups at follow-up. Only one case of skin redness occurred during the study. Conclusions This study revealed that taVNS appeared to be beneficial to the recovery of upper limb motor function in subacute ischemia stroke patients without obvious adverse effects. Trial registration. This trial is registered with ChiCTR1800019635 on 20 November 2018 (http://www.chictr.org.cn/showproj.aspx?proj=32961).
Collapse
|
38
|
PPAR- γ Mediates Ta-VNS-Induced Angiogenesis and Subsequent Functional Recovery after Experimental Stroke in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8163789. [PMID: 32775443 PMCID: PMC7396041 DOI: 10.1155/2020/8163789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023]
Abstract
Background Neoangiogenesis after cerebral ischemia in mammals is insufficient to restore neurological function, illustrating the need to design better strategies for improving outcomes. Our previous study has suggested that transcutaneous auricular vagus nerve stimulation (ta-VNS) induced angiogenesis and improved neurological functions in a rat model of cerebral ischemia/reperfusion (I/R) injury. However, the mechanisms involved need further exploration. Peroxisome proliferator-activated receptor-γ (PPAR-γ), well known as a ligand-modulated nuclear transcription factor, plays a crucial role in the regulation of cerebrovascular structure and function. Hence, the present study was designed to explore the role of PPAR-γ in ta-VNS-mediated angiogenesis and uncover the possible molecular mechanisms against ischemic stroke. Methods Adult male Sprague-Dawley rats were transfected with either PPAR-γ small interfering RNA (siRNA) or lentiviral vector without siRNA prior to surgery and subsequently received ta-VNS treatment. The expression and localization of PPAR-γ in the ischemic boundary after ta-VNS treatment were examined. Subsequently, neurological deficit scores, neuronal damage, and infarct volume were all evaluated. Additionally, microvessel density, endothelial cell proliferation condition, and the expression of angiogenesis-related molecules in the peri-infarct cortex were measured. Results We found that the expression of PPAR-γ in the peri-infarct cortex increased at 14 d and reached normal levels at 28 d after reperfusion. Ta-VNS treatment further upregulated PPAR-γ expression in the ischemic cortex. PPAR-γ was mainly expressed in neurons and astrocytes. Furthermore, ta-VNS-treated I/R rats showed better neurobehavioral recovery, alleviated neuronal injury, reduced infarct volume, and increased angiogenesis, as indicated by the elevated levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and phosphorylated endothelial nitric oxide synthase (P-eNOS). Surprisingly, the beneficial effects of ta-VNS were weakened after PPAR-γ silencing. Conclusions Our results suggest that PPAR-γ is a potential mediator of ta-VNS-induced angiogenesis and neuroprotection against cerebral I/R injury.
Collapse
|
39
|
Zhao Y, Wang LH, Peng A, Liu XY, Wang Y, Huang SH, Liu T, Wang XJ, Chen ZY. The neuroprotective and neurorestorative effects of growth differentiation factor 11 in cerebral ischemic injury. Brain Res 2020; 1737:146802. [PMID: 32220534 DOI: 10.1016/j.brainres.2020.146802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 03/21/2020] [Indexed: 02/02/2023]
Abstract
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β (TGF-β) superfamily, regulates various biological processes in mammals. The effect of GDF11 in brain injury has not been fully elucidated. Our aim was to investigate the effects of GDF11 in cerebral ischemic injury. The expression level of GDF11 increased significantly in the peri-infarct cerebral cortex. Next, the effect of the intracerebroventricular injection of a GDF11 overexpression lentivirus or rGDF11 was investigated in middle cerebral artery occlusion (MCAO) rats. The preventative effects of the GDF11 overexpression virus on stroke were observed. The delivery of the lentivirus into rats before MCAO significantly reduced the infarct volume and the percentage of apoptotic cells and improved motor function in MCAO rats. Furthermore, it elevated the expression of p-Smad2/3 and promoted neurogenesis and angiogenesis in the ipsilateral SVZ during ischemic injury. More importantly, the therapeutic effects of rGDF11 on stroke were subsequently explored. The results in MCAO rats treated with rGDF11 were found similar to that in those treated with the GDF11 overexpression lentivirus. Together, these findings indicate that GDF11 has neuroprotective and neurorestorative effects in cerebral ischemic injury and provide new insights into the function and mechanism of GDF11 in stroke models.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, PR China
| | - Li-Hong Wang
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Ai Peng
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Xing-Yu Liu
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yue Wang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Shu-Hong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Ting Liu
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Xiao-Jing Wang
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| | - Zhe-Yu Chen
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
40
|
Li J, Zhang Q, Li S, Niu L, Ma J, Wen L, Zhang L, Li C. α7nAchR mediates transcutaneous auricular vagus nerve stimulation-induced neuroprotection in a rat model of ischemic stroke by enhancing axonal plasticity. Neurosci Lett 2020; 730:135031. [DOI: 10.1016/j.neulet.2020.135031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
|
41
|
Hu Z, Li B, Wang Z, Hu X, Zhang M, Chen R, Wu Q, Jia F. The sympathetic transmitter norepinephrine inhibits VSMC proliferation induced by TGFβ by suppressing the expression of the TGFβ receptor ALK5 in aorta remodeling. Mol Med Rep 2020; 22:387-397. [PMID: 32319652 PMCID: PMC7248509 DOI: 10.3892/mmr.2020.11088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/18/2020] [Indexed: 12/12/2022] Open
Abstract
The sympathetic system is involved in the arterial diseases, but its mechanism remains poorly understood. The present study aimed to explore the impact of the sympathetic neurotransmitter norepinephrine (NE) on transforming growth factor (TGF) β signaling and the role of NE in aortic remodeling. Guanethidine was used to induce a regional chemical sympathetic denervation (CSD) in angiotensin II (AngII) and β-aminopropionitrile (BAPN)-induced aortic aneurysm models. The diameter of the aorta was measured, and elastic fiber staining was performed. TGFβ type I receptor kinase (ALK5) expression in rat aortic NE-treated vascular smooth muscle cells (VSMCs) was detected by reverse transcription-quantitative PCR and western blotting. The effects of NE and ALK5 overexpression on migration, proliferation, apoptosis and TGFβ signaling were also evaluated. Furthermore, adrenergic receptor blockers were used to determine which receptor was involved in the modulation on TGFβ signaling by NE. The results of the present study demonstrated that CSD protected rats from AngII+BAPN-induced aortic remodeling and aneurysm formation. Compared with the control group, NE inhibited VSMC proliferation and migration, but promoted apoptosis by suppressing ALK5 expression, reversing the effects of TGFβ signaling through the suppression of the SMAD-dependent canonical pathway and promotion of the non-canonical pathway. These effects were prevented by ALK5 overexpression. The inhibition of α- or β-adrenergic receptors alleviated the NE-mediated suppression of ALK5 expression. In conclusion, regional CSD protected rats from aortic aneurysm. NE inhibited SMAD2/3-dependent TGFβ signaling by suppressing ALK5 expression, which may serve an important role in VSMC biological functions. Both α- and β-adrenergic receptors were involved in the regulation of ALK5 expression by NE. Abnormal sympathetic innervation of the aorta may be used as a therapeutic target in aortic diseases.
Collapse
Affiliation(s)
- Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ruoshi Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fangyuan Jia
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
42
|
Vagus Nerve Stimulation Alleviates Hepatic Ischemia and Reperfusion Injury by Regulating Glutathione Production and Transformation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1079129. [PMID: 32064020 PMCID: PMC6996675 DOI: 10.1155/2020/1079129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023]
Abstract
Inflammation and oxidative stress are pivotal mechanisms for the pathogenesis of ischemia and reperfusion injury (IRI). Vagus nerve stimulation (VNS) may participate in maintaining oxidative homeostasis and response to external stimulus or injury. We investigated whether the in vivo VNS can protect the liver from IRI. In this study, hepatic IRI were induced by ligating the vessels supplying the left and middle lobes of the liver, which underwent 1 h occlusion followed with 24 h reperfusion. VNS was initiated 15 min after ischemia and continued 30 min. Hepatic function, histology, and apoptosis rates were evaluated after 24 h reperfusion. Compared with the IRI group, VNS significantly improved hepatic function. The protective effect was accompanied by a reduction in histological damage in the ischemic area, and the apoptosis rate of hepatocytes has considerable reduction. To find the underlying mechanism, proteomic analysis was performed and differential expression of glutathione synthetase (GSS) and glutathione S-transferase (GST) was observed. Subsequently, test results indicated that VNS upregulated the expression of mRNA and protein of GSS and GST. Meanwhile, VNS increased the plasma levels of glutathione and glutathione peroxidases. We found that VNS alleviated hepatic IRI by upregulating the antioxidant glutathione via the GSS/glutathione/GST signaling pathway.
Collapse
|
43
|
Li QF, Decker-Rockefeller B, Bajaj A, Pumiglia K. Activation of Ras in the Vascular Endothelium Induces Brain Vascular Malformations and Hemorrhagic Stroke. Cell Rep 2019; 24:2869-2882. [PMID: 30208313 DOI: 10.1016/j.celrep.2018.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebrovascular malformations (CVMs) affect approximately 3% of the population, risking hemorrhagic stroke, seizures, and neurological deficits. Recently Ras mutations have been identified in a majority of brain arterio-venous malformations. We generated an endothelial-specific, inducible HRASV12 mouse model, which results in dilated, proliferative blood vessels in the brain, blood-brain barrier breakdown, intracerebral hemorrhage, and rapid lethality. Organoid morphogenesis models revealed abnormal cessation of proliferation, abnormalities in expression of tip and stalk genes, and a failure to properly form elongating tubes. These defects were influenced by both hyperactive PI-3' kinase signaling and altered TGF-β signaling. Several phenotypic changes predicted by the in vitro morphogenesis analysis were validated in the mouse model. These data provide a model of brain vascular malformations induced by mutant Ras and reveal insights into intersecting molecular mechanisms in the pathogenesis of brain vascular malformations.
Collapse
Affiliation(s)
- Qing-Fen Li
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | | | - Anshika Bajaj
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
44
|
Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochem Int 2019; 131:104539. [DOI: 10.1016/j.neuint.2019.104539] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
|
45
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019; 13:854. [PMID: 31447643 PMCID: PMC6697069 DOI: 10.3389/fnins.2019.00854] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipëda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | |
Collapse
|
46
|
Circulating factors in young blood as potential therapeutic agents for age-related neurodegenerative and neurovascular diseases. Brain Res Bull 2019; 153:15-23. [PMID: 31400495 DOI: 10.1016/j.brainresbull.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Recent animal studies on heterochronic parabiosis (a technique combining the blood circulation of two animals) have revealed that young blood has a powerful rejuvenating effect on brain aging. Circulating factors, especially growth differentiation factor 11 (GDF11) and C-C motif chemokine 11 (CCL11), may play a key role in this effect, which inspires hope for novel approaches to treating age-related cerebral diseases in humans, such as neurodegenerative and neurovascular diseases. Recently, attempts have begun to translate these astonishing and exciting findings from mice to humans and from bench to bedside. However, increasing reports have shown contradictory data, questioning the capacity of these circulating factors to reverse age-related brain dysfunction. In this review, we summarize the current research on the role of young blood, as well as the circulating factors GDF11 and CCL11, in the aging brain and age-related cerebral diseases. We highlight recent controversies, discuss related challenges and provide a future outlook.
Collapse
|
47
|
Liu X, Zhang Q, Fan C, Tian J, Liu X, Li G. GDF11 upregulation independently predicts shorter overall-survival of uveal melanoma. PLoS One 2019; 14:e0214073. [PMID: 30883611 PMCID: PMC6422293 DOI: 10.1371/journal.pone.0214073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/06/2019] [Indexed: 01/10/2023] Open
Abstract
Growth differentiation factor 11 (GDF11), is a member of the transforming growth factor-beta (TGF-β) superfamily and bone morphogenetic protein (BMP) subfamily. In this study, we aimed to assess the expression profile of GDF11, its prognostic value in terms of OS, as well as the potential mechanisms leading to its dysregulation in uveal melanoma. A retrospective study was conducted using our primary data and genetic, clinicopathological and overall survival (OS) data from the Cancer Genome Atlas-Uveal Melanoma (TCGA-UVM). Results showed that GDF11 expression was significantly higher in tumor tissues compared with that in adjacent normal tissues. High GDF11 expression was associated with uveal melanoma in advanced stages (IV), epithelioid cell dominant subtype, as well as extrascleral extension. Univariate analysis showed that older age, epithelioid cell dominant, with extrascleral extension and increased GDF11 expression were associated with unfavorable OS. Multivariate analysis confirmed that GDF11 expression was an independent prognostic indicator of unfavorable OS (HR: 1.704, 95%CI: 1.143–2.540, p = 0.009), after adjustment of age, histological subtypes and extrascleral extension. Among the 80 cases of uveal melanoma, only 3 cases had low-level copy gain (+1) and 2 cases had heterozygous loss (-1). No somatic mutations, including SNPs and small INDELs were observed in GDF11 DNA. The methylation of these four CpG sites had weakly (cg22950598 and cg23689080), moderately (cg09890930), or strongly (cg05511733) negative correlation with GDF11 expression. In addition, the patients with high methylation of these four sites had significantly better OS compared to the group with low methylation. Based on these findings, we infer that methylation modulated GDF11 expression might be a valuable prognostic biomarker regarding OS in uveal melanoma.
Collapse
Affiliation(s)
- Xun Liu
- Department of Ophthalmology, Weifang People's Hospital, Weifang, China
| | - Qinghai Zhang
- Department of ICU, Weifang People's Hospital, Weifang, China
| | - Chuanfeng Fan
- Department of Ophthalmology, Taian Aier Eye Hospital, Taian, China
| | - Jie Tian
- Department of Ophthalmology, Weifang People's Hospital, Weifang, China
| | - Xinchang Liu
- Department of Ophthalmology, Weifang People's Hospital, Weifang, China
| | - Guofeng Li
- Department of Ophthalmology, Weifang People's Hospital, Weifang, China
- * E-mail:
| |
Collapse
|
48
|
The influence of GDF11 on brain fate and function. GeroScience 2019; 41:1-11. [PMID: 30729414 DOI: 10.1007/s11357-019-00054-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a transforming growth factor β (TGFβ) protein that regulates aspects of central nervous system (CNS) formation and health throughout the lifespan. During development, GDF11 influences CNS patterning and the genesis, differentiation, maturation, and activity of new cells, which may be primarily dependent on local production and action. In the aged brain, exogenous, peripherally delivered GDF11 may enhance neurogenesis and angiogenesis, as well as improve neuropathological outcomes. This is in contrast to a predominantly negative influence on neurogenesis in the developing CNS. Seemingly antithetical effects may correspond to the cell types and mechanisms activated by local versus circulating concentrations of GDF11. Yet undefined, distinct mechanisms of action in young and aged brains may also play a role, which could include differential receptor and binding partner interactions. Exogenously increasing circulating GDF11 concentrations may be a viable approach for improving deleterious aspects of brain aging and neuropathology. Caution is warranted, however, since GDF11 appears to negatively influence muscle health and body composition. Nevertheless, an expanding understanding of GDF11 biology suggests that it is an important regulator of CNS formation and fate, and its manipulation may improve aspects of brain health in older organisms.
Collapse
|
49
|
Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, Huang JQ, Cheng XY, Huang XH, Tan XJ. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation 2019; 16:20. [PMID: 30700305 PMCID: PMC6352449 DOI: 10.1186/s12974-019-1400-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Stroke is the most common cerebrovascular disease, the second leading cause of death behind heart disease and is a major cause of long-term disability worldwide. Currently, systemic immunomodulatory therapy based on intravenous cells is attracting attention. The immune response to acute stroke is a major factor in cerebral ischaemia (CI) pathobiology and outcomes. Over the past decade, the significant contribution of the spleen to ischaemic stroke has gained considerable attention in stroke research. The changes in the spleen after stroke are mainly reflected in morphology, immune cells and cytokines, and these changes are closely related to the stroke outcomes. Autonomic nervous system (ANS) activation, release of central nervous system (CNS) antigens and chemokine/chemokine receptor interactions have been documented to be essential for efficient brain-spleen cross-talk after stroke. In various experimental models, human umbilical cord blood cells (hUCBs), haematopoietic stem cells (HSCs), bone marrow stem cells (BMSCs), human amnion epithelial cells (hAECs), neural stem cells (NSCs) and multipotent adult progenitor cells (MAPCs) have been shown to reduce the neurological damage caused by stroke. The different effects of these cell types on the interleukin (IL)-10, interferon (IFN), and cholinergic anti-inflammatory pathways in the spleen after stroke may promote the development of new cell therapy targets and strategies. The spleen will become a potential target of various stem cell therapies for stroke represented by MAPC treatment.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.,Institute of Reproductive and Stem Cell Research, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Da He
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Ya-Yue Zeng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Li Zhu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Chao Yang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Yong-Juan Lu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Jie-Qiong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Yan Cheng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiang-Hong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Jun Tan
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.
| |
Collapse
|
50
|
Su X, Huang L, Xiao D, Qu Y, Mu D. Research Progress on the Role and Mechanism of Action of Activin A in Brain Injury. Front Neurosci 2018; 12:697. [PMID: 30356877 PMCID: PMC6190887 DOI: 10.3389/fnins.2018.00697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Activin A belongs to the transforming growth factor superfamily and has a variety of biological functions. Studies have revealed that activin A can regulate the body's immune and inflammatory responses and participate in the regulation of cell death. In addition, activin A also has neurotrophic function and plays an important role in the repair of brain damage. This article summarizes recent advances in understanding the role and mechanism of action of activin A in brain injury and provides new hints into the application of activin A in the treatment of brain injury.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyi Huang
- Department of Stomatology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|